WO2020067414A1 - タイヤ用ゴム組成物、タイヤおよび成形体 - Google Patents

タイヤ用ゴム組成物、タイヤおよび成形体 Download PDF

Info

Publication number
WO2020067414A1
WO2020067414A1 PCT/JP2019/038121 JP2019038121W WO2020067414A1 WO 2020067414 A1 WO2020067414 A1 WO 2020067414A1 JP 2019038121 W JP2019038121 W JP 2019038121W WO 2020067414 A1 WO2020067414 A1 WO 2020067414A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polymer particles
monomer
polymer
tan
Prior art date
Application number
PCT/JP2019/038121
Other languages
English (en)
French (fr)
Inventor
佳明 松岡
野田 憲治
賢治 高水
友也 真部
亨 中島
木村 勝彦
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020549430A priority Critical patent/JP7299908B2/ja
Publication of WO2020067414A1 publication Critical patent/WO2020067414A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for a tire, a tire and a molded article.
  • a rubber material constituting a tread of a tire a rubber composition in which styrene-butadiene rubber (SBR), which is a synthetic rubber, and carbon black as a reinforcing material are blended is mainly used.
  • SBR styrene-butadiene rubber
  • carbon black as a reinforcing material are blended.
  • silica is a hydrophilic inorganic material, there is a problem that affinity with a rubber material is low and dispersibility in rubber is low. In order to improve the dispersibility of silica, silica has been used in combination with a silane coupling agent.
  • Patent Documents 1 and 2 disclose rubber compositions obtained by adding pre-crosslinked polymer particles to a rubber polymer.
  • the pre-crosslinked polymer particles have (i) a repeating unit derived from at least one monomer selected from the group consisting of an acrylate monomer, an acrylonitrile monomer and a vinyl halide monomer, and (ii) a temperature of from 30 ° C to 200 ° C. It has a glass transition temperature in the range of ° C.
  • One embodiment of the present invention relates to a novel rubber composition for a tire capable of providing a molded article excellent in (i) wet grip properties and (ii) a balance between wet grip properties and abrasion resistance, and the tire. It is an object of the present invention to provide a tire and a molded product produced using the rubber composition for rubber.
  • the tire rubber composition containing a specific amount of polymer particles having a specific composition in addition to a diene rubber has the following effects. It has been found that a novel rubber composition for a tire can be provided which can provide a molded article having excellent grip properties and (ii) a balance between wet grip properties and abrasion resistance, and complete an embodiment of the present invention. Reached.
  • the rubber composition for a tire according to one embodiment of the present invention contains 100 parts by weight of the diene rubber (A) and 0.1 to 50 parts by weight of the multilayer polymer particles (B).
  • the polymer particles (B) include a layer of the polymer (X) and a layer of the polymer (Y), and the polymer (X) is a monomer (xa) having two or more radically polymerizable reactive groups.
  • a polymer obtained by polymerizing a composition comprising a total of 100% by weight of 30% by weight to 100% by weight and 0% to 70% by weight of a monomer (xb) copolymerizable with the monomer (xa).
  • the polymer (Y) is a monomer having at least 60% by weight to 100% by weight of at least one monomer (ya) selected from an acrylate ester and a methacrylate ester, and a monomer having two or more radically polymerizable reactive groups. 0 to 30% by weight of the body (yb) and the monomer (ya) And a polymer obtained by polymerizing a composition comprising a total of 100% by weight of 0% to 40% by weight of a monomer (yc) copolymerizable with the monomer (yb), wherein the multilayer polymer particles (B) includes at least one layer having a glass transition temperature of ⁇ 40 ° C. or more and less than 30 ° C.
  • a rubber composition for a tire according to another embodiment of the present invention contains 100 parts by weight of a diene rubber (A) and 0.1 to 50 parts by weight of polymer particles (B),
  • the polymer particles (B) are composed of 50 to 99.9% by weight of at least one monomer (a) selected from an acrylate ester and a methacrylate ester, and a monomer (b) having two or more radically polymerizable reactive groups.
  • the polymer particles (B) have a glass transition temperature of ⁇ 40 ° C. or more and less than 30 ° C.
  • the molded article according to one embodiment of the present invention is a molded article containing multilayer polymer particles, wherein the multilayer polymer particles include a layer of the polymer (X) and a layer of the polymer (Y).
  • the polymer (X) is a polymer obtained by polymerizing a composition containing a monomer having two or more radical polymerizable reactive groups
  • the polymer (Y) is an acrylate ester and a methacrylate ester.
  • the value Z is determined by JI It is a value of the amount of abrasion measured according to the method B of S K-6264-2, and is a value when the amount of abrasion of a molded article not containing the multilayer polymer particles is 100.
  • a molded article according to another embodiment of the present invention is a polymer particle comprising a polymer obtained by polymerizing a composition containing at least one monomer selected from an acrylate ester and a methacrylate ester.
  • the value when both 0 ° C. tan ⁇ and 60 ° C. tan ⁇ of a molded article containing no polymer particles are 100.
  • a novel rubber composition for a tire capable of providing a molded article excellent in (i) wet grip properties and (ii) a balance between wet grip properties and wear resistance, and A tire produced using the rubber composition for a tire and a molded article can be provided.
  • a to B representing a numerical range means “not less than A (including A and larger than A) and not more than B (including B and smaller than B)”.
  • weight is synonymous with “mass”, and the terms “parts by weight” and “% by weight” are interchangeable with the terms “parts by weight” and “% by weight”.
  • polymer includes both “homopolymer” and “copolymer”.
  • the rubber composition for a tire according to one embodiment of the present invention contains 100 parts by weight of a diene rubber (A) and 0.1 to 50 parts by weight of multilayer polymer particles (B), and the multilayer polymer
  • the particles (B) include a layer of the polymer (X) and a layer of the polymer (Y), and the polymer (X) has 30% by weight of the monomer (xa) having two or more radically polymerizable reactive groups.
  • % To 100% by weight, and 0% to 70% by weight of a monomer (xb) copolymerizable with the monomer (xa).
  • the polymer (Y) comprises at least 60% by weight to 100% by weight of one or more monomers (ya) selected from acrylic acid esters and methacrylic acid esters, and a monomer having two or more radically polymerizable reactive groups (ya). yb) 0 to 30% by weight, and the monomer (ya) and the A polymer obtained by polymerizing a composition comprising a total of 100% by weight of 0% to 40% by weight of a monomer (yc) copolymerizable with the monomer (yb), wherein the multilayer polymer particles (B) Contains at least one layer having a glass transition temperature of ⁇ 40 ° C. or more and less than 30 ° C.
  • the “rubber composition for a tire according to an embodiment of the present invention” may be simply referred to as “rubber composition 1 for a tire”. That is, the term “rubber composition 1 for tires” intends one embodiment (embodiment 1) of the rubber composition for tires of the present invention.
  • the rubber composition 1 for a tire can provide a molded article excellent in (i) wet grip properties and (ii) a balance between wet grip properties and abrasion resistance by having the above configuration. More specifically, the rubber composition 1 for a tire according to one embodiment of the present invention can provide a molded article satisfying the following (i) and (ii): (i) 0 ° C. tan ⁇ > 100, and (ii) 0 ° C. tan ⁇ / value Z ⁇ 1, where tan ⁇ is the value of tan ⁇ (0 ° C. tan ⁇ ) at 0 ° C. measured on the molded body according to JIS K-6394.
  • the value of the molded product not containing the multilayer polymer particles (B) when the tan ⁇ at 0 ° C. is set to 100
  • the value Z is the value of B of JIS K-6264-2 for the molded product. It is a value of the amount of abrasion measured according to the method, and is a value when the amount of abrasion of a molded article not containing the multilayer polymer particles is 100.
  • the molded article not containing the multilayer polymer particles (B) means a molded article not containing only the multilayer polymer particles (B).
  • the moldings containing the multilayer polymer particles (B) all have the same composition (the types and amounts of components other than the multilayer polymer particles (B)) except that they do not contain the multilayer polymer particles (B). It satisfies the above (i) and (ii) when compared with a molded article having the same.
  • the rubber composition 1 for tires can improve the rebound resilience of the diene rubber (A) by including the multilayer polymer particles (B). As a result, the rubber composition 1 for a tire can provide a molded article having excellent low rolling resistance. Moreover, the rubber composition 1 for tires can improve the wear resistance of the diene rubber (A) by including the multilayer polymer particles (B). As a result, the rubber composition 1 for a tire can provide a molded article having excellent wear resistance. Furthermore, by including the multilayer polymer particles (B), the rubber composition for tires 1 can provide a molded article having an excellent balance between wet grip properties and low rolling resistance.
  • the content (blending amount) of the multilayer polymer particles (B) in the rubber composition 1 for tires is (i) 0.1 part by weight or more based on 100 parts by weight of the diene rubber (A).
  • the effect of improving the low rolling resistance, abrasion resistance and wet grip properties of the multilayer polymer particles (B) with respect to the molded article using the rubber composition for tires is sufficiently exhibited, and (ii) 50 parts by weight.
  • the dispersibility of the multilayer polymer particles (B) in the rubber composition for a tire is improved.
  • the lower limit of the blending amount of the multilayer polymer particles (B) is more preferably 1 part by weight or more, further preferably 3 parts by weight or more, and particularly preferably 5 parts by weight or more.
  • the upper limit of the amount of the multilayer polymer particles (B) is more preferably 40 parts by weight or less, further preferably 30 parts by weight or less, and particularly preferably 20 parts by weight or less.
  • the diene rubber (A) used in the rubber composition 1 for tires uses at least one kind of conjugated diene monomer as a raw material monomer, and has a double bond serving as a crosslinking point introduced into a main chain. Rubber component.
  • the diene rubber include natural rubber (NR), epoxidized natural rubber (ENR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), and styrene-isoprene copolymer rubber.
  • SIR styrene-isoprene-butadiene copolymer rubber
  • SIBR styrene-isoprene-butadiene copolymer rubber
  • CR chloroprene rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • EPDM ethylene-propylene-diene copolymer rubber
  • IIR halogen Butyl rubber and the like, but are not limited thereto.
  • One of these diene rubbers may be used alone, or two or more thereof may be used in combination.
  • IR, BR, and SBR are preferable, and BR and SBR are more preferable.
  • NR NR
  • BR BR
  • SBR SBR
  • more excellent grip properties can be obtained, and fuel economy and wet grip performance can be obtained in a well-balanced manner.
  • the diene rubber (A) preferably contains a modified diene rubber having an interaction with silica.
  • modified diene rubber include (a) a terminal-modified diene rubber obtained by modifying at least one end of the diene rubber described above with a compound (modifier) having a functional group that interacts with silica; A main chain-modified diene rubber having the functional group in the main chain of the diene rubber described above, and (c) a main chain terminal-modified diene rubber having the functional group in at least one terminal and the main chain of the diene rubber described above.
  • a main chain terminal modified diene rubber having the functional group in the main chain and at least one terminal modified with the modifying agent and (d) two diene rubbers described above in a molecule.
  • the diene rubber (A) contains a modified diene rubber, a rubber composition for a tire that can provide a molded article having good fuel economy, wet grip performance, and abrasion resistance can be obtained.
  • the above-mentioned modified diene rubber may be used alone or in combination of two or more.
  • Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group, and a disulfide.
  • these functional groups may have a substituent.
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an amino group preferably having an amino group
  • an alkoxysilyl group preferably an alkoxysilyl group having 1 to 6 carbon atoms
  • a hydroxyl group preferably an alkoxysilyl group having 1 to 6 carbon atoms
  • an epoxy group are preferable.
  • the content of the modified diene rubber in 100% by weight of the diene rubber (A) is preferably at least 40% by weight, more preferably at least 50% by weight, It is more preferably at least 60% by weight, particularly preferably at least 70% by weight.
  • the content of the modified diene rubber is 40% by weight or more, a rubber composition for a tire that can provide a molded article having desired wet grip performance can be obtained.
  • the content of the modified diene rubber may be 100% by weight, but is preferably 95% by weight or less, more preferably 90% by weight or less, and further preferably 85% by weight or less.
  • a rubber composition for a tire that can provide a molded article having desired low fuel consumption and abrasion resistance can be obtained.
  • the NR is not particularly limited.
  • (a-1) TSR such as SMR, SIR and STR, (a-2) RSS and the like, natural rubber generally used in the tire industry, Protein natural rubber (DPNR), (c) high-purity natural rubber (HPNR), and (d) modified natural rubbers such as epoxidized natural rubber, hydroxylated natural rubber, hydrogenated natural rubber, and grafted natural rubber.
  • DPNR Protein natural rubber
  • HPNR high-purity natural rubber
  • modified natural rubbers such as epoxidized natural rubber, hydroxylated natural rubber, hydrogenated natural rubber, and grafted natural rubber.
  • STR20, SMR20, and RSS # 3 are preferable because they have little variation in quality and are easily available.
  • These NRs may be used alone or in combination of two or more.
  • the content of NR in 100% by weight of the diene rubber (A) is preferably 10% by weight or more, more preferably 15% by weight or more, and further preferably 20% by weight or more. preferable. According to the above configuration, it is possible to obtain a rubber composition for a tire capable of providing a molded article having excellent dry grip properties and wet grip properties.
  • the content of NR is preferably 60% by weight or less, more preferably 50% by weight or less, and further preferably 40% by weight or less. According to the above configuration, it is possible to obtain a rubber composition for a tire that can provide a molded article having a desired grip force.
  • a rubber composition for a tire that can provide a molded article having more excellent wear resistance can be obtained.
  • the diene rubber (A) does not contain NR, the rubber composition for a tire before vulcanization does not have too high tackiness, and thus has the advantage of not contaminating a mold used for producing the rubber composition for a tire. Have.
  • the IR is not particularly limited.
  • titanium tetrahalide-trialkylaluminum system, diethylaluminum chloride-cobalt system, trialkylaluminum-boron trifluoride-nickel system, diethylaluminum chloride-nickel system Commercially available isoprene rubber polymerized using (b) a lanthanoid-based rare earth metal catalyst such as (b) a triethylaluminum-organic acid neodymium-Lewis acid system or (c) an organic alkali metal compound. it can. Specific examples include those commonly used in the tire industry, such as IR2200 manufactured by JSR Corporation and IR2200 manufactured by Zeon Corporation.
  • IRs may be used alone or in combination of two or more.
  • isoprene rubber polymerized using a Ziegler-based catalyst is preferred because of its high cis content.
  • an isoprene rubber having an ultra-high cis content obtained by using a lanthanoid-based rare earth metal catalyst may be used.
  • the vinyl content of IR is preferably not more than 50% by weight, more preferably not more than 40% by weight, still more preferably not more than 30% by weight in 100% by weight of IR.
  • the lower limit of the vinyl content of IR is not particularly limited.
  • IR and the vinyl content of BR described later, high cis BR using a rare earth catalyst, modified BR, SBR, and modified SBR can be measured by an infrared absorption spectrum analysis method.
  • the glass transition temperature of ⁇ IR is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • the glass transition temperature of the IR can vary with the vinyl content of the IR.
  • the IR and the glass transition temperature of BR and SBR to be described later can be measured based on a known method using, for example, a differential scanning calorimeter.
  • the weight average molecular weight of IR is preferably from 90,000 to 2,000,000, more preferably from 150,000 to 1,500,000.
  • the obtained rubber composition for tires can provide a molded article having good processability during production or vulcanization and excellent mechanical strength.
  • IR may have a branched structure or a polar functional group by using a polyfunctional modifier.
  • the polyfunctional modifier include tin tetrachloride, silicon tetrachloride, alkoxysilane having an epoxy group in a molecule, and alkoxysilane containing an amino group.
  • the BR is not particularly limited, and examples thereof include (a) titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel.
  • a lanthanoid rare earth metal catalyst such as (b) a triethylaluminum-organic acid neodymium-Lewis acid system or (c) an organic alkali metal compound. .
  • a high cis BR using a catalyst a butadiene rubber containing 1,2-syndiotactic polybutadiene crystal (SPB-containing BR), a modified butadiene rubber (modified BR) and the like are exemplified.
  • SPB-containing BR 1,2-syndiotactic polybutadiene crystal
  • modified BR modified butadiene rubber
  • BR having a high cis-form content for example, cis-form content of 90% by mass or more
  • BR1220 manufactured by Zeon Corporation
  • BR130B and BR150B manufactured by Ube Industries, Ltd.
  • BR containing a syndiotactic polybutadiene crystal such as VCR412 and VCR617 manufactured by KK.
  • BR may have a branched structure or a polar functional group by using the above-mentioned polyfunctional modifier.
  • the weight average molecular weight (Mw) of the BR is preferably from 90,000 to 2,000,000, more preferably from 150,000 to 1.5,000,000, and further preferably from 250,000 to 800,000.
  • Mw weight average molecular weight
  • the vinyl content of BR is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less in 100% by weight of BR.
  • the lower limit of the vinyl content of BR is not particularly limited.
  • the glass transition temperature of BR is preferably ⁇ 40 ° C. or lower, more preferably ⁇ 50 ° C. or lower. The glass transition temperature of BR can vary with the vinyl content of BR.
  • BR is preferably a high cis content BR (also referred to as high cis BR) having a large cis content.
  • the content of BR in the cis form is preferably 90% by weight or more, more preferably 95% by weight or more in 100% by weight of BR. According to the configuration, it is possible to obtain a rubber composition for a tire that can provide a molded article having excellent fuel efficiency and abrasion resistance.
  • the cis content of BR can be measured by infrared absorption spectrum analysis.
  • the cis-form included in BR means a cis-1,4 bond.
  • the high cis content BR refers to a BR having a cis 1,4 bond content of 90% by weight or more in 100% by weight of BR.
  • BR polymerized with a Ziegler-based catalyst can have a high cis content BR
  • BR polymerized with a lanthanoid-based rare earth metal catalyst can have an ultra-high cis content BR.
  • a high cis content BR produced using a rare earth catalyst hereinafter, also referred to as a high cis BR using a rare earth catalyst
  • High cis BR using rare earth catalyst is a high cis 1,4-polybutadiene rubber synthesized using a rare earth element-based catalyst.
  • the high cis BR is characterized in that the cis isomer content is high and the vinyl content is low.
  • As the high-cis BR using a rare-earth catalyst those commonly used in tire production can be used.
  • rare earth element-based catalyst known catalysts can be used, and examples thereof include a lanthanum series rare earth element compound, an organic aluminum compound, an aluminoxane, a halogen-containing compound, and a catalyst containing a Lewis base as required.
  • lanthanum series rare earth element compounds are preferred, and Nd based catalysts using neodymium (Nd) containing compounds are particularly preferred.
  • Examples of the lanthanum series rare earth element compounds include halides, carboxylate salts, alcoholates, thioalcoholates, and amides of rare earth metals having atomic numbers 57 to 71.
  • the Nd-based catalyst is preferable because BR having a high cis content and a low vinyl content can be obtained.
  • organoaluminum compound examples include AlR a R b R c (where R a , R b , and R c represent hydrogen or a hydrocarbon group having 1 to 8 carbon atoms, which may be the same or different. )) Can be used.
  • aluminoxane examples include a chain aluminoxane and a cyclic aluminoxane.
  • halogen-containing compound examples include (a) AlX k Rd 3-k (where X is a halogen, R d is an alkyl group, aryl group or aralkyl group having 1 to 20 carbon atoms, k is 1, 1.5, 2 or 3), (b) strontium halide such as Me 3 SrCl, Me 2 SrCl 2 , MeSrHCl 2 , MeSrCl 3 , (c) silicon tetrachloride, tin tetrachloride, tetrachloride Metal halides such as titanium are exemplified.
  • the Lewis base is used to complex a lanthanide series rare earth element compound. As the Lewis base, acetylacetone, ketone, alcohol and the like are suitably used.
  • the rare earth element-based catalyst may be used in the state of being dissolved in an organic solvent (such as n-hexane, cyclohexane, n-heptane, toluene, xylene, and benzene) during the polymerization of butadiene, or may be used in the form of silica, magnesium oxide, or the like. May be used by being supported on a suitable carrier such as magnesium chloride.
  • a method for polymerizing butadiene using a rare earth element catalyst either solution polymerization or bulk polymerization may be used.
  • a preferable polymerization temperature is -30 ° C to 150 ° C, and the polymerization pressure may be arbitrarily selected depending on other conditions.
  • the Mooney viscosity ML 1 + 4 (100 ° C.) of the high-cis BR using a rare earth catalyst is preferably 35 or more, more preferably 40 or more.
  • the Mooney viscosity of Highcis BR is 35 or more, the viscosity of the unvulcanized rubber composition for tires is not too low, so that the rubber composition for tire after vulcanization has an advantage that an appropriate thickness can be secured.
  • the Mooney viscosity of Hicis BR is preferably 55 or less, more preferably 50 or less.
  • the Mooney viscosity of Hicis BR is 55 or less, the unvulcanized rubber composition for a tire does not become too hard, so that the rubber composition for a tire can be easily extruded with a smooth edge.
  • the Mooney viscosity is measured according to ISO289 and JIS K6300.
  • the weight average molecular weight of the high-cis BR using a rare earth catalyst is preferably 300,000 or more, more preferably 320,000 or more.
  • the weight average molecular weight of the high cis BR is preferably 1.5 million or less, more preferably 1.3 million or less.
  • the number average molecular weight (Mn) of the high cis BR is preferably 100,000 or more, more preferably 150,000 or more.
  • the number average molecular weight of the high cis BR is preferably 1,000,000 or less, more preferably 800,000 or less.
  • the resulting rubber composition for a tire is excellent in heat build-up and elongation at break.
  • the weight-average molecular weight and the number-average molecular weight of the high cis BR are equal to or less than the above upper limits, the obtained rubber composition for a tire is excellent in processability.
  • the weight average molecular weight and / or the number average molecular weight of IR, BR, high cis BR using a rare earth catalyst, and modified BR and SBR described below are measured by gel permeation chromatography (GPC). It is a value converted from polystyrene.
  • the high-cis BR using the rare earth catalyst has a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of preferably 1.2 or more, more preferably 1.5 or more.
  • Mw / Mn of the high cis BR is 1.2 or more, the processability of the obtained rubber composition for a tire is improved.
  • Mw / Mn of the high cis BR is preferably 5 or less, more preferably 4 or less.
  • the obtained rubber composition for a tire is excellent in heat generation.
  • the content of the cis-form (cis 1,4 bond) in the high cis BR using the rare earth catalyst is 90% by weight or more, preferably 93% by weight or more, more preferably 95% by weight or more based on 100% by weight of the high cis BR. According to the above configuration, the obtained rubber composition for a tire can provide a molded article excellent in elongation at break and excellent in abrasion resistance.
  • the vinyl content of the high-cis BR using a rare earth catalyst is preferably 1.8% by weight or less, more preferably 1.0% by weight or less, further preferably 0.5% by weight or less, and particularly preferably 0.3% by weight or less. According to the above configuration, the obtained rubber composition for a tire can provide a molded article excellent in elongation at break and excellent in abrasion resistance.
  • BR may be a butadiene rubber containing 1,2-syndiotactic polybutadiene crystals (hereinafter also referred to as SPB-containing BR).
  • the SPB-containing BR is preferably not a BR in which 1,2-syndiotactic polybutadiene crystal (SPB) is simply dispersed in BR, but a BR in which SPB and BR are chemically bonded and dispersed. . According to the above configuration, a rubber composition for a tire that can provide a molded article having excellent crack growth resistance can be obtained.
  • the melting point of SPB is preferably at least 180 ° C, more preferably at least 190 ° C. According to the above configuration, there is an advantage that a decrease in hardness due to melting of SPB does not occur during vulcanization of the rubber composition for a tire.
  • the melting point of SPB is preferably 220 ° C. or lower, more preferably 210 ° C. or lower. According to the above configuration, the molecular weight of BR does not become too large, so that the dispersibility of the diene rubber (A) in the obtained rubber composition for tires is good, and the obtained rubber composition for tires has good extrusion processability. It will be.
  • the content of the boiling n-hexane insolubles in the SPB-containing BR is preferably 2.5% by weight or more, more preferably 8% by weight or more. According to the above configuration, the obtained rubber composition for a tire has a sufficient hardness.
  • the content of boiling n-hexane insolubles in the SPB-containing BR is preferably 22% by weight or less, more preferably 20% by weight or less, and even more preferably 18% by weight or less. According to the above configuration, since the viscosity of BR itself does not become too high, the dispersibility of the diene rubber (A) and the filler in the obtained rubber composition for a tire is improved.
  • the boiling n-hexane insolubles indicate 1,2-syndiotactic polybutadiene in the SPB-containing BR.
  • BR may be a modified BR.
  • the modified BR include a terminal-modified BR coupled with tin and a terminal-modified BR having an alkoxysilyl group and / or an amino group.
  • lithium initiator examples include lithium compounds such as alkyl lithium, aryl lithium, vinyl lithium, organic tin lithium and organic nitrogen lithium compounds, and lithium metal.
  • the lithium initiator as the initiator of the modified BR, a modified BR having a high vinyl content and a low cis content can be produced.
  • tin compound examples include tin tetrachloride, butyltin trichloride, dibutyltin dichloride, dioctyltin dichloride, tributyltin chloride, triphenyltin chloride, diphenyldibutyltin, triphenyltin ethoxide, diphenyldimethyltin, ditolyltin chloride, diphenyltin dioctane. Noate, divinyldiethyltin, tetrabenzyltin, dibutyltin distearate, tetraallyltin, p-tributyltin styrene and the like can be mentioned. One of these tin compounds may be used alone, or two or more thereof may be used in combination.
  • the content of tin atoms in the modified BR is preferably at least 50 ppm, more preferably at least 60 ppm. According to the above configuration, there is an advantage that the effect of promoting the dispersion of the carbon black in the modified BR is increased and tan ⁇ is not excessively increased.
  • the content of tin atoms in the modified BR is preferably 3000 ppm or less, more preferably 2500 ppm or less, and even more preferably 250 ppm or less. According to the above configuration, the kneaded material containing the diene rubber (A) and the multilayer polymer particles (B) is united well, and the edge is appropriately arranged. As a result, the obtained rubber composition for tires has good extrusion processability.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the modified BR is preferably 2.0 or less, more preferably 1.5 or less. According to the above configuration, there is an advantage that the dispersibility of carbon black is improved and tan ⁇ is not excessively increased.
  • the vinyl content of the modified BR is preferably at least 5% by weight, more preferably at least 7% by weight. According to the above configuration, the modified BR can be easily polymerized (produced). The vinyl content of the modified BR is preferably 50% by weight or less, more preferably 20% by weight or less. According to the above configuration, the rubber composition for a tire can provide a molded article excellent in low rolling resistance without increasing heat build-up.
  • the content of BR in 100% by weight of the diene rubber (A) is preferably 5% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight or more. preferable.
  • the rubber composition for a tire can provide a molded article having desired wear resistance and crack growth resistance.
  • the BR content is preferably 80% by weight or less, more preferably 70% by weight or less, further preferably 60% by weight or less, further preferably 50% by weight or less, and particularly preferably 40% by weight or less.
  • the rubber composition for a tire can provide a molded article having a desired gripping property.
  • the rubber composition for a tire can provide a molded article having more excellent abrasion resistance.
  • the diene rubber (A) contains two or more types of BR
  • the total amount of BR contained in the diene rubber (A) is defined as the content of BR in the diene rubber (A).
  • the SBR is not particularly limited, and for example, emulsion-polymerized styrene-butadiene rubber (E-SBR), solution-polymerized styrene-butadiene rubber (S-SBR) and the like can be used.
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • S-SBR solution-polymerized styrene-butadiene rubber
  • S-SBR modified S-SBR
  • E-SBR modified E-SBR
  • modified E-SBR include those modified with an organosilicon compound having an amino group, an epoxy group, an alkoxy group, and the like.
  • the styrene content of the SBR is preferably 0.1% by weight or more, more preferably 5% by weight or more, further preferably 20% by weight or more, and particularly preferably 25% by weight or more based on 100% by weight of SBR. According to the above configuration, a rubber composition for a tire that can provide a molded article having a desired gripping property can be obtained.
  • the styrene content of the SBR is preferably 70% by weight or less, more preferably 60% by weight or less, and further preferably 50% by weight or less. According to the above configuration, a rubber composition for a tire that can provide a molded article having desired wear resistance can be obtained.
  • a molded article that can be provided by the obtained rubber composition for a tire does not have too large a temperature dependency of hardness (specifically, a difference between the hardness at 23 ° C. and the hardness at 100 ° C.).
  • a temperature dependency of hardness specifically, a difference between the hardness at 23 ° C. and the hardness at 100 ° C.
  • H 1 -NMR measurement the styrene content of SBR and a modified SBR described later is calculated by H 1 -NMR measurement.
  • the vinyl content of SBR is preferably 0.1% by weight or more based on 100% by weight of SBR.
  • the vinyl content of SBR is preferably 60% by weight or less, more preferably 55% by weight or less.
  • the vinyl content (1,2-bonded butadiene unit amount) of SBR and a modified SBR described later can be measured by an infrared absorption spectrum analysis method.
  • the weight average molecular weight (Mw) of the SBR is preferably 100,000 to 2.5 million, more preferably 150,000 to 2,000,000, and further preferably 200,000 to 1.5 million.
  • Mw weight average molecular weight
  • SBR has a glass transition temperature (Tg) of preferably ⁇ 95 to 0 ° C., more preferably ⁇ 95 to ⁇ 5 ° C.
  • Tg glass transition temperature
  • SBR is obtained by copolymerizing styrene and butadiene.
  • the method for producing SBR is not particularly limited, and any of emulsion polymerization, solution polymerization, gas phase polymerization, and bulk polymerization can be used, and emulsion polymerization and solution polymerization are preferred.
  • Emulsion polymerized styrene butadiene rubber E-SBR
  • E-SBR can be produced by a usual emulsion polymerization method.
  • the production method is, for example, a method in which a predetermined amount of a styrene and butadiene monomer is emulsified and dispersed in the presence of an emulsifier and emulsion-polymerized with a radical polymerization initiator.
  • a long-chain fatty acid salt or a rosinate having 10 or more carbon atoms is used.
  • Specific examples include potassium or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid.
  • Water is usually used as a dispersant, and may contain a water-soluble organic solvent such as methanol or ethanol as long as stability during polymerization is not impaired.
  • radical polymerization initiator examples include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, and hydrogen peroxide.
  • a chain transfer agent may be used to adjust the molecular weight of the obtained E-SBR.
  • the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of the emulsion polymerization can be appropriately selected depending on the kind of the radical polymerization initiator used, but is usually preferably 0 to 100 ° C, more preferably 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be stopped by adding a polymerization terminator.
  • polymerization terminator examples include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine, and hydroxylamine; quinone-based compounds such as hydroquinone and benzoquinone; and sodium nitrite.
  • an antioxidant may be added as necessary.
  • a salt such as sodium chloride, calcium chloride, or potassium chloride is used as a coagulant, and if necessary, nitric acid, sulfuric acid, or the like is used.
  • the polymer After coagulating the polymer while adjusting the pH of the coagulation system to a predetermined value by adding an acid, the polymer can be recovered as crumb by separating the dispersion solvent. The crumbs are washed with water, then dehydrated, and then dried with a band dryer or the like to obtain E-SBR.
  • a latex and an extension oil which has been previously emulsified and dispersed may be mixed and collected as an oil-extended rubber.
  • S-SBR Solution-polymerized styrene-butadiene rubber
  • the production method is, for example, a method in which styrene and butadiene are polymerized in the presence of a polar compound using an active metal that can be anionically polymerized in a solvent.
  • anionic polymerizable active metal examples include alkali metals such as lithium, sodium, and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium; and lanthanide-based rare earth metals such as lanthanum and neodymium. .
  • alkali metals and alkaline earth metals are preferred, and alkali metals are more preferred.
  • organic alkali metal compounds are more preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 Polyfunctional organic lithium compounds such as -dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene and potassium naphthalene; Among them, organic lithium compounds are preferable, and organic monolithium compounds are more preferable.
  • the amount of the organic alkali metal compound used is appropriately determined depending on the required molecular weight of S-SBR.
  • the organic alkali metal compound can be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine.
  • ether compounds such as dibutyl ether, diethyl ether, tetrahydrofuran, dioxane, and ethylene glycol diethyl ether; pyridine; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides such as potassium-t-butoxide; phosphine compounds; Can be
  • the polar compound is preferably used in a range of 0.01 to 1000 molar equivalents based on the organic alkali metal compound.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; Examples include aromatic hydrocarbons such as toluene. Usually, these solvents are preferably used in a range where the monomer concentration is 1 to 50% by weight.
  • the temperature of the polymerization reaction is usually in the range of -80 to 150 ° C, preferably 0 to 100 ° C, and more preferably 30 to 90 ° C.
  • the polymerization mode may be a batch type or a continuous type.
  • styrene and butadiene are continuously or intermittently supplied into the reaction solution so that the composition ratio of styrene and butadiene in the polymerization system falls within a specific range. Is preferred.
  • the polymerization reaction can be stopped by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • an alcohol such as methanol or isopropanol
  • the solvent can be separated from the polymerization solution by direct drying, steam stripping, or the like, and the desired S-SBR can be recovered.
  • the polymerization solution and the extender oil may be mixed in advance and collected as an oil-extended rubber.
  • the content of SBR in 100% by weight of the diene rubber (A) is preferably 20% by weight or more, more preferably 30% by weight or more.
  • a rubber composition for a tire that can provide a molded article having a desired gripping property can be obtained.
  • the content of SBR is preferably 90% by weight or less, more preferably 80% by weight or less.
  • the obtained rubber composition for a tire has excellent heat generation.
  • the rubber composition for tires which can provide the molded object excellent in crack growth resistance can be obtained.
  • the SBR may be a modified SBR into which a functional group has been introduced.
  • the modified SBR includes the modified S-SBR and the modified E-SBR described above.
  • the position of the polymer into which the functional group is introduced may be a polymerization terminal or a side chain of a polymer chain.
  • the functional group include an amino group, an alkoxysilyl group, a hydroxyl group, an epoxy group, and a carboxyl group.
  • SBR modified with a compound represented by the following formula (I) described in JP-A-2010-111753 can be suitably used. Specifically, for example, E15 manufactured by Asahi Kasei Chemicals Corporation can be used.
  • R 11 , R 12 and R 13 represent an alkyl group, an alkoxy group (preferably an alkoxy group having 1 to 8 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms), a silyloxy group, an acetal group, Represents a carboxyl group (—COOH), a mercapto group (—SH) or a derivative thereof, which may be the same or different.
  • R 14 and R 15 represent a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms), which may be the same or different.
  • n represents an integer (preferably 1 to 5, more preferably 2 to 4, and still more preferably 3).
  • At least one of R 11 , R 12 and R 13 is an alkoxy group having 1 to 4 carbon atoms, and R 14 and R 15 are a hydrogen atom and an alkyl group having 1 to 4 carbon atoms. Is preferred. According to the configuration, a rubber composition for a tire having processability can be obtained. Further, the obtained rubber composition for a tire can provide a molded article having excellent wear resistance.
  • Specific examples of the compound represented by the formula (I) include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethylmethoxysilane, 3-aminopropyldimethylethoxysilane, Examples include aminopropylmethyldimethoxysilane, 2-dimethylaminoethyltrimethoxysilane, 3-diethylaminopropyltrimethoxysilane, and 3-dimethylaminopropyltrimethoxysilane. These may be used alone or in combination of two or more.
  • the styrene content of the modified SBR is preferably at least 5% by weight, more preferably at least 10% by weight, further preferably at least 20% by weight in 100% by weight of the modified SBR. According to the configuration, a rubber composition for a tire that can provide a molded article having excellent gripping properties can be obtained.
  • the styrene content of the modified SBR is preferably 70% by weight or less, more preferably 60% by weight or less, and further preferably 50% by weight or less. According to the configuration, a rubber composition for a tire having desired processability can be obtained.
  • the vinyl content of the modified SBR is preferably 10% by weight or more, more preferably 20% by weight or more, and even more preferably 30% by weight or more based on 100% by weight of the modified SBR. According to the configuration, a rubber composition for a tire that can provide a molded article having excellent gripping properties can be obtained.
  • the vinyl content of the modified SBR is preferably 90% by weight or less, more preferably 80% by weight or less, and further preferably 70% by weight or less. According to the above configuration, a rubber composition for a tire that can provide a molded article having a desired strength can be obtained.
  • the modified SBR preferably has a glass transition temperature (Tg) of ⁇ 45 ° C. or higher, The temperature is more preferably ⁇ 40 ° C. or higher, further preferably ⁇ 35 ° C. or higher.
  • the glass transition temperature of the modified SBR is preferably 10 ° C. or lower, more preferably 5 ° C. or lower, even more preferably 0 ° C. or lower.
  • the glass transition temperature of the modified SBR can be measured, for example, by performing differential scanning calorimetry (DSC) at a rate of 10 ° C./min according to JIS K7121.
  • tin tetrachloride capable of reacting with a polymerization active terminal
  • tetrachlorosilane dimethyldichlorosilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane
  • Coupling agents such as 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, and 4,4'-bis (diethylamino) benzophenone, N-vinylpyrrolidone
  • tin tetrachloride capable of reacting with a polymerization active terminal
  • Coupling agents such as 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, and 4,4'-bis (dieth
  • the diene rubber (A) comprises 50 to 100% by weight of at least one monomer (aa) having two or more radically polymerizable reactive groups, and a monomer (a) copolymerizable with the monomer (aa).
  • It is preferably a polymer obtained by polymerizing a composition comprising a total of 100% by weight of 0 to 50% by weight.
  • One or more monomers (aa) having two or more radically polymerizable reactive groups are also simply referred to as monomers (aa) in this specification.
  • the composition for forming the diene rubber (A) contains the monomer (aa)
  • the diene rubber (A) contains a structural unit obtained by polymerizing the monomer (aa).
  • a structural unit obtained by polymerizing the monomer (aa) is also referred to as a structural unit (aa).
  • the monomer (aa) has two or more radically polymerizable reactive groups that are reactive groups involved in the polymerization reaction, and thus can be said to be a polyfunctional monomer.
  • the radically polymerizable reactive group is preferably a carbon-carbon double bond.
  • the rubber composition for a tire can provide a molded article excellent in low rolling resistance and / or a molded article excellent in abrasion resistance. It has the advantage that.
  • the reason for obtaining these advantages is not particularly limited, but is presumed as follows.
  • the embodiment of the present invention is not particularly limited to the following reason (principle).
  • the diene rubber (A) contains the structural unit (aa)
  • the diene rubber (A) has a crosslinking point that can participate in a crosslinking reaction with the multilayer polymer particles (B).
  • the diene rubber (A) and the multilayer polymer particles (B) are integrated by covalent bonds.
  • the degree of cross-linking between polymers in the obtained molded article increases, the rebound resilience of the molded article is improved, and the molded article has excellent low rolling resistance.
  • the monomer (aa) has two or more reactive groups involved in the polymerization reaction (that is, radically polymerizable reactive groups), the degree of crosslinking between polymers can be increased even in the diene rubber (A). it can.
  • the rubber composition for a tire having the diene rubber (A) containing the structural unit (aa) can provide a molded article having excellent wear resistance.
  • a polymerization reaction proceeds with addition of a radical to a monomer, but the reaction rate does not reach 100%. Therefore, the radical polymerization is produced using the monomer (aa). Double bonds remain in the diene rubber (A), and as a result, the diene rubber (A) can have double bonds. Via the double bond, the diene rubber (A) can form a covalent bond with the multilayer polymer particles (B) by a vulcanization reaction. As a result, the rebound resilience is improved in the molded article produced from the rubber composition for a tire, and the rubber composition for a tire can provide a molded article having excellent low rolling resistance. Further, as the degree of crosslinking of the diene rubber (A) increases, the hardness of the diene rubber (A) also increases.
  • the monomer (aa) is not particularly restricted but includes, for example, polyvalent vinyl aromatic compounds such as diisopropenylbenzene and divinylbenzene; ⁇ , ⁇ -ethylenic compounds such as vinyl (meth) acrylate and allyl methacrylate.
  • Unsaturated ester compounds of unsaturated carboxylic acids unsaturated ester compounds of polyvalent carboxylic acids such as diallyl phthalate and triallyl trimellitate; ethylene glycol di (meth) acrylate, propylene glycol dimethacrylate, dimethacrylic acid 1, Unsaturated ester compounds of polyhydric alcohols such as 3-butylene glycol (also referred to as 1,3-butylene dimethacrylate); unsaturated ester compounds of cyanuric acid such as triallyl cyanurate; triallyl isocyanurate (also called triallylisocyanurate) (TAIC)) Unsaturated ester compounds of the null acid; 1,2-butadiene, divinyl ether, divinyl sulfone, N, and the like N'-m-phenylene maleimide. These compounds may be used alone or in combination of two or more.
  • the monomer (aa) (i) from the viewpoint of reactivity in radical polymerization, a polyvalent vinyl aromatic compound, an unsaturated ester compound of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and an unsaturated ester of polyhydric alcohol An ester compound, an unsaturated ester compound of cyanuric acid, and an unsaturated ester compound of isocyanuric acid are preferable, and (ii) the residual amount of carbon-carbon double bonds after radical polymerization increases, so that triallyl isocyanurate and Allyl methacrylate is preferred.
  • a conjugated diene monomer refers to a conjugated diene having two carbon-carbon double bonds, wherein the double bonds are separated by one single bond.
  • conjugated diene monomer examples include isoprene, chloroprene, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene and 1,3-pentadiene. No.
  • the conjugated diene monomer may be used alone or in combination of two or more.
  • the content of the monomer (aa) in the composition for forming the diene rubber (A) is preferably 50 to 100% by weight based on 100% by weight of the composition.
  • the content of the monomer (aa) is 50% by weight or more, the above-described advantage of the diene rubber (A) containing the structural unit (aa) can be enjoyed. Since the inconvenience hardly occurs in the production of the monodiene rubber (A) and the obtained rubber composition for tires has excellent workability, the upper limit of the content of the monomer (aa) is as follows: The content is more preferably 99.9% by weight or less, further preferably 95% by weight or less, and particularly preferably 90% by weight or less.
  • the diene rubber (A) may be a single unit formed by polymerizing a composition consisting of only the monomer (aa).
  • the diene rubber (A) is obtained by polymerizing a composition comprising a total of 100% by weight of the monomer (aa) and the monomer (ab) copolymerizable with the monomer (aa). It may be a polymer.
  • the monomer (ab) copolymerizable with the monomer (aa) is simply referred to as a monomer (ab) in this specification.
  • the composition for forming the diene rubber (A) includes the monomer (ab)
  • the diene rubber (A) includes a structural unit obtained by polymerizing the monomer (ab).
  • the monomer (ab) is not particularly limited as long as it can be copolymerized with the monomer (aa), and any one kind of monomer may be used alone or two or more kinds may be used in combination. Good.
  • the monomer (ab) preferably contains an aromatic monoalkenyl monomer.
  • a monomer (ab) containing an aromatic monoalkenyl monomer is used, the affinity between the diene rubber (A) and the multilayer polymer particles (B) in the tire rubber composition can be increased.
  • the layer of the polymer (X) of the multilayer polymer particles (B) contains an aromatic monoalkenyl monomer as the monomer (xb)
  • the aromatic monoalkenyl monomer is produced in the production of the diene rubber (A).
  • the affinity between the diene rubber (A) and the multilayer polymer particles (B) can be increased.
  • the dispersibility of the multilayer polymer particles (B) in the tire rubber composition is improved.
  • aromatic monoalkenyl monomer examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-ethylstyrene.
  • Pt-butylstyrene ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-bromostyrene, 2-methyl-4,6- Examples include dichlorostyrene, p-bromostyrene, 2-methyl-4,6-dichlorostyrene, 2,4-dibromostyrene, and vinylnaphthalene.
  • the aromatic monoalkenyl monomer only one kind may be used, or two or more kinds may be used in combination.
  • styrene is preferred from the viewpoint of reactivity and cost in radical polymerization.
  • the monomer (ab) preferably contains 30 to 100% by weight of an aromatic monoalkenyl monomer based on 100% by weight of the monomer (ab). According to the configuration, the affinity between the diene rubber (A) and the multilayer polymer particles (B) in the rubber composition for a tire can be further increased. As a result, the dispersibility of the multilayer polymer particles (B) in the tire rubber composition is further improved.
  • the lower limit of the content of the aromatic monoalkenyl monomer is more preferably 60% by weight or more, further preferably 70% by weight or more, and particularly preferably 85% by weight or more. .
  • the content of the monomer (ab) in the composition for forming the diene rubber (A) is preferably 0 to 50% by weight based on 100% by weight of the composition.
  • the lower limit of the content of the monomer (ab) is preferably 5% by weight or more, more preferably 8% by weight or more, still more preferably 10% by weight or more, and particularly preferably 15% by weight or more.
  • the upper limit of the content of the monomer (ab) is preferably 35% by weight or less, more preferably 30% by weight or less, further preferably 25% by weight or less, and particularly preferably 20% by weight or less.
  • a homopolymer obtained by polymerizing a composition comprising the monomer (aa), or a total of 100% by weight of the monomer (aa) and the monomer (ab) copolymerizable with the monomer (aa)
  • the diene rubber (A) which is a copolymer obtained by polymerizing a composition comprising: IR, BR, SBR, SIR, SIBR, NBR, IIR, CR, EPDM, and the like.
  • IR, BR, SBR, SIR, SIBR, NBR, IIR, CR, EPDM, and the like are preferred.
  • the diene rubber (A) is more preferably at least one selected from the group consisting of a butadiene rubber having a functional group at a terminal and a styrene-butadiene copolymer rubber having a functional group at a terminal. According to the above configuration, when silica is blended in the rubber composition for a tire (i), the dispersibility of the silica in the rubber composition for a tire is improved, and (ii) the rubber composition for a tire has low rolling resistance. A molded article having excellent properties can be provided.
  • Rubber composition 1 for tires may further contain rubber components other than diene rubber (A) (for example, acrylic rubber, fluorine rubber, silicon rubber, ethylene-propylene rubber, urethane rubber, etc.).
  • the rubber composition 1 for a tire is a homopolymer of at least one monomer selected from the group consisting of epichlorohydrin, ethylene oxide, propylene oxide and allyl glycidyl ether, or at least one selected from the group described above. It may further contain a copolymer of two monomers, or a copolymer of at least one monomer selected from the group described above and the rubber component described above.
  • the method for producing the diene rubber (A) is not particularly limited, and a known method can be used. Further, a commercially available diene rubber (A) may be used as the diene rubber (A).
  • Multilayer polymer particles (B) The content of the layer of the polymer (X) and the layer of the polymer (Y) in the multilayer polymer particles (B) is not particularly limited.
  • the content of the layer of the polymer (Y) in the multilayer polymer particles (B) is preferably 100 parts by weight to 10,000 parts by weight based on 100 parts by weight of the layer of the polymer (X). According to the above configuration, there is an advantage that the obtained rubber composition 1 for a tire can provide a molded article having excellent wet grip properties.
  • Polymer (X)) (Monomer (xa))
  • monomers (xa) having two or more radically polymerizable reactive groups are also simply referred to as monomers (xa) in this specification. Since the composition for forming the polymer (X) contains the monomer (xa), the polymer (X) contains a structural unit obtained by polymerizing the monomer (xa). In the present specification, a structural unit obtained by polymerizing the monomer (xa) is also referred to as a structural unit (xa).
  • the same monomer as (monomer (aa)) in the section of (diene rubber (A)) can be used.
  • the mode of the monomer (xa) the mode described in the section of (monomer (aa)) can be appropriately used.
  • the rubber composition 1 for a tire can provide a molded article excellent in low rolling resistance and / or a molded article excellent in abrasion resistance. And (ii) it is easy to obtain the multilayer polymer particles (B) as a powder.
  • the reason for obtaining these advantages is not particularly limited, but is presumed as follows. However, the embodiment of the present invention is not particularly limited to the following reason (principle).
  • the polymer (X) contains the structural unit (xa)
  • the polymer (X) has a crosslinking point capable of participating in a crosslinking reaction with the diene rubber (A). Therefore, when at least a part of the outermost layer of the multilayer polymer particles (B) is a layer of the polymer (X), when the rubber composition 1 for a tire undergoes a crosslinking reaction, the diene rubber (A) and the multilayer The polymer particles (B) are integrated by a covalent bond. As a result, the degree of cross-linking between polymers in the obtained molded article increases, the rebound resilience of the molded article is improved, and the molded article has excellent low rolling resistance.
  • the monomer (xa) has two or more reactive groups involved in the polymerization reaction, the degree of crosslinking between the polymers can be increased also in the polymer (X).
  • the rubber composition for a tire 1 having the multilayer polymer particles (B) can provide a molded article having excellent wear resistance.
  • the outermost surface of the multilayer polymer particle (B) can have a double bond.
  • the multilayer polymer particle (B) can form a covalent bond with the diene rubber (A) by a vulcanization reaction.
  • the molded article manufactured from the rubber composition for tires 1 has improved rebound resilience, and the rubber composition for tires 1 can provide a molded article excellent in low rolling resistance.
  • the degree of crosslinking of the polymer (X) increases, the hardness of the multilayer polymer particles (B) also increases. Therefore, the aggregation of the multilayer polymer particles (B) can be easily controlled, and as a result, the powder of the multilayer polymer particles (B) can be easily formed. In other words, it becomes easy to obtain the multilayer polymer particles (B) as a powder.
  • the content of the monomer (xa) in the composition for forming the polymer (X) is preferably 30 to 100% by weight based on 100% by weight of the composition.
  • the content of the monomer (xa) is 30% by weight or more, the above-described advantage of the polymer (X) containing the structural unit (xa) can be enjoyed. Since the inconvenience hardly occurs in the production of the multilayer polymer particles (B) and the obtained rubber composition 1 for tires has excellent workability, the upper limit of the content of the monomer (xa) is as follows: , 99.9% by weight or less, more preferably 95% by weight or less, particularly preferably 90% by weight or less.
  • the content of the monomer (xa) in the composition for forming the polymer (X) is 100% by weight of the composition. More preferably, it is 40 to 100% by weight, more preferably 50 to 100% by weight, more preferably 60 to 100% by weight, and more preferably 70 to 100% by weight. It is more preferably 80 to 100% by weight, particularly preferably 100% by weight.
  • the monomer (xa) preferably contains one or more monomers selected from the group consisting of allyl methacrylate, diallyl phthalate and triallyl isocyanurate, and one or more monomers selected from the group described above. It is preferably a monomer.
  • This configuration has the following advantages (a) to (d): (a) good dispersibility of the multilayer polymer particles (B) in the diene rubber (A); (b) multilayer weight The production of the coalesced particles (B), specifically, the recovery of the obtained multilayer polymer particles (B) from the aqueous latex, is improved; (c) Allyl groups having radical reactivity are added to the polymer (X).
  • each of the layer composed of the polymer (X) and the layer composed of the polymer (Y) can be formed more independently.
  • the monomer (xa) a (meth) acrylic monomer is preferably selected from the viewpoint that the handling of the multilayer polymer particles (B) is improved.
  • the monomer (xa) contains 1,2-butadiene, 1,3-butadiene, isoprene, chloroprene, and It preferably contains one or more monomers selected from the group consisting of divinylbenzene, and preferably one or more monomers selected from the group described above.
  • the polymer (X) has an allyl group having radical reactivity and / or It also has the advantage that higher vinyl groups can be further introduced.
  • the polymer (X) may be a homopolymer obtained by polymerizing a composition comprising only the monomer (xa).
  • the polymer (X) is obtained by polymerizing a composition comprising a total of 100% by weight of a monomer (xa) and a monomer (xb) copolymerizable with the monomer (xa). It may be united.
  • the monomer (xb) copolymerizable with the monomer (xa) is also simply referred to as a monomer (xb) in the present specification.
  • the composition for forming the polymer (X) includes the monomer (xb)
  • the polymer (X) includes a structural unit obtained by polymerizing the monomer (xb).
  • the same monomer as (monomer (ab)) in the section of (diene rubber (A)) can be used.
  • the mode of the monomer (xb) the mode described in the section of (monomer (ab)) can be appropriately used.
  • the content of the monomer (xb) in the composition for forming the polymer (X) is preferably 0 to 70% by weight based on 100% by weight of the composition.
  • the lower limit of the content of the monomer (xb) is preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 15% by weight or more, and particularly preferably 20% by weight or more.
  • the upper limit of the content of the monomer (xb) is preferably 60% by weight or less, more preferably 50% by weight or less, further preferably 40% by weight or less, and particularly preferably 35% by weight or less.
  • Preferred embodiments of the polymer (X) include the following embodiments: (Aspect x1) A composition comprising a total of 100% by weight of butadiene as a monomer (xa) and styrene as a monomer (xb). (Aspect x2) A polymer comprising a total of 100% by weight of 50% by weight of butadiene as monomer (xa) and 50% by weight of styrene as monomer (xb). (Aspect x3) A polymer obtained by polymerizing a composition comprising a total of 100% by weight of allyl methacrylate as the monomer (xa) and butyl acrylate as the monomer (xb).
  • Preferred embodiments of the polymer (X) also include the following embodiments: (Aspect x4) A polymer obtained by polymerizing a composition comprising 100% by weight of butadiene as a monomer (xa); (Aspect x5) A) a polymer obtained by polymerizing a composition comprising 100% by weight of allyl methacrylate as the monomer (xa).
  • the aspect x1 and the aspect x3 have an advantage that the affinity between the diene rubber (A) and the multilayer polymer particles (B) is improved.
  • the dispersibility of the multilayer polymer particles (B) in the diene rubber (A) is improved, and the production of the multilayer polymer particles (B), specifically, the obtained multilayer is
  • the aspect x3 and the aspect x4 have an advantage that the obtained molded article of the rubber composition 1 for a tire is more excellent in abrasion resistance.
  • the monomer (ya) can be said to be one or more monomers selected from (meth) acrylates.
  • a polymer mainly containing a structural unit derived from a monomer having two or more radically polymerizable reactive groups is referred to as a polymer (A).
  • a polymer having a constitutional unit composed of at least one monomer selected from an acrylate ester and a methacrylate ester as a main component is referred to as a polymer (B).
  • the “main component” of the polymer is intended to mean a structural unit (component) occupying 50% by weight or more based on 100% by weight of the structural unit of the polymer.
  • the present inventor has determined that when the polymer (A) and the polymer (B) have the same Tg, the polymer (A) and the polymer (B) are described in JIS @ K-6394.
  • the polymer (B) independently obtained the surprising finding that the value of tan ⁇ generally increased as compared with the polymer (A).
  • the rubber composition 1 for tires is such that the polymer (Y) contains at least 60% by weight of one or more monomers (ya) selected from acrylates and methacrylates. It can be said that the polymer (Y) in the rubber composition 1 for a tire is a polymer having as a main component a structural unit composed of at least one monomer selected from an acrylate ester and a methacrylate ester.
  • Examples of the (meth) acrylate include (i) methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2- (meth) acrylate.
  • (Meth) acrylates having an alkyl group having 1 to 22 carbon atoms and having a hydroxyl group such as (ii) 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate
  • (Iv) having an alkyl group having 1 to 22 carbon atoms such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate
  • (Meth) acrylic esters having an alkoxyl group such as (ii) 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate
  • (Iii) (meth) acrylic esters having an epoxy group such as glycidyl (meth) acrylate
  • the number of carbon atoms of the alkyl group of the (meth) acrylic acid ester is not necessarily limited, but there is no possibility that the polymerizability is inferior. Therefore, the (meth) acrylic acid ester having an alkyl group of 22 or less carbon atoms. Can be suitably used.
  • (meth) acrylates described above (meth) acrylates having an alkyl group having 12 or less carbon atoms are preferably used because they have excellent polymerizability, are inexpensive, and are widely used. You.
  • ethyl (meth) acrylate, n-butyl (meth) acrylate, methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, (meth) acrylic acid Ethoxymethyl and ethoxyethyl (meth) acrylate can be suitably used.
  • the above-mentioned (meth) acrylic acid esters may be used alone or in combination of two or more.
  • the monomer (ya) preferably contains a (meth) acrylic ester having a functional group (for example, glycidyl group, acid group, hydroxyl group, etc.) that can react with polyamide, polycarbonate, and polyester.
  • the content of the monomer (ya) in the composition for forming the polymer (Y) is 60 to 100% by weight based on 100% by weight of the composition.
  • the content of the monomer (ya) is (i) 60% by weight or more, the above-described advantage of the polymer (Y) containing the structural unit (ya) can be enjoyed.
  • the lower limit of the content of the monomer (ya) is preferably 60% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably 90% by weight or more.
  • the upper limit of the content of the monomer (ya) is preferably 95% by weight or less, and more preferably 90% by weight or less, since the obtained rubber composition for tire 1 can provide a molded article having excellent wet grip properties. Is more preferable, it is still more preferably 85% by weight or less, and particularly preferably 80% by weight or less.
  • the monomer (ya) preferably contains one or more monomers selected from acrylates and one or more monomers selected from methacrylates. According to the above configuration, the rubber composition for a tire 1 can provide a molded article having better wet grip properties.
  • the monomer (ya) contains one or more monomers selected from acrylates and one or more monomers selected from methacrylates (hereinafter referred to as case A).
  • the content of one or more monomers selected from acrylates in 100% by weight of the monomer (ya) is preferably 50% by weight to 90% by weight.
  • the content of one or more monomers selected from methacrylic acid esters in 100% by weight of the monomer (ya) is preferably 10% by weight to 50% by weight.
  • the lower limit of the content of one or more monomers selected from acrylates in 100% by weight of the monomer (ya) is more preferably 60% by weight or more, and 70% by weight or more. More preferably, it is particularly preferably at least 75% by weight.
  • the upper limit of the content of one or more monomers selected from acrylates in 100% by weight of the monomer (ya) is more preferably 85% by weight or less, and more preferably 83% by weight or less. The content is more preferably 80% by weight or less.
  • the lower limit of the content of one or more monomers selected from methacrylic acid esters in 100% by weight of the monomer (ya) is more preferably 15% by weight or more, and 17% by weight or more.
  • the upper limit of the content of one or more monomers selected from methacrylic esters in 100% by weight of the monomer (ya) is more preferably 40% by weight or less, and 30% by weight or less. More preferably, it is particularly preferably 25% by weight or less.
  • the polymer (Y) may be a single unit obtained by polymerizing a composition consisting of only the monomer (ya).
  • the polymer (Y) is a copolymer obtained by polymerizing a composition comprising a total of 100% by weight of a monomer (ya) and a monomer (yb) having two or more radically polymerizable reactive groups. There may be.
  • the monomer (yb) having two or more radically polymerizable reactive groups is also simply referred to as a monomer (yb) in this specification.
  • the composition for forming the polymer (Y) includes the monomer (yb)
  • the polymer (Y) includes a structural unit obtained by polymerizing the monomer (yb).
  • a structural unit obtained by polymerizing the monomer (yb) is also referred to as a structural unit (yb).
  • the monomer (yb) is an optional component.
  • the same monomer as (monomer (aa)) in the section of (diene rubber (A)) can be used.
  • the mode of the monomer (yb) the mode described in the section of (monomer (aa)) can be appropriately used.
  • the rubber composition 1 for a tire can provide a molded article excellent in low rolling resistance and / or a molded article excellent in abrasion resistance; And (ii) it is easier to obtain the multilayer polymer particles (B) as a powder.
  • the reason for this may be the same as the reason that the above-mentioned advantage can be obtained when the polymer (X) contains the structural unit (xa), and thus the description thereof is omitted.
  • the content of the monomer (yb) in the composition for forming the polymer (Y) is 0 to 30% by weight based on 100% by weight of the composition.
  • the upper limit of the content of the monomer (yb) is preferably 25% by weight or less, more preferably 20% by weight or less, further preferably 15% by weight or less, and particularly preferably 10% by weight or less.
  • the lower limit of the content of the monomer (yb) is preferably 0.5% by weight or more, and more preferably 1.0% by weight. %, More preferably 3.0% by weight or more, even more preferably 5.0% by weight or more.
  • the polymer (Y) is a copolymer obtained by polymerizing a composition comprising a total of 100% by weight of a monomer (ya) and a monomer (yc) copolymerizable with the monomer (ya). There may be.
  • the polymer (Y) is composed of a monomer (ya), a monomer (yb), and a total of 100 monomers (yc) copolymerizable with the monomer (ya) and the monomer (yb). It may be a copolymer obtained by polymerizing a composition consisting of% by weight.
  • the monomer (yc) copolymerizable with the monomer (ya) and the monomer (yb) is simply referred to as a monomer (yc) in this specification.
  • the composition for forming the polymer (Y) includes the monomer (yc)
  • the polymer (Y) includes a structural unit obtained by polymerizing the monomer (yc).
  • the monomer (yc) is an optional component.
  • the same monomer as (monomer (ab)) in the section of (diene rubber (A)) can be used.
  • the mode of the monomer (yc) the mode described in the section of (monomer (ab)) can be appropriately used.
  • the content of the monomer (yc) in the composition for forming the polymer (Y) is preferably 0 to 40% by weight based on 100% by weight of the composition.
  • the content of the monomer (yc) is 40% by weight or less, the affinity between the diene rubber (A) and the multilayer polymer particles (B) in the rubber composition 1 for tires is sufficient. Become. As a result, the dispersibility of the multilayer polymer particles (B) in the tire rubber composition 1 is improved.
  • the lower limit of the content of the monomer (yc) is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 5% by weight or more, and particularly preferably 10% by weight or more.
  • the multilayer polymer particles (B) may be composed of at least two layers, that is, a layer of the polymer (X) and a layer of the polymer (Y), and may be composed of three or more layers.
  • the multilayer polymer particles (B) preferably have a multilayer structure comprising an outermost layer and at least one inner layer.
  • the outermost layer of the multilayer polymer particles (B) is also called a shell layer, and the inner layer is also called a core layer.
  • the multilayer polymer particles (B) preferably have a core-shell structure. According to the said structure, it becomes easy to design the multilayer polymer particle (B) as rubber
  • the core layer of the multilayer polymer particles (B) may be either an elastic body or an inelastic body.
  • the multilayer polymer particle (B) is more preferably a multilayer polymer particle in which a shell layer is formed by graft-polymerizing a graft-copolymerizable monomer in the presence of a core layer.
  • the multilayer polymer particle (B) has the above-mentioned constitution, the multilayer polymer particle (B) has a structure having a core layer present therein and at least one shell layer formed on the surface thereof by graft polymerization. Wherein the shell layer covers the periphery or a portion of the elastic core layer.
  • the graft polymerization is a polymerization in which a monomer for forming a shell layer reacts with a functional group present on the surface of the core layer to form a covalent bond between the shell layer and the elastic core layer. Refers to the reaction.
  • the core layer is preferably a layer of the polymer (Y). According to the above configuration, the core layer can be an elastic core layer.
  • the multilayer polymer particles (B) it is preferable that at least a part of the outermost layer is a layer of the polymer (X).
  • the shell layer is preferably a layer of the polymer (X).
  • the rubber composition 1 for a tire can provide a molded article further excellent in low rolling resistance.
  • the multilayer polymer particles (B) are polymerized by graft-polymerizing a composition containing the monomer (xa) and optionally the monomer (xb) in the presence of a layer of the polymer (Y). It is particularly preferable that the particles are multilayer polymer particles obtained by forming the layer of X).
  • the multilayer polymer particles (B) more preferably have an intermediate layer between the core layer and the shell layer. According to the said structure, the dispersibility of the multilayer polymer particle (B) in the rubber composition 1 for tires becomes more favorable.
  • the reason for this is not particularly limited, but it can be guessed as follows: the exposure of the core layer portion of the multilayer polymer particles (B) is reduced by covering the core layer with the intermediate layer, and as a result, the core layer Since the particles hardly stick to each other, the dispersibility of the multilayer polymer particles (B) is improved.
  • the multilayer polymer particles (B) include at least one layer having a glass transition temperature of ⁇ 40 ° C. to 40 ° C.
  • a layer having a glass transition temperature of ⁇ 40 ° C. to 40 ° C. is a layer having appropriate flexibility. Therefore, according to the above configuration, a layer having appropriate flexibility exists inside the multilayer polymer particles (B).
  • the obtained rubber composition 1 for a tire has (i) wet grip properties, (ii) a balance between wet grip properties and abrasion resistance, and (iii) a balance between wet grip properties and low rolling resistance. It is possible to provide an excellent molded product.
  • the obtained rubber composition 1 for a tire can provide a molded article having excellent wet grip properties.
  • the multilayer polymer particles (B) include at least one layer having a glass transition temperature of 40 ° C. or lower, the multilayer polymer particles (B) have good rubber-like elasticity, and the multilayer polymer particles (B) have good rubber elasticity. (B) is not too hard.
  • the rubber composition 1 for a tire can provide a molded article having good wet grip properties, rolling resistance, and abrasion resistance. The lower the rolling resistance, the better. Therefore, good rolling resistance is intended to mean excellent low rolling resistance.
  • the lower limit of the glass transition temperature of at least one layer contained in the multilayer polymer particles (B) is preferably at least -30 ° C, more preferably at least -20 ° C, and even more preferably at least -10 ° C.
  • the upper limit of the glass transition temperature of at least one layer contained in the multilayer polymer particles (B) is preferably 30 ° C or lower, more preferably lower than 30 ° C, further preferably 20 ° C or lower, and particularly preferably 10 ° C or lower.
  • the multilayer polymer particles (B) preferably contain at least one layer having a glass transition temperature of ⁇ 40 ° C. or more and less than 30 ° C.
  • a layer having a glass transition temperature of ⁇ 40 ° C. or more and less than 30 ° C. has more appropriate flexibility than a layer having a glass transition temperature of 30 or more. Therefore, according to the above configuration, a layer having appropriate flexibility is present inside the multilayer polymer particles (B).
  • the obtained rubber composition 1 for a tire has (i) wet grip properties, (ii) a balance between wet grip properties and abrasion resistance, and (iii) a balance between wet grip properties and low rolling resistance.
  • a more excellent molded article can be provided.
  • the conjugated diene monomer has a glass transition temperature in a minus region (a temperature range of less than 0 ° C.), and monomers other than the conjugated diene monomer have a glass transition temperature of plus. Range (temperature range above 0 ° C.).
  • styrene which is an aromatic monoalkenyl monomer, has a glass transition temperature in the positive region.
  • methyl methacrylate has a glass transition temperature in a plus region.
  • the monomer (yb) has a glass transition temperature in a positive region
  • the monomers (yc) styrene which is an aromatic monoalkenyl monomer has a glass transition temperature in a positive region
  • the body (yd) has a glass transition temperature in a minus region.
  • a layer of the polymer (X) or a layer of the polymer (Y) having a glass transition temperature of ⁇ 40 ° C. to 40 ° C. can be obtained.
  • the phase separation structure becomes clear. Therefore, there is an advantage that the glass transition temperature of the multilayer polymer particles (B) is easily reflected on the physical properties of the rubber composition 1 for a tire.
  • the glass transition temperature of the layer of the polymer (X) can be lower than 0 ° C.
  • a polymer having a glass transition temperature of less than 0 ° C. can be said to be an elastic body. That is, the layer of the polymer (X) in the embodiment x1 can be an elastic body.
  • the obtained rubber composition 1 for a tire has an advantage that a molded article having excellent rebound resilience can be provided.
  • the glass transition temperature of the layer of the polymer (X) can be generally higher than 0 ° C. That is, the layer of the polymer (X) in the embodiment x2 can be an inelastic body.
  • the obtained rubber composition 1 for a tire has an advantage that a molded article having excellent wear resistance can be provided.
  • the multilayer polymer particles (B) include at least one layer having a glass transition temperature of ⁇ 40 ° C. to 40 ° C.
  • the layer is preferably a core layer, and / or (b) the polymer ( It is preferably the layer of Y).
  • the glass transition temperature of the multilayer polymer particles (B) is preferably from -40 ° C to 40 ° C.
  • the rubber composition 1 for a tire further includes (i) a wet grip property and (ii) (ii) a balance between wet grip property and abrasion resistance.
  • An excellent molded body can be provided.
  • the lower limit of the glass transition temperature of the multilayer polymer particles (B) is more preferably -30 ° C or higher, further preferably -20 ° C or higher, and particularly preferably -10 ° C or higher.
  • the upper limit of the glass transition temperature of the multilayer polymer particles (B) is more preferably 30 ° C or lower, further preferably lower than 30 ° C, further preferably 20 ° C or lower, and particularly preferably 10 ° C or lower.
  • the glass transition temperature of the multilayer polymer particles (B) is around 0 ° C., it is possible to realize a further significant improvement in wet grip properties.
  • the glass transition temperature of the multilayer polymer particles (B) may be -40 ° C or more and less than 30 ° C. Since the multilayer polymer particles (B) have the above-described configuration, the rubber composition 1 for a tire further includes (i) wet grip properties and (ii) (ii) a balance between wet grip properties and wear resistance. An excellent molded body can be provided.
  • the layer contained in the multilayer polymer particles (B) or the glass transition temperature of the multilayer polymer particles (B) may be determined, for example, by using a sheet prepared by molding only the multilayer polymer particles (B) into a sheet. It can be measured using a dynamic viscoelasticity measuring device according to the method described in JIS @ K-6394. A specific measuring method will be described in Examples described later.
  • the glass transition temperature of the polymer particles (B) in the rubber composition for tires 1 can also be measured by the following procedure: (1) mixing the rubber composition 1 for tires with methyl ethyl ketone; (2) From the mixture, only the component insoluble in methyl ethyl ketone is taken out; (3) A sheet prepared by molding the component into a sheet is used as a sample, and a JIS @ K- It is measured based on the method described in 6394.
  • the volume average particle diameter of the multilayer polymer particles (B) is preferably from 0.01 ⁇ m to 10 ⁇ m.
  • the volume average particle diameter of the multilayer polymer particles (B) is a volume-based particle diameter of primary particles of the multilayer polymer particles (B).
  • the primary particles of the multilayer polymer particles (B) are the multilayer polymer particles (B) themselves, and refer to the multilayer polymer particles (B) that cannot be further separated.
  • the dispersibility of the polymer particles (B) is improved.
  • the volume average particle diameter of the multilayer polymer particles (B) is 10 ⁇ m or less, the polymerization at the time of producing such multilayer polymer particles (B) is completed in a relatively short time, and thus the productivity is good.
  • the lower limit of the volume average particle diameter of the multilayer polymer particles (B) is, for example, 0.02 ⁇ m or more, 0.03 ⁇ m or more, 0.04 ⁇ m or more, 0.05 ⁇ m or more, 0.06 ⁇ m or more, 0.07 ⁇ m or more, 0 ⁇ m or more. It is preferably at least 0.08 ⁇ m, at least 0.09 ⁇ m, at least 0.10 ⁇ m, at least 0.11 ⁇ m, at least 0.12 ⁇ m, at least 0.13 ⁇ m, at least 0.14 ⁇ m, or at least 0.15 ⁇ m.
  • the upper limit of the volume average particle diameter of the multilayer polymer particles (B) is 10 ⁇ m or less, 9 ⁇ m or less, 8 ⁇ m or less, 7 ⁇ m or less, 6 ⁇ m or less, 5 ⁇ m or less, 4 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 0.5 ⁇ m
  • it is preferably 0.3 ⁇ m or less, or 0.2 ⁇ m or less.
  • the volume average particle diameter of the multilayer polymer particles (B) is, for example, a latex obtained by dispersing the multilayer polymer particles (B) in an aqueous solvent (for example, water) (hereinafter, also referred to as a multilayer polymer particle latex). Can be measured using, for example, Nanotrac @ Wave manufactured by Nikkiso Co., Ltd. A specific measuring method will be described in Examples described later.
  • the volume average particle diameter of the multilayer polymer particles (B) in a molded article is determined by, for example, cutting the molded article, imaging the cut surface using an electron microscope or the like, and obtaining image data ( (Captured image).
  • the method for producing the multilayer polymer particles (B) is not particularly limited, and can be produced by a known method, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like. Among these, a production method by emulsion polymerization is preferred from the viewpoint of uniformity of particle size and particle diameter. In the case of obtaining multilayer polymer particles (B) in which the polymer (X) is graft-bonded to the polymer (Y), a production method by emulsion graft polymerization is suitable.
  • Emulsion polymerization is specifically carried out by adding water, each monomer, a radical polymerization initiator, an emulsifier, and, if necessary, a chain transfer agent to a reaction vessel equipped with a stirrer, followed by heating and stirring. Can be.
  • the multilayer polymer particles (B) are produced by emulsion polymerization, all the monomers used in the production may be polymerized in one polymerization reaction, or may be divided into several polymerization reactions. You may.
  • the emulsion polymerization is called a multi-stage emulsion polymerization.
  • multilayer polymer particles (B) composed of two or more layers can be easily obtained depending on the number of polymerization reactions.
  • Multistage emulsion polymerization can also be referred to as emulsion multilayer polymerization. Since the polymer particles having two or more layers of the layer of the polymer (X) and the layer of the polymer (Y) can be easily obtained, the multilayer polymer particles (B) are obtained by multistage emulsion polymerization (emulsion multilayer polymerization). It is preferred to be manufactured by In the case of performing multistage emulsion polymerization, it is preferable that the conversion rate of the monomer (also referred to as the consumption rate of the monomer) is at least 95% or more in each polymerization step.
  • the radical polymerization initiator is not particularly limited, and known ones can be used. For example, thermal decomposition of 2,2′-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, ammonium persulfate, etc. A type polymerization initiator can be used.
  • radical polymerization initiator examples include (i) (a) t-butylperoxyisopropyl carbonate, paramenthane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t (Ii) an organic peroxide such as -butyl peroxide, t-hexyl peroxide and / or a peroxide such as (b) an inorganic peroxide such as hydrogen peroxide, potassium persulfate or ammonium persulfate; A reducing agent such as sodium formaldehyde sulfoxylate and glucose, and a transition metal salt such as iron (II) sulfate as required, and a chelating agent such as disodium ethylenediaminetetraacetate and sodium pyrophosphate as necessary; Using a redox catalyst combined with It is also possible. Only one radical polymerization initiator may be used, or two or more radical polymerization initiator
  • chain transfer agent examples include mercaptans such as tert-dodecyl mercaptan and n-dodecyl mercaptan, carbon tetrachloride, thioglycols, diterpenes, ta-pinolene, and ⁇ -terpinenes.
  • a chain transfer agent can be optionally used.
  • Emulsifiers used in emulsion polymerization include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants and the like. Further, a fluorine-based surfactant can also be used.
  • suspension stabilizer can be used in suspension polymerization.
  • Suspension stabilizers include, but are not limited to, polyvinyl alcohol, sodium polyacrylate, hydroxyethyl cellulose, and the like.
  • each monomer, radical polymerization initiator, etc. may be charged after the entire amount has been put into a reaction vessel, or may be added continuously or intermittently during the reaction.
  • the polymerization may be carried out while performing.
  • the polymerization is preferably carried out using a reactor from which oxygen has been removed, and is preferably carried out at 0 ° C or higher and 80 ° C or lower.
  • operating conditions such as temperature and stirring can be appropriately adjusted.
  • Multilayer polymer particle latex is obtained by emulsion polymerization or suspension polymerization.
  • the multilayer polymer particles (B) are dispersed in a state of primary particles.
  • a bivalent or more metal salt such as calcium chloride, magnesium chloride, magnesium sulfate, aluminum chloride, and calcium acetate
  • the multilayer polymer particles (B) can be separated from the aqueous solvent.
  • the multilayer polymer particles (B) can also be separated from the aqueous solvent by spray coagulation (spray drying) of the multilayer polymer particle latex.
  • the multilayer polymer particles (B) By separating the multilayer polymer particles (B) from the aqueous solvent in this way, secondary particles or aggregates obtained by aggregating the primary particles of the multilayer polymer particles (B) can be obtained.
  • Examples of the shape of the secondary particles or agglomerates of the multilayer polymer particles (B) include powder, granules, pellets, crumbs (small pieces), and veils. From the viewpoint of easy handling, the multilayer polymer particles (B) are preferably obtained as powder or secondary particles having a crumb-like shape.
  • the volume average particle diameter of the powder of the multilayer polymer particles (B) is 10 ⁇ m or more and 1000 ⁇ m or less because of easy handling and excellent dispersibility. Is preferred.
  • the lower limit of the volume average particle diameter of the powder of the multilayer polymer particles (B) is, for example, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, 110 ⁇ m.
  • the thickness is preferably 120 ⁇ m or more, 130 ⁇ m or more, 140 ⁇ m or more, or 150 ⁇ m or more.
  • the upper limit of the volume average particle diameter of the powder of the multilayer polymer particles (B) is more preferably 800 ⁇ m or less, further preferably 700 ⁇ m or less, and particularly preferably 600 ⁇ m or less.
  • the proportion (volume%) of the powder having a particle diameter of 700 ⁇ m or more in the whole powder is preferably 20% or less, more preferably 10% or less, and more preferably 5% or less. More preferred.
  • the proportion (volume%) of the powder having a particle diameter of 1000 ⁇ m or more in the whole powder is preferably 20% or less, more preferably 10% or less, and more preferably 5% or less. More preferred.
  • the particle size of the powder of the multilayer polymer particles (B) can be measured based on the light scattering method using, for example, Microtrack MT3000II manufactured by Nikkiso Co., Ltd.
  • the rubber composition 1 for a tire preferably further contains silica and a silane coupling agent.
  • Silica functions as a reinforcing material.
  • the rubber composition for a tire contains silica
  • a molded article excellent in low rolling resistance and wet grip properties can be provided.
  • the rubber composition for a tire contains a silane coupling agent in addition to silica
  • the dispersibility of silica in the rubber composition for a tire can be improved. Therefore, it is possible to enhance the effect of reducing the rolling resistance and the effect of improving the wet grip property of the molded product using the rubber composition for tires by using silica.
  • the silane coupling agent binds the hydrophilic silica surface to the hydrophobic diene rubber (A), thereby improving the stability of the interface between the silica and the diene rubber (A). Conceivable.
  • the silica is not particularly limited, and examples thereof include dry silica, wet silica, colloidal silica, and precipitated silica. Above all, wet silica is preferable in terms of excellent abrasion resistance and economic efficiency.
  • the content (blending amount) of silica in the rubber composition 1 for tires can be appropriately determined from the viewpoint of the reinforcing effect of silica, and is not particularly limited.
  • the content of silica is preferably 0 to 100 parts by weight based on 100 parts by weight of the diene rubber (A).
  • the lower limit of the content of silica relative to 100 parts by weight of the diene rubber (A) is more preferably 10 parts by weight or more, and the upper limit is more preferably 80 parts by weight or less.
  • the silane coupling agent is not particularly limited and includes, for example, vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane; Bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyltetrasulfide described in JP-A-6-248116 And tetrasulfides such as ⁇ -trimethoxysilylpropylbenzothiazyltetrasulfide.
  • the content (blending amount) of the silane coupling agent can be appropriately determined for the purpose of improving the dispersibility of silica in the rubber composition for tires, and is not particularly limited, but is preferably a diene rubber.
  • (A) 0 to 20 parts by weight based on 100 parts by weight.
  • the lower limit of the content of the silane coupling agent relative to 100 parts by weight of the diene rubber (A) is more preferably 1 part by weight or more, and the upper limit is more preferably 10 parts by weight or less.
  • the rubber composition 1 for a tire preferably further contains carbon black.
  • Carbon black functions as a reinforcement and / or colorant.
  • Carbon black may or may not be used in combination with silica and a silane coupling agent.
  • Carbon black is not particularly limited, and examples thereof include furnace black, acetylene black, thermal black, channel black, and graphite.
  • the content (blending amount) of carbon black in the rubber composition 1 for tires can be appropriately determined for the purpose of suitably obtaining the reinforcing and / or coloring effect by carbon black, and is not particularly limited.
  • the content of carbon black is, for example, preferably from 0 to 80 parts by weight based on 100 parts by weight of the diene rubber (A).
  • the lower limit of the carbon black content relative to 100 parts by weight of the diene rubber (A) is more preferably 2 parts by weight or more, and the upper limit is more preferably 70 parts by weight or less.
  • the rubber composition 1 for a tire requires other additives such as a vulcanizing agent, a vulcanization accelerator, a vulcanization activator, a filler, a plasticizer, and an antioxidant generally used in the rubber field. May be included according to
  • the vulcanizing agent is not particularly limited, for example, sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur; sulfur monochloride, sulfur halide such as sulfur dichloride; dicumyl peroxide; Organic peroxides such as ditertiary butyl peroxide; quinone dioximes such as p-quinone dioxime and p, p'-dibenzoylquinone dioxime; triethylenetetramine, hexamethylenediaminecarbamate, 4,4'-methylenebis- Organic polyamine compounds such as o-chloroaniline; alkylphenol resins having a methylol group; Among these, sulfur is preferred, and powdered sulfur is particularly preferred.
  • the content (blending amount) of the vulcanizing agent of the rubber composition 1 for tires can be appropriately determined, but is preferably 0.1 to 15 parts by weight based on 100 parts by weight of the diene rubber (A). It is as follows.
  • the lower limit of the content of the vulcanizing agent to 100 parts by weight of the diene rubber (A) is more preferably 0.3 part by weight or more, and the upper limit is more preferably 10 parts by weight or less.
  • the vulcanization accelerator is not particularly limited, for example, N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfen Sulfenamide-based vulcanization accelerators such as amide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide; diphenylguanidine, dioltotolylguanidine, orthotri Guanidine-based vulcanization accelerators such as rubiguanidine; thiourea-based vulcanization accelerators such as diethylthiourea; thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyldisulfide, and 2-mercaptobenzothiazole zinc salt; Thiuram-based vulcanization accelerators such as ram mono
  • the content (blending amount) of the vulcanization accelerator of the rubber composition 1 for tires can be appropriately determined, but is preferably 0.1 to 15 parts by weight based on 100 parts by weight of the diene rubber (A). Part or less.
  • the lower limit of the blending amount of the vulcanization accelerator per 100 parts by weight of the diene rubber (A) is more preferably 0.3 part by weight or more, and the upper limit is more preferably 10 parts by weight or less.
  • the vulcanization activator is not particularly limited, and examples thereof include higher fatty acids such as stearic acid and zinc oxide.
  • zinc oxide those having a high surface activity and a particle size of 5 ⁇ m or less are preferable, and active zinc particles having a particle size of 0.05 to 0.2 ⁇ m and zinc particles having a particle size of 0.3 to 1 ⁇ m are more preferable.
  • zinc oxide zinc oxide that has been surface-treated with an amine-based dispersant or wetting agent can be used. Only one type of vulcanization activator may be used, or two or more types may be used in combination. The content (blending amount) of the vulcanization activator of the rubber composition 1 for a tire can be appropriately determined.
  • the vulcanization activator is a higher fatty acid.
  • the content of the vulcanization activator is preferably 0.05 to 15 parts by weight based on 100 parts by weight of the diene rubber (A).
  • the lower limit of the content of the vulcanization activator based on 100 parts by weight of the diene rubber (A) is more preferably 0.1 part by weight or more, and the upper limit is more preferably 8 parts by weight or less.
  • the content of the vulcanization activator is preferably 0.05 to 10 parts by weight based on 100 parts by weight of the diene rubber (A). Further, in this case, the lower limit of the content of the vulcanization activator based on 100 parts by weight of the diene rubber (A) is more preferably 0.1 part by weight or more, and the upper limit is more preferably 5 parts by weight or less.
  • filler examples include fillers other than the above silica and carbon black.
  • specific examples include silicate minerals such as clay, talc, and mica; shirasu; calcium carbonate (for example, colloidal calcium carbonate, ultrafine calcium carbonate , Calcium carbonate, heavy calcium carbonate), carbonates such as magnesium carbonate and potassium carbonate; aluminum hydroxide; barium sulfate; aluminum oxide, short organic fibers, (meth) acrylic resin particles, epoxy resin particles, glass particles , Glass fiber, flake graphite and the like. Only one type of filler may be used, or two or more types may be used in combination.
  • plasticizer examples include petroleum-based process oils such as paraffin-based process oils, naphthene-based process oils, and aromatic-based process oils; dialkyl dibasates such as diethyl phthalate, dioctyl phthalate, and dibutyl adipate; liquid polybutene; Low molecular weight liquid polymers such as isoprene; natural oils such as orange oil.
  • paraffin-based process oils and naphthene-based processes can be provided because the obtained rubber composition for a tire can provide a molded article having (a) excellent flexibility and (b) maintaining elasticity over a long period of time. Oils and aromatic process oils are preferred.
  • One type of plasticizer may be used alone, or two or more types may be used in combination.
  • the rubber composition 1 for a tire according to one embodiment of the present invention can be manufactured according to a conventionally known method, for example, by a step of kneading each component.
  • the method for producing the rubber composition 1 for a tire is not particularly limited.
  • an example of a method for producing the rubber composition 1 for a tire will be described using the rubber composition 1 for a tire containing a vulcanizing agent and a vulcanization accelerator as an example.
  • the diene rubber (A) and the multilayer polymer particles (B), and other components (additives and the like) other than the vulcanizing agent and the vulcanization accelerator are added using a tumbler, a tumbler, a Henschel mixer, a riboblender, or the like.
  • a tumbler a tumbler
  • a Henschel mixer a riboblender
  • the mixture is kneaded using an extruder, a bumper, a roll, or the like to obtain a kneaded material.
  • the kneading temperature at this time is usually 50 ° C. or more and 200 ° C. or less.
  • the lower limit of the kneading temperature is preferably 80 ° C. or higher, and the upper limit is preferably 190 ° C.
  • the kneading time is usually 30 seconds or more and 30 minutes or less.
  • the lower limit of the kneading time is preferably 1 minute or more.
  • a vulcanizing agent and a vulcanization accelerator are added to the obtained kneaded product, and the obtained mixture is further kneaded using the above-described apparatus.
  • the kneading temperature at this time is preferably from 70 ° C. to 120 ° C. for the purpose of suppressing the reaction of the vulcanizing agent.
  • the rubber composition for a tire 1 can be obtained as a molded article by subjecting the rubber composition for a tire to a crosslinking reaction. That is, one embodiment of the present invention provides a molded product (hereinafter, also referred to as molded product M1) obtained by molding the rubber composition 1 for a tire having the above-described configuration.
  • molded product M1 that can be provided by the tire rubber composition 1 is not limited to a tire.
  • the method for producing the molded article M1 that is, the method for crosslinking the rubber composition 1 for tires, can be appropriately selected in consideration of the shape and size of the molded article M1, but generally a press machine or an injection molding machine is used. The method used is mentioned.
  • the temperature and time during the crosslinking reaction are not particularly limited.
  • the lower limit of the temperature at the time of the crosslinking reaction is preferably at least 120 ° C, more preferably at least 140 ° C.
  • the upper limit of the temperature at the time of the crosslinking reaction is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the time for the crosslinking reaction is usually about 1 minute or more and 120 minutes or less.
  • the molded article M1 can be used, for example, as a tire, a cable coating agent, a hose, a transmission belt, a conveyor belt, a roll cover, a shoe body or sole, a sealing ring, a vibration-proof rubber, and the like.
  • the molded article M1 can be suitably used particularly as a tire tread.
  • the tire tread has a multilayer structure, it is preferable that the outermost layer be formed of the molded body M1.
  • the molded article M1 is made from the rubber composition 1 for a tire having the above-described configuration, the molded article M1 can satisfy the following (i) and (ii): (i) 0 ° C. tan ⁇ > 100, and (ii) 0 ° C. tan ⁇ / value Z ⁇ 1.
  • the tan ⁇ and the value Z are as described in the section of “Rubber composition for tire”.
  • ° C. tan ⁇ of the molded body M1 specifically means the dynamic viscoelasticity of the molded body M1 at 0 ° C. 0 ° C. tan ⁇ is an index representing wet grip performance.
  • the molded article M1 contains the multilayer polymer particles (B)
  • the molded article M1 is excellent in wet grip properties as compared with a molded article not containing the multilayer polymer particles (B).
  • tan ⁇ > 105 more preferably 0 ° C. tan ⁇ > 109, and 0 ° C. tan ⁇ > 109. More preferably, tan ⁇ > 115, more preferably 0 ° C. tan ⁇ > 120, even more preferably 0 ° C. tan ⁇ > 125, and particularly preferably 0 ° C. tan ⁇ > 130.
  • the method B of JIS K-6264-2 is a standard of a wear test method using a sheet of a molded article. Since the value Z obtained by the wear test means the amount of wear, the smaller the value Z, the better the wear resistance of the molded article M1.
  • the molded article M1 containing the multilayer polymer particles (B) preferably does not have an excessively large wear amount as compared with the molded article not containing the multilayer polymer particles (B), and preferably has a value Z ⁇ 130. . Since the molded article M1 has desired wear resistance, it is more preferable that the value Z ⁇ 125, more preferably the value Z ⁇ 120, and particularly preferably the value Z ⁇ 115.
  • the molded article M1 containing the multilayer polymer particles (B) has excellent wet grip properties and does not have an excessively large amount of wear in a wear test, as compared with a molded article containing no multilayer polymer particles (B). In other words, the molded body M1 has an excellent balance between wet grip performance and wear resistance.
  • the molded product M1 it is preferable that 0 ° C. tan ⁇ / value Z ⁇ 1, more preferably 0 ° C. tan ⁇ / value Z> 1, and 0 ° C. It is preferable that tan ⁇ / value Z> 1.03, more preferably 0 ° C. tan ⁇ / value Z> 1.05, even more preferably 0 ° C. tan ⁇ / value Z> 1.08, and 0 ° C. It is particularly preferred that tan ⁇ / value Z> 1.10.
  • the molded article M1 containing the multilayer polymer particles (B) preferably does not have too high a rolling resistance as compared with the molded article not containing the multilayer polymer particles (B).
  • the rolling resistance of the molded body M1 can be evaluated by measuring the dynamic viscoelasticity at 60 ° C. tan ⁇ of the molded body M1 at 60 ° C. The smaller the value of tan ⁇ at 60 ° C., the smaller the rolling resistance of the molded body M1, that is, the more excellent the low rolling resistance.
  • a vehicle having the obtained tire can achieve low fuel consumption.
  • the compact M1 preferably has a tan ⁇ ⁇ 130 of 60 ° C., more preferably tan ⁇ ⁇ 120, and more preferably tan ⁇ ⁇ 110. Tan ⁇ ⁇ 105, more preferably 60 ° C. tan ⁇ 103, particularly preferably 60 ° C. tan ⁇ 100.
  • the molded article M1 preferably has an excellent balance between wet grip properties and low rolling resistance, and preferably satisfies 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1 and 0 ° C. tan ⁇ / 60 ° C. More preferably, tan ⁇ > 1.05, more preferably 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1.07, even more preferably 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1.10. It is particularly preferable that tan ⁇ / 60 ° tan ⁇ > 1.15.
  • the molded body M1 has a larger value of each of -5 ° C tan ⁇ , -10 ° C tan ⁇ , -15 ° C tan ⁇ and -20 ° C tan ⁇ .
  • Each of ⁇ 5 ° C. tan ⁇ , ⁇ 10 ° C. tan ⁇ , ⁇ 15 ° C. tan ⁇ , and ⁇ 20 ° C. tan ⁇ is an index representing wet grip performance.
  • the lower the temperature at the time of calculating tan ⁇ the lower the roughness of the road surface exhibiting wet grip performance.
  • each of ⁇ 15 ° C. tan ⁇ and ⁇ 20 ° C. tan ⁇ can be an index representing wet grip on ice.
  • the present invention is not limited to such an inference.
  • the molded article M1 preferably has -5 ° C tan ⁇ > 103, more preferably -5 ° C tan ⁇ > 103, and even more preferably -5 ° C tan ⁇ > 105.
  • -5 ° C tan ⁇ > 109, more preferably -5 ° C tan ⁇ > 110, even more preferably -5 ° C tan ⁇ > 115, and -5 ° C tan ⁇ > 115 Is more preferable, and particularly preferably -5 ° C tan ⁇ > 120.
  • the molded article M1 preferably has -10 ° C tan ⁇ > 100, more preferably -10 ° C tan ⁇ > 103, and more preferably -10 ° C tan ⁇ > 105. -10 ° C. tan ⁇ > 109, more preferably -10 ° C. tan ⁇ > 110, and particularly preferably -10 ° C. tan ⁇ > 115.
  • the molded product M1 preferably has a tan ⁇ > 90 of ⁇ 15 ° C., more preferably tan ⁇ > 95 of ⁇ 15 ° C., and has a tan ⁇ > 100 of ⁇ 15 ° C., because the molded body M1 has better wet grip properties on ice, for example. More preferably -15 ° C tan ⁇ > 103, more preferably -15 ° C tan ⁇ > 105, more preferably -15 ° C tan ⁇ > 109, and -15 ° C tan ⁇ > 110. More preferably, -15 ° C. tan ⁇ > 115 is particularly preferable.
  • the molded article M1 preferably has tan ⁇ > 80 at ⁇ 20 ° C., more preferably tan ⁇ > 85 at ⁇ 20 ° C., and tan ⁇ > 90 ° C. at -20 ° C., for example, because it has better wet grip properties on ice.
  • the molded article M1 having a large value of ⁇ 15 ° C. tan ⁇ and / or ⁇ 20 ° C. tan ⁇ can provide a tire having more excellent wet grip properties in cold regions.
  • the rubber composition 1 for a tire in one embodiment of the present invention may be a rubber composition 1 for a tire for cold regions.
  • the tire according to one embodiment of the present invention is manufactured using the rubber composition 1 for a tire described in the section of [Rubber composition 1 for a tire].
  • tire according to one embodiment of the present invention may be simply referred to as “tire 1”.
  • the tire 1 according to one embodiment of the present invention is excellent in (i) wet grip performance and (ii) balance between wet grip performance and wear resistance by having the above configuration. More specifically, the tire 1 according to one embodiment of the present invention satisfies the conditions (i) and (ii) that can be satisfied by the molded article.
  • the method of manufacturing the tire 1 according to one embodiment of the present invention is not particularly limited, and a known method can be used.
  • an uncrosslinked rubber composition 1 for a tire is extruded according to the shape of a tire tread, and molded on a tire molding machine to obtain an uncrosslinked molded article. Thereafter, the obtained uncrosslinked molded body is bonded to another tire member to form an uncrosslinked tire. By heating and pressing the obtained uncrosslinked tire in a vulcanizer, tire 1 can be manufactured.
  • the tire 1 according to one embodiment of the present invention can be suitably used as a tire for a passenger car, or a tire for a truck and a bus (tire for a heavy load).
  • the tire 1 in one embodiment of the present invention may be a tire 1 for a cold region.
  • a molded article according to one embodiment of the present invention includes multilayer polymer particles, wherein the multilayer polymer particles include a layer of a polymer (X) and a layer of a polymer (Y), and the polymer (X ) Is a polymer obtained by polymerizing a composition containing a monomer having two or more radically polymerizable reactive groups, and the polymer (Y) is at least one selected from acrylates and methacrylates. Is a polymer obtained by polymerizing a composition containing the following monomer, and satisfies the following: 0 ° C. tan ⁇ / value Z ⁇ 1, where the tan ⁇ is measured for the molded article according to JIS K-6394.
  • molded product 1 may be simply referred to as “molded product 1”.
  • the same monomer as (monomer (aa)) in the section of [Rubber composition 1 for tires] is used.
  • the embodiment of the monomer having two or more radically polymerizable reactive groups in the polymer (X) the embodiment described in the section of (monomer (aa)) can be appropriately used.
  • the one or more monomers selected from the acrylates and methacrylates in the polymer (Y) the same monomer as (monomer (ya)) in the section of [Rubber composition 1 for tires]
  • the body can be used.
  • the aspect of one or more monomers selected from acrylates and methacrylates in the polymer (Y) the aspects described in the section of (monomer (ya)) can be appropriately used.
  • the polymer (X) in the molded article 1 according to one embodiment of the present invention is preferably (Polymer (X)) in the section of [Rubber composition 1 for tires], but is not limited thereto.
  • the polymer (X) in the molded article 1 according to one embodiment of the present invention is obtained by polymerizing a composition consisting of only the monomer (xa) in the section of [Rubber composition 1 for tires]. It is preferably a homopolymer or a copolymer obtained by polymerizing a composition comprising a total of 100% by weight of the monomer (xa) and the monomer (xb).
  • the aspect described in (Polymer (X)) in the section of [Rubber composition 1 for tires] can be appropriately used. it can.
  • the polymer (Y) in the molded article 1 according to an embodiment of the present invention is preferably (Polymer (Y)) in the section of [Rubber Composition 1 for Tires], but is not limited thereto.
  • the polymer (Y) in the molded article 1 according to one embodiment of the present invention is obtained by polymerizing a composition consisting only of the monomer (ya) in the section of [Rubber composition 1 for tires].
  • a copolymer obtained by polymerizing a composition comprising a total of 100% by weight of the polymer (yc), or a total of 100% by weight of the monomer (ya), the monomer (yb) and the monomer (yc) Is preferably a copolymer obtained by polymerizing a composition consisting of
  • the aspect described in (Polymer (Y)) in the section of [Rubber composition 1 for tires] can be appropriately used. it can.
  • the multilayer polymer particles in the molded article 1 according to one embodiment of the present invention are preferably (multilayer polymer particles (B)) in the section of [Rubber composition 1 for tires], but are not limited thereto. .
  • the mode of the multilayer polymer particles in the molded article 1 according to one embodiment of the present invention the mode described in (Multilayer polymer particles (B)) in the section of [Rubber composition 1 for tires] is appropriately used. Can be.
  • the molded article 1 according to one embodiment of the present invention preferably contains a diene rubber in addition to the multilayer polymer particles.
  • the diene rubber is preferably (diene rubber (A)) in the section of [Rubber composition 1 for tires], but is not limited thereto.
  • the molded article 1 according to one embodiment of the present invention may further include, for example, 80 parts by weight of a styrene-butadiene copolymer rubber and 20 parts by weight of a butadiene rubber in addition to the multilayer polymer particles.
  • the molded article 1 according to one embodiment of the present invention is preferably a molded article obtained by subjecting the rubber composition for tire 1 described in the section of [Rubber composition for tire 1] to a crosslinking reaction.
  • 0 ° C. tan ⁇ > 100 more preferably 0 ° C. tan ⁇ > 103, and 0 ° C. tan ⁇ > 105. More preferably, it is more preferable that tan ⁇ > 110 ° C., and it is particularly preferable that tan ⁇ > 115 ° C.
  • the value Z is preferably 130 ⁇ 130, more preferably the value Z ⁇ 125, and the value Z ⁇ 120 because the molded article 1 has a desired wear resistance. More preferably, the value Z ⁇ 115 is particularly preferable.
  • 60 ° C. tan ⁇ ⁇ 130 is preferable, 60 ° C. tan ⁇ ⁇ 120 is more preferable, and 60 ° C. tan ⁇ is preferable, since the molded article 1 has a desired low rolling resistance.
  • the molded article 1 preferably has -5 ° C tan ⁇ > 103, more preferably -5 ° C tan ⁇ > 105, and even more preferably -5 ° C tan ⁇ > 110. And ⁇ 5 ° C. tan ⁇ > 115 are particularly preferred.
  • the molded article 1 preferably has -10 ° C tan ⁇ > 103, more preferably -10 ° C tan ⁇ > 105, and even more preferably -10 ° C tan ⁇ > 110. And ⁇ 10 ° C. tan ⁇ > 115 are particularly preferred.
  • the molded article 1 preferably has tan ⁇ > 103 at ⁇ 15 ° C., more preferably tan ⁇ > 105 at ⁇ 15 ° C., and has tan ⁇ > 110 at -15 ° C., for example, because it has better wet grip properties on ice. Is more preferable, and particularly preferably ⁇ 15 ° C. tan ⁇ > 115.
  • the molded article 1 preferably has a tan ⁇ > 103 of ⁇ 20 ° C., more preferably has a tan ⁇ > 105 of ⁇ 20 ° C., and has a tan ⁇ > 110 of ⁇ 20 ° C., since the molded article 1 has better wet grip properties on ice, for example. Is more preferable, and it is particularly preferable that ⁇ 20 ° C. tan ⁇ > 115.
  • the compact 1 in one embodiment of the present invention may be a compact 1 for cold regions.
  • Another embodiment of the present invention may include the following.
  • Patent Documents 1 and 2 are not sufficient in terms of (i) wet grip properties and (ii) balance of wet grip properties and low rolling resistance, and there is room for further improvement.
  • Another embodiment of the present invention relates to a novel rubber composition for a tire capable of providing a molded article excellent in (i) wet grip properties and (ii) a balance between wet grip properties and low rolling resistance, Another object of the present invention is to provide a tire produced using the rubber composition for a tire and a molded article.
  • the tire rubber composition containing a specific amount of polymer particles having a specific composition in addition to a diene rubber has the following effects. It has been found that a novel rubber composition for a tire capable of providing a molded article excellent in gripping property and (ii) balance between wet gripping property and low rolling resistance can be provided, and another embodiment of the present invention has been described. It was completed.
  • a rubber composition for a tire according to another embodiment of the present invention contains 100 parts by weight of a diene rubber (A) and 0.1 to 50 parts by weight of polymer particles (B).
  • the polymer particles (B) are composed of 50 to 99.9% by weight of at least one monomer (a) selected from an acrylate ester and a methacrylate ester, and a monomer (b) having two or more radically polymerizable reactive groups.
  • the polymer particles (B) have a glass transition temperature of ⁇ 40 ° C. or more and less than 30 ° C.
  • the “rubber composition for tire according to another embodiment of the present invention” may be simply referred to as “rubber composition 2 for tire”. That is, the term “rubber composition 2 for tires” intends another embodiment (embodiment 2) of the rubber composition for tires of the present invention.
  • a novel rubber composition for a tire capable of providing a molded article excellent in (i) wet grip properties and (ii) balance between wet grip properties and low rolling resistance.
  • Polymer particles (B)) (Monomer (a))
  • monomers (a) selected from acrylic esters and methacrylic esters are also referred to simply as monomers (a) in this specification. Since the composition for forming the polymer particles (B) includes the monomer (a), the polymer particles (B) include a structural unit obtained by polymerizing the monomer (a). In the present specification, a structural unit obtained by polymerizing the monomer (a) is also referred to as a structural unit (a). When the polymer particles (B) include the structural unit (a), the rubber composition 2 for a tire can provide a molded article having excellent wet grip properties.
  • acryl and / or methacryl are referred to as “(meth) acryl”.
  • the monomer (a) can be said to be one or more monomers selected from (meth) acrylates.
  • Examples of the (meth) acrylate include (i) methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2- (meth) acrylate.
  • (Meth) acrylates having an alkyl group having 1 to 22 carbon atoms and having a hydroxyl group such as (ii) 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate
  • (Iv) having an alkyl group having 1 to 22 carbon atoms such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate
  • (Meth) acrylic esters having an alkoxyl group such as (ii) 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate
  • (Iii) (meth) acrylic esters having an epoxy group such as glycidyl (meth) acrylate
  • the number of carbon atoms of the alkyl group of the (meth) acrylic acid ester is not necessarily limited, but there is no possibility that the polymerizability is inferior. Therefore, the (meth) acrylic acid ester having an alkyl group of 22 or less carbon atoms. Can be suitably used.
  • (meth) acrylates described above (meth) acrylates having an alkyl group having 12 or less carbon atoms are preferably used because they have excellent polymerizability, are inexpensive, and are widely used. You.
  • ethyl (meth) acrylate, n-butyl (meth) acrylate, methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, (meth) acrylic acid Ethoxymethyl and ethoxyethyl (meth) acrylate can be suitably used.
  • a (meth) acrylate ester having a functional group eg, glycidyl group, acid group, hydroxyl group, etc.
  • the above-mentioned (meth) acrylic acid esters may be used alone or in combination of two or more.
  • the content of the monomer (a) in the composition for forming the polymer particles (B) is 50% by weight to 99.9% by weight based on 100% by weight of the composition.
  • the content of the monomer (a) is (i) 50% by weight or more, it is possible to enjoy the above-mentioned advantage of the polymer particles (B) containing the structural unit (a), and (ii)
  • the content is 99.9% by weight or less, there is an advantage that a crosslinked form can be introduced into the polymer particles (B).
  • the lower limit of the content of the monomer (a) is preferably 60% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably 90% by weight or more.
  • the monomer (a) preferably contains one or more monomers selected from acrylates and one or more monomers selected from methacrylates. According to the above configuration, the rubber composition 2 for a tire can provide a molded article having more excellent wet grip properties.
  • the monomer (a) contains one or more monomers selected from acrylates and one or more monomers selected from methacrylates (hereinafter referred to as case A).
  • the content of one or more monomers selected from acrylates in 100% by weight of the monomer (a) is preferably 50% by weight to 90% by weight.
  • the content of one or more monomers selected from methacrylic acid esters in 100% by weight of the monomer (a) is preferably 10% by weight to 50% by weight.
  • the lower limit of the content of at least one monomer selected from acrylates in 100% by weight of the monomer (a) is more preferably 60% by weight or more, and 70% by weight or more. More preferably, it is particularly preferably at least 75% by weight.
  • the upper limit of the content of one or more monomers selected from acrylates in 100% by weight of the monomer (a) is more preferably 85% by weight or less, and 83% by weight or less. The content is more preferably 80% by weight or less.
  • the lower limit of the content of one or more monomers selected from methacrylic acid esters in 100% by weight of the monomer (a) is more preferably 15% by weight or more, and more preferably 17% by weight or more.
  • the upper limit of the content of one or more monomers selected from methacrylate esters in 100% by weight of the monomer (a) is more preferably 40% by weight or less, and 30% by weight or less. More preferably, it is particularly preferably 25% by weight or less.
  • the monomer (b) having two or more radically polymerizable reactive groups is simply referred to as a monomer (b) in this specification. Since the composition for forming the polymer particles (B) includes the monomer (b), the polymer particles (B) include a structural unit obtained by polymerizing the monomer (b). In the present specification, a structural unit obtained by polymerizing the monomer (b) is also referred to as a structural unit (b).
  • the monomer (b) has two or more radically polymerizable reactive groups which are reactive groups involved in the polymerization reaction, it can be said that the monomer (b) is a polyfunctional monomer.
  • the radically polymerizable reactive group is preferably a carbon-carbon double bond.
  • the rubber composition 2 for a tire (i) provides a molded article excellent in low rolling resistance and / or a molded article excellent in abrasion resistance. And (ii) it is easy to obtain the polymer particles (B) as a powder.
  • the reason for obtaining these advantages is not particularly limited, but is presumed as follows. However, another embodiment of the present invention is not particularly limited to the following reason (principle).
  • the polymer particles (B) include the structural unit (b)
  • the polymer particles (B) have a crosslinking point that can participate in a crosslinking reaction with the diene rubber (A).
  • the diene rubber (A) and the polymer particles (B) are integrated by a covalent bond.
  • the degree of cross-linking between polymers in the obtained molded article increases, the rebound resilience of the molded article is improved, and the molded article has excellent low rolling resistance.
  • the polymer particles (B) can also increase the degree of crosslinking between polymers. it can. As a result, the rubber composition for a tire 2 having the polymer particles (B) can provide a molded article having excellent wear resistance.
  • a polymerization reaction proceeds with addition of a radical to a monomer, but the reaction rate does not reach 100%. Therefore, the radical polymerization is produced using the monomer (b). Double bonds remain in the polymer particles (B), and as a result, the outermost surface of the polymer particles (B) can have double bonds. Through the double bond, the polymer particle (B) can form a covalent bond with the diene rubber (A) by a vulcanization reaction. As a result, the molded article manufactured from the rubber composition for tires 2 has improved rebound resilience, and the rubber composition 2 for tires can provide a molded article having excellent low rolling resistance.
  • the degree of crosslinking of the polymer particles (B) increases, the hardness of the polymer particles (B) also increases. Therefore, the aggregation of the polymer particles (B) can be easily controlled, and as a result, the powder of the polymer particles (B) can be easily formed. In other words, it becomes easy to obtain the polymer particles (B) as a powder.
  • the monomer (b) is not particularly restricted but includes, for example, polyvalent vinyl aromatic compounds such as diisopropenylbenzene and divinylbenzene; ⁇ , ⁇ -ethylenic compounds such as vinyl (meth) acrylate and allyl methacrylate.
  • Unsaturated ester compounds of unsaturated carboxylic acids unsaturated ester compounds of polyvalent carboxylic acids such as diallyl phthalate and triallyl trimellitate; ethylene glycol di (meth) acrylate, propylene glycol dimethacrylate, dimethacrylic acid 1, Unsaturated ester compounds of polyhydric alcohols such as 3-butylene glycol (also referred to as 1,3-butylene dimethacrylate); unsaturated ester compounds of cyanuric acid such as triallyl cyanurate; unsaturation of isocyanuric acid such as triallyl isocyanurate Ester compound; 1,2-butadiene Divinyl ether, divinyl sulfone, N, and the like N'-m-phenylene maleimide. These compounds may be used alone or in combination of two or more.
  • the monomer (b) (i) from the viewpoint of reactivity in radical polymerization, a polyvalent vinyl aromatic compound, an unsaturated ester compound of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and an unsaturated ester of a polyhydric alcohol
  • An ester compound, an unsaturated ester compound of cyanuric acid, and an unsaturated ester compound of isocyanuric acid are preferable, and (ii) the residual amount of carbon-carbon double bonds after radical polymerization increases, so that triallyl isocyanurate and Allyl methacrylate is preferred.
  • a conjugated diene monomer refers to a conjugated diene having two carbon-carbon double bonds, wherein the double bonds are separated by one single bond.
  • conjugated diene monomer examples include isoprene, chloroprene, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene and 1,3-pentadiene. No.
  • the conjugated diene monomer may be used alone or in combination of two or more.
  • a conjugated diene monomer is used as the monomer (b)
  • the dispersibility of the polymer particles (B) in the tire rubber composition 2 is improved. This is because the structural units of the diene rubber (A) and the polymer particles (B) are similar, and as a result, the affinity (compatibility) between the diene rubber (A) and the polymer particles (B) increases. It is thought that it is.
  • a conjugated diene refers to a conjugated diene having two carbon-carbon double bonds, wherein the double bonds are separated by one single bond.
  • the content of the monomer (b) in the composition for forming the polymer particles (B) is 0.1% by weight to 50% by weight based on 100% by weight of the composition.
  • the content of the monomer (b) is (a) 0.1% by weight or more, it is possible to enjoy the above-described advantage of the polymer particles (B) including the structural unit (b), b)
  • the upper limit of the content of the monomer (b) is preferably 40% by weight or less, more preferably 30% by weight or less, further preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the polymer particles (B) may be a copolymer obtained by polymerizing a composition comprising a total of 100% by weight of the monomer (a) and the monomer (b).
  • the polymer particles (B) are further composed of a monomer (a), a monomer (b), and a monomer (c) copolymerizable with the monomers (a) and (b). May be a copolymer obtained by polymerizing a composition comprising a total of 100% by weight.
  • the monomer (c) copolymerizable with the monomer (a) and the monomer (b) is simply referred to as a monomer (c) in the present specification.
  • the composition for forming the polymer particles (B) includes the monomer (c)
  • the polymer particles (B) include a structural unit obtained by polymerizing the monomer (c).
  • the monomer (c) is an optional component.
  • the monomer (c) is not particularly limited as long as it can be copolymerized with the monomer (a) and the monomer (b), and only one kind of an arbitrary monomer may be used. Two or more types may be used in combination.
  • the monomer (c) preferably contains an aromatic monoalkenyl monomer.
  • the affinity between the diene rubber (A) and the polymer particles (B) in the rubber composition 2 for a tire can be increased.
  • the diene rubber (A) contains a styrene-butadiene copolymer rubber
  • the amount of the aromatic monoalkenyl monomer used in the production of the polymer particles (B) is adjusted to thereby control the diene rubber.
  • the affinity between (A) and the polymer particles (B) can be increased. As a result, the dispersibility of the polymer particles (B) in the rubber composition 2 for a tire is improved.
  • aromatic monoalkenyl monomer examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-ethylstyrene.
  • Pt-butylstyrene ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-bromostyrene, 2-methyl-4,6- Examples include dichlorostyrene, p-bromostyrene, 2-methyl-4,6-dichlorostyrene, 2,4-dibromostyrene, and vinylnaphthalene.
  • the aromatic monoalkenyl monomer only one kind may be used, or two or more kinds may be used in combination.
  • styrene is preferred from the viewpoint of reactivity and cost in radical polymerization.
  • the monomer (c) preferably contains 30 to 100% by weight of an aromatic monoalkenyl monomer based on 100% by weight of the monomer (c). According to the above configuration, the affinity between the diene rubber (A) and the polymer particles (B) in the rubber composition 2 for a tire can be further increased. As a result, the dispersibility of the polymer particles (B) in the tire rubber composition 2 is further improved.
  • the lower limit of the content of the aromatic monoalkenyl monomer is more preferably 50% by weight or more, further preferably 70% by weight or more, and particularly preferably 90% by weight or more. .
  • the content of the monomer (c) in the composition for forming the polymer particles (B) is 0 to 40% by weight based on 100% by weight of the composition.
  • the lower limit of the content of the monomer (c) is preferably 5% by weight or more, more preferably 8% by weight or more, more preferably 10% by weight or more, further preferably 15% by weight or more, and more preferably 20% by weight or more.
  • the upper limit of the content of the monomer (b) is preferably 35% by weight or less, more preferably 33% by weight or less, further preferably 30% by weight or less, and particularly preferably 28% by weight or less.
  • the polymer particles (B) may be polymer particles composed of a single layer, or polymer particles composed of two or more layers having different monomer compositions.
  • the polymer particles (B) are polymer particles composed of two or more layers, each of the above-mentioned monomer units in the composition for forming the polymer particles (B) is used as the entire polymer particles (B). What is necessary is just to satisfy the requirement of the body content.
  • the polymer particles (B) are preferably polymer particles composed of a single layer from the viewpoint of ease of production and the like.
  • the glass transition temperature of the polymer particles (B) is from -40 ° C to 40 ° C.
  • the polymer particles (B) may have a moderate flexibility, or the polymer particles (B) may include a component (for example, a layer) having a moderate flexibility.
  • the rubber composition 2 for a tire can provide a molded article excellent in (i) wet grip properties and (ii) a balance between wet grip properties and low rolling resistance.
  • the polymer particles (B) are polymer particles composed of two or more layers, the polymer forming at least one of the layers preferably has a glass transition temperature of -40 ° C to 40 ° C. Is particularly preferably present inside the polymer particles (B) (not the outermost layer).
  • the obtained rubber composition 2 for a tire can provide a molded article having excellent wet grip properties.
  • the glass transition temperature of the polymer particles (B) is 40 ° C. or lower, the rubber elasticity of the polymer particles (B) becomes good, and the polymer particles (B) do not become too hard.
  • the rubber composition 2 for a tire can provide a molded article having good wet grip properties and good rolling resistance.
  • the lower the rolling resistance the better. Therefore, good rolling resistance is intended to mean excellent low rolling resistance.
  • the lower limit of the glass transition temperature of the polymer particles (B) is more preferably ⁇ 30 ° C. or higher, further preferably ⁇ 20 ° C.
  • the upper limit of the glass transition temperature of the polymer particles (B) is more preferably 30 ° C or lower, still more preferably less than 30 ° C, further preferably 20 ° C or lower, and particularly preferably 10 ° C or lower. In particular, when the glass transition temperature of the polymer particles (B) is around 0 ° C., a drastic improvement in wet grip properties can be realized.
  • the glass transition temperature of the polymer particles (B) is preferably from ⁇ 40 ° C. to less than 30 ° C.
  • the polymer particles (B) have more appropriate flexibility than when the glass transition temperature of the polymer particles (B) is 30 ° C. or higher
  • the polymer particles (B) may include a component (for example, a layer) having more appropriate flexibility.
  • the rubber composition 2 for a tire can provide a molded article having more excellent (i) wet grip properties and (ii) a balance between wet grip properties and low rolling resistance.
  • the glass transition temperature of the polymer forming at least one of the layers is preferably ⁇ 40 ° C. or more and less than 30 ° C., It is particularly preferable that the layer is present inside the polymer particles (B) (not the outermost layer).
  • the glass transition temperature of the polymer particles (B) is determined by the monomers (a) and (b) contained in the composition constituting the polymer particles (B), and optionally the monomers (c) and (c). It can be controlled by adjusting each content of the monomer (d). For example, most of the monomer (a) has a glass transition temperature in a minus region (a temperature range of less than 0 ° C.), but methyl methacrylate in the monomer (a) has a glass transition temperature in a plus region (0 ° C.). Temperature range).
  • the monomer (b) is in the plus region, and among the monomers (c), styrene which is an aromatic monoalkenyl monomer has a glass transition temperature in the plus region, and the monomer (d) Has a negative glass transition temperature. Therefore, polymer particles (B) having a glass transition temperature of ⁇ 40 ° C. to 40 ° C. can be obtained by copolymerizing these monomers at an appropriate ratio. According to such an embodiment, when the diene rubber (A) and the polymer particles (B) are mixed to form the rubber composition 2 for a tire, the phase separation structure becomes clear. Therefore, there is an advantage that the glass transition temperature of the polymer particles (B) is easily reflected on the physical properties of the rubber composition 2 for a tire.
  • the glass transition temperature of the polymer particles (B) is determined, for example, by using a sheet prepared by molding only the polymer particles (B) into a sheet and using a dynamic viscoelasticity measuring apparatus according to JIS @ K- It can be measured based on the method described in 6394. A specific measuring method will be described in Examples described later.
  • the glass transition temperature of the polymer particles (B) in the rubber composition for tires 2 can also be measured by the following procedure: (1) mixing the rubber composition 2 for tires with methyl ethyl ketone; (2) From the mixture, only the component insoluble in methyl ethyl ketone is taken out; (3) A sheet prepared by molding the component into a sheet is used as a sample, and a JIS @ K- It is measured based on the method described in 6394.
  • the volume average particle diameter of the polymer particles (B) is preferably 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the volume average particle diameter of the polymer particles (B) is a volume-based particle diameter of the primary particles of the polymer particles (B).
  • the primary particles of the polymer particles (B) are the polymer particles (B) themselves, and refer to the polymer particles (B) that cannot be further separated.
  • the volume average particle diameter of the polymer particles (B) is 0.01 ⁇ m or more, heat generation due to polymerization during the production of the polymer particles (B) is small, and the polymer particles in the rubber composition 2 for tires.
  • the dispersibility of (B) becomes good.
  • the volume average particle diameter of the polymer particles (B) is 10 ⁇ m or less, the polymerization at the time of producing the polymer particles (B) is completed in a relatively short time, and thus the productivity is good.
  • the lower limit of the volume average particle diameter of the polymer particles (B) is, for example, 0.02 ⁇ m or more, 0.03 ⁇ m or more, 0.04 ⁇ m or more, 0.05 ⁇ m or more, 0.06 ⁇ m or more, 0.07 ⁇ m or more, and 0.03 ⁇ m or more. It is preferably at least 08 ⁇ m, at least 0.09 ⁇ m, at least 0.10 ⁇ m, at least 0.11 ⁇ m, at least 0.12 ⁇ m, at least 0.13 ⁇ m, at least 0.14 ⁇ m, or at least 0.15 ⁇ m.
  • the upper limit of the volume average particle diameter of the polymer particles (B) is 10 ⁇ m or less, 9 ⁇ m or less, 8 ⁇ m or less, 7 ⁇ m or less, 6 ⁇ m or less, 5 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 0.5 ⁇ m or less. , 0.3 ⁇ m or less, or 0.2 ⁇ m or less.
  • the volume average particle diameter of the polymer particles (B) is determined, for example, by using a latex (hereinafter, also referred to as polymer particle latex) in which the polymer particles (B) are dispersed in an aqueous solvent (eg, water) as a sample.
  • the measurement can be performed using, for example, Nanotrac @ Wave manufactured by Nikkiso Co., Ltd. A specific measuring method will be described in Examples described later.
  • the volume average particle diameter of the polymer particles (B) in a molded article is determined by, for example, cutting the molded article, imaging the cut surface using an electron microscope or the like, and obtaining the obtained image data (imaging Image).
  • the method for producing the polymer particles (B) is not particularly limited, and can be produced by a known method, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like. Among these, a production method by emulsion polymerization is preferred from the viewpoint of uniformity of particle size and particle diameter.
  • Emulsion polymerization is specifically carried out by adding water, each monomer, a radical polymerization initiator, an emulsifier, and, if necessary, a chain transfer agent to a reaction vessel equipped with a stirrer, followed by heating and stirring. Can be.
  • the polymer particles (B) are produced by emulsion polymerization, all the monomers used in the production may be polymerized in a single polymerization reaction, or may be divided into several polymerization reactions and polymerized. Is also good.
  • the emulsion polymerization is called a multi-stage emulsion polymerization.
  • polymer particles (B) composed of two or more layers are obtained depending on the number of polymerization reactions.
  • the conversion rate of the monomer also referred to as the consumption rate of the monomer
  • the polymer particles (B) are preferably produced by emulsion polymerization comprising a single polymerization reaction, from the viewpoint of ease of production and the like.
  • the radical polymerization initiator is not particularly limited, and known ones can be used. For example, thermal decomposition of 2,2′-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, ammonium persulfate, etc. A type polymerization initiator can be used.
  • radical polymerization initiator examples include (i) (a) t-butylperoxyisopropyl carbonate, paramenthane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t (Ii) an organic peroxide such as -butyl peroxide, t-hexyl peroxide and / or a peroxide such as (b) an inorganic peroxide such as hydrogen peroxide, potassium persulfate or ammonium persulfate; A reducing agent such as sodium formaldehyde sulfoxylate and glucose, and a transition metal salt such as iron (II) sulfate as required, and a chelating agent such as disodium ethylenediaminetetraacetate and sodium pyrophosphate as necessary; Using a redox catalyst combined with It is also possible. Only one radical polymerization initiator may be used, or two or more radical polymerization initiator
  • chain transfer agent examples include mercaptans such as tert-dodecyl mercaptan and n-dodecyl mercaptan, carbon tetrachloride, thioglycols, diterpenes, ta-pinolene, and ⁇ -terpinenes.
  • a chain transfer agent can be optionally used.
  • Emulsifiers used in emulsion polymerization include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants and the like. Further, a fluorine-based surfactant can also be used.
  • suspension stabilizer can be used in suspension polymerization.
  • Suspension stabilizers include, but are not limited to, polyvinyl alcohol, sodium polyacrylate, hydroxyethyl cellulose, and the like.
  • each monomer, radical polymerization initiator, etc. may be charged after the entire amount has been put into a reaction vessel, or may be added continuously or intermittently during the reaction.
  • the polymerization may be carried out while performing.
  • the polymerization is preferably carried out using a reactor from which oxygen has been removed, and is preferably carried out at 0 ° C or higher and 80 ° C or lower.
  • operating conditions such as temperature and stirring can be appropriately adjusted.
  • a polymer particle latex is obtained by emulsion polymerization or suspension polymerization.
  • the polymer particles (B) are dispersed in a state of primary particles.
  • a divalent or higher metal salt such as calcium chloride, magnesium chloride, magnesium sulfate, aluminum chloride, and calcium acetate to solidify the polymer particles (B)
  • dehydration, washing By performing the drying operation, the polymer particles (B) can be separated from the aqueous solvent. Further, the polymer particles (B) can also be separated from the aqueous solvent by spray coagulation (spray drying) of the polymer particle latex.
  • secondary particles or aggregates obtained by aggregating the primary particles of the polymer particles (B) can be obtained.
  • the shape of the secondary particles or agglomerates of the polymer particles (B) include powder, granules, pellets, crumbs (small pieces), and veils. From the viewpoint of easy handling, the polymer particles (B) are preferably obtained as powder or secondary particles having a crumb-like shape.
  • the volume average particle diameter of the powder of the polymer particles (B) is preferably 10 ⁇ m or more and 1000 ⁇ m or less because of easy handling and excellent dispersibility. preferable.
  • the lower limit of the volume average particle diameter of the powder of the polymer particles (B) is, for example, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, 110 ⁇ m or more. , 120 ⁇ m or more, 130 ⁇ m or more, 140 ⁇ m or more, or 150 ⁇ m or more.
  • the upper limit of the volume average particle diameter of the powder of the polymer particles (B) is more preferably 800 ⁇ m or less, further preferably 700 ⁇ m or less, and particularly preferably 600 ⁇ m or less. Further, the proportion (volume%) of the powder having a particle diameter of 700 ⁇ m or more in the whole powder is preferably 20% or less, more preferably 10% or less, and more preferably 5% or less. More preferred. Further, the proportion (volume%) of the powder having a particle diameter of 1000 ⁇ m or more in the whole powder is preferably 20% or less, more preferably 10% or less, and more preferably 5% or less. More preferred.
  • the particle size of the powder of the polymer particles (B) can be measured based on a light scattering method using, for example, Microtrack MT3000II manufactured by Nikkiso Co., Ltd.
  • Rubber composition 2 for tires like rubber composition 1 for tires, preferably further contains silica and a silane coupling agent, and carbon black.
  • the rubber composition 2 for tires like the rubber composition 1 for tires, includes vulcanizing agents, vulcanization accelerators, vulcanizing activators, fillers, plasticizers, which are generally used in the rubber field. Other additives such as an antioxidant may be included as needed.
  • the silica and the silane coupling agent, the carbon black, and the other additives in the rubber composition 2 for a tire each include preferred aspects and are the same as those aspects described in the section of [Embodiment 1]. Is also good.
  • the rubber composition 2 for a tire according to another embodiment of the present invention can be produced according to a conventionally known method, for example, by kneading each component.
  • the method for producing the rubber composition 2 for a tire is not particularly limited.
  • an example of a method for producing the rubber composition 2 for a tire will be described using the rubber composition 2 for a tire containing a vulcanizing agent and a vulcanization accelerator as an example.
  • the diene rubber (A) and the polymer particles (B), and other components (such as additives) excluding the vulcanizing agent and the vulcanization accelerator are added using a tumbler, a tumbler, a Henschel mixer, a riboblender, or the like. Mix to obtain a mixture. Thereafter, the mixture is kneaded using an extruder, a bumper, a roll, or the like to obtain a kneaded material.
  • the kneading temperature at this time is usually 50 ° C. or more and 200 ° C. or less.
  • the lower limit of the kneading temperature is preferably 80 ° C. or higher, and the upper limit is preferably 190 ° C. or lower.
  • the kneading time is usually 30 seconds or more and 30 minutes or less.
  • the lower limit of the kneading time is preferably 1 minute or more.
  • a vulcanizing agent and a vulcanization accelerator are added to the obtained kneaded product, and the obtained mixture is further kneaded using the above-described apparatus.
  • the kneading temperature at this time is preferably from 70 ° C. to 120 ° C. for the purpose of suppressing the reaction of the vulcanizing agent.
  • the rubber composition 2 for a tire can be obtained as a molded product by subjecting the rubber composition for a tire to a crosslinking reaction. That is, another embodiment of the present invention provides a molded article (hereinafter, also referred to as molded article M2) obtained by molding the rubber composition 2 for a tire having the above-described configuration.
  • the molded article M2 that the rubber composition 2 for a tire can provide is not limited to a tire.
  • the method for producing the molded article M2, that is, the method for crosslinking the rubber composition 2 for a tire can be appropriately selected in consideration of the shape and size of the molded article M2, but generally a press machine or an injection molding machine is used. The method used is mentioned.
  • the temperature and time during the crosslinking reaction are not particularly limited.
  • the lower limit of the temperature at the time of the crosslinking reaction is preferably at least 120 ° C, more preferably at least 140 ° C.
  • the upper limit of the temperature at the time of the crosslinking reaction is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the time for the crosslinking reaction is usually about 1 minute or more and 120 minutes or less.
  • the molded body M2 can be used, for example, as a tire, a cable covering agent, a hose, a transmission belt, a conveyor belt, a roll cover, a shoe body or sole, a sealing ring, a vibration-proof rubber, and the like.
  • the molded body M2 can be suitably used particularly as a tire tread.
  • the outermost layer be formed of a molded body M2.
  • the molded body M2 is made from the rubber composition 2 for a tire having the above-described configuration, it can satisfy the following (i) and (ii): (i) 0 ° C. tan ⁇ > 100, and (ii) 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1.
  • the tan ⁇ is a value of tan ⁇ at 0 ° C. (0 ° tan ⁇ ) and tan ⁇ at 60 ° C. (60 ° tan ⁇ ) measured according to JIS K-6394 for the molded body M2, and This is a value when the tan ⁇ at 0 ° C. and the tan ⁇ at 60 ° C. are both set to 100 for the molded body M2 containing no coalesced particles (B).
  • ° C. tan ⁇ of the molded body M2 specifically means the dynamic viscoelasticity of the molded body M2 at 0 ° C. 0 ° C. tan ⁇ is an index representing wet grip performance.
  • the molded article M2, which contains the polymer particles (B), is excellent in wet grip properties as compared with a molded article that does not contain the polymer particles (B).
  • 6060 ° C. tan ⁇ of the molded body M2 specifically means the dynamic viscoelasticity of the molded body M2 at 60 ° C. 60 ° C. tan ⁇ is an index indicating rolling resistance.
  • the molded body M2 containing the polymer particles (B) preferably does not have too high a rolling resistance as compared with the molded body not containing the polymer particles (B), and preferably has a tan ⁇ ⁇ 130 at 60 ° C.
  • the molded article M2 preferably has a tan ⁇ ⁇ 125 of 60 ° C., more preferably tan ⁇ ⁇ 120, and particularly preferably tan ⁇ ⁇ 115. preferable.
  • the molded product M2 containing the polymer particles (B) has excellent wet grip properties and does not have too high a rolling resistance as compared with a molded product containing no polymer particles (B). In other words, the molded body M2 has an excellent balance between wet grip properties and low rolling resistance.
  • the molded article M2 having a large value of ⁇ 15 ° C. tan ⁇ and / or ⁇ 20 ° C. tan ⁇ can provide a tire having better wet grip properties in cold regions.
  • the rubber composition 2 for a tire according to one embodiment of the present invention may be a rubber composition 2 for a tire for a cold region.
  • a tire according to another embodiment of the present invention is manufactured using the rubber composition for a tire 2 described in the section [Rubber composition 2 for a tire].
  • the tire 2 according to another embodiment of the present invention is excellent in (i) wet grip performance and (ii) balance of wet grip performance and low rolling resistance by having the above configuration. . More specifically, the tire 2 according to another embodiment of the present invention satisfies the conditions (i) and (ii) that can be satisfied by the molded body.
  • aspects related to the tire 2 according to one embodiment of the present invention include preferred aspects and may be the same as the aspect of the tire 1 described in the section of [Tire 1] of [Embodiment 1].
  • the tire 2 in one embodiment of the present invention may be a tire 2 for a cold region.
  • a molded article according to another embodiment of the present invention is a molded article containing polymer particles made of a polymer obtained by polymerizing a composition containing at least one monomer selected from acrylates and methacrylates. And may satisfy the following: 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1, where the tan ⁇ is the tan ⁇ at 0 ° C. measured on the molded article according to JIS K-6394. (0 ° C. tan ⁇ ) and the value of tan ⁇ at 60 ° C. (60 ° C. tan ⁇ ), and the value when both 0 ° C. tan ⁇ and 60 ° C. tan ⁇ of a molded article not containing the polymer particles are 100. .
  • molded body 2 may be simply referred to as “molded body 2”.
  • the embodiment of one or more monomers selected from acrylates and methacrylates may be the same as the embodiment of the monomer (a) in the section of [Rubber composition 2 for tires].
  • the description of the monomer (a) can be used as appropriate.
  • the polymer particles may be the same as those of the polymer particles (B) in the section of [Rubber composition 2 for tires], and the description of the polymer particles (B) can be appropriately used.
  • the polymer particles are preferably the polymer particles (B) described in the section of [Rubber composition 2 for tires].
  • the polymer particles polymerize a composition containing a monomer having two or more radically polymerizable reactive groups in addition to one or more monomers selected from acrylates and methacrylates.
  • the copolymer is
  • the polymer particles may optionally contain, in addition to one or more monomers selected from acrylates and methacrylates, and monomers having two or more radically polymerizable reactive groups, It may be a copolymer obtained by polymerizing a composition containing a monomer and / or a conjugated diene monomer copolymerizable with a polymer.
  • the molded article 2 according to another embodiment of the present invention preferably contains a diene rubber in addition to the polymer particles.
  • the molded article 2 according to another embodiment of the present invention may further include, for example, 80 parts by weight of a styrene-butadiene copolymer rubber and 20 parts by weight of a butadiene rubber in addition to the polymer particles.
  • the molded article 2 according to another embodiment of the present invention is preferably a molded article obtained by a crosslinking reaction of the rubber composition 2 for a tire described in the section of [Rubber composition 2 for a tire].
  • 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1, and 0 ° C. tan ⁇ / 60 because the wet grip property and the low rolling resistance are more excellent in balance.
  • C. Tan ⁇ > 1.03 more preferably 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1.05, even more preferably 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1.08, and 0 ° C.
  • 0 ° C. tan ⁇ > 100 more preferably 0 ° C. tan ⁇ > 105, and 0 ° C. tan ⁇ > It is more preferably 110, and particularly preferably 0 ° C. tan ⁇ > 115.
  • the compact 2 in one embodiment of the present invention may be a compact 2 for a cold region.
  • One embodiment of the present invention may have the following configuration.
  • the content of the layer of the polymer (Y) in the multilayer polymer particles (B) is 100 parts by weight to 10,000 parts by weight based on 100 parts by weight of the layer of the polymer (X).
  • the diene rubber (A) comprises 50 to 100% by weight of at least one monomer (aa) having two or more radically polymerizable reactive groups, and a monomer copolymerizable with the monomer (aa).
  • a molded article containing multilayer polymer particles wherein the multilayer polymer particles include a layer of a polymer (X) and a layer of a polymer (Y), and the polymer (X) is formed by radical polymerization.
  • a polymer obtained by polymerizing a composition containing a monomer having two or more reactive groups wherein the polymer (Y) is obtained by mixing one or more monomers selected from acrylates and methacrylates.
  • a molded article containing polymer particles composed of a polymer obtained by polymerizing a composition containing at least one monomer selected from an acrylate ester and a methacrylic ester, and satisfies the following: 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1, where tan ⁇ is the tan ⁇ at 0 ° C. (0 ° C. tan ⁇ ) and the tan ⁇ at 60 ° C. (60 ° C. tan ⁇ ) measured on the molded article according to JIS K-6394. ), And the value when both 0 ° C. tan ⁇ and 60 ° C. tan ⁇ of the molded article not containing the polymer particles are set to 100.
  • One embodiment of the present invention may have the following configuration.
  • the content of the layer of the polymer (Y) in the multilayer polymer particles (B) is 100 parts by weight to 10,000 parts by weight based on 100 parts by weight of the layer of the polymer (X).
  • the diene rubber (A) comprises 50 to 100% by weight of at least one monomer (aa) having two or more radically polymerizable reactive groups, and a monomer copolymerizable with the monomer (aa).
  • a molded article containing multilayer polymer particles wherein the multilayer polymer particles include a layer of a polymer (X) and a layer of a polymer (Y), and the polymer (X) is formed by radical polymerization.
  • a polymer obtained by polymerizing a composition containing a monomer having two or more reactive groups wherein the polymer (Y) is obtained by mixing one or more monomers selected from acrylates and methacrylates.
  • One embodiment of the present invention may have the following configuration.
  • the diene rubber is at least one selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, and styrene-butadiene copolymer rubber, and any one of [1] to [3].
  • a molded article containing polymer particles composed of a polymer obtained by polymerizing a composition containing at least one monomer selected from an acrylate ester and a methacrylic ester, and satisfies the following: 0 ° C. tan ⁇ / 60 ° C. tan ⁇ > 1, where tan ⁇ is the tan ⁇ at 0 ° C. (0 ° C. tan ⁇ ) and the tan ⁇ at 60 ° C. (60 ° C. tan ⁇ ) measured on the molded article according to JIS K-6394. ), And the value when both 0 ° C. tan ⁇ and 60 ° C. tan ⁇ of the molded article not containing the polymer particles are set to 100.
  • Example A Hereinafter, one embodiment of the present invention will be specifically described in Example A, but the present invention is not limited to Example A.
  • Example A and Comparative Production Example A were performed under the following conditions and methods.
  • multilayer polymer particles and “single layer polymer particles” are collectively referred to as “polymer particles”.
  • the measurement of the volume average particle diameter of the polymer particles was performed using a polymer particle latex as a sample before adding an aqueous calcium chloride solution and coagulating the polymer particles in each Production Example A and Comparative Production Example A. .
  • Nanotrac Wave manufactured by Nikkiso Co., Ltd. was used.
  • Example A test piece of 8 mm ⁇ 6 mm ⁇ 2 mm was cut out from the sheet (molded article of the rubber composition for a tire) obtained in each of Example A and Comparative Example A.
  • tan ⁇ at 0 ° C. (0 ° C. tan ⁇ ) and tan ⁇ at ⁇ 5 ° C. (0 ° C.) in accordance with the method described in JIS K-6394 (Determination of dynamic properties of vulcanized rubber and thermoplastic rubber).
  • tan ⁇ ) tan ⁇ at ⁇ 10 ° C. (0 ° C. tan ⁇ )
  • tan ⁇ tan ⁇
  • tan ⁇ tan ⁇ at ⁇ 20 ° C. (0 ° C. tan ⁇ )
  • tan ⁇ 60 ° C. (60 ° C. tan ⁇ ).
  • DVA-200 manufactured by IT Measurement Control Co., Ltd.
  • the measurement conditions are as follows: frequency; 10 Hz, strain; 0.1%, heating rate; 4 ° C./min, deformation mode; shear mode.
  • the results are shown in Tables 4 to 6.
  • Production of multilayer polymer particles (B1) (1) Production of polymer (Y1) latex Deionized water and sodium polyoxyethylene lauryl ether phosphate, butyl acrylate, methyl methacrylate and methacrylic acid The mixture containing allyl was charged into a pressure-resistant polymerization vessel equipped with a stirring blade. Next, the temperature inside the pressure-resistant polymerization vessel was raised while stirring the raw materials, and the gas inside the pressure-resistant polymerization vessel was replaced with nitrogen, and then polymerization was started. The polymerization was terminated 170 minutes after the start of the polymerization reaction.
  • a layer of the polymer (X1) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y1) on the inside and a layer of the polymer (X1) on the outside (in the outermost layer).
  • the united particles (B1) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B1) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B1) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B1) was 110 nm.
  • Production of multilayer polymer particles (B2) (1) Production of polymer (Y2) latex Polymer (Y2) obtained by dispersing polymer (Y2) in water by the same method as in Production Example A1. Latex was obtained. When the volume average particle diameter of the polymer (Y2) in the polymer (Y2) latex was measured, the volume average particle diameter of the polymer (Y2) was 98 nm.
  • a layer of the polymer (X2) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y2) on the inside and a layer of the polymer (X2) on the outside (in the outermost layer) is formed.
  • the united particles (B2) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B2) were dispersed in water was obtained.
  • the volume average particle size of the multilayer polymer particles (B2) in the obtained multilayer polymer particle latex was measured, the volume average particle size of the multilayer polymer particles (B2) was 101 nm.
  • the multilayer polymer particles (B2) were obtained in the same manner as in Production Example A1.
  • the multilayer polymer particles (B2) should include a layer having a glass transition temperature of ⁇ 4 ° C. as a layer of the polymer (Y2). I understood.
  • a layer of the polymer (X3) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y3) on the inside and a layer of the polymer (X3) on the outside (in the outermost layer) is formed.
  • the united particles (B3) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B3) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B3) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B3) was 97 nm.
  • the multilayer polymer particles (B3) include a layer having a glass transition temperature of 4 ° C. as a layer of the polymer (Y3). Do you get it.
  • a layer of the polymer (X4) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y4) on the inside and a layer of the polymer (X4) on the outside (in the outermost layer) is formed.
  • the united particles (B4) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B4) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B4) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B4) was 108 nm.
  • the multilayer polymer particles (B4) were obtained in the same manner as in Production Example A1.
  • the multilayer polymer particles (B4) should include a layer having a glass transition temperature of ⁇ 5 ° C. as a layer of the polymer (Y4). I understood.
  • Production of Multilayer Polymer Particles (B5) (1) Production of Polymer (Y5) Latex Polymer (Y5) obtained by dispersing polymer (Y5) in water by the same method as in Production Example A1. Latex was obtained. When the volume average particle diameter of the polymer (Y5) in the polymer (Y5) latex was measured, the volume average particle diameter of the polymer (Y5) was 94 nm.
  • a layer of the polymer (X5) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y5) on the inside and a layer of the polymer (X5) on the outside (in the outermost layer).
  • the united particles (B5) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B5) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B5) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B5) was 101 nm.
  • the multilayer polymer particles (B5) were obtained in the same manner as in Production Example A1.
  • the multilayer polymer particles (B5) should include a layer having a glass transition temperature of ⁇ 4 ° C. as a layer of the polymer (Y5). I understood.
  • Production of Multilayer Polymer Particles (B6) (1) Production of Polymer (Y6) Latex Except that the polymerization reactor used was changed from a pressure-resistant polymerization reactor with stirring blades to a glass polymerization reactor with stirring blades, In the same manner as in Production Example A1, a polymer (Y6) latex in which the polymer (Y6) was dispersed in water was obtained. When the volume average particle diameter of the polymer (Y6) in the polymer (Y6) latex was measured, the volume average particle diameter of the polymer (Y6) was 130 nm.
  • a layer of the polymer (X6) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y6) on the inside and a layer of the polymer (X6) on the outside (in the outermost layer).
  • the united particles (B6) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B6) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B6) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B6) was 133 nm.
  • aqueous calcium chloride solution was added to the obtained multilayer polymer particle latex to coagulate the multilayer polymer particles to obtain a coagulated product of the multilayer polymer particles.
  • a solid content of crumb-shaped multilayer polymer particles (B6) was obtained.
  • the glass transition temperature of the obtained multilayer polymer particles (B6) was measured, it was found that the multilayer polymer particles (B6) include a layer having a glass transition temperature of 2 ° C. as a layer of the polymer (Y6). Do you get it.
  • Production of multilayer polymer particles (B7) (1) Production of polymer (Y7) latex Except that the polymerization reactor used was changed from a pressure-resistant polymerization reactor with stirring blades to a glass polymerization reactor with stirring blades, In the same manner as in Production Example A1, a polymer (Y7) latex in which the polymer (Y7) was dispersed in water was obtained. When the volume average particle diameter of the polymer (Y7) in the polymer (Y7) latex was measured, the volume average particle diameter of the polymer (Y7) was 130 nm.
  • a layer of the polymer (X7) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (X7) on the inside and a layer of the polymer (X7) on the outside (in the outermost layer).
  • the united particles (B7) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B7) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B7) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B7) was 135 nm.
  • the obtained multilayer polymer particle latex was coagulated to obtain a coagulated product of the multilayer polymer particles.
  • the obtained coagulated product was dried to obtain a solid content of crumb-shaped multilayer polymer particles (B7).
  • the glass transition temperature of the obtained multilayer polymer particles (B7) was measured, it was found that the multilayer polymer particles (B7) include a layer having a glass transition temperature of 1 ° C. as a layer of the polymer (Y7). Do you get it.
  • Production of Multilayer Polymer Particles (B8) (1) Production of Polymer (Y8) Latex Deionized water, sodium polyoxyethylene lauryl ether phosphate, butyl acrylate, allyl methacrylate and styrene were used. The mixture was charged into a glass polymerization vessel equipped with stirring blades. Next, the temperature inside the glass polymerization vessel was raised while stirring the raw materials, and the gas inside the glass polymerization vessel was replaced with nitrogen, and then polymerization was started. The polymerization was terminated 170 minutes after the start of the polymerization reaction.
  • a layer of the polymer (X8) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y8) on the inside and a layer of the polymer (X8) on the outside (in the outermost layer) is formed.
  • the united particles (B8) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B8) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B8) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B8) was 126 nm.
  • Production of multilayer polymer particles (B9) (1) Production of polymer (Y9) latex The total amount of each of butyl acrylate, allyl methacrylate and styrene used was determined to be 86.60 butyl acrylate. Polymer (Y9) obtained by dispersing polymer (Y9) in water in the same manner as in Production Example A8, except that the parts were changed to 0.5 parts by weight, allyl methacrylate 0.50 parts by weight, and styrene 12.90 parts by weight. Latex was obtained. When the volume average particle diameter of the polymer (Y9) in the polymer (Y9) latex was measured, the volume average particle diameter of the polymer (Y9) was 120 nm.
  • a layer of the polymer (X9) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y9) on the inside and a layer of the polymer (X9) on the outside (in the outermost layer).
  • the united particles (B9) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B9) were dispersed in water was obtained.
  • the volume average particle size of the multilayer polymer particles (B9) in the obtained multilayer polymer particle latex was measured, the volume average particle size of the multilayer polymer particles (B9) was 123 nm.
  • the multilayer polymer particles (B9) contained a layer having a glass transition temperature of ⁇ 12 ° C. as a layer of the polymer (Y9). I understood.
  • Production of multilayer polymer particles (B10) (1) Production of polymer (Y10) latex The total amount of each of butyl acrylate, allyl methacrylate and styrene used was determined to be 95.50 butyl acrylate. Polymer (Y10) obtained by dispersing polymer (Y10) in water in the same manner as in Production Example A8, except that the parts were changed to 0.5 parts by weight, allyl methacrylate 0.50 parts by weight, and styrene 4.00 parts by weight. Latex was obtained. When the volume average particle diameter of the polymer (Y10) in the polymer (Y10) latex was measured, the volume average particle diameter of the polymer (Y10) was 119 nm.
  • a layer of the polymer (X10) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y10) on the inside and a layer of the polymer (X10) on the outside (in the outermost layer).
  • the united particles (B10) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B10) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B10) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B10) was 122 nm.
  • Production of multilayer polymer particles (B11) (1) Production of polymer (Y11) latex Polymer (Y11) obtained by dispersing polymer (Y11) in water by the same method as in Production Example A8. Latex was obtained. When the volume average particle diameter of the polymer (Y11) in the polymer (Y11) latex was measured, the volume average particle diameter of the polymer (Y11) was 43 nm.
  • a layer of the polymer (X11) can be formed by the polymerization, and as a result, a multilayer structure having a layer of the polymer (Y11) on the inside and a layer of the polymer (X11) on the outside (in the outermost layer) is formed.
  • the united particles (B11) were obtained.
  • a multilayer polymer particle latex in which the multilayer polymer particles (B11) were dispersed in water was obtained.
  • the volume average particle diameter of the multilayer polymer particles (B11) in the obtained multilayer polymer particle latex was measured, the volume average particle diameter of the multilayer polymer particles (B11) was 49 nm.
  • aqueous calcium chloride solution was added to the obtained multilayer polymer particle latex to coagulate the multilayer polymer particles to obtain a coagulated product of the multilayer polymer particles.
  • a solid content of crumb-shaped multilayer polymer particles (B11) was obtained.
  • the glass transition temperature of the obtained multilayer polymer particles (B11) was measured, it was found that the multilayer polymer particles (B11) include a layer having a glass transition temperature of 5 ° C. as a layer of the polymer (Y11). Do you get it.
  • the total amount of styrene and 1,3-butadiene used in Comparative Production Example A1 was 20.00 parts by weight of styrene and 80.00 parts by weight of 1,3-butadiene.
  • a single-layer polymer particle latex in which the single-layer polymer particles (R1) were dispersed in water was obtained.
  • the single-layer polymer particles (R1) can be said to be polymer particles composed of only the layer of the polymer (X).
  • the volume average particle diameter of the single layer polymer particles (R1) in the obtained single layer polymer particle latex was measured, the volume average particle diameter of the single layer polymer particles (R1) was 77 nm.
  • Examples A1 to A11 and Comparative Examples A1 to A5 Production of Rubber Compositions and Molded Articles for Tires The following materials were used in Examples A1 to A11 and Comparative Examples A1 to A5.
  • SBR JSR
  • BR butadiene rubber
  • a multilayer polymer was used. Neither the particles nor the monolayer polymer particles were used.
  • Example A and Comparative Example A the type and composition of the multilayer polymer particles or the single-layer polymer particles, and the blending amount of the multilayer polymer particles or the single-layer polymer particles with respect to 100 parts by weight of the diene rubber (A) are as follows. , As shown in Tables 1-3.
  • Silica Silica AQ (manufactured by Tosoh Silica) 60 parts by weight Plasticizer (process oil): VivaTec500 (manufactured by H & R) 25 parts by weight Silane coupling agent: KBE-846 (manufactured by Shin-Etsu Silicones) 4.8 parts by weight carbon black : Asahi # 78 (Asahi Carbon Co., Ltd.) 5 parts by weight
  • Zinc oxide 2 types of zinc oxide (Sakai Chemical Co., Ltd.) 3 parts by weight Stearic acid: Stearic acid (Nippon Seika Co., Ltd.) 1 part by weight
  • Antioxidant Nocrack 6C (Ouchi Shinko Chemical Co., Ltd.) 2 parts by weight vulcanizing agent: 325 mesh powder sulfur (Hosoi Chemical Industry Co., Ltd.) 1.4 parts by weight Vulcanization accelerator (1): Noxeller NS (Ouchi Shinko Chemical Co., Ltd.) )
  • the temperature inside the Labo Plastomill increased due to shear heat generation. After the temperature in the Labo Plastomill reached 140 ° C. due to the temperature rise, kneading was continued for another 5 minutes. Thereafter, the kneading was terminated, and the kneaded material was discharged. Next, a vulcanizing agent and a vulcanization accelerator were added to the kneaded material, and kneading of the kneaded material was started at 80 rpm using a Labo Plastomill set at 30 ° C. After the start of kneading, the temperature inside the Labo Plastomill increased due to shear heat generation. The kneading was terminated when the temperature in the Labo Plastomill reached 90 ° C. due to the temperature rise. The kneaded material was discharged to obtain a rubber composition for a tire.
  • the obtained rubber composition for tires was compression-molded at 160 ° C. for 30 minutes, and the rubber composition was crosslinked to produce a sheet having a thickness of 2 mm as a molded article.
  • the glass transition temperature of the polymer particles was measured using the obtained sheet.
  • the wet grip property and the rolling resistance were evaluated using the obtained sheet. Specifically, the dynamic viscoelasticity at 0 ° C. or 60 ° C. was measured.
  • abrasion resistance was evaluated using the obtained sheet.
  • (i) the balance between wet grip properties and low rolling resistance, and (ii) the balance between wet grip properties and abrasion resistance were also evaluated. The results are shown in Tables 4 to 6.
  • Examples A1 to A11 show that, compared to Comparative Examples A1 to A5, (i) wet grip properties, (ii) balance of wet grip properties and wear resistance, and (iii) wet grip It can be seen that the balance between the performance and the low rolling resistance is excellent.
  • Example B Hereinafter, one embodiment of the present invention will be specifically described with reference to Example B, but the present invention is not limited to Example B.
  • Example B Method of measuring volume average particle diameter of polymer particles The method for measuring the volume average particle diameter of the polymer particles in Example B was the same as the method described in Example A (method for measuring the glass transition temperature of polymer particles).
  • Example B (Dynamic viscoelasticity) 8 mm x 6 mm x 2 mm test pieces were cut out from the sheets (molded rubber composition for tires) obtained in each of Example B and Comparative Example B. Using the test piece, the dynamic viscoelasticity in Example B was measured under the same conditions and method as those described in (Dynamic Viscoelasticity) in Example A. In Example B, 0 ° C. tan ⁇ and 60 ° C. tan ⁇ were measured. Table 7 shows the results.
  • the total amount of butyl acrylate, methyl methacrylate and allyl methacrylate used in Production Example B1 was 74.6 parts by weight of butyl acrylate, 24.9 parts by weight of methyl methacrylate and 0.5 part by weight of allyl methacrylate. there were.
  • sodium polyoxyethylene lauryl ether phosphate, ferrous (FeSO 4 ⁇ 7H 2 O) sulfate, ethylenediamine tetraacetic acid ⁇ 2Na salt, formaldehyde sulfoxylate sodium hexyl acid, and cumene hydroperoxide any opportune was added into a glass polymerization vessel.
  • a polymer particle latex in which the polymer particles (B1) were dispersed in water was obtained.
  • the volume average particle diameter of the polymer particles (B1) in the obtained polymer particle latex was measured, the volume average particle diameter of the polymer particles (B1) was 85 nm.
  • the solid content of crumb-shaped polymer particles (B3) was obtained by the same method as in Production Example B1.
  • the glass transition temperature of the obtained polymer particles (B3) was measured, the glass transition temperature of the polymer particles (B3) was 12 ° C.
  • the total amount of styrene and 1,3-butadiene used in Comparative Production Example B1 was 20.0 parts by weight of styrene and 80.0 parts by weight of 1,3-butadiene.
  • a polymer particle latex in which the polymer particles (R1) were dispersed in water was obtained.
  • the volume average particle diameter of the polymer particles (R1) in the obtained polymer particle latex was measured, the volume average particle diameter of the polymer particles (R1) was 77 nm.
  • Example B1 to B4 and Comparative Examples B1 and B2 Production of Rubber Compositions and Molded Articles for Tires The following materials were used in Examples B1 to B4 and Comparative Examples B1 and B2.
  • ⁇ Diene rubber (A)> A substance having the same composition as the diene rubber (A) used in Example A was used.
  • the solid content of the crumb-shaped polymer particles produced in each of Production Example B or Comparative Production Example B1 was 10 parts by weight or 20 parts by weight, or the polymer particle powder was 10 parts by weight. Not used.
  • Example B the type and composition of the polymer particles, and the blending amount of the polymer particles with respect to 100 parts by weight of the diene rubber (A) are as shown in Table 7.
  • Example A ⁇ Other additives> Each component used in Example A was used in the same amount as in Example A.
  • the obtained rubber composition for tires was compression-molded at 160 ° C. for 30 minutes, and the rubber composition was crosslinked to produce a sheet having a thickness of 2 mm as a molded article.
  • the glass transition temperature of the polymer particles was measured using the obtained sheet.
  • the wet grip property and the rolling resistance were evaluated using the obtained sheet. Specifically, the dynamic viscoelasticity at 0 ° C. or 60 ° C. was measured. From the results obtained, the balance between wet grip performance and low rolling resistance was also evaluated. Table 7 shows the results.
  • Examples B1 to B4 are superior to (i) wet grip properties and (ii) a balance between wet grip properties and low rolling resistance, as compared with Comparative Examples B1 and B2. I understand.
  • a novel rubber composition for a tire capable of providing a molded article excellent in (i) wet grip properties and (ii) a balance between wet grip properties and wear resistance
  • a tire produced using the rubber composition for a tire and a molded article can be provided.
  • for a novel tire capable of providing a molded article excellent in (i) wet grip properties and (ii) balance between wet grip properties and low rolling resistance can be provided.
  • one embodiment of the present invention and another embodiment of the present invention include a tire, a cable covering agent, a hose, a transmission belt, a conveyor belt, a roll cover, a shoe body or sole, a sealing ring, and a vibration-isolating rubber. It can be suitably used for such purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れた成形体を提供し得るタイヤ用ゴム組成物を提供することを課題とする。ジエン系ゴム(A)と多層重合体粒子(B)とを含有し、多層重合体粒子(B)が、特定の構成を有する重合体(X)の層と重合体(Y)の層とを含む、タイヤ用ゴム組成物を提供することにより、前記課題を解決する。

Description

タイヤ用ゴム組成物、タイヤおよび成形体
 本発明は、タイヤ用ゴム組成物、タイヤおよび成形体に関する。
 環境負荷の低減や安全性の向上を目的に自動車分野の技術開発が進んでおり、タイヤに関しても、低燃費を達成するために転がり抵抗の低減や、耐摩耗性の向上が望まれている。
 タイヤのトレッドを構成するゴム材料としては、現在、合成ゴムであるスチレン・ブタジエンゴム(SBR)に補強材としてカーボンブラックを配合したゴム組成物が主流である。これに対し、低燃費性を有するエコタイヤにおいては、カーボンブラックに代わる補強材としてシリカを配合したゴム組成物が使用されている。しかし、シリカは親水性無機材料であるために、ゴム材料との親和性が低く、ゴム中での分散性が低いという問題がある。シリカの分散性を向上させるために、シリカをシランカップリング剤と併用することが行なわれている。
 一方で、架橋型ポリマーに対する補強材として有機系の材料を用いる試みも行なわれている。特許文献1および2では、ゴムポリマーに、プレ-架橋型ポリマー粒子を添加して得られるゴム組成物が開示されている。プレ-架橋型ポリマー粒子は、(i)アクリレートモノマー、アクリロニトリルモノマーおよびハロゲン化ビニルモノマーからなる群から選択される少なくとも一つのモノマーに由来する繰り返し単位を有し、かつ、(ii)30℃~200℃の範囲内のガラス転移温度を有している。
米国特許第7,347,237号明細書 米国特許第7,071,246号明細書
 しかしながら、上述のような従来技術は(i)ウェットグリップ性、並びに(ii)ウェットグリップ性および耐摩耗性のバランスの観点からは十分なものでなく、さらなる改善の余地があった。
 本発明の一実施形態は、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物、および当該タイヤ用ゴム組成物を用いて作製したタイヤ、並びに成形体を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討した結果、ジエン系ゴムに加えて、特定の組成を有する重合体粒子を特定量含むタイヤ用ゴム組成物とすることにより、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物を提供できることを見出し、本発明の一実施形態を完成するに至った。
 すなわち、本発明の一実施形態に係るタイヤ用ゴム組成物は、ジエン系ゴム(A)100重量部と多層重合体粒子(B)0.1重量部~50重量部とを含有し、前記多層重合体粒子(B)は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体(xa)30重量%~100重量%、および前記単量体(xa)と共重合可能な単量体(xb)0重量%~70重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)60重量%~100重量%、ラジカル重合性反応基を2以上有する単量体(yb)0重量%~30重量%、並びに、前記単量体(ya)および前記単量体(yb)と共重合可能な単量体(yc)0重量%~40重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記多層重合体粒子(B)は、ガラス転移温度が-40℃以上、30℃未満である層を少なくとも一層含む。
 また、本発明の別の一実施形態に係るタイヤ用ゴム組成物は、ジエン系ゴム(A)100重量部と重合体粒子(B)0.1重量部~50重量部とを含有し、前記重合体粒子(B)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(a)50~99.9重量%、ラジカル重合性反応基を2以上有する単量体(b)0.1~50重量%、並びに、前記単量体(a)および前記単量体(b)と共重合可能な単量体(c)0~40重量%の合計100重量%からなる組成物を重合させてなる共重合体であり、前記重合体粒子(B)のガラス転移温度は-40℃以上、30℃未満である。
 また、本発明の一実施形態に係る成形体は、多層重合体粒子を含む成形体であり、前記多層重合体粒子は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体を含む組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体であり、以下を満たす:0℃tanδ/値Z≧1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)の値であり、かつ、前記多層重合体粒子を含まない成形体の0℃tanδを100としたときの値であり、また、前記値Zは、前記成形体についてJIS K-6264-2のB法に準じて測定された、摩耗量の値であり、かつ、前記多層重合体粒子を含まない成形体の摩耗量を100としたときの値である。
 また、本発明の別の一実施形態に係る成形体は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体からなる重合体粒子を含む成形体であり、以下を満たす:0℃tanδ/60℃tanδ>1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)の値であり、かつ、前記重合体粒子を含まない成形体の、0℃tanδおよび60℃tanδをともに100としたときの値である。
 本発明の一実施形態によれば、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物、および当該タイヤ用ゴム組成物を用いて作製したタイヤ、並びに成形体を提供できる。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。
 本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。本明細書において、「重量」は「質量」と同義であり、用語「重量部」および「重量%」は、用語「質量部」および「質量%」と相互置換可能である。本明細書において、「重合体」は「単独重合体」および「共重合体」の両方を含むものである。
 [実施形態1]
 〔タイヤ用ゴム組成物1〕
 本発明の一実施形態に係るタイヤ用ゴム組成物は、ジエン系ゴム(A)100重量部と多層重合体粒子(B)0.1重量部~50重量部とを含有し、前記多層重合体粒子(B)は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体(xa)30重量%~100重量%、および前記単量体(xa)と共重合可能な単量体(xb)0重量%~70重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)60重量%~100重量%、ラジカル重合性反応基を2以上有する単量体(yb)0重量%~30重量%、並びに、前記単量体(ya)および前記単量体(yb)と共重合可能な単量体(yc)0重量%~40重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記多層重合体粒子(B)は、ガラス転移温度が-40℃以上、30℃未満である層を少なくとも一層含む。
 本明細書中では、「本発明の一実施形態に係るタイヤ用ゴム組成物」を、単に「タイヤ用ゴム組成物1」と称する場合もある。すなわち、用語「タイヤ用ゴム組成物1」は、本発明におけるタイヤ用ゴム組成物の一実施形態(実施形態1)を意図する。
 タイヤ用ゴム組成物1は、前記構成を有することにより、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れた成形体を提供できる。より具体的には、本発明の一実施形態に係るタイヤ用ゴム組成物1は、以下の(i)および(ii)を満たす、成形体を提供することができる:(i)0℃tanδ>100、および(ii)0℃tanδ/値Z≧1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)の値であり、かつ、前記多層重合体粒子(B)を含まない成形体の、0℃tanδを100としたときの値であり、また、前記値Zは、前記成形体についてJIS K-6264-2のB法に準じて測定された、摩耗量の値であり、かつ、前記多層重合体粒子を含まない成形体の摩耗量を100としたときの値である。なお、多層重合体粒子(B)を含まない成形体とは、多層重合体粒子(B)のみを含まない成形体を意味する。換言すれば、多層重合体粒子(B)を含む成形体は、多層重合体粒子(B)を含まないこと以外は全て同じ組成(多層重合体粒子(B)以外の成分の種類および量)を有する成形体と比較したとき、上記(i)および(ii)を満たすものである。
 また、タイヤ用ゴム組成物1は、多層重合体粒子(B)を含むことにより、ジエン系ゴム(A)の反発弾性を改良できる。その結果、タイヤ用ゴム組成物1は、低転がり抵抗性に優れた成形体を提供できる。また、タイヤ用ゴム組成物1は多層重合体粒子(B)を含むことにより、ジエン系ゴム(A)の耐摩耗性を向上させることができる。その結果、タイヤ用ゴム組成物1は、耐摩耗性に優れた成形体を提供できる。さらに、タイヤ用ゴム組成物1は多層重合体粒子(B)を含むことにより、ウェットグリップ性および低転がり抵抗性のバランスに優れた成形体を提供することもできる。
 また、タイヤ用ゴム組成物1における、多層重合体粒子(B)の含有量(配合量)が、ジエン系ゴム(A)100重量部に対して、(i)0.1重量部以上であることにより、タイヤ用ゴム組成物を用いた成形体に対する、多層重合体粒子(B)による低転がり抵抗性、耐摩耗性およびウェットグリップ性の改良効果が良好に発揮され、(ii)50重量部以下であることにより、タイヤ用ゴム組成物中での多層重合体粒子(B)の分散性が向上するものである。多層重合体粒子(B)の前記配合量の下限値は、1重量部以上がより好ましく、3重量部以上がさらに好ましく、5重量部以上が特に好ましい。多層重合体粒子(B)の前記配合量の上限値は、40重量部以下がより好ましく、30重量部以下がさらに好ましく、20重量部以下が特に好ましい。
 (ジエン系ゴム(A))
 タイヤ用ゴム組成物1に用いられるジエン系ゴム(A)は、原料の単量体として、少なくとも1種類、共役ジエン単量体が使用され、主鎖に架橋点となる二重結合が導入されているゴム成分である。ジエン系ゴムとしては、例えば、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合ゴム(SBR)、スチレン-イソプレン共重合ゴム(SIR)、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、エチレン-プロピレン-ジエン共重合ゴム(EPDM)、ブチルゴム(IIR)、ハロゲン化ブチルゴムなどが挙げられるが、これらに限定されない。これらジエン系ゴムのうち1種類のみを用いてもよいし、2種以上を併用してもよい。これらジエン系ゴムのなかでも、IR、BR、SBRが好ましく、BR、SBRがより好ましい。また、これらジエン系ゴムのなかでも、グリップ性および耐摩耗性がバランスよく得られるという理由からNR、BR、SBRを使用することが好ましい。特に、より優れたグリップ性が得られ、かつ低燃費性とウェットグリップ性能とがバランス良く得られるという理由から、SBRが好ましい。
 ジエン系ゴム(A)は、シリカとの相互作用を有する変性ジエン系ゴムを含むことが好ましい。変性ジエン系ゴムとしては、例えば、(a)上述したジエン系ゴムの少なくとも一方の末端を、シリカと相互作用する官能基を有する化合物(変性剤)で変性した末端変性ジエン系ゴム、(b)上述したジエン系ゴムの主鎖に前記官能基を有する主鎖変性ジエン系ゴム、(c)上述したジエン系ゴムの少なくとも一方の末端および主鎖に前記官能基を有する主鎖末端変性ジエン系ゴム(例えば、主鎖に前記官能基を有し、少なくとも一方の末端を前記変性剤で変性された主鎖末端変性ジエン系ゴム)、並びに(d)上述したジエン系ゴムを、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)して、水酸基および/またはエポキシ基を導入した末端変性ジエン系ゴム、などが挙げられる。ジエン系ゴム(A)が変性ジエン系ゴムを含む場合、低燃費性、ウェットグリップ性能、および耐摩耗性が良好な成形体を提供し得るタイヤ用ゴム組成物を得ることができる。なお、上述した変性ジエン系ゴムは、1種類のみを用いてもよいし、2種以上を併用してもよい。
 前記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基などが挙げられる。なお、これらの官能基は、置換基を有していてもよい。これらの官能基のなかでも、低燃費性、およびウェットグリップ性能の向上効果が特に高いという理由から、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)、水酸基、およびエポキシ基が好ましい。
 ジエン系ゴム(A)が変性ジエン系ゴムを含む場合、ジエン系ゴム(A)100重量%中の変性ジエン系ゴムの含有量は、好ましくは40重量%以上、より好ましくは50重量%以上、更に好ましくは60重量%以上、特に好ましくは70重量%以上である。変性ジエン系ゴムの前記含有量が40重量%以上である場合、所望のウェットグリップ性能を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。変性ジエン系ゴムの前記含有量は、100重量%であってもよいが、好ましくは95重量%以下、より好ましくは90重量%以下、更に好ましくは85重量%以下である。変性ジエン系ゴムの前記含有量が95重量%以下である場合、所望の低燃費性および耐摩耗性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。
 前記NRとしては、特に限定されず、例えば、(a-1)SMR、SIR、STRなどのTSR、(a-2)RSS、などのタイヤ工業において一般的に用いられる天然ゴム、(b)脱タンパク質天然ゴム(DPNR)、(c)高純度天然ゴム(HPNR)、並びに(d)エポキシ化天然ゴム、水酸基化天然ゴム、水素添加天然ゴム、およびグラフト化天然ゴムなどの改質天然ゴムが挙げられる。これらNRの中でも、品質のばらつきが少ないこと、および入手が容易であることから、STR20、SMR20、およびRSS#3が好ましい。これらNRは1種類のみを用いてもよく、2種以上を併用してもよい。
 ジエン系ゴム(A)がNRを含む場合、ジエン系ゴム(A)100重量%中のNRの含有量は、10重量%以上が好ましく、15重量%以上がより好ましく、20重量%以上がさらに好ましい。前記構成によると、ドライグリップ性およびウェットグリップ性に優れる成形体を提供し得るタイヤ用ゴム組成物を得ることができる。NRの前記含有量は、60重量%以下が好ましく、50重量%以下がより好ましく、40重量%以下がさらに好ましい。前記構成によると、所望のグリップ力を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。また、NRの前記含有量が前記範囲内である場合、耐摩耗性により優れた成形体を提供し得るタイヤ用ゴム組成物を得ることができる。ジエン系ゴム(A)がNRを含まない場合、加硫前のタイヤ用ゴム組成物は粘着性が高くなりすぎないため、タイヤ用ゴム組成物の製造に使用する金型を汚染しないという利点を有する。
 前記IRとしては、特に限定されず、例えば、(a)四ハロゲン化チタン-トリアルキルアルミニウム系、ジエチルアルミニウムクロライド-コバルト系、トリアルキルアルミニウム-三弗化ホウ素-ニッケル系、ジエチルアルミニウムクロライド-ニッケル系等のチーグラー系触媒、(b)トリエチルアルミニウム-有機酸ネオジム-ルイス酸系等のランタノイド系希土類金属触媒、または(c)有機アルカリ金属化合物を用いて重合された、市販のイソプレンゴムを用いることができる。具体的には、JSR(株)製のIR2200、日本ゼオン(株)のIR2200など、タイヤ工業において一般的なものが挙げられる。これらIRは1種類のみを用いてもよく、2種以上を併用してもよい。これらの中でも、チーグラー系触媒を用いて重合されたイソプレンゴムが、シス体含量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含量のイソプレンゴムを用いてもよい。
 IRのビニル含量は、IR100重量%中、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下である。IRのビニル含量が50重量%以下である場合、所望の低転がり抵抗性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。IRのビニル含量の下限値は特に限定されない。なお、本明細書において、IR、並びに、後述するBR、希土類触媒使用ハイシスBR、変性BR、SBR、および変性SBRのビニル含量は、赤外吸収スペクトル分析法によって測定できる。
 IRのガラス転移温度は、-20℃以下であることが好ましく、-30℃以下であることがより好ましい。IRのガラス転移温度は、IRのビニル含量によって変化し得る。IR並びに後述するBRおよびSBRのガラス転移温度は、例えば、示差走査熱量計を用いて公知の方法に基づき測定できる。
 IRの重量平均分子量は9万~200万であることが好ましく、15万~150万であることがより好ましい。IRの重量平均分子量が前記範囲にある場合、得られるタイヤ用ゴム組成物は、製造時または加硫時の加工性が良好となり、かつ機械強度に優れる成形体を提供できる。
 IRは、多官能型変性剤を用いることにより、その一部が分岐構造または極性官能基を有していてもよい。前記多官能型変性剤としては、例えば四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、およびアミノ基含有アルコキシシランなどが挙げられる。
 BRとしては、特に限定されず、例えば、(a)四ハロゲン化チタン-トリアルキルアルミニウム系、ジエチルアルミニウムクロライド-コバルト系、トリアルキルアルミニウム-三弗化ホウ素-ニッケル系、ジエチルアルミニウムクロライド-ニッケル系等のチーグラー系触媒、(b)トリエチルアルミニウム-有機酸ネオジム-ルイス酸系等のランタノイド系希土類金属触媒、または(c)有機アルカリ金属化合物を用いて重合された、市販のブタジエンゴムを用いることができる。また、触媒使用のハイシスBR、1,2-シンジオタクチックポリブタジエン結晶を含むブタジエンゴム(SPB含有BR)、変性ブタジエンゴム(変性BR)などが挙げられる。具体的には、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150Bなどの高シス体含有量(例えば、シス体含量90質量%以上)のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBRなどが挙げられる。
 また、BRは、前記多官能型変性剤を用いることにより、その一部が分岐構造または極性官能基を有していてもよい。
 BRの重量平均分子量(Mw)は9万~200万であることが好ましく、15万~150万であることがより好ましく、25万~80万であることがさらに好ましい。BRの重量平均分子量が前記範囲にある場合、得られるタイヤ用ゴム組成物は、製造時または加硫時の加工性が良好となり、かつ機械強度に優れる成形体を提供できる。
 BRのビニル含量は、BR100重量%中、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下である。BRのビニル含量が50重量%以下である場合、所望の低転がり抵抗性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。BRのビニル含量の下限は特に限定されない。またBRのガラス転移温度は、-40℃以下であることが好ましく、-50℃以下であることがより好ましい。BRのガラス転移温度は、BRのビニル含量によって変化し得る。
 BRは、シス体含有量の多い、高シス体含有量BR(ハイシスBRとも称する。)であることが好ましい。BRのシス体含量は、BR100重量%中、90重量%以上が好ましく、95重量%以上がより好ましい。前記構成によると、低燃費性および耐摩耗性に優れる成形体を提供し得るタイヤ用ゴム組成物を得ることができる。BRのシス体含量は、赤外吸収スペクトル分析法により測定できる。なお、本明細書において、BRに含まれるシス体とは、シス1,4結合を意味する。すなわち、高シス体含有量BRとは、BR100重量%中、シス1,4結合の含有量が90重量%以上のBRをいう。チーグラー系触媒により重合されたBRは、高シス体含有量BRとなり得、ランタノイド系希土類金属触媒により重合されたBRは、超高シス体含有量BRとなり得る。高シス体含有量BRとしては、希土類触媒を使用して製造された高シス体含有量BR(以下、希土類触媒使用ハイシスBRとも称する。)が好ましい。
 希土類触媒使用ハイシスBRは、希土類元素系触媒を用いて合成されたハイシス1,4-ポリブタジエンゴムである。当該ハイシスBRは、シス体含有量が高く、かつビニル含量が低いという特徴を有している。希土類触媒使用ハイシスBRとしては、タイヤ製造において一般的に使用されているものを使用することができる。
 前記希土類元素系触媒としては、公知のものが使用でき、例えば、ランタン系列希土類元素化合物、有機アルミニウム化合物、アルミノキサン、ハロゲン含有化合物、必要に応じてルイス塩基を含む触媒が挙げられる。これら希土類元素系触媒のなかでも、ランタン系列希土類元素化合物が好ましく、ネオジム(Nd)含有化合物を用いたNd系触媒が特に好ましい。
 前記ランタン系列希土類元素化合物としては、原子番号57~71の希土類金属のハロゲン化物、カルボン酸塩、アルコラート、チオアルコラート、アミド等が挙げられる。これらのなかでも、高シス含量、かつ低ビニル含量のBRが得られることから、前記Nd系触媒が好ましい。
 前記有機アルミニウム化合物としては、AlRabc(式中、Ra、Rb、Rcは、水素または炭素数1~8の炭化水素基を表し、これらは同一もしくは異なっていてもよい。)で表されるものを使用できる。前記アルミノキサンとしては、鎖状アルミノキサン、および環状アルミノキサンが挙げられる。
 前記ハロゲン含有化合物としては、(a)AlXRd3-k(式中、Xはハロゲン、Rは炭素数1~20のアルキル基、アリール基またはアラルキル基、kは1、1.5、2または3を表す。)で表されるハロゲン化アルミニウム、(b)MeSrCl、MeSrCl、MeSrHCl、MeSrClなどのストロンチウムハライド、(c)四塩化ケイ素、四塩化錫、四塩化チタンなどの金属ハロゲン化物が挙げられる。前記ルイス塩基は、ランタン系列希土類元素化合物を錯体化するのに用いられる。前記ルイス塩基としては、アセチルアセトン、ケトン、アルコールなどが好適に用いられる。
 前記希土類元素系触媒は、ブタジエンの重合のときに、有機溶媒(n-ヘキサン、シクロヘキサン、n-ヘプタン、トルエン、キシレン、ベンゼンなど)に溶解した状態で用いてもよく、または、シリカ、酸化マグネシウム、塩化マグネシウムなどの適当な担体上に担持させて用いてもよい。希土類元素系触媒を用いたブタジエンの重合方法としては、溶液重合または塊状重合のいずれでもよい。希土類元素系触媒を用いたブタジエンの重合において、好ましい重合温度は-30℃~150℃であり、重合圧力は他の条件に依存して任意に選択してもよい。
 希土類触媒使用ハイシスBRのムーニー粘度ML1+4(100℃)は35以上が好ましく、40以上がより好ましい。ハイシスBRの前記ムーニー粘度が35以上である場合、未加硫のタイヤ用ゴム組成物の粘度は低すぎないため、加硫後のタイヤ用ゴム組成物が適正な厚みを確保できるという利点を有する。ハイシスBRの前記ムーニー粘度は55以下が好ましく、50以下がより好ましい。ハイシスBRの前記ムーニー粘度が55以下である場合、未加硫のタイヤ用ゴム組成物が硬くなりすぎないため、タイヤ用ゴム組成物をスムースなエッジで容易に押出すことができる。なお、ムーニー粘度は、ISO289、JIS K6300に準じて測定される。
 希土類触媒使用ハイシスBRの重量平均分子量は、30万以上が好ましく、32万以上がより好ましい。また、前記ハイシスBRの重量平均分子量は150万以下が好ましく、130万以下がより好ましい。さらに、前記ハイシスBRの数平均分子量(Mn)は、10万以上が好ましく、15万以上がより好ましい。また、前記ハイシスBRの数平均分子量は、100万以下が好ましく、80万以下がより好ましい。前記ハイシスBRの重量平均分子量および数平均分子量が上述した下限値以上である場合、得られるタイヤ用ゴム組成物は発熱性および破断伸びに優れる。前記ハイシスBRの重量平均分子量および数平均分子量が上述した上限値以下である場合、得られるタイヤ用ゴム組成物は加工性に優れる。なお、本明細書において、IR、BR、希土類触媒使用ハイシスBR、並びに、後述する変性BRおよびSBRの前記重量平均分子量および/または数平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)を用い、標準ポリスチレンより換算した値である。
 希土類触媒使用ハイシスBRは、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.2以上が好ましく、1.5以上がより好ましい。ハイシスBRのMw/Mnが1.2以上である場合、得られるタイヤ用ゴム組成物の加工性が良好となる。ハイシスBRのMw/Mnは、5以下が好ましく、4以下がより好ましい。ハイシスBRのMw/Mnが5以下である場合、得られるタイヤ用ゴム組成物は発熱性に優れる。
 希土類触媒使用ハイシスBR中のシス体(シス1,4結合)含有量は、ハイシスBR100重量%中、90重量%以上であり、93重量%以上が好ましく、95重量%以上がより好ましい。前記構成によると、得られるタイヤ用ゴム組成物は破断伸びに優れ、耐摩耗性に優れる成形体を提供できる。
 希土類触媒使用ハイシスBRのビニル含量は、1.8重量%以下が好ましく、1.0重量%以下がより好ましく、0.5重量%以下がさらに好ましく、0.3重量%以下が特に好ましい。前記構成によると、得られるタイヤ用ゴム組成物は破断伸びに優れ、耐摩耗性に優れる成形体を提供できる。
 BRは、1,2-シンジオタクチックポリブタジエン結晶を含むブタジエンゴム(以下、SPB含有BRとも称する)であってもよい。SPB含有BRは、1,2-シンジオタクチックポリブタジエン結晶(SPB)を、単にBR中に分散させたものではなく、SPBとBRとが化学結合したうえで分散しているBRであることが好ましい。前記構成によると、耐亀裂成長性に優れる成形体を提供し得るタイヤ用ゴム組成物を得ることができる。
 SPBの融点は180℃以上が好ましく、190℃以上がより好ましい。前記構成によると、タイヤ用ゴム組成物の加硫中に、SPBの溶融による硬度低下が発生しないという利点を有する。また、SPBの融点は220℃以下が好ましく、210℃以下がより好ましい。前記構成によると、BRの分子量が大きくなりすぎないため、得られるタイヤ用ゴム組成物におけるジエン系ゴム(A)の分散性が良好となり、得られるタイヤ用ゴム組成物は押出し加工性が良好なものとなる。
 SPB含有BR中の沸騰n-ヘキサン不溶物の含有量は、2.5重量%以上が好ましく、8重量%以上がより好ましい。前記構成によると、得られるタイヤ用ゴム組成物は十分な硬さを有するものとなる。SPB含有BR中の沸騰n-ヘキサン不溶物の含有量は22重量%以下が好ましく、20重量%以下がより好ましく、18重量%以下がさらに好ましい。前記構成によると、BR自体の粘度が高くなりすぎないため、得られるタイヤ用ゴム組成物におけるジエン系ゴム(A)および充填剤の分散性が良好となる。ここで、沸騰n-ヘキサン不溶物とは、SPB含有BR中における1,2-シンジオタクチックポリブタジエンを示す。
 BRは、変性BRであってもよい。前記変性BRとしては、スズでカップリングされた末端変性BR、アルコキシシリル基および/またはアミノ基を有する末端変性BRが挙げられる。なかでも、リチウム開始剤により1,3-ブタジエンの重合をおこなったのち、スズ化合物を添加することにより得られ、さらに変性BR分子の末端がスズ-炭素結合で結合されている末端変性BRが好ましい。
 前記リチウム開始剤としては、アルキルリチウム、アリールリチウム、ビニルリチウム、有機スズリチウムおよび有機窒素リチウム化合物などのリチウム系化合物、並びにリチウム金属などがあげられる。前記リチウム開始剤を変性BRの開始剤とすることで、高ビニル含量、かつ低シス体含量の変性BRを作製できる。
 前記スズ化合物としては、四塩化スズ、ブチルスズトリクロライド、ジブチルスズジクロライド、ジオクチルスズジクロライド、トリブチルスズクロライド、トリフェニルスズクロライド、ジフェニルジブチルスズ、トリフェニルスズエトキシド、ジフェニルジメチルスズ、ジトリルスズクロライド、ジフェニルスズジオクタノエート、ジビニルジエチルスズ、テトラベンジルスズ、ジブチルスズジステアレート、テトラアリルスズ、p-トリブチルスズスチレンなどがあげられる。これらのスズ化合物は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 変性BR中のスズ原子の含有率は50ppm以上が好ましく、60ppm以上がより好ましい。前記構成によると、変性BR中のカーボンブラックの分散を促進する効果が大きくなり、かつtanδが増大しすぎないという利点を有する。変性BR中のスズ原子の含有率は3000ppm以下が好ましく、2500ppm以下がより好ましく、250ppm以下がさらに好ましい。前記構成によると、ジエン系ゴム(A)および多層重合体粒子(B)を含む混練物のまとまりが良好となり、エッジが適切に整う。その結果、得られるタイヤ用ゴム組成物は、押出し加工性が良好となる。
 変性BRの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.0以下が好ましく、1.5以下がより好ましい。前記構成によると、カーボンブラックの分散性が良好となり、tanδが増大しすぎないという利点を有する。
 変性BRのビニル含量は5重量%以上が好ましく、7重量%以上がより好ましい。前記構成によると、変性BRを重合(製造)することが容易となる。変性BRのビニル含量は50重量%以下が好ましく、20重量%以下がより好ましい。前記構成によると、タイヤ用ゴム組成物は発熱性が増加することなく、低転がり抵抗性に優れる成形体を提供できる。
 ジエン系ゴム(A)がBRを含む場合、ジエン系ゴム(A)100重量%中のBRの含有量は、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましい。前記構成によると、タイヤ用ゴム組成物は、所望の耐摩耗性および耐亀裂成長性を有する成形体を提供できる。BRの前記含有量は、80重量%以下が好ましく、70重量%以下がより好ましく、60重量%以下がさらに好ましく、50重量%以下がよりさらに好ましく、40重量%以下が特に好ましい。前記構成によると、タイヤ用ゴム組成物は、所望のグリップ性を有する成形体を提供できる。また、BRの前記含有量が前記範囲内である場合、タイヤ用ゴム組成物は、耐摩耗性により優れた成形体を提供できる。なお、ジエン系ゴム(A)が2種以上のBRを含む場合、ジエン系ゴム(A)に含まれるBRの合計量をジエン系ゴム(A)中のBRの含有量とする。
 前記SBRとしては、特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)などを使用できる。また、末端を変性したS-SBR(変性S-SBR)またはE-SBR(変性E-SBR)を使用することもできる。変性S-SBRおよび変性E-SBRとしては、例えば、アミノ基、エポキシ基、アルコキシ基などを有する有機ケイ素化合物で変性したものが挙げられる。
 SBRのスチレン含有量は、SBR100重量%中、0.1重量%以上が好ましく、5重量%以上がより好ましく、20重量%以上がさらに好ましく、25重量%以上が特に好ましい。前記構成によると、所望のグリップ性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。また、SBRの前記スチレン含有量は、70重量%以下が好ましく、60重量%以下がより好ましく、50重量%以下がさらに好ましい。前記構成によると、所望の耐摩耗性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。また、得られるタイヤ用ゴム組成物が提供し得る成形体は、硬度の温度依存性(具体的には23℃における硬度と100℃における硬度との差)が増大しすぎないため、当該成形体は、温度変化に対する性能変化が小さいという利点を有する。なお、本明細書において、SBR、および後述する変性SBRのスチレン含量は、H-NMR測定により算出される。
 SBRのビニル含量は、SBR100重量%中、0.1重量%以上が好ましい。SBRの前記ビニル含量は、60重量%以下が好ましく、55重量%以下がより好ましい。なお、本明細書において、SBR、および後述する変性SBRのビニル含量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定できる。
 SBRの重量平均分子量(Mw)は、10万~250万であることが好ましく、15万~200万であることがより好ましく、20万~150万であることがさらに好ましい。SBRの重量平均分子量が前記の範囲である場合、(a)得られるタイヤ用ゴム組成物の加工性、および(b)当該タイヤ用ゴム組成物が提供し得る成形体の機械強度、を両立することができる。
 SBRは、ガラス転移温度(Tg)が、-95~0℃であることが好ましく-95~-5℃であることがより好ましい。SBRのTgが前記範囲内である場合、得られるタイヤ用ゴム組成物の粘度を所望の範囲内に調整できるため、取り扱いが容易になる。
 以下、SBRの製造方法の一例を説明する。SBRは、スチレンとブタジエンとを共重合して得られる。SBRの製造方法について特に制限はなく、乳化重合法、溶液重合法、気相重合法、バルク重合法のいずれも用いることができ、乳化重合法、溶液重合法が好ましい。
 (i)乳化重合スチレンブタジエンゴム(E-SBR)
 E-SBRは、通常の乳化重合法により製造できる。当該製造方法は、例えば、所定量のスチレンおよびブタジエン単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する方法である。
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩又はロジン酸塩が用いられる。具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸などの脂肪酸のカリウム塩またはナトリウム塩が挙げられる。
 分散剤としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノールなどの水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば、過硫酸アンモニウムおよび過硫酸カリウムなどの過硫酸塩、有機過酸化物、過酸化水素などが挙げられる。
 得られるE-SBRの分子量を調整するため、連鎖移動剤を使用することもできる。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタンなどのメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマーなどが挙げられる。
 乳化重合の温度は、使用するラジカル重合開始剤の種類によって適宜選択できるが、通常、0~100℃が好ましく、0~60℃がより好ましい。重合様式は、連続重合、回分重合のいずれでもよい。重合反応は、重合停止剤の添加により停止できる。
 重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミンなどのアミン化合物;ヒドロキノンやベンゾキノンなどのキノン系化合物、亜硝酸ナトリウムなどが挙げられる。
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウムなどの塩を凝固剤とし、必要に応じて硝酸、硫酸などの酸を添加して凝固系のpHを所定の値に調整しながら重合体を凝固させた後、分散溶媒を分離することによって重合体をクラムとして回収できる。クラムを水洗、次いで脱水後、バンドドライヤーなどで乾燥することで、E-SBRが得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展ゴムとして回収してもよい。
 (ii)溶液重合スチレンブタジエンゴム(S-SBR)
 S-SBRは、通常の溶液重合法により製造できる。当該製造方法は、例えば、溶媒中でアニオン重合可能な活性金属を使用して、所望により極性化合物の存在下、スチレン及びブタジエンを重合する方法である。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属;ランタン、ネオジムなどのランタノイド系希土類金属などが挙げられる。
中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。更にアルカリ金属の中でも、有機アルカリ金属化合物がより好ましく用いられる。
 有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼンなどの多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレンなどが挙げられる。中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。有機アルカリ金属化合物の使用量は、要求されるS-SBRの分子量によって適宜決められる。
 有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミンなどの第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 例えば、ジブチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジエチルエーテルなどのエーテル化合物;ピリジン;テトラメチルエチレンジアミン、トリメチルアミンなどの3級アミン;カリウム-t-ブトキシドなどのアルカリ金属アルコキシド;ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物に対して好ましくは0.01~1000モル等量の範囲で使用される。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環式炭化水素;ベンゼン、トルエンなどの芳香族炭化水素などが挙げられる。これらの溶媒は通常、単量体濃度が1~50重量%となる範囲で用いることが好ましい。
 重合反応の温度は、通常、-80~150℃、好ましくは0~100℃、更に好ましくは30~90℃の範囲である。重合様式は、回分式あるいは連続式のいずれでもよい。また、スチレン及びブタジエンのランダム共重合性を向上させるため、重合系中のスチレン及びブタジエンの組成比が特定範囲になるように、反応液中にスチレン及びブタジエンを連続的あるいは断続的に供給することが好ましい。
 重合反応は、重合停止剤としてメタノール、イソプロパノールなどのアルコールを添加して、反応を停止できる。重合反応停止後の重合溶液は、直接乾燥やスチームストリッピングなどにより溶媒を分離して、目的のS-SBRを回収できる。なお、溶媒を除去する前に、予め重合溶液と伸展油とを混合し、油展ゴムとして回収してもよい。
 ジエン系ゴム(A)がSBRを含む場合、ジエン系ゴム(A)100重量%中のSBRの含有量は、20重量%以上が好ましく、30重量%以上がより好ましい。前記構成によると、所望のグリップ性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。SBRの前記含有量は、90重量%以下が好ましく、80重量%以下がより好ましい。前記構成によると、得られるタイヤ用ゴム組成物は、発熱性に優れるものとなる。また、前記構成によると、耐亀裂成長性に優れる成形体を提供し得るタイヤ用ゴム組成物を得ることができる。
 SBRは、官能基が導入された変性SBRであってもよい。変性SBRとしては、上述した変性S-SBRおよび変性E-SBRが挙げられる。変性SBRにおいて、官能基が導入される重合体の位置については重合末端であってもよく、ポリマー鎖の側鎖であってもよい。官能基としては、例えばアミノ基、アルコキシシリル基、水酸基、エポキシ基、カルボキシル基などが挙げられる。また、変性SBRとしては、特開2010-111753号公報に記載されている下記式(I)で表される化合物で変性されたSBRを好適に使用できる。具体的には、例えば、旭化成ケミカルズ(株)製のE15などを使用することができる。
Figure JPOXMLDOC01-appb-C000001
 前記式(I)中、R11、R12及びR13は、アルキル基、アルコキシ基(好ましくは炭素数1~8、より好ましくは炭素数1~4のアルコキシ基)、シリルオキシ基、アセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)またはこれらの誘導体を表し、これらは同一であってもよく、または異なっていてもよい。R14及びR15は、水素原子またはアルキル基(好ましくは炭素数1~4のアルキル基)を表しこれらは同一であってもよく、または異なっていてもよい。nは整数(好ましくは1~5、より好ましくは2~4、更に好ましくは3)を表す。
 R11、R12及びR13としては、少なくとも1つが炭素数1~4のアルコキシ基であることが好ましく、R14及びR15としては、水素原子、炭素数1~4のアルキル基であることが好ましい。前記構成によると、加工性を有するタイヤ用ゴム組成物を得ることができる。また、得られるタイヤ用ゴム組成物は、優れた耐摩耗性を有する成形体を提供できる。
 前記式(I)で表される化合物の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメチルメトキシシラン、3-アミノプロピルジメチルエトキシシラン、3-アミノプロピルメチルジメトキシシラン、2-ジメチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシランなどが挙げられる。
これらは、1種類のみを用いてもよいし、2種以上を併用してもよい。
 前記式(I)で表される化合物(変性剤)によるスチレンブタジエンゴムの変性方法としては、特公平6-53768号公報、特公平6-57767号公報、特表2003-514078号公報などに記載されている方法など、従来公知の手法を使用できる。例えば、スチレンブタジエンゴムと変性剤とを接触させることで変性でき、具体的には、アニオン重合によるスチレンブタジエンゴムの調製後、当該ゴム溶液中に変性剤を所定量添加し、スチレンブタジエンゴムの重合末端(活性末端)と変性剤とを反応させる方法などが挙げられる。
 前記変性SBRのスチレン含量は、変性SBR100重量%中、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは20重量%以上である。前記構成によると、優れたグリップ性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。変性SBRの前記スチレン含量は、好ましくは70重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下である。前記構成によると、所望の加工性を有するタイヤ用ゴム組成物を得ることができる。
 前記変性SBRのビニル含量は、変性SBR100重量%中、10重量%以上が好ましく、20重量%以上がより好ましく、30重量%以上がより好ましい。前記構成によると、優れたグリップ性を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。変性SBRの前記ビニル含量は、90重量%以下が好ましく、80重量%以下がより好ましく、70重量%以下がさらに好ましい。前記構成によると、所望の強度を有する成形体を提供し得るタイヤ用ゴム組成物を得ることができる。
 前記変性SBRは、ガラス転移温度(Tg)が-45℃以上であることが好ましく、
-40℃以上であることがより好ましく、-35℃以上であることがさらに好ましい。変性SBRのガラス転移温度は、10℃以下であることが好ましく、5℃以下であることがより好ましく、0℃以下であることがさらに好ましい。なお、本明細書において、変性SBRのガラス転移温度は、例えば、JIS K7121に従い、昇温速度10℃/分の条件で示差走査熱量測定(DSC)を行って測定することができる。
 変性SBRの製造方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネートなどのカップリング剤や、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドンなどの重合末端変性剤、または特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。
 前記ジエン系ゴム(A)は、ラジカル重合性反応基を2以上有する一種以上の単量体(aa)50~100重量%、および前記単量体(aa)と共重合可能な単量体(ab)0~50重量%の合計100重量%からなる組成物を重合させてなる重合体であることが好ましい。前記構成によると、架橋度と破断伸びとのバランスに優れるタイヤ用ゴム組成物が得られるという利点を有する。
 (単量体(aa))
 ラジカル重合性反応基を2以上有する一種以上の単量体(aa)を、本明細書中では、単に単量体(aa)とも称する。ジエン系ゴム(A)を形成するための組成物が単量体(aa)を含む場合、ジエン系ゴム(A)は単量体(aa)を重合させて得られる構成単位を含む。本明細書中では、単量体(aa)を重合させて得られる構成単位を、構成単位(aa)とも称する。
 単量体(aa)は、重合反応に関与する反応基であるラジカル重合性反応基を2以上有するため、多官能性単量体ともいえる。ラジカル重合性反応基は、好ましくは、炭素-炭素二重結合である。
 ジエン系ゴム(A)が構成単位(aa)を含む場合、(i)タイヤ用ゴム組成物は、低転がり抵抗性に優れる成形体、および/または、耐摩耗性に優れる成形体を提供できる、という利点を有する。これらの利点を得られる理由としては、特に限定されないが、以下のように推測される。しかし、本発明の一実施形態は、以下の理由(原理)に特に制限されるものではない。
 ジエン系ゴム(A)が構成単位(aa)を含むことにより、ジエン系ゴム(A)は、多層重合体粒子(B)との架橋反応に関与できる架橋点を有することになる。これにより、タイヤ用ゴム組成物を架橋反応させたときに、ジエン系ゴム(A)と多層重合体粒子(B)とが共有結合により一体化する。その結果、得られる成形体中で重合体同士の架橋度が増加し、成形体の反発弾性が改良され、成形体は低転がり抵抗性に優れるものとなる。また、単量体(aa)は重合反応に関与する反応基(すなわちラジカル重合性反応基)を2以上有するため、ジエン系ゴム(A)においても、重合体同士の架橋度を増加させることができる。その結果、構成単位(aa)を含むジエン系ゴム(A)を有するタイヤ用ゴム組成物は、耐摩耗性に優れた成形体を提供できる。
 また、一般的にラジカル重合は、単量体へのラジカル付加を伴って重合反応が進行するが、反応率が100%となることは無く、そのため、単量体(aa)を用いて生成されたジエン系ゴム(A)には二重結合が残存し、その結果、ジエン系ゴム(A)は二重結合を有することができる。当該二重結合を介して、ジエン系ゴム(A)は多層重合体粒子(B)と加硫反応によって共有結合を形成することができる。その結果、タイヤ用ゴム組成物から製造される成形体では反発弾性が改良され、タイヤ用ゴム組成物は、低転がり抵抗性に優れた成形体を提供できる。さらに、ジエン系ゴム(A)の架橋度の向上に伴い、ジエン系ゴム(A)の硬度も向上する。
 単量体(aa)としては、特に限定されないが、例えば、ジイソプロペニルベンゼン、ジビニルベンゼンなどの多価ビニル芳香族化合物;(メタ)アクリル酸ビニル、メタクリル酸アリルなどのα,β-エチレン性不飽和カルボン酸の不飽和エステル化合物;フタル酸ジアリル、トリメリット酸トリアリルなどの多価カルボン酸の不飽和エステル化合物;ジ(メタ)アクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタクリル酸1,3-ブチレングリコール(ジメタクリル酸1,3-ブチレンとも称する)などの多価アルコールの不飽和エステル化合物;シアヌル酸トリアリルなどのシアヌル酸の不飽和エステル化合物;イソシアヌル酸トリアリル(別名;トリアリルイソシアヌレート(TAIC))などのイソシアヌル酸の不飽和エステル化合物;1,2-ブタジエン、ジビニルエーテル、ジビニルスルフォン、N,N´-m-フェニレンマレイミドなどが挙げられる。これら化合物は、1種類のみを用いてもよいし、2種以上を併用してもよい。
 単量体(aa)としては、(i)ラジカル重合における反応性の観点から、多価ビニル芳香族化合物、α,β-エチレン性不飽和カルボン酸の不飽和エステル化合物、多価アルコールの不飽和エステル化合物、シアヌル酸の不飽和エステル化合物、およびイソシアヌル酸の不飽和エステル化合物が好ましく、(ii)ラジカル重合後の、炭素-炭素二重結合の残存量が多くなることから、トリアリルイソシアヌレートおよびメタクリル酸アリルが好ましい。
 単量体(aa)としては、共役ジエン単量体も使用できる。共役ジエン単量体とは、炭素-炭素二重結合を2つ有し、それら二重結合が1つの単結合によって隔てられ、共役したジエンを指す。
 共役ジエン単量体の具体例としては、イソプレン、クロロプレン、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。共役ジエン単量体は、1種類のみを用いてもよいし、2種以上を併用してもよい。
 ジエン系ゴム(A)を形成するための組成物における単量体(aa)の含有量は、当該組成物100重量%に対して、50~100重量%であることが好ましい。単量体(aa)の前記含有量が50重量%以上である場合、上述した、ジエン系ゴム(A)が構成単位(aa)を含むことによる利点を享受できる。単ジエン系ゴム(A)の製造において不都合が生じにくく、かつ、得られるタイヤ用ゴム組成物が加工性に優れるものとなることから、単量体(aa)の前記含有量の上限値は、99.9重量%以下であることがより好ましく、95重量%以下であることがさらに好ましく、90重量%以下であることが特に好ましい。
 (単量体(ab))
 ジエン系ゴム(A)は、単量体(aa)のみからなる組成物を重合させてなる単独合体であってもよい。ジエン系ゴム(A)は、また、単量体(aa)、および単量体(aa)と共重合可能な単量体(ab)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。単量体(aa)と共重合可能な単量体(ab)を、本明細書中では、単に単量体(ab)とも称する。ジエン系ゴム(A)を形成するための組成物が単量体(ab)を含む場合、ジエン系ゴム(A)は単量体(ab)を重合させて得られる構成単位を含む。
 単量体(ab)としては、単量体(aa)と共重合可能である限り、特に限定されず、任意の単量体を1種類のみ用いてもよいし、2種類以上併用してもよい。
 単量体(ab)は、芳香族モノアルケニル単量体を含むことが好ましい。芳香族モノアルケニル単量体を含む単量体(ab)を用いる場合、タイヤ用ゴム組成物におけるジエン系ゴム(A)と多層重合体粒子(B)との親和性を高めることができる。特に、多層重合体粒子(B)の重合体(X)の層が単量体(xb)として芳香族モノアルケニル単量体を含む場合には、ジエン系ゴム(A)の製造において芳香族モノアルケニル単量体の使用量を調節することにより、ジエン系ゴム(A)と多層重合体粒子(B)との親和性を高めることができる。その結果、タイヤ用ゴム組成物中での多層重合体粒子(B)の分散性が向上する。
 芳香族モノアルケニル単量体としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-t-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、p-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、p-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレンなどが挙げられる。芳香族モノアルケニル単量体は、1種類のみを用いてもよいし、2種以上を併用してもよい。芳香族モノアルケニル単量体としては、上述した単量体のうち、ラジカル重合における反応性およびコストの観点から、スチレンが好ましい。
 単量体(ab)は、前記単量体(ab)100重量%中、芳香族モノアルケニル単量体を30~100重量%含むことが好ましい。前記構成によると、タイヤ用ゴム組成物におけるジエン系ゴム(A)と多層重合体粒子(B)との親和性をより高めることができる。その結果、タイヤ用ゴム組成物中での多層重合体粒子(B)の分散性がより向上する。前記単量体(ab)100重量%中、芳香族モノアルケニル単量体の含有量の下限値は、60重量%以上がより好ましく、70重量%以上がさらに好ましく、85重量%以上が特に好ましい。
 ジエン系ゴム(A)を形成するための組成物における単量体(ab)の含有量は、当該組成物100重量%に対して、0~50重量%であることが好ましい。単量体(ab)の前記含有量が、40重量%以下である場合、タイヤ用ゴム組成物におけるジエン系ゴム(A)と多層重合体粒子(B)との親和性が十分なものとなる。その結果、タイヤ用ゴム組成物中での多層重合体粒子(B)の分散性が向上する。単量体(ab)の前記含有量の下限値は、5重量%以上が好ましく、8重量%以上がより好ましく、10重量%以上がさらに好ましく、15重量%以上が特に好ましい。単量体(ab)の前記含有量の上限値は、35重量%以下が好ましく、30重量%以下がより好ましく、25重量%以下がさらに好ましく、20重量%以下が特に好ましい。
 単量体(aa)からなる組成物を重合させてなる単独重合体、または、単量体(aa)および単量体(aa)と共重合可能な単量体(ab)の合計100重量%からなる組成物を重合させてなる共重合体であるような、ジエン系ゴム(A)としては、IR、BR、SBR、SIR、SIBR、NBR、IIR、CR、およびEPDM等が挙げられる。これらの中でも、(a)加工性に優れるタイヤ用ゴム組成物が得られ、かつ、(b)得られたタイヤ用ゴム組成物が、弾性、強度、および耐摩耗性に優れる成形体を提供できることから、IR、BR、およびSBRが好ましい。
 ジエン系ゴム(A)は、末端に官能基を有するブタジエンゴム、および末端に官能基を有するスチレン-ブタジエン共重合ゴムからなる群から選択される少なくとも1種であることがさらに好ましい。前記構成によると、(i)タイヤ用ゴム組成物にシリカを配合した場合、タイヤ用ゴム組成物中でのシリカの分散性が向上し、かつ(ii)タイヤ用ゴム組成物は、低転がり抵抗性に優れた成形体を提供できる。
 タイヤ用ゴム組成物1は、ジエン系ゴム(A)以外のゴム成分(例えば、アクリルゴム、フッ素ゴム、シリコンゴム、エチレン-プロピレンゴム、ウレタンゴムなど)をさらに含有してもよい。また、タイヤ用ゴム組成物1は、エピクロロヒドリン、エチレンオキサイド、プロピレンオキサイドおよびアリルグリシジルエーテルからなる群より選ばれる少なくとも1つの単量体の単独重合体、または、前述した群より選ばれる少なくとも2つの単量体の共重合体、もしくは前述した群より選ばれる少なくとも1つの単量体と前述したゴム成分との共重合体、などをさらに含有してもよい。
 ジエン系ゴム(A)の製造方法としては特に限定されず、公知の方法を用いることができる。また、ジエン系ゴム(A)として、市販のジエン系ゴム(A)を用いてもよい。
 (多層重合体粒子(B))
 多層重合体粒子(B)における重合体(X)の層と重合体(Y)の層との含有量は特に限定されない。多層重合体粒子(B)における重合体(Y)の層の含有量は、重合体(X)の層100重量部に対して、100重量部~10,000重量部であることが好ましい。前記構成によると、得られるタイヤ用ゴム組成物1がウェットグリップ性に優れる成形体を提供できるという利点を有する。
 (重合体(X))
 (単量体(xa))
 ラジカル重合性反応基を2以上有する一種以上の単量体(xa)を、本明細書中では、単に単量体(xa)とも称する。重合体(X)を形成するための組成物が単量体(xa)を含むため、重合体(X)は単量体(xa)を重合させて得られる構成単位を含む。本明細書中では、単量体(xa)を重合させて得られる構成単位を、構成単位(xa)とも称する。
 単量体(xa)としては、(ジエン系ゴム(A))の項の(単量体(aa))と同様の単量体を使用することができる。単量体(xa)の態様としては、(単量体(aa))の項に記載の態様を適宜援用することができる。
 重合体(X)が構成単位(xa)を含むことにより、(i)タイヤ用ゴム組成物1は、低転がり抵抗性に優れる成形体、および/または、耐摩耗性に優れる成形体を提供でき、かつ(ii)多層重合体粒子(B)を粉体として取得することが容易となる、という利点を有する。これらの利点を得られる理由としては、特に限定されないが、以下のように推測される。しかし、本発明の一実施形態は、以下の理由(原理)に特に制限されるものではない。
 重合体(X)が構成単位(xa)を含むことにより、重合体(X)は、ジエン系ゴム(A)との架橋反応に関与できる架橋点を有することになる。そのため、多層重合体粒子(B)の最外層の少なくとも一部が重合体(X)の層である場合、タイヤ用ゴム組成物1を架橋反応させたときに、ジエン系ゴム(A)と多層重合体粒子(B)とが共有結合により一体化する。その結果、得られる成形体中で重合体同士の架橋度が増加し、成形体の反発弾性が改良され、成形体は低転がり抵抗性に優れるものとなる。また、単量体(xa)は重合反応に関与する反応基を2以上有するため、重合体(X)においても、重合体同士の架橋度を増加させることができる。その結果、多層重合体粒子(B)を有するタイヤ用ゴム組成物1は、耐摩耗性に優れた成形体を提供できる。
 また、単量体(xa)を用いて生成された重合体(X)には二重結合が残存する。その結果、多層重合体粒子(B)の最外層の少なくとも一部が重合体(X)の層である場合、多層重合体粒子(B)の最表面は二重結合を有することができる。当該二重結合を介して、多層重合体粒子(B)はジエン系ゴム(A)と加硫反応によって共有結合を形成することができる。その結果、タイヤ用ゴム組成物1から製造される成形体では反発弾性が改良され、タイヤ用ゴム組成物1は、低転がり抵抗性に優れた成形体を提供できる。
 さらに、重合体(X)の架橋度の向上に伴い、多層重合体粒子(B)の硬度も向上する。それ故に、多層重合体粒子(B)の凝集を制御しやすくなり、その結果、多層重合体粒子(B)の粉体を容易に形成することができる。換言すれば、多層重合体粒子(B)を粉体として取得することが容易となる。
 重合体(X)を形成するための組成物における単量体(xa)の含有量は、当該組成物100重量%に対して、30~100重量%であることが好ましい。単量体(xa)の前記含有量が30重量%以上である場合、上述した、重合体(X)が構成単位(xa)を含むことによる利点を享受できる。多層重合体粒子(B)の製造において不都合が生じにくく、かつ、得られるタイヤ用ゴム組成物1が加工性に優れるものとなることから、単量体(xa)の前記含有量の上限値は、99.9重量%以下であることがより好ましく、95重量%以下であることがさらに好ましく、90重量%以下であることが特に好ましい。
 得られるタイヤ用ゴム組成物1の成形体が耐摩耗性に優れることから、重合体(X)を形成するための組成物における単量体(xa)の含有量は、当該組成物100重量%に対して、40~100重量%であることがより好ましく、50~100重量%であることがより好ましく、60~100重量%であることがより好ましく、70~100重量%であることがより好ましく、80~100重量%であることがさらに好ましく、100重量%であることが特に好ましい。
 単量体(xa)は、メタクリル酸アリル、フタル酸ジアリルおよびイソシアヌル酸トリアリルからなる群から選択される1種以上の単量体を含むことが好ましく、上述した群から選択される1種以上の単量体であることが好ましい。当該構成によると、以下の(a)~(d)などの利点を有する:(a)ジエン系ゴム(A)に対する多層重合体粒子(B)の分散性が良好となる;(b)多層重合体粒子(B)の製造、具体的には得られた多層重合体粒子(B)の水性ラテックスからの回収が良好となる;(c)重合体(X)にラジカル反応性を有するアリル基をさらに導入することができる;並びに(d)多層重合体粒子(B)において、重合体(X)からなる層および重合体(Y)からなる層の各々を、より独立性をもって形成させることができる。多層重合体粒子(B)のハンドリングが良好となる点から、単量体(xa)は、(メタ)アクリル系単量体を選択することが好ましい。
 ジエン系ゴム(A)と多層重合体粒子(B)との親和性が良好となることから、単量体(xa)は、1,2-ブタジエン、1,3-ブタジエン、イソプレン、クロロプレン、およびジビニルベンゼンからなる群から選択される1種以上の単量体を含むことが好ましく、上述した群から選択される1種以上の単量体であることが好ましい。また、単量体(xa)が上述した群から選択される選択される1種以上の単量体を含む場合、重合体(X)に、ラジカル反応性を有するアリル基および/または反応性の高いビニル基を、さらに導入することができる、という利点も有する。
 (単量体(xb))
 重合体(X)は、単量体(xa)のみからなる組成物を重合させてなる単独重合体であってもよい。重合体(X)は、また、単量体(xa)、および単量体(xa)と共重合可能な単量体(xb)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。単量体(xa)と共重合可能な単量体(xb)を、本明細書中では、単に単量体(xb)とも称する。重合体(X)を形成するための組成物が単量体(xb)を含む場合、重合体(X)は単量体(xb)を重合させて得られる構成単位を含む。
 単量体(xb)としては、(ジエン系ゴム(A))の項の(単量体(ab))と同様の単量体を使用することができる。単量体(xb)の態様としては、(単量体(ab))の項に記載の態様を適宜援用することができる。
 重合体(X)を形成するための組成物における単量体(xb)の含有量は、当該組成物100重量%に対して、0~70重量%であることが好ましい。単量体(xb)の前記含有量が、70重量%以下である場合、タイヤ用ゴム組成物1におけるジエン系ゴム(A)と多層重合体粒子(B)との親和性が十分なものとなる。その結果、タイヤ用ゴム組成物1中での多層重合体粒子(B)の分散性が向上する。単量体(xb)の前記含有量の下限値は、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましく、20重量%以上が特に好ましい。単量体(xb)の前記含有量の上限値は、60重量%以下が好ましく、50重量%以下がより好ましく、40重量%以下がさらに好ましく、35重量%以下が特に好ましい。
 重合体(X)の好ましい態様としては、以下のような態様が挙げられる:(態様x1)単量体(xa)としてブタジエンおよび単量体(xb)としてスチレン、の合計100重量%からなる組成物を重合させてなる重合体;(態様x2)単量体(xa)としてブタジエン50重量%および単量体(xb)としてスチレン50重量%、の合計100重量%からなる組成物を重合させてなる重合体;(態様x3)単量体(xa)としてメタクリル酸アリルおよび単量体(xb)としてアクリル酸ブチル、の合計100重量%からなる組成物を重合させてなる重合体。
 重合体(X)の好ましい態様としては、以下のような態様も挙げられる:(態様x4)単量体(xa)としてブタジエン100重量%からなる組成物を重合させてなる重合体;(態様x5)単量体(xa)としてメタクリル酸アリル100重量%からなる組成物を重合させてなる重合体。
 上述したように、態様x1および態様x3では、ジエン系ゴム(A)と多層重合体粒子(B)との親和性が良好となるという利点を有する。また、態様x2および態様x4では、ジエン系ゴム(A)に対する多層重合体粒子(B)の分散性が良好となり、かつ、多層重合体粒子(B)の製造、具体的には得られた多層重合体粒子(B)の水性ラテックスからの回収が良好となる、という利点を有する。また、態様x3および態様x4では、得られるタイヤ用ゴム組成物1の成形体が耐摩耗性により優れるという利点を有する。
 (重合体(Y))
 (単量体(ya))
 アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)を、本明細書中では、単に単量体(ya)とも称する。重合体(Y)を形成するための組成物が単量体(ya)を含むため、重合体(Y)は単量体(ya)を重合させて得られる構成単位を含む。本明細書中では、単量体(ya)を重合させて得られる構成単位を、構成単位(ya)とも称する。重合体(Y)が構成単位(ya)を含むことにより、タイヤ用ゴム組成物1は、ウェットグリップ性に優れた成形体を提供できる。以下、本明細書において、アクリルおよび/またはメタクリルを「(メタ)アクリル」と記載する。単量体(ya)は、(メタ)アクリル酸エステルから選ばれる1種以上の単量体ともいえる。
 ここで、ラジカル重合性反応基を2以上有する単量体(例えば、ブタジエン)に由来する構成単位を主成分とする重合体を重合体(A)とする。また、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体からなる構成単位を主成分とする重合体を重合体(B)とする。重合体の「主成分」とは、重合体の構成単位100重量%中、50重量%以上を占める構成単位(成分)を意図する。本発明の鋭意検討過程において、本発明者は、重合体(A)と重合体(B)とが同じTgを有する場合、重合体(A)および重合体(B)について、JIS K-6394に準じて測定して得られたtanδピークを比較したとき、重合体(A)と比較して重合体(B)は、tanδの値が総じて高くなるという驚くべき知見を独自に得た。かかる知見に基づき、タイヤ用ゴム組成物1は、重合体(Y)がアクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)を60重量%以上含むものである。タイヤ用ゴム組成物1における重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体からなる構成単位を主成分とする重合体であるともいえる。
 前記(メタ)アクリル酸エステルとしては、例えば、(i)(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニルなどの炭素数が1~22のアルキル基を有する(メタ)アクリル酸アルキルエステル類、(ii)(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチルなどの炭素数が1~22のアルキル基を有し、かつヒドロキシル基を有する(メタ)アクリル酸エステル類、(iii)(メタ)アクリル酸グリシジルなどのエポキシ基を有する(メタ)アクリル酸エステル類、(iv)(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチルなどの炭素数が1~22のアルキル基を有し、かつアルコキシル基を有する(メタ)アクリル酸エステル類、などが挙げられる。前記(メタ)アクリル酸エステル類のアルキル基の炭素数については必ずしも制限されるものではないが、重合性が劣る虞がないことから、アルキル基の炭素数が22以下の(メタ)アクリル酸エステル類が好適に使用されうる。上述した(メタ)アクリル酸エステルの中でも、重合性が優れ、かつ安価で汎用的に用いられていることから、アルキル基の炭素数が12以下の(メタ)アクリル酸エステル類が好適に使用される。特に、耐油性および圧縮永久歪みに優れることから、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、および(メタ)アクリル酸エトキシエチルが好適に使用され得る。上述した(メタ)アクリル酸エステルは、1種類のみを用いてもよく、2種以上組み合わせて用いても良い。単量体(ya)としては、ポリアミド、ポリカーボネート、およびポリエステルと反応しうる官能基(例えば、グリシジル基、酸基、ヒドロキシル基など)を有する(メタ)アクリル酸エステルを含むことが好ましい。前記構成によると、重合体(Y)が多層重合体粒子(B)の最外層の一部を構成する場合、多層重合体粒子(B)とジエン系ゴム(A)との接着性が良好となる利点を有する。
 重合体(Y)を形成するための組成物における単量体(ya)の含有量は、当該組成物100重量%に対して、60~100重量%である。単量体(ya)の前記含有量が、(i)60重量%以上である場合、上述した、重合体(Y)が構成単位(ya)を含むことによる利点を享受できる。単量体(ya)の前記含有量の下限値は、60重量%以上が好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上が特に好ましい。単量体(ya)の前記含有量の上限値は、得られるタイヤ用ゴム組成物1がウェットグリップ性に優れる成形体を提供できることから、95重量%以下であることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましく、80重量%以下であることが特に好ましい。
 単量体(ya)は、アクリル酸エステルから選ばれる1種以上の単量体と、メタクリル酸エステルから選ばれる1種以上の単量体とを含むことが好ましい。前記構成によると、タイヤ用ゴム組成物1は、ウェットグリップ性により優れた成形体を提供できる。
 単量体(ya)が、アクリル酸エステルから選ばれる1種以上の単量体と、メタクリル酸エステルから選ばれる1種以上の単量体とを含む場合(以下、場合Aとする)を考える。場合Aにおいて、前記単量体(ya)100重量%中、アクリル酸エステルから選ばれる1種以上の単量体の含有量は、50重量%~90重量%であることが好ましい。一方、場合Aにおいて、前記単量体(ya)100重量%中、メタクリル酸エステルから選ばれる1種以上の単量体の含有量は、10重量%~50重量%であることが好ましい。前記構成によると、タイヤ用ゴム組成物1は、ウェットグリップ性にさらに優れた成形体を提供できる。
 場合Aにおいて、前記単量体(ya)100重量%中、アクリル酸エステルから選ばれる1種以上の単量体の含有量の下限値は、60重量%以上がより好ましく、70重量%以上がさらに好ましく、75重量%以上が特に好ましい。場合Aにおいて、前記単量体(ya)100重量%中、アクリル酸エステルから選ばれる1種以上の単量体の含有量の上限値は、85重量%以下がより好ましく、83重量%以下がさらに好ましく、80重量%以下が特に好ましい。場合Aにおいて、前記単量体(ya)100重量%中、メタクリル酸エステルから選ばれる1種以上の単量体の含有量の下限値は、15重量%以上がより好ましく、17重量%以上がさらに好ましく、20重量%以上が特に好ましい。場合Aにおいて、前記単量体(ya)100重量%中、メタクリル酸エステルから選ばれる1種以上の単量体の含有量の上限値は、40重量%以下がより好ましく、30重量%以下がさらに好ましく、25重量%以下が特に好ましい。
 (単量体(yb))
 重合体(Y)は、単量体(ya)のみからなる組成物を重合させてなる単独合体であってもよい。重合体(Y)は、また、単量体(ya)、およびラジカル重合性反応基を2以上有する単量体(yb)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。ラジカル重合性反応基を2以上有する単量体(yb)を、本明細書中では、単に単量体(yb)とも称する。重合体(Y)は、を形成するための組成物が単量体(yb)を含む場合、重合体(Y)は、は単量体(yb)を重合させて得られる構成単位を含む。本明細書中では、単量体(yb)を重合させて得られる構成単位を、構成単位(yb)とも称する。タイヤ用ゴム組成物1において、単量体(yb)は任意成分である。
 単量体(yb)としては、(ジエン系ゴム(A))の項の(単量体(aa))と同様の単量体を使用することができる。単量体(yb)の態様としては、(単量体(aa))の項に記載の態様を適宜援用することができる。
 重合体(Y)が構成単位(yb)を含む場合、(i)タイヤ用ゴム組成物1は、低転がり抵抗性により優れる成形体、および/または、耐摩耗性により優れる成形体を提供でき、かつ(ii)多層重合体粒子(B)を粉体として取得することがより容易となる、という利点を有する。この理由としては、重合体(X)が構成単位(xa)を含むことにより前記利点を得ることができる理由と同様の理由が考えられるため、その説明は省略する。
 単量体(yb)として共役ジエン単量体を使用する場合、タイヤ用ゴム組成物1中での多層重合体粒子(B)の分散性が向上する利点を有する。これは、ジエン系ゴム(A)と多層重合体粒子(B)との構成単位が類似し、その結果、ジエン系ゴム(A)と多層重合体粒子(B)との親和性(相溶性)が高まるためであると考えられる。
 重合体(Y)を形成するための組成物における単量体(yb)の含有量は、当該組成物100重量%に対して、0~30重量%である。単量体(yb)の前記含有量が30重量%以下である場合、多層重合体粒子(B)の製造において不都合が生じにくく、かつ、得られるタイヤ用ゴム組成物1が加工性に優れるものとなる。単量体(yb)の前記含有量の上限値は、25重量%以下が好ましく、20重量%以下がより好ましく、15重量%以下がさらに好ましく、10重量%以下が特に好ましい。重合体(Y)が構成単位(yb)を含むことによる利点をより享受できることから、単量体(yb)の前記含有量の下限値は、0.5重量%以上が好ましく、1.0重量%以上がより好ましく、3.0重量%以上がさらに好ましく、5.0重量%以上が特に好ましい。
 (単量体(yc))
 重合体(Y)は、単量体(ya)、および単量体(ya)と共重合可能な単量体(yc)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。重合体(Y)は、単量体(ya)、単量体(yb)、並びに、単量体(ya)および単量体(yb)と共重合可能な単量体(yc)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。単量体(ya)および単量体(yb)と共重合可能な単量体(yc)を、本明細書中では、単に単量体(yc)とも称する。重合体(Y)を形成するための組成物が単量体(yc)を含む場合、重合体(Y)は単量体(yc)を重合させて得られる構成単位を含む。タイヤ用ゴム組成物1において、単量体(yc)は任意成分である。
 単量体(yc)としては、(ジエン系ゴム(A))の項の(単量体(ab))と同様の単量体を使用することができる。単量体(yc)の態様としては、(単量体(ab))の項に記載の態様を適宜援用することができる。
 重合体(Y)を形成するための組成物における単量体(yc)の含有量は、当該組成物100重量%に対して、0~40重量%であることが好ましい。単量体(yc)の前記含有量が、40重量%以下である場合、タイヤ用ゴム組成物1におけるジエン系ゴム(A)と多層重合体粒子(B)との親和性が十分なものとなる。その結果、タイヤ用ゴム組成物1中での多層重合体粒子(B)の分散性が向上する。単量体(yc)の前記含有量の下限値は、1重量%以上が好ましく、3重量%以上がより好ましく、5重量%以上がさらに好ましく、10重量%以上が特に好ましい。
 多層重合体粒子(B)は、重合体(X)の層と重合体(Y)の層との、少なくとも2層を含むものであればよく、3層以上から構成されていてもよい。多層重合体粒子(B)は、最外層と少なくとも一層以上の内層とからなる多層構造を有することが好ましい。本明細書において、多層重合体粒子(B)が有する最外層はシェル層とも称し、内層はコア層とも称する。多層重合体粒子(B)は、コアシェル構造を有することが好ましい。前記構成によると、多層重合体粒子(B)をゴムとして設計することが容易となり、かつタイヤ用ゴム組成物1の製造が容易となる。
 多層重合体粒子(B)のコア層は、弾性体または非弾性体のいずれでも良い。多層重合体粒子(B)は、コア層の存在下に、グラフト共重合可能な単量体をグラフト重合することによりシェル層を形成してなる多層重合体粒子であることがさらに好ましい。多層重合体粒子(B)が前記構成を有する場合、多層重合体粒子(B)は、その内部に存在するコア層と、その表面にグラフト重合により形成された少なくとも1つのシェル層を有する構造を有し、ここで、シェル層は弾性コア層の周囲または一部を覆っている。本明細書においてグラフト重合とは、シェル層を形成するための単量体とコア層の表面に存在する官能基との反応により、シェル層と弾性コア層とが共有結合で結ばれるような重合反応をいう。
 多層重合体粒子(B)は、コア層が重合体(Y)の層であることが好ましい。前記構成によると、コア層を弾性コア層とすることが可能となる。
 多層重合体粒子(B)は、最外層の少なくとも一部が重合体(X)の層であることが好ましい。換言すれば、多層重合体粒子(B)は、シェル層が重合体(X)の層であることが好ましい。前記構成によると、タイヤ用ゴム組成物1は、低転がり抵抗性にさらに優れる成形体を提供できる。多層重合体粒子(B)は、重合体(Y)の層の存在下に、単量体(xa)および任意で単量体(xb)を含む組成物をグラフト重合することにより、重合体(X)の層を形成してなる多層重合体粒子であることが特に好ましい。
 多層重合体粒子(B)は、コア層とシェル層との間に中間層を有することがさらに好ましい。前記構成によると、タイヤ用ゴム組成物1中での多層重合体粒子(B)の分散性がより良好となる。この理由としては、特に限定されないが、以下のように推測され得る:中間層がコア層を被覆することにより、多層重合体粒子(B)のコア層部分の露出が減り、その結果、コア層同士が引っ付きにくくなるため、多層重合体粒子(B)の分散性が向上する。
 (ガラス転移温度)
 多層重合体粒子(B)は、ガラス転移温度が-40℃~40℃である層を少なくとも一層含むものである。ガラス転移温度が-40℃~40℃である層は適度な柔軟性を有する層である。そのため、前記構成によると、多層重合体粒子(B)の内部に適度な柔軟性を有する層が存在することとなる。その結果、得られるタイヤ用ゴム組成物1は、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、(iii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れた成形体を提供できる。
 多層重合体粒子(B)に含まれる少なくとも一層のガラス転移温度が-40℃以上である場合、得られるタイヤ用ゴム組成物1は、ウェットグリップ性に優れた成形体を提供できる。多層重合体粒子(B)に含まれる少なくとも一層のガラス転移温度が40℃以下である層を少なくとも一層含む場合、多層重合体粒子(B)のゴム的弾性能が良好となり、当該多層重合体粒子(B)が硬くなりすぎない。その結果、タイヤ用ゴム組成物1は、ウェットグリップ性、転がり抵抗性、および耐摩耗性が良好な成形体を提供できる。なお、転がり抵抗性は、低いほど好ましい。それ故に、転がり抵抗性が良好であるとは、低転がり抵抗性に優れることを意図する。多層重合体粒子(B)に含まれる少なくとも一層のガラス転移温度の下限値は、-30℃以上が好ましく、-20℃以上がより好ましく、-10℃以上がさらに好ましい。多層重合体粒子(B)に含まれる少なくとも一層のガラス転移温度の上限値は、30℃以下が好ましく、30℃未満がより好ましく、20℃以下がさらに好ましく、10℃以下が特に好ましい。多層重合体粒子(B)に含まれる少なくとも一層のガラス転移温度が0℃付近にある場合、ウェットグリップ性の大幅な向上を実現することができる。
 多層重合体粒子(B)は、ガラス転移温度が-40℃以上、30℃未満である層を少なくとも一層含むことが好ましい。ガラス転移温度が-40℃以上、30℃未満である層は、ガラス転移温度が30以上である層と比較して、より適度な柔軟性を有する層である。そのため、前記構成によると、多層重合体粒子(B)の内部により適度な柔軟性を有する層が存在することとなる。その結果、得られるタイヤ用ゴム組成物1は、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、(iii)ウェットグリップ性および低転がり抵抗性のバランスと、により優れた成形体を提供できる。
 多層重合体粒子(B)に含まれる少なくとも一層が、重合体(X)の層または重合体(Y)の層である場合を考える。この場合、重合体(X)の層または重合体(Y)の層を形成するための組成物に含まれる1種以上の単量体の各含有量を調整することにより、重合体(X)の層または重合体(Y)の層のガラス転移温度を制御することができる。
 例えば、単量体(xa)のうち、共役ジエン単量体はガラス転移温度がマイナス領域(0℃未満の温度範囲)にあり、共役ジエン単量体以外の単量体はガラス転移温度がプラス領域(0℃超の温度範囲)にある。また、単量体(xb)のうち、芳香族モノアルケニル単量体であるスチレンはガラス転移温度がプラス領域にある。例えば、単量体(ya)の多くはガラス転移温度がマイナス領域にあるが、単量体(ya)のうちメタクリル酸メチルはガラス転移温度がプラス領域にある。また、単量体(yb)は、ガラス転移温度がプラス領域にあり、単量体(yc)のうち、芳香族モノアルケニル単量体であるスチレンはガラス転移温度がプラス領域にあり、単量体(yd)はガラス転移温度がマイナス領域にある。
 従って、これらの単量体を適切な比率で共重合することにより、ガラス転移温度-40℃~40℃である重合体(X)の層または重合体(Y)の層を得ることができる。このような態様によると、ジエン系ゴム(A)と多層重合体粒子(B)とを混合してタイヤ用ゴム組成物1とした場合に、相分離構造が明確になる。そのため、多層重合体粒子(B)のガラス転移温度がタイヤ用ゴム組成物1の物性に反映されやすくなるという利点がある。
 重合体(X)の態様が前記態様x1である場合、一般的には、重合体(X)の層のガラス転移温度は0℃未満となり得る。ガラス転移温度が0℃未満の重合体は、弾性体ともいえる。すなわち、態様x1である重合体(X)の層は弾性体となり得る。この場合、得られるタイヤ用ゴム組成物1は、反発弾性に優れる成形体を提供できるという利点を有する。重合体(X)の態様が前記態様x2である場合、一般には、重合体(X)の層のガラス転移温度は0℃より高い温度となり得る。すなわち、態様x2である重合体(X)の層は非弾性体となり得る。この場合、得られるタイヤ用ゴム組成物1は、耐摩耗性に優れる成形体を提供できるという利点を有する。
 多層重合体粒子(B)が-40℃~40℃のガラス転移温度を有する層を少なくとも一層含む場合、(a)当該層はコア層であることが好ましく、および/または(b)重合体(Y)の層であることが好ましい。前記構成によると、得られるタイヤ用ゴム組成物1は、ウェットグリップ性、耐摩耗性および低転がり抵抗性により優れる成形体を提供できる。
 多層重合体粒子(B)のガラス転移温度は-40℃~40℃であることが好ましい。多層重合体粒子(B)が前記構成であることにより、タイヤ用ゴム組成物1は、(i)ウェットグリップ性と、(ii)(ii)ウェットグリップ性および耐摩耗性のバランスと、にさらに優れた成形体を提供できる。多層重合体粒子(B)のガラス転移温度の下限値は、-30℃以上がより好ましく、-20℃以上がさらに好ましく、-10℃以上が特に好ましい。多層重合体粒子(B)のガラス転移温度の上限値は、30℃以下がより好ましく、30℃未満がさらに好ましく、20℃以下がよりさらに好ましく、10℃以下が特に好ましい。特に、多層重合体粒子(B)のガラス転移温度が0℃付近にある場合、ウェットグリップ性のさらに大幅な向上を実現することができる。
 多層重合体粒子(B)のガラス転移温度は、-40℃以上30℃未満であってもよい。多層重合体粒子(B)が前記構成であることにより、タイヤ用ゴム組成物1は、(i)ウェットグリップ性と、(ii)(ii)ウェットグリップ性および耐摩耗性のバランスと、によりさらに優れた成形体を提供できる。
 多層重合体粒子(B)に含まれる層、または多層重合体粒子(B)のガラス転移温度は、例えば、多層重合体粒子(B)のみをシート状に成形して作製したシートを試料として用い、動的粘弾性測定装置を使用して、JIS K-6394に記載の方法に基づき測定することができる。具体的な測定方法は、後述する実施例に記載する。また、以下の手順によってタイヤ用ゴム組成物1中の重合体粒子(B)のガラス転移温度を測定することもできる:(1)タイヤ用ゴム組成物1とメチルエチルケトンとを混合する;(2)当該混合物から、メチルエチルケトンに対して不溶である成分のみを取り出す;(3)当該成分をシート状に成形して作製したシートを試料として用い、動的粘弾性測定装置を使用して、JIS K-6394に記載の方法に基づき測定する。
 (体積平均粒子径)
 多層重合体粒子(B)の体積平均粒子径は0.01μm以上10μm以下であることが好ましい。本明細書において、多層重合体粒子(B)の体積平均粒子径は、多層重合体粒子(B)の一次粒子の体積基準の粒子径とする。多層重合体粒子(B)の一次粒子とは、多層重合体粒子(B)そのものであり、それ以上分離できない多層重合体粒子(B)を指す。多層重合体粒子(B)の体積平均粒子径が0.01μm以上である場合、かかる多層重合体粒子(B)を製造するときの重合による発熱は少なく、また、タイヤ用ゴム組成物1における多層重合体粒子(B)の分散性が良好になる。多層重合体粒子(B)の体積平均粒子径が10μm以下である場合、かかる多層重合体粒子(B)を製造するときの重合は比較的短時間で完了するため、生産性が良好である。
 多層重合体粒子(B)の体積平均粒子径の下限値は、例えば、0.02μm以上、0.03μm以上、0.04μm以上、0.05μm以上、0.06μm以上、0.07μm以上、0.08μm以上、0.09μm以上、0.10μm以上、0.11μm以上、0.12μm以上、0.13μm以上、0.14μm以上、または、0.15μm以上が好ましい。多層重合体粒子(B)の体積平均粒子径の上限値は、10μm以下、9μm以下、8μm以下、7μm以下、6μm以下、5μm以下、4μm以下、3μm以下、2μm以下、1μm以下、0.5μm以下、0.3μm以下、または0.2μm以下が好ましい。
 なお、多層重合体粒子(B)の体積平均粒子径は、例えば多層重合体粒子(B)が水性溶媒(例えば水)中に分散してなるラテックス(以下、多層重合体粒子ラテックスとも称する。)を試料として用い、例えば日機装株式会社製のNanotrac Waveを用いて測定することができる。具体的な測定方法は、後述する実施例に記載する。また、成形体(例えばタイヤ)中の多層重合体粒子(B)の体積平均粒子径は、例えば、成形体を切断し、切断面を電子顕微鏡などを用いて撮像し、得られた撮像データ(撮像画像)を用いて測定することができる。
 (多層重合体粒子(B)の製造方法)
 多層重合体粒子(B)の製造方法は特に制限されず、周知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などにより製造することができる。この中でも、粒子の大きさおよび粒子径の均一性の観点から、乳化重合による製造方法が好適である。また、重合体(X)が重合体(Y)にグラフト結合された多層重合体粒子(B)を得る場合には、乳化グラフト重合による製造方法が好適である。
 乳化重合は、具体的には、攪拌機を備えた反応容器に、水、各単量体、ラジカル重合開始剤、乳化剤、さらに必要に応じて連鎖移動剤を加え、加熱攪拌することで実施することができる。多層重合体粒子(B)を乳化重合により製造する場合には、製造に使用する全ての単量体を、一度の重合反応で重合してもよく、何度かの重合反応に分けて重合してもよい。乳化重合を、何度かの重合反応に分けて重合する場合、当該乳化重合は多段乳化重合と称される。多段乳化重合では、重合反応の回数に依存して、2層以上から構成される多層重合体粒子(B)が容易に得られ得る。多段乳化重合は、乳化多層重合ともいえる。重合体(X)の層と重合体(Y)の層との2層以上を有する重合体粒子を容易に得られることから、多層重合体粒子(B)は、多段乳化重合(乳化多層重合)により製造されることが好ましい。多段乳化重合を行う場合、各重合段階において、単量体の転化率(単量体の消費率とも称する。)が少なくとも95%以上であることが好ましい。
 ラジカル重合開始剤としては特に限定されず、公知のものを使用することができるが、例えば、2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの熱分解型重合開始剤を用いることができる。また、前記ラジカル重合開始剤としては、(i)(a)t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキサイドなどの有機過酸化物、および/または(b)過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物といった過酸化物と、(ii)必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、更に必要に応じてエチレンジアミン四酢酸二ナトリウム、ピロリン酸ナトリウムなどのキレート剤と、を併用したレドックス系触媒などを用いることもできる。ラジカル重合開始剤は、1種類のみを用いてもよいし、2種以上を併用してもよい。
 連鎖移動剤としては、tert-ドデシルメルカプタン、n-ドデシルメルカプタンなどのメルカプタン類、四塩化炭素、チオグリコール類、ジテルペン、タ-ピノーレンおよびγ-テルピネン類などを挙げることができる。連鎖移動剤は任意で用いることができる。
 乳化重合において用いられる乳化剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などが挙げられる。また、ふっ素系の界面活性剤を使用することもできる。
 懸濁重合では懸濁安定剤を用いることができる。懸濁安定剤としては、ポリビニルアルコール、ポリアクリル酸ナトリウムおよびヒドロキシエチルセルロースなどが挙げられるが、これらに限定されない。
 乳化重合または懸濁重合において、各々の単量体およびラジカル重合開始剤などは、反応容器に全量を投入してから重合を開始してもよいし、反応中に連続的または間欠的に添加しながら重合を行なってもよい。重合は、酸素を除去した反応器を用いて行うことが好ましく、0℃以上80℃以下で行うことが好ましい。反応途中(重合途中)で温度または攪拌などの操作条件などを適宜調節することができる。
 乳化重合または懸濁重合により、多層重合体粒子ラテックスが得られる。多層重合体粒子ラテックス中では、多層重合体粒子(B)は一次粒子の状態で分散している。当該多層重合体粒子ラテックスに対し、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化アルミニウム、酢酸カルシウムなどの二価以上の金属塩を添加して多層重合体粒子(B)を凝固させた後、脱水、洗浄、および乾燥操作を行うことで、多層重合体粒子(B)を水性溶媒から分離することができる。また、前記多層重合体粒子ラテックスを噴霧凝固(スプレードライ)することによっても多層重合体粒子(B)を水性溶媒から分離することができる。このようにして水性溶媒から多層重合体粒子(B)を分離することにより、多層重合体粒子(B)の一次粒子が凝集してなる二次粒子または凝集塊を得ることができる。多層重合体粒子(B)の二次粒子または凝集塊の形状としては、粉体、顆粒、ペレット状、クラム状(小片状)、ベールなどが挙げられる。取り扱い易いことから、多層重合体粒子(B)は粉体またはクラム状の形状を有する二次粒子として得られることが好ましい。
 多層重合体粒子(B)が粉体の形状を有する場合、当該多層重合体粒子(B)の粉体の体積平均粒子径は、取り扱い易く、分散性に優れることから、10μm以上1000μm以下であることが好ましい。多層重合体粒子(B)の粉体の体積平均粒子径の下限値は、例えば、20μm以上、30μm以上、40μm以上、50μm以上、60μm以上、70μm以上、80μm以上、90μm以上、100μm以上、110μm以上、120μm以上、130μm以上、140μm以上、または、150μm以上が好ましい。多層重合体粒子(B)の粉体の体積平均粒子径の上限値は800μm以下がより好ましく、700μm以下がさらに好ましく、600μm以下が特に好ましい。さらに、前記粉体全体において、粒子径が700μm以上の粉体が占める割合(体積%)は、20%以下であることが好ましく、10%以下であることより好ましく、5%以下であることがさらに好ましい。また、前記粉体全体において、粒子径が1000μm以上の粉体が占める割合(体積%)は、20%以下であることが好ましく、10%以下であることより好ましく、5%以下であることがさらに好ましい。これら多層重合体粒子(B)の粉体の粒子径は、例えば日機装株式会社製のマイクロトラックMT3000IIを使用して光散乱法に基づき測定することができる。
 (シリカおよびシランカップリング剤)
 タイヤ用ゴム組成物1は、さらに、シリカおよびシランカップリング剤を含むことが好ましい。シリカは補強材として機能する。タイヤ用ゴム組成物は、シリカを含むことにより、低転がり抵抗性およびウェットグリップ性により優れた成形体を提供できる。タイヤ用ゴム組成物がシリカに加えてシランカップリング剤を含むことにより、タイヤ用ゴム組成物中でのシリカの分散性を向上させることができる。そのため、タイヤ用ゴム組成物を用いた成形体に対するシリカによる転がり抵抗の低減効果およびウェットグリップ性の向上効果を高めることができる。これは、シランカップリング剤が、親水性のシリカ表面と疎水性のジエン系ゴム(A)とを結合させることにより、シリカとジエン系ゴム(A)との界面の安定性が向上するためと考えられる。
 シリカとしては特に限定されないが、例えば、乾式シリカ、湿式シリカ、コロイダルシリカ、沈降シリカなどが挙げられる。なかでも、耐摩耗性に優れ、経済性にも優れている点で、湿式シリカが好ましい。
 タイヤ用ゴム組成物1のシリカの含有量(配合量)は、シリカによる補強効果の観点から適宜決定することができ、特に限定されない。シリカの含有量は、好ましくは、ジエン系ゴム(A)100重量部に対して0重量部以上100重量部以下である。ジエン系ゴム(A)100重量部に対するシリカの含有量の下限値は10重量部以上がより好ましく、上限値は80重量部以下がより好ましい。
 シランカップリング剤としては特に限定されず、例えば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン;ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、特開平6-248116号公報に記載されるγ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどのテトラスルフィド類などが挙げられる。
 シランカップリング剤の含有量(配合量)は、タイヤ用ゴム組成物中でのシリカの分散性を向上させることを目的として適宜決定することができ、特に限定されないが、好ましくは、ジエン系ゴム(A)100重量部に対して0重量部以上20重量部以下である。ジエン系ゴム(A)100重量部に対するシランカップリング剤の含有量の下限値は1重量部以上がより好ましく、上限値は10重量部以下がより好ましい。
 (カーボンブラック)
 タイヤ用ゴム組成物1は、さらに、カーボンブラックを含むことが好ましい。カーボンブラックは補強材および/または着色剤として機能する。カーボンブラックは、シリカおよびシランカップリング剤と併用してもよいし、併用しなくてもよい。
 カーボンブラックとしては特に限定されず、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられる。タイヤ用ゴム組成物1のカーボンブラックの含有量(配合量)は、カーボンブラックによる補強および/または着色効果を好適に得ることを目的として適宜決定することができ、特に限定されない。カーボンブラックの含有量は、例えば、ジエン系ゴム(A)100重量部に対して0重量部以上80重量部以下が好ましい。ジエン系ゴム(A)100重量部に対するカーボンブラックの含有量の下限値は2重量部以上がより好ましく、上限値は70重量部以下がより好ましい。
 (その他添加剤)
 タイヤ用ゴム組成物1は、ゴム分野で一般的に使用されている、加硫剤、加硫促進剤、加硫活性化剤、充填剤、可塑剤、老化防止剤などのその他添加剤を必要に応じて含んでいてもよい。
 加硫剤としては特に限定されないが、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄などのハロゲン化硫黄;ジクミルパーオキシド、ジターシャリブチルパーオキシドなどの有機過酸化物;p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシムなどのキノンジオキシム;トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、4,4’-メチレンビス-o-クロロアニリンなどの有機多価アミン化合物;メチロール基をもったアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく、粉末硫黄が特に好ましい。加硫剤は1種類のみを用いてもよいし、2種以上を併用してもよい。タイヤ用ゴム組成物1の加硫剤の含有量(配合量)は適宜決定することができるが、好ましくは、ジエン系ゴム(A)100重量部に対して0.1重量部以上15重量部以下である。ジエン系ゴム(A)100重量部に対する加硫剤の含有量の下限値は0.3重量部以上がより好ましく、上限値は10重量部以下がより好ましい。
 加硫促進剤としては特に限定されないが、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤;ジエチルチオウレアなどのチオウレア系加硫促進剤;2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2-メルカプトベンゾチアゾール亜鉛塩などのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸亜鉛などのジチオカルバミン酸系加硫促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛などのキサントゲン酸系加硫促進剤;ヘキサメチレンテトラミン(H)などのアミン系加硫促進剤;ブチルアルデヒドアニリン(B)、ブチルアルデヒドモノブチルアミン(833)などのアルデヒドアンモニア系加硫促進剤などが挙げられる。加硫促進剤は1種類のみを用いてもよいし、2種以上を併用してもよい。タイヤ用ゴム組成物1の加硫促進剤の含有量(配合量)は適宜決定することができるが、好ましくは、ジエン系ゴム(A)100重量部に対して0.1重量部以上15重量部以下である。ジエン系ゴム(A)100重量部に対する加硫促進剤の配合量の下限値は0.3重量部以上がより好ましく、上限値は10重量部以下がより好ましい。
 加硫活性化剤としては特に限定されないが、例えば、ステアリン酸などの高級脂肪酸、酸化亜鉛などが挙げられる。酸化亜鉛としては、表面活性の高い粒度5μm以下のものが好ましく、粒度が0.05μm以上0.2μm以下の活性亜鉛華および0.3μm以上1μm以下の亜鉛華がより好ましい。また、酸化亜鉛としては、アミン系の分散剤または湿潤剤で表面処理したものを用いることができる。加硫活性化剤は1種類のみを用いてもよいし、2種以上を併用してもよい。タイヤ用ゴム組成物1の加硫活性化剤の含有量(配合量)は適宜決定することができる。
 加硫活性化剤が高級脂肪酸である場合を考える。この場合、加硫活性化剤の含有量は、好ましくは、ジエン系ゴム(A)100重量部に対して0.05重量部以上15重量部以下である。また、この場合、ジエン系ゴム(A)100重量部に対する加硫活性化剤の含有量の下限値は0.1重量部以上がより好ましく、上限値は8重量部以下がより好ましい。
 加硫活性化剤が酸化亜鉛である場合を考える。この場合、加硫活性化剤の含有量は、好ましくは、ジエン系ゴム(A)100重量部に対して0.05重量部以上10重量部以下である。また、この場合、ジエン系ゴム(A)100重量部に対する加硫活性化剤の含有量の下限値は0.1重量部以上がより好ましく、上限値は5重量部以下がより好ましい。
 充填剤としては、前記シリカとカーボンブラック以外の充填剤が挙げられ、具体的には、クレー、タルク、マイカなどのケイ酸塩鉱物;シラス;炭酸カルシウム(例えば、膠質炭酸カルシウム、極微細炭酸カルシウム、軽微性炭酸カルシウム、重質炭酸カルシウム)、炭酸マグネシウム、炭酸カリウムなどの炭酸塩類;水酸化アルミニウム;硫酸バリウム;酸化アルミニウム、有機短繊維、(メタ)アクリル系樹脂粒子、エポキシ樹脂粒子、ガラス粒子、ガラス繊維、フレークグラファイトなどが挙げられる。充填剤は1種類のみを用いてもよいし、2種以上を併用してもよい。
 可塑剤としては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどの石油系プロセスオイル;フタル酸ジエチル、フタル酸ジオクチル、アジピン酸ジブチルなどの二塩基酸ジアルキル;液状ポリブテン、液状ポリイソプレンなどの低分子量液状ポリマー;オレンジオイルなどの天然オイルが挙げられる。これらのなかでも、得られるタイヤ用ゴム組成物が、(a)優れた柔軟性有し、かつ(b)長期的に弾性を保持する成形体を提供できることから、パラフィン系プロセスオイル、ナフテン系プロセスオイル、および芳香族系プロセスオイルが好ましい。可塑剤は1種類のみを用いてもよいし、2種以上を併用してもよい。
 〔タイヤ用ゴム組成物1の製造方法〕
 本発明の一実施形態に係るタイヤ用ゴム組成物1は、従来公知の方法に従って、例えば各成分を混練する工程などにより製造することができる。タイヤ用ゴム組成物1の製造方法は、特に限定されない。以下、加硫剤と加硫促進剤を含有するタイヤ用ゴム組成物1を例に挙げて、タイヤ用ゴム組成物1の製造方法の一例を説明する。まず、ジエン系ゴム(A)および多層重合体粒子(B)、並びに加硫剤と加硫促進剤を除くその他の成分(添加剤など)を、タンブラー、タンブラー、ヘンシェルミキサー、リボブレンダーなどを用いて混合し、混合物を得る。その後、押出機、バンパリー、ロールなどを用いて、当該混合物を混練し、混練物を得る。このときの混練温度は通常50℃以上200℃以下である。混練温度の下限値は80℃以上が好ましく、上限値は190℃以下が好ましい。混練時間は通常30秒以上30分以下である。混練時間の下限値は1分以上が好ましい。次いで、得られた混練物に加硫剤と加硫促進剤を加えて、さらに、得られた混合物を上述した装置を用いて混練する。このときの混練温度は、加硫剤の反応を抑制することを目的として、70℃以上120℃以下で行なうことが好ましい。以上の操作により、加硫剤と加硫促進剤を含有するタイヤ用ゴム組成物1が得られる。
 タイヤ用ゴム組成物1は、当該タイヤ用ゴム組成物を架橋反応させることにより、成形体を得ることができる。すなわち、本発明の一実施形態は、上述した構成を有するタイヤ用ゴム組成物1を成形してなる成形体(以下、成形体M1とも称する。)を提供する。タイヤ用ゴム組成物1が提供し得る成形体M1は、タイヤに限定されない。
 成形体M1の製造方法、すなわちタイヤ用ゴム組成物1の架橋方法としては、成形体M1の形状および大きさなどを考慮して適宜選択することができるが、一般にはプレス機または射出成型機を使用する方法が挙げられる。架橋反応時の温度および時間は特に限定されない。架橋反応時の温度の下限値は、好ましくは120℃以上、より好ましくは140℃以上である。架橋反応時の温度の上限値は、好ましくは200℃以下、より好ましくは180℃以下である。架橋反応の時間は、通常1分以上120分以下程度である。
 成形体M1は、例えば、タイヤ、ケーブル被覆剤、ホース、トランスミッションベルト、コンベアベルト、ロールカバー、靴本体または靴底、シール用リング、防振ゴムなどとして使用することができる。成形体M1は、特にタイヤトレッドとして好適に使用することができる。タイヤトレッドが多層構造を有する場合、その最外層を、成形体M1により構成することが好ましい。
 成形体M1は、上述した構成を有するタイヤ用ゴム組成物1から作製されるため、以下の(i)および(ii)を満たし得る:(i)0℃tanδ>100、および(ii)0℃tanδ/値Z≧1。ここで、前記tanδおよび前記値Zについては、〔タイヤ用ゴム組成物〕の項にて説明した通りである。
 成形体M1の0℃tanδは、具体的には成形体M1の0℃における動的粘弾性を意味する。0℃tanδは、ウェットグリップ性を表す指標となる。成形体M1は、0℃tanδの値が大きいほど、ウェットグリップ性に優れることを意味する。成形体M1は、多層重合体粒子(B)を含むことにより、多層重合体粒子(B)を含まない成形体と比較して、ウェットグリップ性に優れる。成形体M1では、ウェットグリップ性により優れることから、0℃tanδ>103であることが好ましく、0℃tanδ>105であることがより好ましく、0℃tanδ>109であることがより好ましく、0℃tanδ>115であることがより好ましく、0℃tanδ>120であることがより好ましく、0℃tanδ>125であることがさらに好ましく、0℃tanδ>130であることが特に好ましい。
 JIS K-6264-2のB法は、成形体のシートを用いた摩耗試験方法の規格である。当該摩耗試験により得られた値Zは摩耗量を意味するため、成形体M1は、値Zが小さいほど、耐摩耗性に優れることを意味する。多層重合体粒子(B)を含む成形体M1は、多層重合体粒子(B)を含まない成形体と比較して摩耗量が大きくなりすぎないことが好ましく、値Z<130であることが好ましい。成形体M1では、所望の耐摩耗性を有することから、値Z<125であることがより好ましく、値Z<120であることがさらに好ましく、値Z<115であることが特に好ましい。
 多層重合体粒子(B)を含む成形体M1は、多層重合体粒子(B)を含まない成形体と比較して、ウェットグリップ性に優れ、かつ摩耗試験による摩耗量が大きすぎない。換言すれば、成形体M1は、ウェットグリップ性および耐摩耗性のバランスに優れるものである。成形体M1では、ウェットグリップ性および耐摩耗性のバランスにより優れることから、0℃tanδ/値Z≧1であることが好ましく、0℃tanδ/値Z>1であることがより好ましく、0℃tanδ/値Z>1.03であることが好ましく、0℃tanδ/値Z>1.05であることがより好ましく、0℃tanδ/値Z>1.08であることがさらに好ましく、0℃tanδ/値Z>1.10であることが特に好ましい。
 多層重合体粒子(B)を含む成形体M1は、多層重合体粒子(B)を含まない成形体と比較して転がり抵抗が大きくなりすぎないことが好ましい。成形体M1の転がり抵抗性は、成形体M1の60℃における動的粘弾性である60℃tanδを測定することにより評価できる。成形体M1は、60℃tanδの値が小さいほど、転がり抵抗が小さい、すなわち低転がり抵抗性に優れることを意味する。低転がり抵抗性に優れる成形体M1をタイヤトレッドとして利用した場合、得られるタイヤを有する乗り物は、低燃費を達成できる。成形体M1では、所望の低転がり抵抗性を有することから、60℃tanδ<130であることが好ましく、60℃tanδ<120であることがより好ましく、60℃tanδ<110であることがより好ましく、60℃tanδ<105であることがより好ましく、60℃tanδ<103であることがさらに好ましく、60℃tanδ<100であることが特に好ましい。
 本発明の一実施形態に係る成形体M1は、ウェットグリップ性および低転がり抵抗性のバランスに優れることが好ましく、0℃tanδ/60℃tanδ>1であることが好ましく、0℃tanδ/60℃tanδ>1.05であることがより好ましく、0℃tanδ/60℃tanδ>1.07であることがさらに好ましく、0℃tanδ/60℃tanδ>1.10であることがよりさらに好ましく、0℃tanδ/60℃tanδ>1.15であることが特に好ましい。
 成形体M1は、-5℃tanδ、-10℃tanδ、-15℃tanδおよび-20℃tanδの各々値が大きいほど好ましい。-5℃tanδ、-10℃tanδ、-15℃tanδおよび-20℃tanδの各々は、ウェットグリップ性を表す指標となる。また、tanδを算出するときの温度が小さくなるほど、ウェットグリップ性を示す路面の粗さが小さいことを意味する。例えば、-15℃tanδおよび-20℃tanδの各々は、氷上のウェットグリップ性を表す指標となり得ると推察される。しかし、本発明は、かかる推察に限定されない。
 ウェットグリップ性により優れることから、成形体M1は、-5℃tanδ>103であることが好ましく、-5℃tanδ>103であることがより好ましく、-5℃tanδ>105であることがより好ましく、-5℃tanδ>109であることがより好ましく、-5℃tanδ>110であることがよりに好ましく、-5℃tanδ>115であることがさらに好ましく、-5℃tanδ>115であることがさらに好ましく、-5℃tanδ>120であることが特に好ましい。
 ウェットグリップ性により優れることから、成形体M1は、-10℃tanδ>100であることが好ましく、-10℃tanδ>103であることがより好ましく、-10℃tanδ>105であることがより好ましく、-10℃tanδ>109であることがより好ましく、-10℃tanδ>110であることがさらに好ましく、-10℃tanδ>115であることが特に好ましい。
 例えば氷上におけるウェットグリップ性により優れることから、成形体M1は、-15℃tanδ>90であることが好ましく、-15℃tanδ>95であることがより好ましく、-15℃tanδ>100であることがより好ましく、-15℃tanδ>103であることがより好ましく、-15℃tanδ>105であることがより好ましく、-15℃tanδ>109であることがより好ましく、-15℃tanδ>110であることがさらに好ましく、-15℃tanδ>115であることが特に好ましい。
 例えば氷上におけるウェットグリップ性により優れることから、成形体M1は、-20℃tanδ>80であることが好ましく、-20℃tanδ>85であることがより好ましく、-20℃tanδ>90であることがより好ましく、-20℃tanδ>95であることがより好ましく、-20℃tanδ>100であることがより好ましく、-20℃tanδ>103であることがより好ましく、-20℃tanδ>105であることがより好ましく、-20℃tanδ>109であることがより好ましく、-20℃tanδ>110であることがさらに好ましく、-20℃tanδ>115であることが特に好ましい。
 -15℃tanδおよび/または-20℃tanδの値が大きい成形体M1は、寒冷地において、ウェットグリップ性により優れるタイヤを提供できる。本発明の一実施形態におけるタイヤ用ゴム組成物1は、寒冷地用のタイヤ用ゴム組成物1であってもよい。
 〔タイヤ1〕
 本発明の一実施形態に係るタイヤは、〔タイヤ用ゴム組成物1〕の項に記載したタイヤ用ゴム組成物1を用いて作製される。
 本明細書中では、「本発明の一実施形態に係るタイヤ」を、単に「タイヤ1」と称する場合もある。
 本発明の一実施形態に係るタイヤ1は、前記構成を有することにより、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れたものである。より具体的には、本発明の一実施形態に係るタイヤ1は、成形体が満たし得る前記(i)および(ii)を満たすものである。
 本発明の一実施形態に係るタイヤ1の製造方法は、特に限定されず、公知の方法を用いることができる。例えば、未架橋のタイヤ用ゴム組成物1を、タイヤトレッドの形状にあわせて押出加工し、タイヤ成形機上にて成形して未架橋の成形体を得る。その後、得られた未架橋の成形体を、他のタイヤ部材に貼り合わせて、未架橋タイヤを形成する。得られた未架橋タイヤを加硫機中で加熱加圧することにより、タイヤ1を製造することができる。
 本発明の一実施形態に係るタイヤ1は乗用車用タイヤ、または、トラックおよびバス用タイヤ(重荷重用タイヤ)として好適に用いることができる。
 本発明の一実施形態におけるタイヤ1は、寒冷地用のタイヤ1であってもよい。
 〔成形体1〕
 本発明の一実施形態に係る成形体は、多層重合体粒子を含み、前記多層重合体粒子は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体を含む組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体であり、以下を満たす:0℃tanδ/値Z≧1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)の値であり、かつ、前記多層重合体粒子を含まない成形体の0℃tanδを100としたときの値であり、また、前記値Zは、前記成形体についてJIS K-6264-2のB法に準じて測定された、摩耗量の値であり、かつ、前記多層重合体粒子を含まない成形体の摩耗量を100としたときの値である。
 本明細書中では、「本発明の一実施形態に係る成形体」を、単に「成形体1」と称する場合もある。
 重合体(X)におけるラジカル重合性反応基を2以上有する単量体としては、〔タイヤ用ゴム組成物1〕の項の(単量体(aa))と同様の単量体を使用することができる。重合体(X)におけるラジカル重合性反応基を2以上有する単量体の態様としては、(単量体(aa))の項に記載の態様を適宜援用することができる。
 重合体(Y)におけるアクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体としては、〔タイヤ用ゴム組成物1〕の項の(単量体(ya))と同様の単量体を使用することができる。重合体(Y)におけるアクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体の態様としては、(単量体(ya))の項に記載の態様を適宜援用することができる。
 本発明の一実施形態に係る成形体1における重合体(X)は、〔タイヤ用ゴム組成物1〕の項の(重合体(X))であることが好ましいが、これに限定されない。換言すれば、本発明の一実施形態に係る成形体1における重合体(X)は、〔タイヤ用ゴム組成物1〕の項の単量体(xa)のみからなる組成物を重合させてなる単独重合体であるか、または単量体(xa)および単量体(xb)の合計100重量%からなる組成物を重合させてなる共重合体であることが好ましい。本発明の一実施形態に係る成形体1における重合体(X)の態様としては、〔タイヤ用ゴム組成物1〕の項の(重合体(X))に記載の態様を適宜援用することができる。
 本発明の一実施形態に係る成形体1における重合体(Y)としては、〔タイヤ用ゴム組成物1〕の項の(重合体(Y))であることが好ましいが、これに限定されない。換言すれば、本発明の一実施形態に係る成形体1における重合体(Y)は、〔タイヤ用ゴム組成物1〕の項の単量体(ya)のみからなる組成物を重合させてなる単独重合体であるか、単量体(ya)および単量体(yb)の合計100重量%からなる組成物を重合させてなる共重合体であるか、単量体(ya)および単量体(yc)の合計100重量%からなる組成物を重合させてなる共重合体であるか、単量体(ya)、単量体(yb)および単量体(yc)の合計100重量%からなる組成物を重合させてなる共重合体であることが好ましい。本発明の一実施形態に係る成形体1における重合体(Y)の態様としては、〔タイヤ用ゴム組成物1〕の項の(重合体(Y))に記載の態様を適宜援用することができる。
 本発明の一実施形態に係る成形体1における多層重合体粒子としては、〔タイヤ用ゴム組成物1〕の項の(多層重合体粒子(B))であることが好ましいが、これに限定されない。本発明の一実施形態に係る成形体1における多層重合体粒子の態様としては、〔タイヤ用ゴム組成物1〕の項の(多層重合体粒子(B))に記載の態様を適宜援用することができる。
 本発明の一実施形態に係る成形体1は、多層重合体粒子に加えて、ジエン系ゴムを含むことが好ましい。前記ジエン系ゴムとしては、〔タイヤ用ゴム組成物1〕の項の(ジエン系ゴム(A))であることが好ましいが、これに限定されない。本発明の一実施形態に係る成形体1は、例えば、多層重合体粒子に加えて、スチレン-ブタジエン共重合体ゴム80重量部およびブタジエンゴム20重量部をさらに含んでいてもよい。本発明の一実施形態に係る成形体1は、〔タイヤ用ゴム組成物1〕の項に記載のタイヤ用ゴム組成物1を架橋反応させてなる、成形体であることが好ましい。
 本発明の一実施形態に係る成形体1では、ウェットグリップ性および耐摩耗性のバランスにより優れることから、0℃tanδ/値Z≧1であることが好ましく、0℃tanδ/値Z>1であることがより好ましく、0℃tanδ/値Z>1.03であることが好ましく、0℃tanδ/値Z>1.05であることがより好ましく、0℃tanδ/値Z>1.08であることがさらに好ましく、0℃tanδ/値Z>1.10であることが特に好ましい。
 本発明の一実施形態に係る成形体1では、ウェットグリップ性に優れることから、0℃tanδ>100であることが好ましく、0℃tanδ>103であることがより好ましく、0℃tanδ>105であることがさらに好ましく、0℃tanδ>110であることがよりさらに好ましく、0℃tanδ>115であることが特に好ましい。
 本発明の一実施形態に係る成形体1では、所望の耐摩耗性を有することから、値Z<130であることが好ましく、値Z<125であることがより好ましく、値Z<120であることがさらに好ましく、値Z<115であることが特に好ましい。
 本発明の一実施形態に係る成形体1では、所望の低転がり抵抗性を有することから、60℃tanδ<130であることが好ましく、60℃tanδ<120であることがより好ましく、60℃tanδ<110であることがさらに好ましく、60℃tanδ<105であることが特に好ましい。
 本発明の一実施形態に係る成形体1では、ウェットグリップ性および低転がり抵抗性のバランスに優れることから、0℃tanδ/60℃tanδ>1であることが好ましく、0℃tanδ/60℃tanδ>1.05であることがより好ましく、0℃tanδ/60℃tanδ>1.07であることがさらに好ましく、0℃tanδ/60℃tanδ>1.10であることがよりさらに好ましく、0℃tanδ/60℃tanδ>1.15であることが特に好ましい。
 成形体1は、-5℃tanδ、-10℃tanδ、-15℃tanδおよび-20℃tanδの各々値が大きいほど好ましい。
 ウェットグリップ性により優れることから、成形体1は、-5℃tanδ>103であることが好ましく、-5℃tanδ>105であることがより好ましく、-5℃tanδ>110であることがさらに好ましく、-5℃tanδ>115であることが特に好ましい。
 ウェットグリップ性により優れることから、成形体1は、-10℃tanδ>103であることが好ましく、-10℃tanδ>105であることがより好ましく、-10℃tanδ>110であることがさらに好ましく、-10℃tanδ>115であることが特に好ましい。
 例えば氷上におけるウェットグリップ性により優れることから、成形体1は、-15℃tanδ>103であることが好ましく、-15℃tanδ>105であることがより好ましく、-15℃tanδ>110であることがさらに好ましく、-15℃tanδ>115であることが特に好ましい。
 例えば氷上におけるウェットグリップ性により優れることから、成形体1は、-20℃tanδ>103であることが好ましく、-20℃tanδ>105であることがより好ましく、-20℃tanδ>110であることがさらに好ましく、-20℃tanδ>115であることが特に好ましい。
 本発明の一実施形態における成形体1は、寒冷地用の成形体1であってもよい。
 [実施形態2]
 また、本発明の他の一実施形態として、次のものも含まれ得る。
 特許文献1および2のような従来技術は(i)ウェットグリップ性、並びに(ii)ウェットグリップ性および低転がり抵抗性のバランスの観点からも十分なものでなく、さらなる改善の余地があった。
 本発明の他の一実施形態は、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物、および当該タイヤ用ゴム組成物を用いて作製したタイヤ、並びに成形体を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討した結果、ジエン系ゴムに加えて、特定の組成を有する重合体粒子を特定量含むタイヤ用ゴム組成物とすることにより、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物を提供できることを見出し、本発明の他の一実施形態を完成するに至った。
 〔タイヤ用ゴム組成物2〕
 すなわち、本発明の他の一実施形態に係るタイヤ用ゴム組成物は、ジエン系ゴム(A)100重量部と重合体粒子(B)0.1重量部~50重量部とを含有し、前記重合体粒子(B)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(a)50~99.9重量%、ラジカル重合性反応基を2以上有する単量体(b)0.1~50重量%、並びに、前記単量体(a)および前記単量体(b)と共重合可能な単量体(c)0~40重量%の合計100重量%からなる組成物を重合させてなる共重合体であり、前記重合体粒子(B)のガラス転移温度は-40℃以上、30℃未満である。
 本明細書中では、「本発明の他の一実施形態に係るタイヤ用ゴム組成物」を、単に「タイヤ用ゴム組成物2」と称する場合もある。すなわち、用語「タイヤ用ゴム組成物2」は、本発明におけるタイヤ用ゴム組成物の他の一実施形態(実施形態2)を意図する。
 本発明の他の一実施形態によれば、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物、および当該タイヤ用ゴム組成物を用いて作製したタイヤ、並びに成形体を提供できる。
 (重合体粒子(B))
 (単量体(a))
 アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(a)を、本明細書中では、単に単量体(a)とも称する。重合体粒子(B)を形成するための組成物が単量体(a)を含むため、重合体粒子(B)は単量体(a)を重合させて得られる構成単位を含む。本明細書中では、単量体(a)を重合させて得られる構成単位を、構成単位(a)とも称する。重合体粒子(B)が構成単位(a)を含むことにより、タイヤ用ゴム組成物2は、ウェットグリップ性に優れた成形体を提供できる。以下、本明細書において、アクリルおよび/またはメタクリルを「(メタ)アクリル」と記載する。単量体(a)は、(メタ)アクリル酸エステルから選ばれる1種以上の単量体ともいえる。
 前記(メタ)アクリル酸エステルとしては、例えば、(i)(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニルなどの炭素数が1~22のアルキル基を有する(メタ)アクリル酸アルキルエステル類、(ii)(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチルなどの炭素数が1~22のアルキル基を有し、かつヒドロキシル基を有する(メタ)アクリル酸エステル類、(iii)(メタ)アクリル酸グリシジルなどのエポキシ基を有する(メタ)アクリル酸エステル類、(iv)(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチルなどの炭素数が1~22のアルキル基を有し、かつアルコキシル基を有する(メタ)アクリル酸エステル類、などが挙げられる。前記(メタ)アクリル酸エステル類のアルキル基の炭素数については必ずしも制限されるものではないが、重合性が劣る虞がないことから、アルキル基の炭素数が22以下の(メタ)アクリル酸エステル類が好適に使用されうる。上述した(メタ)アクリル酸エステルの中でも、重合性が優れ、かつ安価で汎用的に用いられていることから、アルキル基の炭素数が12以下の(メタ)アクリル酸エステル類が好適に使用される。特に、耐油性および圧縮永久歪みに優れることから、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、および(メタ)アクリル酸エトキシエチルが好適に使用され得る。さらに、ジエン系ゴム(A)との接着性が優れることから、ポリアミド、ポリカーボネート、およびポリエステルと反応しうる官能基(例えば、グリシジル基、酸基、ヒドロキシル基など)を有する(メタ)アクリル酸エステルが好適に使用される。上述した(メタ)アクリル酸エステルは、1種類のみを用いてもよく、2種以上組み合わせて用いても良い。
 重合体粒子(B)を形成するための組成物における単量体(a)の含有量は、当該組成物100重量%に対して、50重量%~99.9重量%である。単量体(a)の前記含有量が、(i)50重量%以上である場合、前述した、重合体粒子(B)が構成単位(a)を含むことによる利点を享受でき、(ii)99.9重量%以下である場合、重合体粒子(B)中に架橋形態を導入できるという利点を有する。単量体(a)の前記含有量の下限値は、60重量%以上が好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上が特に好ましい。
 単量体(a)は、アクリル酸エステルから選ばれる1種以上の単量体と、メタクリル酸エステルから選ばれる1種以上の単量体とを含むことが好ましい。前記構成によると、タイヤ用ゴム組成物2は、ウェットグリップ性により優れた成形体を提供できる。
 単量体(a)が、アクリル酸エステルから選ばれる1種以上の単量体と、メタクリル酸エステルから選ばれる1種以上の単量体とを含む場合(以下、場合Aとする)を考える。場合Aにおいて、前記単量体(a)100重量%中、アクリル酸エステルから選ばれる1種以上の単量体の含有量は、50重量%~90重量%であることが好ましい。一方、場合Aにおいて、前記単量体(a)100重量%中、メタクリル酸エステルから選ばれる1種以上の単量体の含有量は、10重量%~50重量%であることが好ましい。前記構成によると、タイヤ用ゴム組成物2は、ウェットグリップ性にさらに優れた成形体を提供できる。
 場合Aにおいて、前記単量体(a)100重量%中、アクリル酸エステルから選ばれる1種以上の単量体の含有量の下限値は、60重量%以上がより好ましく、70重量%以上がさらに好ましく、75重量%以上が特に好ましい。場合Aにおいて、前記単量体(a)100重量%中、アクリル酸エステルから選ばれる1種以上の単量体の含有量の上限値は、85重量%以下がより好ましく、83重量%以下がさらに好ましく、80重量%以下が特に好ましい。場合Aにおいて、前記単量体(a)100重量%中、メタクリル酸エステルから選ばれる1種以上の単量体の含有量の下限値は、15重量%以上がより好ましく、17重量%以上がさらに好ましく、20重量%以上が特に好ましい。場合Aにおいて、前記単量体(a)100重量%中、メタクリル酸エステルから選ばれる1種以上の単量体の含有量の上限値は、40重量%以下がより好ましく、30重量%以下がさらに好ましく、25重量%以下が特に好ましい。
 (単量体(b))
 ラジカル重合性反応基を2以上有する単量体(b)を、本明細書中では、単に単量体(b)とも称する。重合体粒子(B)を形成するための組成物が単量体(b)を含むため、重合体粒子(B)は単量体(b)を重合させて得られる構成単位を含む。本明細書中では、単量体(b)を重合させて得られる構成単位を、構成単位(b)とも称する。
 単量体(b)は、重合反応に関与する反応基であるラジカル重合性反応基を2以上有するため、多官能性単量体ともいえる。ラジカル重合性反応基は、好ましくは、炭素-炭素二重結合である。
 重合体粒子(B)が構成単位(b)を含むことにより、(i)タイヤ用ゴム組成物2は、低転がり抵抗性に優れる成形体、および/または、耐摩耗性に優れる成形体を提供でき、かつ(ii)重合体粒子(B)を粉体として取得することが容易となる、という利点を有する。これらの利点を得られる理由としては、特に限定されないが、以下のように推測される。しかし、本発明の他の一実施形態は、以下の理由(原理)に特に制限されるものではない。
 重合体粒子(B)が構成単位(b)を含むことにより、重合体粒子(B)は、ジエン系ゴム(A)との架橋反応に関与できる架橋点を有することになる。これにより、タイヤ用ゴム組成物2を架橋反応させたときに、ジエン系ゴム(A)と重合体粒子(B)とが共有結合により一体化する。その結果、得られる成形体中で重合体同士の架橋度が増加し、成形体の反発弾性が改良され、成形体は低転がり抵抗性に優れるものとなる。また、単量体(b)は重合反応に関与する反応基(すなわちラジカル重合性反応基)を2以上有するため、重合体粒子(B)においても、重合体同士の架橋度を増加させることができる。その結果、重合体粒子(B)を有するタイヤ用ゴム組成物2は、耐摩耗性に優れた成形体を提供できる。
 また、一般的にラジカル重合は、単量体へのラジカル付加を伴って、重合反応が進行するが反応率が100%となることは無く、そのため、単量体(b)を用いて生成された重合体粒子(B)には二重結合が残存し、その結果、重合体粒子(B)の最表面は二重結合を有することができる。当該二重結合を介して、重合体粒子(B)はジエン系ゴム(A)と加硫反応によって共有結合を形成することができる。その結果、タイヤ用ゴム組成物2から製造される成形体では反発弾性が改良され、タイヤ用ゴム組成物2は、低転がり抵抗性に優れた成形体を提供できる。
 さらに、重合体粒子(B)の架橋度の向上に伴い、重合体粒子(B)の硬度も向上する。それ故に、重合体粒子(B)の凝集を制御しやすくなり、その結果、重合体粒子(B)の粉体を容易に形成することができる。換言すれば、重合体粒子(B)を粉体として取得することが容易となる。
 単量体(b)としては、特に限定されないが、例えば、ジイソプロペニルベンゼン、ジビニルベンゼンなどの多価ビニル芳香族化合物;(メタ)アクリル酸ビニル、メタクリル酸アリルなどのα,β-エチレン性不飽和カルボン酸の不飽和エステル化合物;フタル酸ジアリル、トリメリット酸トリアリルなどの多価カルボン酸の不飽和エステル化合物;ジ(メタ)アクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタクリル酸1,3-ブチレングリコール(ジメタクリル酸1,3-ブチレンとも称する)などの多価アルコールの不飽和エステル化合物;シアヌル酸トリアリルなどのシアヌル酸の不飽和エステル化合物;イソシアヌル酸トリアリルなどのイソシアヌル酸の不飽和エステル化合物;1,2-ブタジエン、ジビニルエーテル、ジビニルスルフォン、N,N´-m-フェニレンマレイミドなどが挙げられる。これら化合物は、1種類のみを用いてもよいし、2種以上を併用してもよい。
 単量体(b)としては、(i)ラジカル重合における反応性の観点から、多価ビニル芳香族化合物、α,β-エチレン性不飽和カルボン酸の不飽和エステル化合物、多価アルコールの不飽和エステル化合物、シアヌル酸の不飽和エステル化合物、およびイソシアヌル酸の不飽和エステル化合物が好ましく、(ii)ラジカル重合後の、炭素-炭素二重結合の残存量が多くなることから、トリアリルイソシアヌレートおよびメタクリル酸アリルが好ましい。
 単量体(b)としては、共役ジエン単量体も使用できる。共役ジエン単量体とは、炭素-炭素二重結合を2つ有し、それら二重結合が1つの単結合によって隔てられ、共役したジエンを指す。
 共役ジエン単量体の具体例としては、イソプレン、クロロプレン、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。共役ジエン単量体は、1種類のみを用いてもよいし、2種以上を併用してもよい。
 単量体(b)として共役ジエン単量体を使用する場合、タイヤ用ゴム組成物2中での重合体粒子(B)の分散性が向上する利点を有する。これは、ジエン系ゴム(A)と重合体粒子(B)との構成単位が類似し、その結果、ジエン系ゴム(A)と重合体粒子(B)との親和性(相溶性)が高まるためであると考えられる。なお、共役ジエンとは、炭素-炭素二重結合を2つ有し、それら二重結合が1つの単結合によって隔てられ、共役したジエンを指す。
 重合体粒子(B)を形成するための組成物における単量体(b)の含有量は、当該組成物100重量%に対して、0.1重量%~50重量%である。単量体(b)の前記含有量が、(a)0.1重量%以上である場合、前述した、重合体粒子(B)が構成単位(b)を含むことによる利点を享受でき、(b)50重量%以下である場合、多層重合体粒子(B)の製造において不都合が生じにくく、かつ、得られるタイヤ用ゴム組成物2が加工性に優れるものとなる。単量体(b)の前記含有量の上限値は、40重量%以下が好ましく、30重量%以下がより好ましく、20重量%以下がさらに好ましく、10重量%以下が特に好ましい。
 (単量体(c))
 重合体粒子(B)は、単量体(a)および単量体(b)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。重合体粒子(B)は、また、単量体(a)、単量体(b)、並びに、単量体(a)および単量体(b)と共重合可能な単量体(c)の合計100重量%からなる組成物を重合させてなる共重合体であってもよい。単量体(a)および単量体(b)と共重合可能な単量体(c)を、本明細書中では、単に単量体(c)とも称する。重合体粒子(B)を形成するための組成物が単量体(c)を含む場合、重合体粒子(B)は単量体(c)を重合させて得られる構成単位を含む。本タイヤ用ゴム組成物2において、単量体(c)は任意成分である。
 単量体(c)としては、単量体(a)および単量体(b)と共重合可能である限り、特に限定されず、任意の単量体を1種類のみ用いてもよいし、2種類以上併用してもよい。
 単量体(c)は、芳香族モノアルケニル単量体を含むことが好ましい。芳香族モノアルケニル単量体を含む単量体(c)を用いる場合、タイヤ用ゴム組成物2におけるジエン系ゴム(A)と重合体粒子(B)との親和性を高めることができる。特に、ジエン系ゴム(A)がスチレン-ブタジエン共重合ゴムを含有する場合には、重合体粒子(B)の製造において芳香族モノアルケニル単量体の使用量を調節することにより、ジエン系ゴム(A)と重合体粒子(B)との親和性を高めることができる。その結果、タイヤ用ゴム組成物2中での重合体粒子(B)の分散性が向上する。
 芳香族モノアルケニル単量体としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-t-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、p-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、p-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレンなどが挙げられる。芳香族モノアルケニル単量体は、1種類のみを用いてもよいし、2種以上を併用してもよい。芳香族モノアルケニル単量体としては、上述した単量体のうち、ラジカル重合における反応性およびコストの観点から、スチレンが好ましい。
 単量体(c)が、前記単量体(c)100重量%中、芳香族モノアルケニル単量体を30~100重量%含むことが好ましい。前記構成によると、タイヤ用ゴム組成物2におけるジエン系ゴム(A)と重合体粒子(B)との親和性をより高めることができる。その結果、タイヤ用ゴム組成物2中での重合体粒子(B)の分散性がより向上する。前記単量体(c)100重量%中、芳香族モノアルケニル単量体の含有量の下限値は、50重量%以上がより好ましく、70重量%以上がさらに好ましく、90重量%以上が特に好ましい。
 重合体粒子(B)を形成するための組成物における単量体(c)の含有量は、当該組成物100重量%に対して、0~40重量%である。単量体(c)の前記含有量が、40重量%以下である場合、タイヤ用ゴム組成物2におけるジエン系ゴム(A)と重合体粒子(B)との親和性が十分なものとなる。その結果、タイヤ用ゴム組成物2中での重合体粒子(B)の分散性が向上する。単量体(c)の前記含有量の下限値は、5重量%以上が好ましく、8重量%以上がより好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましく、20重量%以上がよりさらに好ましく、22重量%以上が特に好ましい。単量体(b)の前記含有量の上限値は、35重量%以下が好ましく、33重量%以下がより好ましく、30重量%以下がさらに好ましく、28重量%以下が特に好ましい。
 重合体粒子(B)は、単層から構成される重合体粒子であってもよいし、互いに単量体組成が異なる2層以上から構成される重合体粒子であってもよい。重合体粒子(B)が2層以上から構成される重合体粒子である場合、重合体粒子(B)全体として、重合体粒子(B)を形成するための組成物において、前述した各単量体の含有量の要件を満足すればよい。本発明の他の一実施形態では、製造の容易さなどの観点から、重合体粒子(B)は単層から構成される重合体粒子であることが好ましい。
 (ガラス転移温度)
 重合体粒子(B)のガラス転移温度は-40℃~40℃である。重合体粒子(B)が前記構成である場合、重合体粒子(B)は適度な柔軟性を有するか、または重合体粒子(B)は適度な柔軟性を有する成分(例えば層)を含み得る。その結果、タイヤ用ゴム組成物2は、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れた成形体を提供できる。重合体粒子(B)が2層以上から構成される重合体粒子である場合、そのうちの少なくとも1層を形成する重合体のガラス転移温度が-40℃~40℃であることが好ましく、当該層は重合体粒子(B)の内部に存在する(最外層ではない)ことが特に好ましい。
 重合体粒子(B)のガラス転移温度が-40℃以上である場合、得られるタイヤ用ゴム組成物2は、ウェットグリップ性に優れた成形体を提供できる。重合体粒子(B)のガラス転移温度が40℃以下である場合、重合体粒子(B)のゴム的弾性能が良好となり、当該重合体粒子(B)が硬くなりすぎない。その結果、タイヤ用ゴム組成物2は、ウェットグリップ性、および転がり抵抗性が良好な成形体を提供できる。なお、転がり抵抗性は、低いほど好ましい。それ故に、転がり抵抗性が良好であるとは、低転がり抵抗性に優れることを意図する。重合体粒子(B)のガラス転移温度の下限値は、-30℃以上がより好ましく、-20℃以上がさらに好ましく、-10℃以上が特に好ましい。重合体粒子(B)のガラス転移温度の上限値は、30℃以下がより好ましく、30℃未満がさらに好ましく、20℃以下がよりさらに好ましく、10℃以下が特に好ましい。特に重合体粒子(B)のガラス転移温度が0℃付近にある場合、ウェットグリップ性の大幅な向上を実現することができる。
 重合体粒子(B)のガラス転移温度は、-40℃以上、30℃未満であることが好ましい。重合体粒子(B)が前記構成である場合、重合体粒子(B)のガラス転移温度が30℃以上である場合と比較し、重合体粒子(B)はより適度な柔軟性を有するか、または重合体粒子(B)はより適度な柔軟性を有する成分(例えば層)を含み得る。その結果、タイヤ用ゴム組成物2は、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、により優れた成形体を提供できる。重合体粒子(B)が2層以上から構成される重合体粒子である場合、そのうちの少なくとも1層を形成する重合体のガラス転移温度が-40℃以上、30℃未満であることが好ましく、当該層は重合体粒子(B)の内部に存在する(最外層ではない)ことが特に好ましい。
 重合体粒子(B)のガラス転移温度は、重合体粒子(B)を構成する組成物に含まれる単量体(a)および単量体(b)、並びに任意で単量体(c)および単量体(d)の各含有量を調整することにより、制御することができる。例えば、単量体(a)の多くはガラス転移温度がマイナス領域(0℃未満の温度範囲)にあるが、単量体(a)のうちメタクリル酸メチルはガラス転移温度がプラス領域(0℃超の温度範囲)にある。また、単量体(b)は、プラス領域にあり、単量体(c)のうち、芳香族モノアルケニル単量体であるスチレンはガラス転移温度がプラス領域にあり、単量体(d)はガラス転移温度がマイナス領域にある。従って、これらの単量体を適切な比率で共重合することにより、ガラス転移温度-40℃~40℃である重合体粒子(B)を得ることができる。このような態様によると、ジエン系ゴム(A)と重合体粒子(B)とを混合してタイヤ用ゴム組成物2とした場合に、相分離構造が明確になる。そのため、重合体粒子(B)のガラス転移温度がタイヤ用ゴム組成物2の物性に反映されやすくなるという利点がある。
 重合体粒子(B)のガラス転移温度は、例えば、重合体粒子(B)のみをシート状に成形して作製したシートを試料として用い、動的粘弾性測定装置を使用して、JIS K-6394に記載の方法に基づき測定することができる。具体的な測定方法は、後述する実施例に記載する。また、以下の手順によってタイヤ用ゴム組成物2中の重合体粒子(B)のガラス転移温度を測定することもできる:(1)タイヤ用ゴム組成物2とメチルエチルケトンとを混合する;(2)当該混合物から、メチルエチルケトンに対して不溶である成分のみを取り出す;(3)当該成分をシート状に成形して作製したシートを試料として用い、動的粘弾性測定装置を使用して、JIS K-6394に記載の方法に基づき測定する。
 (体積平均粒子径)
 重合体粒子(B)の体積平均粒子径は0.01μm以上10μm以下であることが好ましい。本明細書において、重合体粒子(B)の体積平均粒子径は、重合体粒子(B)の一次粒子の体積基準の粒子径とする。重合体粒子(B)の一次粒子とは、重合体粒子(B)そのものであり、それ以上分離できない重合体粒子(B)を指す。重合体粒子(B)の体積平均粒子径が0.01μm以上である場合、かかる重合体粒子(B)を製造するときの重合による発熱は少なく、また、タイヤ用ゴム組成物2における重合体粒子(B)の分散性が良好になる。重合体粒子(B)の体積平均粒子径が10μm以下である場合、かかる重合体粒子(B)を製造するときの重合は比較的短時間で完了するため、生産性が良好である。
 重合体粒子(B)の体積平均粒子径の下限値は、例えば、0.02μm以上、0.03μm以上、0.04μm以上、0.05μm以上、0.06μm以上、0.07μm以上、0.08μm以上、0.09μm以上、0.10μm以上、0.11μm以上、0.12μm以上、0.13μm以上、0.14μm以上、または、0.15μm以上が好ましい。重合体粒子(B)の体積平均粒子径の上限値は、10μm以下、9μm以下、8μm以下、7μm以下、6μm以下、5μm以下、4μm以下、3μm以下、2μm以下、1μm以下、0.5μm以下、0.3μm以下、または0.2μm以下が好ましい。
 なお、重合体粒子(B)の体積平均粒子径は、例えば重合体粒子(B)が水性溶媒(例えば水)中に分散してなるラテックス(以下、重合体粒子ラテックスとも称する。)を試料として用い、例えば日機装株式会社製のNanotrac Waveを用いて測定することができる。具体的な測定方法は、後述する実施例に記載する。また、成形体(例えばタイヤ)中の重合体粒子(B)の体積平均粒子径は、例えば、成形体を切断し、切断面を電子顕微鏡などを用いて撮像し、得られた撮像データ(撮像画像)を用いて測定することができる。
 (重合体粒子(B)の製造方法)
 重合体粒子(B)の製造方法は特に制限されず、周知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などにより製造することができる。この中でも、粒子の大きさおよび粒子径の均一性の観点から、乳化重合による製造方法が好適である。
 乳化重合は、具体的には、攪拌機を備えた反応容器に、水、各単量体、ラジカル重合開始剤、乳化剤、さらに必要に応じて連鎖移動剤を加え、加熱攪拌することで実施することができる。重合体粒子(B)を乳化重合により製造する場合には、製造に使用する全ての単量体を、一度の重合反応で重合してもよく、何度かの重合反応に分けて重合してもよい。乳化重合を、何度かの重合反応に分けて重合する場合、当該乳化重合は多段乳化重合と称される。多段乳化重合では、重合反応の回数に依存して、2層以上から構成される重合体粒子(B)が得られる。多段乳化重合を行う場合、各重合段階において、単量体の転化率(単量体の消費率とも称する。)が少なくとも95%以上であることが好ましい。本発明の他の一実施形態では、製造の容易さなどの観点から、重合体粒子(B)は、一度の重合反応からなる乳化重合により製造されることが好ましい。
 ラジカル重合開始剤としては特に限定されず、公知のものを使用することができるが、例えば、2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの熱分解型重合開始剤を用いることができる。また、前記ラジカル重合開始剤としては、(i)(a)t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキサイドなどの有機過酸化物、および/または(b)過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物といった過酸化物と、(ii)必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、更に必要に応じてエチレンジアミン四酢酸二ナトリウム、ピロリン酸ナトリウムなどのキレート剤と、を併用したレドックス系触媒などを用いることもできる。ラジカル重合開始剤は、1種類のみを用いてもよいし、2種以上を併用してもよい。
 連鎖移動剤としては、tert-ドデシルメルカプタン、n-ドデシルメルカプタンなどのメルカプタン類、四塩化炭素、チオグリコール類、ジテルペン、タ-ピノーレンおよびγ-テルピネン類などを挙げることができる。連鎖移動剤は任意で用いることができる。
 乳化重合において用いられる乳化剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などが挙げられる。また、ふっ素系の界面活性剤を使用することもできる。
 懸濁重合では懸濁安定剤を用いることができる。懸濁安定剤としては、ポリビニルアルコール、ポリアクリル酸ナトリウムおよびヒドロキシエチルセルロースなどが挙げられるが、これらに限定されない。
 乳化重合または懸濁重合において、各々の単量体およびラジカル重合開始剤などは、反応容器に全量を投入してから重合を開始してもよいし、反応中に連続的または間欠的に添加しながら重合を行なってもよい。重合は、酸素を除去した反応器を用いて行うことが好ましく、0℃以上80℃以下で行うことが好ましい。反応途中(重合途中)で温度または攪拌などの操作条件などを適宜調節することができる。
 乳化重合または懸濁重合により、重合体粒子ラテックスが得られる。重合体粒子ラテックス中では、重合体粒子(B)は一次粒子の状態で分散している。当該重合体粒子ラテックスに対し、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化アルミニウム、酢酸カルシウムなどの二価以上の金属塩を添加して重合体粒子(B)を凝固させた後、脱水、洗浄、および乾燥操作を行うことで、重合体粒子(B)を水性溶媒から分離することができる。また、前記重合体粒子ラテックスを噴霧凝固(スプレードライ)することによっても重合体粒子(B)を水性溶媒から分離することができる。このようにして水性溶媒から重合体粒子(B)を分離することにより、重合体粒子(B)の一次粒子が凝集してなる二次粒子または凝集塊を得ることができる。重合体粒子(B)の二次粒子または凝集塊の形状としては、粉体、顆粒、ペレット状、クラム状(小片状)、ベールなどが挙げられる。取り扱い易いことから、重合体粒子(B)は粉体またはクラム状の形状を有する二次粒子として得られることが好ましい。
 重合体粒子(B)が粉体の形状を有する場合、当該重合体粒子(B)の粉体の体積平均粒子径は、取り扱い易く、分散性に優れることから、10μm以上1000μm以下であることが好ましい。重合体粒子(B)の粉体の体積平均粒子径の下限値は、例えば、20μm以上、30μm以上、40μm以上、50μm以上、60μm以上、70μm以上、80μm以上、90μm以上、100μm以上、110μm以上、120μm以上、130μm以上、140μm以上、または、150μm以上が好ましい。重合体粒子(B)の粉体の体積平均粒子径の上限値は800μm以下がより好ましく、700μm以下がさらに好ましく、600μm以下が特に好ましい。さらに、前記粉体全体において、粒子径が700μm以上の粉体が占める割合(体積%)は、20%以下であることが好ましく、10%以下であることより好ましく、5%以下であることがさらに好ましい。また、前記粉体全体において、粒子径が1000μm以上の粉体が占める割合(体積%)は、20%以下であることが好ましく、10%以下であることより好ましく、5%以下であることがさらに好ましい。これら重合体粒子(B)の粉体の粒子径は、例えば日機装株式会社製のマイクロトラックMT3000IIを使用して光散乱法に基づき測定することができる。
 タイヤ用ゴム組成物2は、タイヤ用ゴム組成物1と同様に、さらに、シリカおよびシランカップリング剤、並びにカーボンブラックを含むことが好ましい。タイヤ用ゴム組成物2は、タイヤ用ゴム組成物1と同様に、ゴム分野で一般的に使用されている、加硫剤、加硫促進剤、加硫活性化剤、充填剤、可塑剤、老化防止剤などのその他添加剤を必要に応じて含んでいてもよい。タイヤ用ゴム組成物2における、シリカおよびシランカップリング剤、カーボンブラック、並びにその他添加剤については、それぞれ、好ましい態様を含み、[実施形態1]の項に記載のそれらの態様と同じであってもよい。
 〔タイヤ用ゴム組成物2の製造方法〕
 本発明の他の一実施形態に係るタイヤ用ゴム組成物2は、従来公知の方法に従って、例えば各成分を混練する工程などにより製造することができる。タイヤ用ゴム組成物2の製造方法は、特に限定されない。以下、加硫剤と加硫促進剤を含有するタイヤ用ゴム組成物2を例に挙げて、タイヤ用ゴム組成物2の製造方法の一例を説明する。まず、ジエン系ゴム(A)および重合体粒子(B)、並びに加硫剤と加硫促進剤を除くその他の成分(添加剤など)を、タンブラー、タンブラー、ヘンシェルミキサー、リボブレンダーなどを用いて混合し、混合物を得る。その後、押出機、バンパリー、ロールなどを用いて、当該混合物を混練し、混練物を得る。このときの混練温度は通常50℃以上200℃以下である。混練温度の下限値は80℃以上が好ましく、上限値は190℃以下が好ましい。混練時間は通常30秒以上30分以下である。混練時間の下限値は1分以上が好ましい。次いで、得られた混練物に加硫剤と加硫促進剤を加えて、さらに、得られた混合物を上述した装置を用いて混練する。このときの混練温度は、加硫剤の反応を抑制することを目的として、70℃以上120℃以下で行なうことが好ましい。以上の操作により、加硫剤と加硫促進剤を含有するタイヤ用ゴム組成物2が得られる。
 タイヤ用ゴム組成物2は、当該タイヤ用ゴム組成物を架橋反応させることにより、成形体を得ることができる。すなわち、本発明の他の一実施形態は、上述した構成を有するタイヤ用ゴム組成物2を成形してなる成形体(以下、成形体M2とも称する。)を提供する。タイヤ用ゴム組成物2が提供し得る成形体M2は、タイヤに限定されない。
 成形体M2の製造方法、すなわちタイヤ用ゴム組成物2の架橋方法としては、成形体M2の形状および大きさなどを考慮して適宜選択することができるが、一般にはプレス機または射出成型機を使用する方法が挙げられる。架橋反応時の温度および時間は特に限定されない。架橋反応時の温度の下限値は、好ましくは120℃以上、より好ましくは140℃以上である。架橋反応時の温度の上限値は、好ましくは200℃以下、より好ましくは180℃以下である。架橋反応の時間は、通常1分以上120分以下程度である。
 成形体M2は、例えば、タイヤ、ケーブル被覆剤、ホース、トランスミッションベルト、コンベアベルト、ロールカバー、靴本体または靴底、シール用リング、防振ゴムなどとして使用することができる。成形体M2は、特にタイヤトレッドとして好適に使用することができる。タイヤトレッドが多層構造を有する場合、その最外層を、成形体M2により構成することが好ましい。
 成形体M2は、上述した構成を有するタイヤ用ゴム組成物2から作製されるため、以下の(i)および(ii)を満たし得る:(i)0℃tanδ>100、および(ii)0℃tanδ/60℃tanδ>1。ここで、前記tanδは、成形体M2についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)の値であり、かつ、前記重合体粒子(B)を含まない成形体M2の、0℃tanδおよび60℃tanδをともに100としたときの値である。
 成形体M2の0℃tanδは、具体的には成形体M2の0℃における動的粘弾性を意味する。0℃tanδは、ウェットグリップ性を表す指標となる。成形体M2は、0℃tanδの値が大きいほど、ウェットグリップ性に優れることを意味する。成形体M2は、重合体粒子(B)を含むことにより、重合体粒子(B)を含まない成形体と比較して、ウェットグリップ性に優れる。成形体M2では、ウェットグリップ性により優れることから、0℃tanδ>105であることが好ましく、0℃tanδ>110であることがより好ましく、0℃tanδ>115であることがさらに好ましい。
 成形体M2の60℃tanδは、具体的には成形体M2の60℃における動的粘弾性を意味する。60℃tanδは、転がり抵抗性を表す指標となる。成形体M2は、60℃tanδの値が小さいほど、転がり抵抗が小さい、すなわち低転がり抵抗性に優れることを意味する。低転がり抵抗性に優れる成形体M2をタイヤトレッドとして利用した場合、得られるタイヤを有する乗り物は、低燃費を達成できる。重合体粒子(B)を含む成形体M2は、重合体粒子(B)を含まない成形体と比較して転がり抵抗が大きくなりすぎないことが好ましく、60℃tanδ<130であることが好ましい。成形体M2では、所望の低転がり抵抗性を有することから、60℃tanδ<125であることがより好ましく、60℃tanδ<120であることがさらに好ましく、60℃tanδ<115であることが特に好ましい。
 重合体粒子(B)を含む成形体M2は、重合体粒子(B)を含まない成形体と比較して、ウェットグリップ性に優れ、かつ転がり抵抗性が大きすぎない。換言すれば、成形体M2は、ウェットグリップ性および低転がり抵抗性のバランスに優れるものである。成形体M2では、ウェットグリップ性および低転がり抵抗性のバランスにより優れることから、0℃tanδ/60℃tanδ>1であることが好ましく、0℃tanδ/60℃tanδ>1.03であることが好ましく、0℃tanδ/60℃tanδ>1.05であることがより好ましく、0℃tanδ/60℃tanδ>1.08であることがさらに好ましく、0℃tanδ/60℃tanδ>1.10であることが特に好ましい。
 成形体M2は、-5℃tanδ、-10℃tanδ、-15℃tanδおよび-20℃tanδの各々値が大きいほど好ましい。
 -15℃tanδおよび/または-20℃tanδの値が大きい成形体M2は、寒冷地において、ウェットグリップ性により優れるタイヤを提供できる。本発明の一実施形態におけるタイヤ用ゴム組成物2は、寒冷地用のタイヤ用ゴム組成物2であってもよい。
 〔タイヤ2〕
 本発明の他の一実施形態に係るタイヤは、〔タイヤ用ゴム組成物2〕の項に記載したタイヤ用ゴム組成物2を用いて作製される。
 本明細書中では、「本発明の他の一実施形態に係るタイヤ」を、単に「タイヤ2」と称する場合もある。
 本発明の他の一実施形態に係るタイヤ2は、前記構成を有することにより、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れたものである。より具体的には、本発明の他の一実施形態に係るタイヤ2は、成形体が満たし得る前記(i)および(ii)を満たすものである。
 本発明の一実施形態に係るタイヤ2に関するその他の態様は、好ましい態様を含み、[実施形態1]の〔タイヤ1〕の項で説明したタイヤ1の態様と、同じであってもよい。
 本発明の一実施形態におけるタイヤ2は、寒冷地用のタイヤ2であってもよい。
 〔成形体2〕
 本発明の他の一実施形態に係る成形体は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体からなる重合体粒子を含む成形体でもあり、以下を満たすものであってもよい:0℃tanδ/60℃tanδ>1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)の値であり、かつ、前記重合体粒子を含まない成形体の、0℃tanδおよび60℃tanδをともに100としたときの値である。
 本明細書中では、「本発明の他の一実施形態に係る成形体」を、単に「成形体2」と称する場合もある。
 アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体の態様としては、〔タイヤ用ゴム組成物2〕の項の単量体(a)の態様と同様であってもよく、単量体(a)の記載を適宜援用できる。前記重合体粒子は、〔タイヤ用ゴム組成物2〕の項の重合体粒子(B)の態様と同様であってもよく、重合体粒子(B)の記載を適宜援用できる。
 前記重合体粒子は、〔タイヤ用ゴム組成物2〕の項で説明した重合体粒子(B)であることが好ましい。換言すれば、前記重合体粒子は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体に加えて、ラジカル重合性反応基を2以上有する単量体を含む組成物を重合させてなる共重合体であることが好ましい。また、前記重合体粒子は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体、およびラジカル重合性反応基を2以上有する単量体に加えて、任意で、これらの単量体と共重合可能な単量体および/または共役ジエン単量体を含む組成物を重合させてなる共重合体であってもよい。
 本発明の他の一実施形態に係る成形体2は、重合体粒子に加えて、ジエン系ゴムを含むことが好ましい。本発明の他の一実施形態に係る成形体2は、例えば、重合体粒子に加えて、スチレン-ブタジエン共重合体ゴム80重量部およびブタジエンゴム20重量部をさらに含んでいてもよい。本発明の他の一実施形態に係る成形体2は、〔タイヤ用ゴム組成物2〕の項に記載のタイヤ用ゴム組成物2を架橋反応させてなる、成形体であることが好ましい。
 本発明の他の一実施形態に係る成形体2では、ウェットグリップ性および低転がり抵抗性のバランスにより優れることから、0℃tanδ/60℃tanδ>1であることが好ましく、0℃tanδ/60℃tanδ>1.03であることが好ましく、0℃tanδ/60℃tanδ>1.05であることがより好ましく、0℃tanδ/60℃tanδ>1.08であることがさらに好ましく、0℃tanδ/60℃tanδ>1.10であることが特に好ましい。
 本発明の他の一実施形態に係る成形体2では、ウェットグリップ性に優れることから、0℃tanδ>100であることが好ましく、0℃tanδ>105であることがより好ましく、0℃tanδ>110であることがさらに好ましく、0℃tanδ>115であることが特に好ましい。
 成形体2は、-5℃tanδ、-10℃tanδ、-15℃tanδおよび-20℃tanδの各々値が大きいほど好ましい。
 本発明の一実施形態における成形体2は、寒冷地用の成形体2であってもよい。
 本発明の一実施形態は、以下の様な構成であってもよい。
 〔1〕ジエン系ゴム(A)100重量部と多層重合体粒子(B)0.1重量部~50重量部とを含有し、前記多層重合体粒子(B)は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体(xa)30重量%~100重量%、および前記単量体(xa)と共重合可能な単量体(xb)0重量%~70重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)60重量%~100重量%、ラジカル重合性反応基を2以上有する単量体(yb)0重量%~30重量%、並びに、前記単量体(ya)および前記単量体(yb)と共重合可能な単量体(yc)0重量%~40重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記多層重合体粒子(B)は、ガラス転移温度が-40℃以上、30℃未満である層を少なくとも一層含む、タイヤ用ゴム組成物。
 〔2〕前記多層重合体粒子(B)は、最外層の少なくとも一部が前記重合体(X)の層である、〔1〕に記載のタイヤ用ゴム組成物。
 〔3〕前記多層重合体粒子(B)における前記重合体(Y)の層の含有量は、前記重合体(X)の層100重量部に対して、100重量部~10,000重量部である、〔1〕または〔2〕に記載のタイヤ用ゴム組成物。
 〔4〕前記多層重合体粒子(B)の体積平均粒子径は0.01μm以上10μm以下である、〔1〕~〔3〕のいずれか1つに記載のタイヤ用ゴム組成物。
 〔5〕前記ジエン系ゴム(A)は、ラジカル重合性反応基を2以上有する一種以上の単量体(aa)50~100重量%、および前記単量体(aa)と共重合可能な単量体(ab)0~50重量%の合計100重量%からなる組成物を重合させてなる重合体である、〔1〕~〔4〕のいずれか1つに記載のタイヤ用ゴム組成物。
 〔6〕ジエン系ゴム(A)100重量部と重合体粒子(B)0.1重量部~50重量部とを含有し、前記重合体粒子(B)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(a)50~99.9重量%、ラジカル重合性反応基を2以上有する単量体(b)0.1~50重量%、並びに、前記単量体(a)および前記単量体(b)と共重合可能な単量体(c)0~40重量%の合計100重量%からなる組成物を重合させてなる共重合体であり、前記重合体粒子(B)のガラス転移温度は-40℃以上、30℃未満である、タイヤ用ゴム組成物。
 〔7〕〔1〕~〔6〕のいずれか1つに記載のタイヤ用ゴム組成物を用いて作製されたタイヤ。
 〔8〕多層重合体粒子を含む成形体であり、前記多層重合体粒子は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体を含む組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体であり、以下を満たす、成形体:0℃tanδ/値Z≧1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)の値であり、かつ、前記多層重合体粒子を含まない成形体の0℃tanδを100としたときの値であり、また、前記値Zは、前記成形体についてJIS K-6264-2のB法に準じて測定された、摩耗量の値であり、かつ、前記多層重合体粒子を含まない成形体の摩耗量を100としたときの値である。
 〔9〕アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体からなる重合体粒子を含む成形体であり、以下を満たす、成形体:0℃tanδ/60℃tanδ>1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)の値であり、かつ、前記重合体粒子を含まない成形体の、0℃tanδおよび60℃tanδをともに100としたときの値である。
 本発明の一実施形態は、以下の様な構成であってもよい。
 〔1〕ジエン系ゴム(A)100重量部と多層重合体粒子(B)0.1重量部~50重量部とを含有し、前記多層重合体粒子(B)は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体(xa)30重量%~100重量%、および前記単量体(xa)と共重合可能な単量体(xb)0重量%~70重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)60重量%~100重量%、ラジカル重合性反応基を2以上有する単量体(yb)0重量%~30重量%、並びに、前記単量体(ya)および前記単量体(yb)と共重合可能な単量体(yc)0重量%~40重量%の合計100重量%からなる組成物を重合させてなる重合体であり、前記多層重合体粒子(B)は、ガラス転移温度が-40℃~40℃である層を少なくとも一層含む、タイヤ用ゴム組成物。
 〔2〕前記多層重合体粒子(B)は、最外層の少なくとも一部が前記重合体(X)の層である、〔1〕に記載のタイヤ用ゴム組成物。
 〔3〕前記多層重合体粒子(B)における前記重合体(Y)の層の含有量は、前記重合体(X)の層100重量部に対して、100重量部~10,000重量部である、〔1〕または〔2〕に記載のタイヤ用ゴム組成物。
 〔4〕前記多層重合体粒子(B)の体積平均粒子径は0.01μm以上10μm以下である、〔1〕~〔3〕のいずれか1つに記載のタイヤ用ゴム組成物。
 〔5〕前記ジエン系ゴム(A)は、ラジカル重合性反応基を2以上有する一種以上の単量体(aa)50~100重量%、および前記単量体(aa)と共重合可能な単量体(ab)0~50重量%の合計100重量%からなる組成物を重合させてなる重合体である、〔1〕~〔4〕のいずれか1つに記載のタイヤ用ゴム組成物。
 〔6〕〔1〕~〔5〕のいずれか1つに記載のタイヤ用ゴム組成物を用いて作製されたタイヤ。
 〔7〕多層重合体粒子を含む成形体であり、前記多層重合体粒子は、重合体(X)の層と重合体(Y)の層とを含み、前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体を含む組成物を重合させてなる重合体であり、前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体であり、以下を満たす、成形体:0℃tanδ/値Z>1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)の値であり、かつ、前記多層重合体粒子を含まない成形体の0℃tanδを100としたときの値であり、また、前記値Zは、前記成形体についてJIS K-6264-2のB法に準じて測定された、摩耗量の値であり、かつ、前記多層重合体粒子を含まない成形体の摩耗量を100としたときの値である。
 本発明の一実施形態は、以下の様な構成であってもよい。
 〔1〕ジエン系ゴム(A)100重量部と重合体粒子(B)0.1~50重量部とを含有し、前記重合体粒子(B)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(a)50~99.9重量%、ラジカル重合性反応基を2以上有する単量体(b)0.1~50重量%、並びに、前記単量体(a)および前記単量体(b)と共重合可能な単量体(c)0~40重量%の合計100重量%からなる組成物を重合させてなる共重合体であり、前記重合体粒子(B)のガラス転移温度は-40~40℃である、タイヤ用ゴム組成物。
 〔2〕前記単量体(c)が、前記単量体(c)100重量%中、芳香族モノアルケニル単量体を30~100重量%含む、〔1〕に記載のタイヤ用ゴム組成物。
 〔3〕前記重合体粒子(B)の体積平均粒子径は0.01~10μmである、〔1〕または〔2〕に記載のタイヤ用ゴム組成物。
 〔4〕前記ジエン系ゴムは、天然ゴム、イソプレンゴム、ブタジエンゴム、およびスチレン-ブタジエン共重合ゴムからなる群から選択される少なくとも1種である、〔1〕~〔3〕のいずれか1つに記載のタイヤ用ゴム組成物。
 〔5〕〔1〕~〔4〕のいずれか1つに記載のタイヤ用ゴム組成物を用いて作製されたタイヤ。
 〔6〕アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体からなる重合体粒子を含む成形体であり、以下を満たす、成形体:0℃tanδ/60℃tanδ>1、ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)の値であり、かつ、前記重合体粒子を含まない成形体の、0℃tanδおよび60℃tanδをともに100としたときの値である。
 〔実施例A〕
 以下、本発明の一実施形態を実施例Aにて具体的に説明するが、本発明はこれら実施例Aに限定されるものではない。
 製造例Aおよび比較製造例A、並びに、実施例Aおよび比較例A中の各種測定および評価は、次の条件および方法により行った。
 以下の実施例Aの記載において、「多層重合体粒子」および「単層重合体粒子」をまとめて、「重合体粒子」と総称する。
 (重合体粒子の体積平均粒子径の測定方法)
 重合体粒子の体積平均粒子径の測定は、各製造例Aおよび比較製造例Aにおいて、塩化カルシウム水溶液を添加して重合体粒子を凝固させる前の、重合体粒子ラテックスを試料として用いて行った。測定には日機装株式会社製のNanotrac Waveを用いた。
 (重合体粒子のガラス転移温度の測定方法)
 各製造例Aまたは各比較製造例Aで得られた重合体粒子を190℃で10分間圧縮成形することにより、重合体粒子からなるシート(重合体粒子成形体)を得た。当該シートから、8mm×6mm×2mmの試験片を切り出し、当該試験片を用いて、重合体粒子のガラス転移温度を測定した。具体的には、JIS K-6394(加硫ゴムおよび熱可塑性ゴムの動的性質試験方法)に記載の方法に準じて、動的粘弾性測定装置を用いて行った。当該装置としては、DVA-200(アイティー計測制御株式会社製)を使用した。測定条件は以下の通りである:周波数;10Hz、歪み;0.1%、昇温速度;4℃/min、温度範囲;-50℃~120℃、変形モード;せん断モード。結果を表4~6に示す。
 (動的粘弾性)
 各実施例Aおよび比較例Aで得られたシート(タイヤ用ゴム組成物の成形体)から、8mm×6mm×2mmの試験片を切り出した。前記試験片について、JIS K-6394(加硫ゴムおよび熱可塑性ゴムの動的性質試験方法)に記載の方法に準じて、0℃におけるtanδ(0℃tanδ)、-5℃におけるtanδ(0℃tanδ)、-10℃におけるtanδ(0℃tanδ)、-15℃におけるtanδ(0℃tanδ)、-20℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)を測定した。測定装置としては、動的粘弾性測定装置DVA-200(アイティー計測制御株式会社製)を使用した。測定条件は以下の通りである:周波数;10Hz、歪み;0.1%、昇温速度;4℃/min、変形モード;せん断モード。結果を表4~6に示す。
 表1では、比較例A1で得られた0℃tanδの数値を指標の100とし、実施例A1~A11および比較例A2~A5で得られた0℃tanδの数値を指数に換算して示した。
 表1では、比較例A1で得られた-5℃tanδの数値を指標の100とし、実施例A1~A11および比較例A2~A5で得られた-5℃tanδの数値を指数に換算して示した。
 表1では、比較例A1で得られた-10℃tanδの数値を指標の100とし、実施例A1~A11および比較例A2~A5で得られた-10℃tanδの数値を指数に換算して示した。
 表1では、比較例A1で得られた-15℃tanδの数値を指標の100とし、実施例A1~A11および比較例A2~A5で得られた-15℃tanδの数値を指数に換算して示した。
 表1では、比較例A1で得られた-20℃tanδの数値を指標の100とし、実施例A1~A11および比較例A2~A5で得られた-20℃tanδの数値を指数に換算して示した。
 表1では、比較例A1で得られた60℃tanδの数値を指標の100とし、実施例A1~A11および比較例A2~A5で得られた60℃tanδの数値を指数に換算して示した。
 (ウェットグリップ性および低転がり抵抗性のバランス)
 各実施例Aおよび比較例Aについて、0℃tanδを60℃tanδで除し、その商からウェットグリップ性および低転がり抵抗性のバランスを評価した。結果を表4~6に示す。
 (耐摩耗性)
 各実施例Aおよび各比較例Aで得られたシート(成形体)について、アクロン摩耗試験機AB203(株式会社上島製作所製)を用いて、JIS K-6264-2のB方法に準拠して、摩耗試験を実施した。摩耗試験の条件は以下の通りである:回転数 75rpm(試験片);負荷荷重 27.0N;角度 15度;予備試験 500回;本試験 500回。摩耗試験前後でシートの重量を測定し、摩耗試験前のシートの重量から摩耗試験後のシートの重量を引き、その差を摩耗量(値Z)とした。結果を表4~6に示す。
 表4~6では、比較例A1で得られた摩耗量(値Z)を指標の100とし、実施例A1~A11および比較例A2~A5で得られた摩耗量を指数に換算して示した。
 (ウェットグリップ性および耐摩耗性のバランス)
 0℃tanδを値Zで除し、その商からウェットグリップ性および耐摩耗性のバランスを評価した。結果を表4~6に示す。
 (製造例A1)多層重合体粒子(B1)の製造
 (1)重合体(Y1)ラテックスの製造
 脱イオン水およびポリオキシエチレンラウリルエーテルリン酸ナトリウム、並びに、アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物を撹拌翼付き耐圧重合器に仕込んだ。次に、それら原料を撹拌しながら耐圧重合器内の温度を昇温し、耐圧重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、170分後に重合を終了した。重合中、アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物を任意の時宜で耐圧重合器内に添加した。アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルの各々の製造例A1における合計使用量は、アクリル酸ブチル74.60重量部、メタクリル酸メチル24.90重量部およびメタクリル酸アリル0.50重量部であった。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により、水中に重合体(Y1)が分散してなる重合体(Y1)ラテックスを得た。得られた重合体(Y1)ラテックス中の重合体(Y1)の体積平均粒子径を測定したところ、重合体(Y1)の体積平均粒子径は103nmであった。
 (2)重合体(X1)の層の形成および多層重合体粒子(B1)の製造
 次に、重合体(Y1)ラテックスを固形分50.00重量部、1,3-ブタジエン40.00重量部およびスチレン10.00重量部を撹拌翼付き耐圧重合器に仕込み、重合を開始した。重合反応開始から、10時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびパラメンタンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により重合体(X1)の層を形成することができ、その結果、内側に重合体(Y1)の層を、および外側に(最外層に)重合体(X1)の層を有する多層重合体粒子(B1)が得られた。具体的には、水中に多層重合体粒子(B1)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B1)の体積平均粒子径を測定したところ、多層重合体粒子(B1)の体積平均粒子径は110nmであった。
 次に、脱イオン水、ジラウリルチオジプロピオネート、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、および半硬化牛脂脂肪酸カリウムからなる混合物をホモジナイザーにより乳化し、乳化物を作製した。その後、得られた多層重合体粒子ラテックスに当該乳化物を添加した。さらに、塩化カルシウム水溶液を前記多層重合体粒子ラテックスに添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B1)の固形物を得た。得られた多層重合体粒子(B1)のガラス転移温度を測定したところ、多層重合体粒子(B1)は、重合体(Y1)の層として、ガラス転移温度が-5℃である層を含むことが分かった。
 (製造例A2)多層重合体粒子(B2)の製造
 (1)重合体(Y2)ラテックスの製造
 製造例A1と同じ方法により、水中に重合体(Y2)が分散してなる重合体(Y2)ラテックスを得た。重合体(Y2)ラテックス中の重合体(Y2)の体積平均粒子径を測定したところ、重合体(Y2)の体積平均粒子径は98nmであった。
 (2)重合体(X2)の層の形成および多層重合体粒子(B2)の製造
 次に、重合体(Y2)ラテックスを固形分80.00重量部、1,3-ブタジエン16.00重量部およびスチレン4.00重量部を撹拌翼付き耐圧重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により重合体(X2)の層を形成することができ、その結果、内側に重合体(Y2)の層を、および外側に(最外層に)重合体(X2)の層を有する多層重合体粒子(B2)が得られた。具体的には、水中に多層重合体粒子(B2)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B2)の体積平均粒子径を測定したところ、多層重合体粒子(B2)の体積平均粒子径は101nmであった。
 その後、得られた多層重合体粒子ラテックスを用いて、製造例A1と同じ方法により、クラム状の多層重合体粒子(B2)の固形物を得た。得られた多層重合体粒子(B2)のガラス転移温度を測定したところ、多層重合体粒子(B2)は、重合体(Y2)の層として、ガラス転移温度が-4℃である層を含むことが分かった。
 (製造例A3)多層重合体粒子(B3)の製造
 (1)重合体(Y3)ラテックスの製造
 用いた重合器を撹拌翼付き耐圧重合器から撹拌翼付きガラス製重合器に変更した以外は、製造例A1と同様の方法により、水中に重合体(Y3)が分散してなる重合体(Y3)ラテックスを得た。重合体(Y3)ラテックス中の重合体(Y3)の体積平均粒子径を測定したところ、重合体(Y3)の体積平均粒子径は85nmであった。
 (2)重合体(X3)の層の形成および多層重合体粒子(B3)の製造
 次に、重合体(Y3)ラテックスを固形分90.00重量部、メタクリル酸アリル5.00重量部およびアクリル酸ブチル5.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、70分後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X3)の層を形成することができ、その結果、内側に重合体(Y3)の層を、および外側に(最外層に)重合体(X3)の層を有する多層重合体粒子(B3)が得られた。具体的には、水中に多層重合体粒子(B3)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B3)の体積平均粒子径を測定したところ、多層重合体粒子(B3)の体積平均粒子径は97nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B3)の固形分を得た。得られた多層重合体粒子(B3)のガラス転移温度を測定したところ、多層重合体粒子(B3)は、重合体(Y3)の層として、ガラス転移温度が4℃である層を含むことが分かった。
 (製造例A4)多層重合体粒子(B4)の製造
 (1)重合体(Y4)ラテックスの製造
 用いたアクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルの各々の合計使用量を、アクリル酸ブチル74.85重量部、メタクリル酸メチル24.95重量部およびメタクリル酸アリル0.20重量部に変更した以外は、製造例A1と同様の方法により、水中に重合体(Y4)が分散してなる重合体(Y4)ラテックスを得た。重合体(Y4)ラテックス中の重合体(Y4)の体積平均粒子径を測定したところ、重合体(Y4)の体積平均粒子径は105nmであった。
 (2)重合体(X4)の層の形成および多層重合体粒子(B4)の製造
 次に、重合体(Y4)ラテックスを固形分64重量部、1,3-ブタジエン23重量部およびスチレン13重量部を撹拌翼付き耐圧重合器に仕込み、重合を開始した。重合反応開始から、70分後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびパラメンタンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により重合体(X4)の層を形成することができ、その結果、内側に重合体(Y4)の層を、および外側に(最外層に)重合体(X4)の層を有する多層重合体粒子(B4)が得られた。具体的には、水中に多層重合体粒子(B4)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B4)の体積平均粒子径を測定したところ、多層重合体粒子(B4)の体積平均粒子径は108nmであった。
 その後、得られた多層重合体粒子ラテックスを用いて、製造例A1と同じ方法により、クラム状の多層重合体粒子(B4)の固形物を得た。得られた多層重合体粒子(B4)のガラス転移温度を測定したところ、多層重合体粒子(B4)は、重合体(Y4)の層として、ガラス転移温度が-5℃である層を含むことが分かった。
 (製造例A5)多層重合体粒子(B5)の製造
 (1)重合体(Y5)ラテックスの製造
 製造例A1と同じ方法により、水中に重合体(Y5)が分散してなる重合体(Y5)ラテックスを得た。重合体(Y5)ラテックス中の重合体(Y5)の体積平均粒子径を測定したところ、重合体(Y5)の体積平均粒子径は94nmであった。
 (2)重合体(X5)の層の形成および多層重合体粒子(B5)の製造
 次に、重合体(Y5)ラテックスを固形分80.00重量部および1,3-ブタジエン20.00重量部を撹拌翼付き耐圧重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により重合体(X5)の層を形成することができ、その結果、内側に重合体(Y5)の層を、および外側に(最外層に)重合体(X5)の層を有する多層重合体粒子(B5)が得られた。具体的には、水中に多層重合体粒子(B5)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B5)の体積平均粒子径を測定したところ、多層重合体粒子(B5)の体積平均粒子径は101nmであった。
 その後、得られた多層重合体粒子ラテックスを用いて、製造例A1と同じ方法により、クラム状の多層重合体粒子(B5)の固形物を得た。得られた多層重合体粒子(B5)のガラス転移温度を測定したところ、多層重合体粒子(B5)は、重合体(Y5)の層として、ガラス転移温度が-4℃である層を含むことが分かった。
 (製造例A6)多層重合体粒子(B6)の製造
 (1)重合体(Y6)ラテックスの製造
 用いた重合器を撹拌翼付き耐圧重合器から撹拌翼付きガラス製重合器に変更した以外は、製造例A1と同様の方法により、水中に重合体(Y6)が分散してなる重合体(Y6)ラテックスを得た。重合体(Y6)ラテックス中の重合体(Y6)の体積平均粒子径を測定したところ、重合体(Y6)の体積平均粒子径は130nmであった。
 (2)重合体(X6)の層の形成および多層重合体粒子(B6)の製造
 次に、重合体(Y6)ラテックスを固形分90.00重量部およびメタクリル酸アリル10.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X6)の層を形成することができ、その結果、内側に重合体(Y6)の層を、および外側に(最外層に)重合体(X6)の層を有する多層重合体粒子(B6)が得られた。具体的には、水中に多層重合体粒子(B6)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B6)の体積平均粒子径を測定したところ、多層重合体粒子(B6)の体積平均粒子径は133nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B6)の固形分を得た。得られた多層重合体粒子(B6)のガラス転移温度を測定したところ、多層重合体粒子(B6)は、重合体(Y6)の層として、ガラス転移温度が2℃である層を含むことが分かった。
 (製造例A7)多層重合体粒子(B7)の製造
 (1)重合体(Y7)ラテックスの製造
 用いた重合器を撹拌翼付き耐圧重合器から撹拌翼付きガラス製重合器に変更した以外は、製造例A1と同様の方法により、水中に重合体(Y7)が分散してなる重合体(Y7)ラテックスを得た。重合体(Y7)ラテックス中の重合体(Y7)の体積平均粒子径を測定したところ、重合体(Y7)の体積平均粒子径は130nmであった。
 (2)重合体(X7)の層の形成および多層重合体粒子(B7)の製造
 次に、重合体(Y7)ラテックスを固形分95.00重量部およびメタクリル酸アリル5.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X7)の層を形成することができ、その結果、内側に重合体(Y7)の層を、および外側に(最外層に)重合体(X7)の層を有する多層重合体粒子(B7)が得られた。具体的には、水中に多層重合体粒子(B7)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B7)の体積平均粒子径を測定したところ、多層重合体粒子(B7)の体積平均粒子径は135nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B7)の固形分を得た。得られた多層重合体粒子(B7)のガラス転移温度を測定したところ、多層重合体粒子(B7)は、重合体(Y7)の層として、ガラス転移温度が1℃である層を含むことが分かった。
 (製造例A8)多層重合体粒子(B8)の製造
 (1)重合体(Y8)ラテックスの製造
 脱イオン水およびポリオキシエチレンラウリルエーテルリン酸ナトリウム、並びに、アクリル酸ブチル、メタクリル酸アリルおよびスチレンを含む混合物を撹拌翼付きガラス製重合器に仕込んだ。次に、それら原料を撹拌しながらガラス製重合器内の温度を昇温し、ガラス製重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、170分後に重合を終了した。重合中、アクリル酸ブチル、メタクリル酸アリルおよびスチレンを含む混合物を任意の時宜でガラス製重合器内に添加した。アクリル酸ブチル、メタクリル酸アリルおよびスチレンの各々の製造例A8における合計使用量は、アクリル酸ブチル73.20重量部、メタクリル酸アリル0.50重量部およびスチレン26.30重量部であった。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により、水中に重合体(Y8)が分散してなる重合体(Y8)ラテックスを得た。得られた重合体(Y8)ラテックス中の重合体(Y8)の体積平均粒子径を測定したところ、重合体(Y8)の体積平均粒子径は120nmであった。
 (2)重合体(X8)の層の形成および多層重合体粒子(B8)の製造
 次に、重合体(Y8)ラテックスを固形分95.00重量部およびメタクリル酸アリル5.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X8)の層を形成することができ、その結果、内側に重合体(Y8)の層を、および外側に(最外層に)重合体(X8)の層を有する多層重合体粒子(B8)が得られた。具体的には、水中に多層重合体粒子(B8)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B8)の体積平均粒子径を測定したところ、多層重合体粒子(B8)の体積平均粒子径は126nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B8)の固形分を得た。得られた多層重合体粒子(B8)のガラス転移温度を測定したところ、多層重合体粒子(B8)は、重合体(Y8)の層として、ガラス転移温度が8℃である層を含むことが分かった。
 (製造例A9)多層重合体粒子(B9)の製造
 (1)重合体(Y9)ラテックスの製造
 用いたアクリル酸ブチル、メタクリル酸アリルおよびスチレンの各々の合計使用量を、アクリル酸ブチル86.60重量部、メタクリル酸アリル0.50重量部およびスチレン12.90重量部に変更した以外は、製造例A8と同様の方法により、水中に重合体(Y9)が分散してなる重合体(Y9)ラテックスを得た。重合体(Y9)ラテックス中の重合体(Y9)の体積平均粒子径を測定したところ、重合体(Y9)の体積平均粒子径は120nmであった。
 (2)重合体(X9)の層の形成および多層重合体粒子(B9)の製造
 次に、重合体(Y9)ラテックスを固形分95.00重量部およびメタクリル酸アリル5.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X9)の層を形成することができ、その結果、内側に重合体(Y9)の層を、および外側に(最外層に)重合体(X9)の層を有する多層重合体粒子(B9)が得られた。具体的には、水中に多層重合体粒子(B9)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B9)の体積平均粒子径を測定したところ、多層重合体粒子(B9)の体積平均粒子径は123nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B9)の固形分を得た。得られた多層重合体粒子(B9)のガラス転移温度を測定したところ、多層重合体粒子(B9)は、重合体(Y9)の層として、ガラス転移温度が-12℃である層を含むことが分かった。
 (製造例A10)多層重合体粒子(B10)の製造
 (1)重合体(Y10)ラテックスの製造
 用いたアクリル酸ブチル、メタクリル酸アリルおよびスチレンの各々の合計使用量を、アクリル酸ブチル95.50重量部、メタクリル酸アリル0.50重量部およびスチレン4.00重量部に変更した以外は、製造例A8と同様の方法により、水中に重合体(Y10)が分散してなる重合体(Y10)ラテックスを得た。重合体(Y10)ラテックス中の重合体(Y10)の体積平均粒子径を測定したところ、重合体(Y10)の体積平均粒子径は119nmであった。
 (2)重合体(X10)の層の形成および多層重合体粒子(B10)の製造
 次に、重合体(Y10)ラテックスを固形分95.00重量部およびメタクリル酸アリル5.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X10)の層を形成することができ、その結果、内側に重合体(Y10)の層を、および外側に(最外層に)重合体(X10)の層を有する多層重合体粒子(B10)が得られた。具体的には、水中に多層重合体粒子(B10)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B10)の体積平均粒子径を測定したところ、多層重合体粒子(B10)の体積平均粒子径は122nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B10)の固形分を得た。得られた多層重合体粒子(B10)のガラス転移温度を測定したところ、多層重合体粒子(B10)は、重合体(Y10)の層として、ガラス転移温度が-24℃である層を含むことが分かった。
 (製造例A11)多層重合体粒子(B11)の製造
 (1)重合体(Y11)ラテックスの製造
 製造例A8と同じ方法により、水中に重合体(Y11)が分散してなる重合体(Y11)ラテックスを得た。重合体(Y11)ラテックス中の重合体(Y11)の体積平均粒子径を測定したところ、重合体(Y11)の体積平均粒子径は43nmであった。
 (2)重合体(X11)の層の形成および多層重合体粒子(B11)の製造
 次に、重合体(Y11)ラテックスを固形分95.00重量部およびメタクリル酸アリル5.00重量部を撹拌翼付きガラス製重合器に仕込み、重合を開始した。重合反応開始から、5時間後に重合を終了した。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により重合体(X11)の層を形成することができ、その結果、内側に重合体(Y11)の層を、および外側に(最外層に)重合体(X11)の層を有する多層重合体粒子(B11)が得られた。具体的には、水中に多層重合体粒子(B11)が分散してなる多層重合体粒子ラテックスを得た。得られた多層重合体粒子ラテックス中の多層重合体粒子(B11)の体積平均粒子径を測定したところ、多層重合体粒子(B11)の体積平均粒子径は49nmであった。
 その後、得られた多層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、多層重合体粒子を凝固させて多層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の多層重合体粒子(B11)の固形分を得た。得られた多層重合体粒子(B11)のガラス転移温度を測定したところ、多層重合体粒子(B11)は、重合体(Y11)の層として、ガラス転移温度が5℃である層を含むことが分かった。
 (比較製造例A1)単層重合体粒子(R1)の製造
 脱イオン水、リン酸三カリウムおよびロジン酸カリウム、並びに、スチレンおよび1,3-ブタジエンを含む混合物を撹拌翼付き耐圧重合器に仕込んだ。次に、それら原料を撹拌しながら耐圧重合器内の温度を昇温し、耐圧重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、13時間後に重合を終了した。重合中、スチレンおよび1,3-ブタジエンを含む混合物を任意の時宜で耐圧重合器内に添加した。スチレンおよび1,3-ブタジエンの各々の比較製造例A1における合計使用量は、スチレン20.00重量部、および1,3-ブタジエン80.00重量部であった。重合中、さらに、ホルムアルデヒドスルフォキシル酸ナトリウム、半硬化牛脂脂肪酸カリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、およびパラメンタンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により、水中に単層重合体粒子(R1)が分散してなる単層重合体粒子ラテックスを得た。単層重合体粒子(R1)は重合体(X)の層のみからなる重合体粒子ともいえる。得られた単層重合体粒子ラテックス中の単層重合体粒子(R1)の体積平均粒子径を測定したところ、単層重合体粒子(R1)の体積平均粒子径は77nmであった。
 次に、脱イオン水、ジラウリルチオジプロピオネート、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、および半硬化牛脂脂肪酸カリウムからなる混合物をホモジナイザーにより乳化し、乳化物を作製した。その後、得られた単層重合体粒子ラテックスに当該乳化物を添加した。さらに、塩化カルシウム水溶液を前記単層重合体粒子ラテックスに添加し、単層重合体粒子を凝固させて単層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることにより粉末状の単層重合体粒子(R1)を得た。得られた単層重合体粒子(R1)のガラス転移温度を測定したところ、単層重合体粒子(R1)のガラス転移温度は-43℃であった。
 (比較製造例A2)単層重合体粒子(R2)の製造
 脱イオン水およびポリオキシエチレンラウリルエーテルリン酸ナトリウム、並びに、アクリル酸ブチル、メタクリル酸メチルおよびジメタクリル酸1,3-ブチレングリコールを含む混合物を撹拌翼付きガラス製重合器に仕込んだ。次に、それら原料を撹拌しながらガラス製重合器内の温度を昇温し、ガラス製重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、170分後に重合を終了した。重合中、アクリル酸ブチル、メタクリル酸メチルおよびジメタクリル酸1,3-ブチレングリコールを含む混合物を任意の時宜でガラス製重合器内に添加した。アクリル酸ブチル、メタクリル酸メチルおよびジメタクリル酸1,3-ブチレングリコールの各々の比較製造例A2における合計使用量は、アクリル酸ブチル70.00重量部、メタクリル酸メチル20.00重量部およびジメタクリル酸1,3-ブチレングリコール10.00重量部であった。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により、水中に単層重合体粒子(R2)が分散してなる単層重合体粒子ラテックスを得た。単層重合体粒子(R2)は重合体(Y)の層のみからなる重合体粒子ともいえる。得られた単層重合体粒子ラテックス中の単層重合体粒子(R2)の体積平均粒子径を測定したところ、単層重合体粒子(R2)の体積平均粒子径は69nmであった。
 その後、得られた単層重合体粒子ラテックスに塩化カルシウム水溶液を添加し、単層重合体粒子を凝固させて単層重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の単層重合体粒子(R2)の固形分を得た。得られた単層重合体粒子(R2)のガラス転移温度を測定したところ、単層重合体粒子(R2)のガラス転移温度は13℃であった。
 (比較製造例A3)単層重合体粒子(R3)の製造
 脱イオン水およびポリオキシエチレンラウリルエーテルリン酸ナトリウム、並びに、アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物を撹拌翼付きガラス製重合器に仕込んだ。次に、それら原料を撹拌しながらガラス製重合器内の温度を昇温し、ガラス製重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、170分後に重合を終了した。重合中、アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物を任意の時宜でガラス製重合器内に添加した。アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルの各々の製造例A1における合計使用量は、アクリル酸ブチル74.60重量部、メタクリル酸メチル24.90重量部およびメタクリル酸アリル0.50重量部であった。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により、水中に単層重合体粒子(R3)が分散してなる単層重合体粒子ラテックスを得た。単層重合体粒子(R3)は重合体(Y)の層のみからなる重合体粒子ともいえる。得られた単層重合体粒子ラテックス中の単層重合体粒子(R3)の体積平均粒子径を測定したところ、単層重合体粒子(R3)の体積平均粒子径は85nmであった。
 その後、比較製造例A2と同じ方法により、クラム状の単層重合体粒子(R3)の固形分を得た。得られた単層重合体粒子(R3)のガラス転移温度を測定したところ、単層重合体粒子(R3)のガラス転移温度は0℃であった。
 (実施例A1~A11並びに比較例A1~A5)タイヤ用ゴム組成物および成形体の製造
 実施例A1~A11並びに比較例A1~A5では以下の材料を使用した。
 <ジエン系ゴム(A)>
スチレン-ブタジエン共重合体ゴム:JSR SL552、JSR社製(以下SBRと略す。)80重量部
ブタジエンゴム:JSR BR01、JSR社製(以下BRと略す。)20重量部
 <多層重合体粒子>
 各製造例Aで製造したクラム状の多層重合体粒子の固形分10重量部、または、
 各比較製造例Aで製造した単層重合体粒子の凝集した粉体10重量部、もしくはクラム状の単層重合体粒子の固形分10重量部もしくは20重量部
 なお、比較例A1では多層重合体粒子および単層重合体粒子のいずれも使用していない。
 各実施例Aおよび比較例Aにおける、多層重合体粒子または単層重合体粒子の種類および組成、並びにジエン系ゴム(A)100重量部に対する多層重合体粒子または単層重合体粒子の配合量は、表1~3に示した通りである。
 <その他添加剤>
シリカ:Silica AQ(東ソーシリカ社製)60重量部
可塑剤(プロセスオイル):VivaTec500(H&R社製)25重量部
シランカップリング剤:KBE-846(信越シリコーン社製)4.8重量部
カーボンブラック:旭#78(旭カーボン社製)5重量部
酸化亜鉛:酸化亜鉛2種(堺化学社製)3重量部
ステアリン酸:ステアリン酸(日本精化社製)1重量部
老化防止剤:ノクラック6C(大内新興化学工業社製)2重量部
加硫剤:325メッシュ粉末硫黄(細井化学工業社製)1.4重量部
加硫促進剤(1):ノクセラーNS(大内新興化学工業社製)1.2重量部
加硫促進剤(2):ノクセラーD(大内新興化学工業社製)1.2重量部
 <タイヤ用ゴム組成物の製造方法>
 まず、100℃に設定したラボプラストミル(東洋精機社製)を用いて、100rpmにて、加硫剤および加硫促進剤以外の材料の混練を開始した。混練開始後、剪断発熱により、ラボプラストミル内の温度が上昇した。当該温度上昇により、ラボプラストミル内の温度が140℃に到達した後、更に5分間継続して混練を行った。その後混練を終了し、混練物を排出した。次に、混練物に加硫剤および加硫促進剤を添加し、30℃に設定したラボプラストミルを用いて、80rpmにて、混練物の混練を開始した。混練開始後、剪断発熱により、ラボプラストミル内の温度が上昇した。当該温度上昇により、ラボプラストミル内の温度が90℃に到達したところで混練を終了した。混練物を排出してタイヤ用ゴム組成物を得た。
 <成形体の製造方法>
 得られたタイヤ用ゴム組成物を160℃で30分間圧縮成形して、ゴム組成物を架橋することにより、成形体として、厚さ2mmのシートを作製した。得られたシートを用いて、重合体粒子のガラス転移温度を測定した。また、得られたシートを用いてウェットグリップ性、および転がり抵抗性を評価した。具体的には、0℃または60℃における動的粘弾性を測定した。また、得られたシートを用いて、耐摩耗性を評価した。さらに、得られた結果から、(i)ウェットグリップ性および低転がり抵抗性のバランス、並びに(ii)ウェットグリップ性および耐摩耗性のバランスも評価した。結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~6より、実施例A1~A11は、比較例A1~A5と比較して、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、(iii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れていることが分かる。
 〔実施例B〕
 以下、本発明の一実施形態を実施例Bにて具体的に説明するが、本発明はこれら実施例Bに限定されるものではない。
 製造例Bおよび比較製造例B、並びに、実施例Bおよび比較例B中の各種測定および評価は、次の条件および方法により行った。
 (重合体粒子の体積平均粒子径の測定方法)
 実施例Bにおける重合体粒子の体積平均粒子径の測定方法は、実施例Aの(重合体粒子のガラス転移温度の測定方法)に記載の方法と同じ方法とした。
 (重合体粒子のガラス転移温度の測定方法)
 各製造例Bまたは比較製造例Bで得られた重合体粒子を190℃で10分間圧縮成形することにより、重合体粒子からなるシート(重合体粒子成形体)を得た。当該シートを用いて、実施例Bにおける重合体粒子のガラス転移温度は、実施例Aの(重合体粒子のガラス転移温度の測定方法)に記載の方法と同じ条件および方法で測定した。結果を表7に示す。
 (動的粘弾性)
 各実施例Bおよび比較例Bで得られたシート(タイヤ用ゴム組成物の成形体)から、8mm×6mm×2mmの試験片を切り出した。当該試験片を用いて、実施例Bにおける動的粘弾性は、実施例Aの(動的粘弾性)に記載の方法と同じ条件および方法で測定した。なお、実施例Bでは、0℃tanδおよび60℃tanδを測定した。結果を表7に示す。
 表7では、比較例B1で得られた0℃tanδの数値を指標の100とし、実施例B1~B4および比較例B2で得られた0℃tanδの数値を指数に換算して示した。
 表7では、比較例B1で得られた60℃tanδの数値を指標の100とし、実施例B1~B4および比較例B2で得られた60℃tanδの数値を指数に換算して示した。
 (ウェットグリップ性および低転がり抵抗性のバランス)
 各実施例Bおよび比較例Bについて、0℃tanδを60℃tanδで除し、その商からウェットグリップ性および低転がり抵抗性のバランスを評価した。結果を表7に示す。
 (製造例B1)重合体粒子(B1)の製造
 脱イオン水およびポリオキシエチレンラウリルエーテルリン酸ナトリウム、並びに、アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物を撹拌翼付きガラス製重合器に仕込んだ。次に、それら原料を撹拌しながらガラス製重合器内の温度を昇温し、ガラス製重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、170分後に重合を終了した。重合中、アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物を任意の時宜でガラス製重合器内に添加した。アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルの各々の製造例B1における合計使用量は、アクリル酸ブチル74.6重量部、メタクリル酸メチル24.9重量部およびメタクリル酸アリル0.5重量部であった。重合中、さらに、ポリオキシエチレンラウリルエーテルリン酸ナトリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、ホルムアルデヒドスルフォキシル酸ナトリウム、およびクメンハイドロパーオキサイドを任意の時宜でガラス製重合器内に添加した。当該重合により、水中に重合体粒子(B1)が分散してなる重合体粒子ラテックスを得た。得られた重合体粒子ラテックス中の重合体粒子(B1)の体積平均粒子径を測定したところ、重合体粒子(B1)の体積平均粒子径は85nmであった。
 その後、得られた重合体粒子ラテックスに塩化カルシウム水溶液を添加し、重合体粒子を凝固させて重合体粒子の凝固物を得た。得られた凝固物を乾燥させることによりクラム状の重合体粒子(B1)の固形分を得た。得られた重合体粒子(B1)のガラス転移温度を測定したところ、重合体粒子(B1)のガラス転移温度は0℃であった。
 (製造例B2)重合体粒子(B2)の製造
 アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物に変えて、アクリル酸ブチル、メタクリル酸メチルおよびジメタクリル酸1,3-ブチレングリコールを含む混合物を使用したこと以外は、製造例B1と同様の方法により、水中に重合体粒子(B2)が分散してなる重合体粒子ラテックスを得た。アクリル酸ブチル、メタクリル酸メチルおよびジメタクリル酸1,3-ブチレングリコールの各々の製造例B2における合計使用量は、アクリル酸ブチル70.0重量部、メタクリル酸メチル20.0重量部およびジメタクリル酸1,3-ブチレングリコール10.0重量部であった。得られた重合体粒子ラテックス中の重合体粒子(B2)の体積平均粒子径を測定したところ、重合体粒子(B2)の体積平均粒子径は69nmであった。
 その後、製造例B1と同じ方法により、クラム状の重合体粒子(B2)の固形分を得た。得られた重合体粒子(B2)のガラス転移温度を測定したところ、重合体粒子(B2)のガラス転移温度は13℃であった。
 (製造例B3)重合体粒子(B3)の製造
 アクリル酸ブチル、メタクリル酸メチルおよびメタクリル酸アリルを含む混合物に変えて、アクリル酸ブチル、スチレンおよびメタクリル酸アリルを含む混合物を使用したこと以外は、製造例B1と同様の方法により、水中に重合体粒子(B3)が分散してなる重合体粒子ラテックスを得た。アクリル酸ブチル、スチレンおよびメタクリル酸アリルの各々の製造例B3における合計使用量は、アクリル酸ブチル68.6重量部、スチレン30.9重量部、メタクリル酸アリル0.5重量部であった。得られた重合体粒子ラテックス中の重合体粒子(B3)の体積平均粒子径を測定したところ、重合体粒子(B3)の体積平均粒子径は73nmであった。
 その後、製造例B1と同じ方法により、クラム状の重合体粒子(B3)の固形分を得た。得られた重合体粒子(B3)のガラス転移温度を測定したところ、重合体粒子(B3)のガラス転移温度は12℃であった。
 (比較製造例B1)重合体粒子(R1)の製造
 脱イオン水、リン酸三カリウムおよびロジン酸カリウム、並びに、スチレンおよび1,3-ブタジエンを含む混合物を撹拌翼付き耐圧重合器に仕込んだ。次に、それら原料を撹拌しながら耐圧重合器内の温度を昇温し、耐圧重合器内部の気体を窒素置換した後、重合を開始した。重合反応開始から、13時間後に重合を終了した。重合中、スチレンおよび1,3-ブタジエンを含む混合物を任意の時宜で耐圧重合器内に添加した。スチレンおよび1,3-ブタジエンの各々の比較製造例B1における合計使用量は、スチレン20.0重量部、および1,3-ブタジエン80.0重量部であった。重合中、さらに、ホルムアルデヒドスルフォキシル酸ナトリウム、半硬化牛脂脂肪酸カリウム、硫酸第一鉄(FeSO・7HO)、エチレンジアミン4酢酸・2Na塩、およびパラメンタンハイドロパーオキサイドを任意の時宜で耐圧重合器内に添加した。当該重合により、水中に重合体粒子(R1)が分散してなる重合体粒子ラテックスを得た。得られた重合体粒子ラテックス中の重合体粒子(R1)の体積平均粒子径を測定したところ、重合体粒子(R1)の体積平均粒子径は77nmであった。
 次に、脱イオン水、ジラウリルチオジプロピオネート、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、および半硬化牛脂脂肪酸カリウムからなる混合物をホモジナイザーにより乳化し、乳化物を作製した。その後、得られた重合体粒子ラテックスに当該乳化物を添加した。さらに、塩化カルシウム水溶液を前記重合体粒子ラテックスに添加し、重合体粒子を凝固させて重合体粒子の凝固物を得た。得られた凝固物を乾燥させることにより粉末状の重合体粒子(R1)を得た。得られた重合体粒子(R1)のガラス転移温度を測定したところ、重合体粒子(R1)のガラス転移温度は-43℃であった。
 (実施例B1~B4並びに比較例B1およびB2)タイヤ用ゴム組成物および成形体の製造
 実施例B1~B4並びに比較例B1およびB2では以下の材料を使用した。
 <ジエン系ゴム(A)>
 実施例Aで使用したジエン系ゴム(A)と同じ組成の物質を使用した。
 <重合体粒子>
 各製造例Bまたは比較製造例B1で製造した、クラム状の重合体粒子の固形分10重量部もしくは20重量部、または重合体粒子の粉体10重量部
 なお、比較例B1では重合体粒子は使用していない。
 各実施例Bおよび比較例Bにおける、重合体粒子の種類および組成、並びにジエン系ゴム(A)100重量部に対する重合体粒子の配合量は、表7に示した通りである。
 <その他添加剤>
 実施例Aで使用した各成分を、実施例Aと同じ量使用した。
 <タイヤ用ゴム組成物の製造方法>
 上述した各材料を使用した以外は、実施例Aと同じ方法により、タイヤ用ゴム組成物を得た。
 <成形体の製造方法>
 得られたタイヤ用ゴム組成物を160℃で30分間圧縮成形して、ゴム組成物を架橋することにより、成形体として、厚さ2mmのシートを作製した。得られたシートを用いて、重合体粒子のガラス転移温度を測定した。また、得られたシートを用いてウェットグリップ性、および転がり抵抗性を評価した。具体的には、0℃または60℃における動的粘弾性を測定した。また、得られた結果から、ウェットグリップ性および低転がり抵抗性のバランスも評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000008
 表7より、実施例B1~B4は、比較例B1およびB2と比較して、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れていることが分かる。
 本発明の一実施形態によれば、(i)ウェットグリップ性と、(ii)ウェットグリップ性および耐摩耗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物、および当該タイヤ用ゴム組成物を用いて作製したタイヤ、並びに成形体を提供できる。また、本発明の他の一実施形態によれば、(i)ウェットグリップ性と、(ii)ウェットグリップ性および低転がり抵抗性のバランスと、に優れた成形体を提供し得る新規のタイヤ用ゴム組成物、および当該タイヤ用ゴム組成物を用いて作製したタイヤ、並びに成形体を提供できる。そのため、本発明の一実施形態および本発明の他の一実施形態は、タイヤ、ケーブル被覆剤、ホース、トランスミッションベルト、コンベアベルト、ロールカバー、靴本体または靴底、シール用リング、および防振ゴムなどに好適に利用できる。

Claims (9)

  1.  ジエン系ゴム(A)100重量部と多層重合体粒子(B)0.1重量部~50重量部とを含有し、
     前記多層重合体粒子(B)は、重合体(X)の層と重合体(Y)の層とを含み、
     前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体(xa)30重量%~100重量%、および前記単量体(xa)と共重合可能な単量体(xb)0重量%~70重量%の合計100重量%からなる組成物を重合させてなる重合体であり、
     前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(ya)60重量%~100重量%、ラジカル重合性反応基を2以上有する単量体(yb)0重量%~30重量%、並びに、前記単量体(ya)および前記単量体(yb)と共重合可能な単量体(yc)0重量%~40重量%の合計100重量%からなる組成物を重合させてなる重合体であり、
     前記多層重合体粒子(B)は、ガラス転移温度が-40℃以上、30℃未満である層を少なくとも一層含む、タイヤ用ゴム組成物。
  2.  前記多層重合体粒子(B)は、最外層の少なくとも一部が前記重合体(X)の層である、請求項1に記載のタイヤ用ゴム組成物。
  3.  前記多層重合体粒子(B)における前記重合体(Y)の層の含有量は、前記重合体(X)の層100重量部に対して、100重量部~10,000重量部である、請求項1または2に記載のタイヤ用ゴム組成物。
  4.  前記多層重合体粒子(B)の体積平均粒子径は0.01μm以上10μm以下である、請求項1~3のいずれか1項に記載のタイヤ用ゴム組成物。
  5.  前記ジエン系ゴム(A)は、ラジカル重合性反応基を2以上有する一種以上の単量体(aa)50~100重量%、および前記単量体(aa)と共重合可能な単量体(ab)0~50重量%の合計100重量%からなる組成物を重合させてなる重合体である、請求項1~4のいずれか1項に記載のタイヤ用ゴム組成物。
  6.  ジエン系ゴム(A)100重量部と重合体粒子(B)0.1重量部~50重量部とを含有し、
     前記重合体粒子(B)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体(a)50~99.9重量%、ラジカル重合性反応基を2以上有する単量体(b)0.1~50重量%、並びに、前記単量体(a)および前記単量体(b)と共重合可能な単量体(c)0~40重量%の合計100重量%からなる組成物を重合させてなる共重合体であり、
     前記重合体粒子(B)のガラス転移温度は-40℃以上、30℃未満である、タイヤ用ゴム組成物。
  7.  請求項1~6のいずれか1項に記載のタイヤ用ゴム組成物を用いて作製されたタイヤ。
  8.  多層重合体粒子を含む成形体であり、
     前記多層重合体粒子は、重合体(X)の層と重合体(Y)の層とを含み、
     前記重合体(X)は、ラジカル重合性反応基を2以上有する単量体を含む組成物を重合させてなる重合体であり、
     前記重合体(Y)は、アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体であり、
     以下を満たす、成形体:
     0℃tanδ/値Z≧1、
     ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)の値であり、かつ、前記多層重合体粒子を含まない成形体の0℃tanδを100としたときの値であり、
     また、前記値Zは、前記成形体についてJIS K-6264-2のB法に準じて測定された、摩耗量の値であり、かつ、前記多層重合体粒子を含まない成形体の摩耗量を100としたときの値である。
  9.  アクリル酸エステルおよびメタクリル酸エステルから選ばれる1種以上の単量体を含む組成物を重合させてなる重合体からなる重合体粒子を含む成形体であり、
     以下を満たす、成形体:
     0℃tanδ/60℃tanδ>1、
     ここで、前記tanδは、前記成形体についてJIS K-6394に準じて測定された、0℃におけるtanδ(0℃tanδ)および60℃におけるtanδ(60℃tanδ)の値であり、かつ、
     前記重合体粒子を含まない成形体の、0℃tanδおよび60℃tanδをともに100としたときの値である。
PCT/JP2019/038121 2018-09-28 2019-09-27 タイヤ用ゴム組成物、タイヤおよび成形体 WO2020067414A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549430A JP7299908B2 (ja) 2018-09-28 2019-09-27 タイヤ用ゴム組成物、タイヤおよび成形体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018185398 2018-09-28
JP2018185399 2018-09-28
JP2018-185399 2018-09-28
JP2018-185398 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067414A1 true WO2020067414A1 (ja) 2020-04-02

Family

ID=69949813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038121 WO2020067414A1 (ja) 2018-09-28 2019-09-27 タイヤ用ゴム組成物、タイヤおよび成形体

Country Status (2)

Country Link
JP (1) JP7299908B2 (ja)
WO (1) WO2020067414A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365913B2 (ja) 2020-01-15 2023-10-20 Toyo Tire株式会社 ゴム組成物、及びそれを用いた空気入りタイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297394A (ja) * 2007-05-30 2008-12-11 Nippon Zeon Co Ltd 重合体粒子およびその製造方法
JP2012158710A (ja) * 2011-02-02 2012-08-23 Yokohama Rubber Co Ltd:The ゴム組成物およびそれを用いた空気入りタイヤ
WO2016189865A1 (ja) * 2015-05-26 2016-12-01 株式会社カネカ (メタ)アクリル系重合体および(メタ)アクリル系多層構造重合体の製造方法
WO2017038724A1 (ja) * 2015-08-31 2017-03-09 株式会社クラレ 被覆重合体粒子、樹脂改質剤、ゴム組成物及びタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297394A (ja) * 2007-05-30 2008-12-11 Nippon Zeon Co Ltd 重合体粒子およびその製造方法
JP2012158710A (ja) * 2011-02-02 2012-08-23 Yokohama Rubber Co Ltd:The ゴム組成物およびそれを用いた空気入りタイヤ
WO2016189865A1 (ja) * 2015-05-26 2016-12-01 株式会社カネカ (メタ)アクリル系重合体および(メタ)アクリル系多層構造重合体の製造方法
WO2017038724A1 (ja) * 2015-08-31 2017-03-09 株式会社クラレ 被覆重合体粒子、樹脂改質剤、ゴム組成物及びタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365913B2 (ja) 2020-01-15 2023-10-20 Toyo Tire株式会社 ゴム組成物、及びそれを用いた空気入りタイヤ

Also Published As

Publication number Publication date
JPWO2020067414A1 (ja) 2021-09-16
JP7299908B2 (ja) 2023-06-28

Similar Documents

Publication Publication Date Title
US6653404B2 (en) Rubber compositions
US9061900B2 (en) Combined use of liquid polymer and polymeric nanoparticles for rubber applications
JP5739094B2 (ja) 官能化ジエンゴムを含み、ミクロゲルを含むゴム混合物、これらの混合物の製造方法、ならびに使用
US8662125B2 (en) Modified gel particles and rubber composition
JP4000874B2 (ja) 油展ゴムおよびゴム組成物
JP3933966B2 (ja) ジエン系ゴム、その製造方法、ならびにゴム組成物、その製造方法および架橋物
JP3606860B2 (ja) ゴム組成物及びゴム架橋物
WO1996023027A1 (fr) Composition de caoutchouc et son procede de preparation
WO1997019990A1 (en) Rubber composition
CN112119117B (zh) 轮胎胎面用橡胶组合物及充气轮胎
JP2017186533A (ja) 共役ジエン系ゴムの製造方法
CN104937037A (zh) 聚合物组合物、交联聚合物、轮胎和聚合物
JP7299908B2 (ja) タイヤ用ゴム組成物、タイヤおよび成形体
WO2009151103A1 (ja) ゴム組成物及びそれを用いたタイヤ
JP2004107384A (ja) 共役ジエン系ゴム、ゴム組成物、及び共役ジエン系ゴムの製造方法
JP2002212344A (ja) ゴム状重合体組成物
JP3951755B2 (ja) ゴム組成物
JP5319041B2 (ja) ゴム組成物
JP2003221471A (ja) ゴム組成物およびその製造方法
JP5901995B2 (ja) タイヤ用ゴム組成物及びタイヤ用ゴム組成物の製造方法
JP2002060437A (ja) 共役ジエン系ゴムゲル、それを含むゴム組成物、および共役ジエン系ゴムゲルの製造方法
JP4774654B2 (ja) 油展ゴム及びゴム組成物
JP4649699B2 (ja) ゴム状重合体組成物
JP2012140545A (ja) ゴム組成物及び空気入りタイヤ
JP2020152763A (ja) 重合体粒子、ゴム用改質剤、ゴム組成物及びその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865771

Country of ref document: EP

Kind code of ref document: A1