WO2020067405A1 - 積層型フィルタおよびそれを用いた通信装置 - Google Patents
積層型フィルタおよびそれを用いた通信装置 Download PDFInfo
- Publication number
- WO2020067405A1 WO2020067405A1 PCT/JP2019/038097 JP2019038097W WO2020067405A1 WO 2020067405 A1 WO2020067405 A1 WO 2020067405A1 JP 2019038097 W JP2019038097 W JP 2019038097W WO 2020067405 A1 WO2020067405 A1 WO 2020067405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- conductors
- inductor
- capacitor
- conductor
- Prior art date
Links
- 238000003475 lamination Methods 0.000 title abstract description 5
- 239000004020 conductor Substances 0.000 claims abstract description 207
- 239000012212 insulator Substances 0.000 claims abstract description 69
- 239000003990 capacitor Substances 0.000 claims abstract description 55
- 238000010030 laminating Methods 0.000 claims description 12
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000149 penetrating effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H5/00—One-port networks comprising only passive electrical elements as network components
- H03H5/02—One-port networks comprising only passive electrical elements as network components without voltage- or current-dependent elements
Definitions
- This disclosure relates to a multilayer filter and a communication device using the same.
- FIG. 11 is an exploded perspective view of the multilayer filter 300 of Patent Document 1.
- the multilayer filter 300 is formed by laminating insulator layers 301a to 301s, and includes a laminate including pattern conductors 302a to 302q and via conductors 303a to 303l. In the laminate, an inductor L300, a first capacitor C301, and a second capacitor C302 are formed.
- the first capacitor C301 is formed by the pattern conductors 302a and 302b opposed to each other and arranged in the stacked body.
- the second capacitor C302 is also formed by the pattern conductors 302p and 302q.
- the inductor L300 is formed by pattern conductors 302c to 302o arranged between the layers of the insulator layer and via conductors 303b to 303l arranged to penetrate the insulator layer.
- the first capacitor C301 and the second capacitor C302 are arranged so as to sandwich the inductor L300 in the laminate.
- Such a multilayer filter may be used in a communication device such as being connected to a DC-DC converter in a Bluetooth (registered trademark) module.
- the multilayer filter functions as a so-called trap filter that removes noise in the 2.4 GHz band, which is a Bluetooth (registered trademark) frequency band.
- the efficiency of the DC-DC converter is easily affected by the equivalent series resistance of the connected multilayer filter. Therefore, in order to reduce the influence, it is necessary to reduce the equivalent series resistance of the multilayer filter.
- a helical inductor L300 is formed in the multilayer body of the multilayer filter of Patent Document 1.
- the width of the pattern conductors 302c to 302i and 302k to 302o needs to be smaller than the width of the laminate. As a result, it has been difficult to reduce the equivalent series resistance of the inductor L300.
- an object of the present disclosure is to provide a multilayer filter that can reduce the equivalent series resistance of an inductor formed in a multilayer body, and a communication device using the same.
- the structure of the inductor formed in the multilayer body is improved.
- a multilayer filter according to the present disclosure includes a multilayer body and an external electrode.
- the laminate has a rectangular parallelepiped shape.
- the external electrode is provided on the laminate.
- the stacked body includes a plurality of stacked insulator layers, a plurality of pattern conductors, and a plurality of via conductors.
- the plurality of pattern conductors are arranged between each of the plurality of insulator layers.
- the plurality of via conductors are arranged so as to penetrate at least one of the plurality of insulator layers.
- a first capacitor including a part of the plurality of pattern conductors is formed.
- a second capacitor including another part of the plurality of pattern conductors is formed.
- the first capacitor, the second capacitor, and the inductor are connected to external electrodes in parallel with each other.
- the width of the laminate is W in the transverse direction of the laminate, and the minimum value of the width of the pattern conductor included in the inductor among the plurality of pattern conductors is defined as If PW, 0.5W ⁇ PW ⁇ W.
- a communication device includes a communication control device including a multilayer filter according to the present disclosure, a power management system having a DC-DC converter electrically connected to the multilayer filter, and an antenna connected to the communication control device. Is provided.
- the multilayer filter according to the present disclosure can reduce the equivalent series resistance of the inductor formed in the multilayer body. Further, the communication device according to the present disclosure uses the multilayer filter according to the present disclosure, so that the efficiency of the DC-DC converter can be improved.
- FIG. 1 is an exploded perspective view of a multilayer filter 100 according to a first embodiment of the multilayer filter according to the present disclosure.
- FIG. 2 is a cross-sectional view of the multilayer filter 100 cut along the S1 plane including the line AA shown in FIG. 1.
- FIG. 3A is an equivalent circuit diagram of the multilayer filter 100.
- FIG. 3B summarizes the first capacitor C1 and the second capacitor C2 in the equivalent circuit diagram of FIG. 3A, and further simplifies them.
- FIG. 9 is an exploded perspective view of a multilayer filter 100A which is a first modification example of the multilayer filter 100.
- FIG. 9 is an exploded perspective view of a multilayer filter 100B which is a second modification of the multilayer filter 100.
- FIG. 7A is a cross-sectional view of the multilayer filter 200 cut along the S2 plane including the line BB shown in FIG.
- FIG. 7B is a cross-sectional view of the multilayer filter 200 cut along the S3 plane including the line CC as well.
- 1 is a schematic configuration diagram of a communication device 1000 that is an embodiment of a communication device according to the present disclosure.
- 1 is an exploded perspective view of a multilayer filter 300 according to the background art.
- FIG. 1 is an exploded perspective view of the multilayer filter 100.
- FIG. 2 is a cross-sectional view of the multilayer filter 100 cut along the S1 plane including the line AA shown in FIG.
- FIG. 3A is an equivalent circuit diagram of the multilayer filter 100.
- FIG. 3 (B) summarizes and further simplifies the first capacitor C1 and the second capacitor C2 (described later) in the equivalent circuit diagram of FIG. 3 (A).
- the multilayer filter 100 is formed by laminating rectangular insulator layers 1 and has a rectangular parallelepiped laminate including a plurality of pattern conductors 2 and a plurality of via conductors 3.
- LB is provided.
- the laminated body LB is formed by laminating insulator layers 1a to 1h, and includes pattern conductors 2a to 2g and via conductors 3a to 3d.
- an external electrode 4 is provided on the laminate LB.
- the external electrode 4a is provided at one end in the longitudinal direction of the multilayer body LB, and the external electrode 4b is provided at the other end (the external electrode 4 is not shown in FIG. 1).
- the pattern conductors 2a to 2g are arranged between two corresponding ones of the insulator layers 1a to 1h, respectively.
- the pattern conductor 2a is disposed between the adjacent insulator layers 1a and 1b.
- the pattern conductors 2b to 2g are similarly arranged.
- the pattern conductors 2a and 2f are drawn out to one end in the longitudinal direction of the multilayer body LB, and are connected to the external electrodes 4a.
- the pattern conductors 2b and 2g are drawn out to the other end in the longitudinal direction of the multilayer body LB, and are connected to the external electrodes 4b.
- the via conductors 3a to 3d are arranged at the longitudinal ends of the corresponding insulator layers among the plurality of insulator layers 1 so as to penetrate the insulator layers.
- the via conductor 3a is disposed at the end of the insulator layer 1c on the side of the external electrode 4a in the longitudinal direction, penetrating the insulator layer 1c, and connects the pattern conductor 2b and the pattern conductor 2c.
- the via conductor 3a is an aggregate of columnar via conductors 3a 1 to 3a 4 arranged along the short direction of the insulator layer 1c.
- the ends of the insulator layer in the longitudinal direction refer to two regions at both ends when the insulator layer is divided into four equal parts in the longitudinal direction when viewed along the laminating direction of the insulator layers 1a to 1h. Point.
- the columnar via conductors 3a 1 to 3a 4 are each cylindrical, but the shape is not limited to this. Although the respective central axes are arranged so as to be on the same line, the respective central axes may be shifted from the same line.
- the via conductors 3b to 3d are similarly arranged, and have a similar structure and connection relationship.
- a first capacitor C1 is formed inside the multilayer body LB by the pattern conductors 2a and 2b.
- a second capacitor C2 is formed by the pattern conductors 2f and 2g.
- the pattern conductors 2b to 2f and the via conductors 3a to 3d form an inductor L. Note that each of the first capacitor C1 and the second capacitor C2 may include another pattern conductor.
- the inductor L may include other pattern conductors and other via conductors.
- the pattern conductors 2b to 2f and the via conductors 3a to 3d are arranged such that the inductor L has a so-called meander shape. It is connected to the.
- the external electrode 4a side is defined as one end in the longitudinal direction
- the external electrode 4b side is defined as the other end in the longitudinal direction.
- one end of the pattern conductor 2b and one end of the pattern conductor 2c are connected by a via conductor 3a penetrating the insulator layer 1c.
- the other end of the pattern conductor 2c and the other end of the pattern conductor 2d are connected by a via conductor 3b penetrating the insulator layer 1d.
- the meander shape is formed by alternately connecting one end and the other end in the longitudinal direction of the pattern conductor 2 by the via conductor 3.
- the first capacitor C1, the second capacitor C2, and the inductor L have a first port PO1 corresponding to the external electrode 4a and a first port PO1 corresponding to the external electrode 4b.
- the two ports PO2 are connected in parallel with each other.
- the equivalent circuit diagram of FIG. 3A shows a simple LC resonance circuit by combining the first capacitor C1 and the second capacitor C2 into a capacitor C as shown in FIG. 3B. Can be simplified.
- the inductor L is disposed between the first capacitor C1 and the second capacitor C2 inside the multilayer body LB.
- the width of the laminated body LB in the lateral direction of the laminated body LB is W
- the width of the pattern conductors 2b to 2f forming the inductor L is also the same.
- the minimum value be PW.
- the minimum value PW of the width W of the multilayer body LB and the width of the pattern conductors 2b to 2f satisfies 0.5W ⁇ PW ⁇ W.
- the multilayer filter 100 does not form a helical inductor inside the multilayer body LB. That is, it is not necessary to make the width of the pattern conductor 2 forming the inductor L narrower than the width of the multilayer body LB.
- the width of the pattern conductor 2 is made wider than that in the case of forming a helical inductor so that the minimum value PW of the width of the pattern conductor 2 forming the inductor L satisfies the above expression. be able to. As a result, the resistance of the pattern conductor 2 can be reduced. Therefore, the equivalent series resistance of the inductor L formed inside the multilayer body LB can be reduced.
- the inductor L has a meandering shape, it becomes easy to make the width of the pattern conductor 2 close to the width of the multilayer body LB. As a result, the resistance of the pattern conductor 2 can be further reduced. Therefore, the equivalent series resistance of the inductor L formed inside the multilayer body LB can be further reduced. Further, the inductance of the inductor L can be easily adjusted by increasing or decreasing the number of times of folding.
- FIG. 4 is an exploded perspective view of the multilayer filter 100A.
- the multilayer filter 100A differs from the multilayer filter 100 in the shape of the via conductors 3a to 3d. Other configurations are the same as those of the multilayer filter 100, and thus detailed description is omitted.
- one wall-shaped via conductor 3a extending along the lateral direction of the laminate LB. 3d connect the corresponding two pattern conductors among the plurality of pattern conductors 2.
- the via conductor 3a extends in the above-described direction and is disposed so as to penetrate the insulator layer 1c, and connects the pattern conductor 2b and the pattern conductor 2c.
- the via conductor 3a has a flat wall shape, but the shape is not limited to this.
- the via conductors 3b to 3d are similarly arranged, and have a similar structure and connection relationship.
- Each of the via conductors 3a to 3d may include a plurality of wall-shaped via conductors.
- the pattern conductors 2b to 2f and the via conductors 3a to 3d are such that the inductor L has a so-called meander shape. It is connected to the.
- the cross-sectional area of the via conductor can be increased. Therefore, the resistance of the via conductor can be reduced. Therefore, the equivalent series resistance of the inductor L formed inside the multilayer body LB can be further reduced.
- FIG. 5 is an exploded perspective view of the multilayer filter 100B.
- the multilayer filter 100B differs from the multilayer filter 100 in the shape of the pattern conductors 2c to 2e among the pattern conductors 2 forming the inductor L. Accordingly, the arrangement of the via conductors 3a to 3d is different from that of the multilayer filter 100.
- Other configurations are the same as those of the multilayer filter 100, and thus detailed description is omitted.
- the pattern conductors 2c to 2e are C-shaped when viewed along the laminating direction of the insulator layers 1a to 1h. Further, the via conductors 3a to 3d are arranged at the ends in the short direction of the corresponding insulator layers among the plurality of insulator layers 1 so as to penetrate the insulator layers.
- the via conductor 3a is arranged at an end in the short direction of the insulator layer 1c so as to penetrate the insulator layer 1c, and connects the pattern conductor 2b and the pattern conductor 2c.
- the via conductor 3a is an aggregate of columnar via conductors 3a 1 to 3a 3 arranged along the longitudinal direction of the insulator layer 1c.
- the ends of the insulator layer in the short direction are two ends at the time when the insulator layer is divided into four equal parts in the short direction when viewed along the lamination direction of the insulator layers 1a to 1h. Refers to the area.
- the pattern conductors 2b to 2f and the via conductors 3a to 3d are such that the inductor L has a so-called meander shape. It is connected to the.
- the side of the C-shaped pattern conductor having the opening shape is defined as one end in the lateral direction.
- a region of the one end of the pattern conductor 2b on the side of the external electrode 4a and a region of one end of the pattern conductor 2c on the side of the external electrode 4a are connected by a via conductor 3a penetrating the insulator layer 1c.
- a region of the one end of the pattern conductor 2c on the side of the external electrode 4b and a region of one end of the pattern conductor 2d on the side of the external electrode 4b are connected by a via conductor 3b penetrating the insulator layer 1d. .
- a meander shape is formed by alternately connecting the region on the external electrode 4a side at one end in the short direction of the pattern conductor 2 and the other end on the external electrode 4b side by the via conductor 3. Is done.
- the path of the inductor L can be lengthened. Therefore, the inductance of the inductor L can be increased.
- FIG. 6 is an exploded perspective view of the multilayer filter 200.
- FIG. 7A is a cross-sectional view of the multilayer filter 200 cut along the S2 plane including the line BB shown in FIG.
- FIG. 7B is a cross-sectional view of the multilayer filter 200 cut along the S3 plane including the line CC.
- the multilayer filter 200 is formed by stacking rectangular insulator layers 5, and includes a rectangular parallelepiped laminate including a plurality of pattern conductors 6 and a plurality of via conductors 7.
- LB is provided.
- the laminated body LB is formed by laminating insulator layers 5a to 51, and includes pattern conductors 6a to 6i and via conductors 7a to 7c.
- an external electrode 4 is provided on the laminate LB.
- An external electrode 4a is provided at one end in the short direction of the stacked body LB, and an external electrode 4b is provided at the other end (the external electrode 4 is not shown in FIG. 6).
- the pattern conductors 6a to 6i are arranged between two corresponding ones of the insulator layers 5a to 5l.
- the pattern conductor 6a is arranged between the adjacent insulator layers 5a and 5b.
- the pattern conductors 6b to 6i are similarly arranged.
- the pattern conductors 6a, 6f, and 6h are drawn out to one end in the short direction of the multilayer body LB, and are connected to the external electrodes 4a.
- the pattern conductors 6b, 6d, 6g, and 6i are drawn out to the other end in the short direction of the multilayer body LB, and are connected to the external electrodes 4b.
- the via conductors 7a to 7c are respectively disposed at the ends of the corresponding insulator layers in the longitudinal direction of the plurality of insulator layers 5 and at the center portions of the corresponding insulator layers so as to penetrate the insulator layers.
- the via conductor 7a is disposed at one end in the longitudinal direction of the insulator layers 5d to 5g so as to penetrate the insulator layers 5d to 5g, and connects the pattern conductor 6c and the pattern conductor 6e. I have.
- the via conductor 7a is an aggregate of columnar via conductors 7a 1 to 7a 3 arranged along the short direction of the stacked body LB.
- the via conductor 7b is disposed at the other end of the insulator layers 5d to 5h in the longitudinal direction, penetrating through the insulator layers 5d to 5h, and connects the pattern conductor 6c and the pattern conductor 6f.
- the via conductor 7b is an aggregate of columnar via conductors 7b 1 to 7b 3 arranged along the lateral direction of the stacked body LB.
- the via conductor 7c is disposed at the center of the insulator layers 5e to 5g in the longitudinal direction and penetrates the insulator layers 5e to 5g, and connects the pattern conductor 6d and the pattern conductor 6e.
- the via conductor 7c is an aggregate of columnar via conductors 7c 1 to 7c 3 arranged along the short direction of the stacked body LB.
- the ends in the longitudinal direction of the insulator layer refer to two regions at both ends when the insulator layer is divided into four equal parts in the longitudinal direction when viewed along the laminating direction of the insulator layers 5a to 5l. Point.
- the central portion in the longitudinal direction of the insulator layer refers to two central regions when the insulator layer is divided into four equal parts in the longitudinal direction.
- the columnar via conductors 7a 1 to 7a 3 are each cylindrical, but the shape is not limited to this. Although the respective central axes are arranged so as to be on the same line, the respective central axes may be shifted from the same line.
- the via conductors 7b 1 to 7b 3 and the via conductors 7c 1 to 7c 3 have the same structure.
- a first capacitor C1 is formed inside the multilayer body LB by the pattern conductors 6a to 6c.
- the pattern conductors 6f to 6i form a second capacitor C2.
- the pattern conductors 6c to 6f and the via conductors 7a to 7c form an inductor L.
- the first capacitor C1, the second capacitor C2, and the inductor L may include another pattern conductor described above, or a pattern conductor and a via conductor.
- the pattern conductors 6c to 6f and the via conductors 7a to 7c are formed by a so-called spiral-shaped inductor L. It is connected so that it may become.
- the pattern conductor 6d and the pattern conductor 6e are connected by the via conductor 7c at the longitudinal center of the insulator layers 5e to 5g. Further, the pattern conductor 6e and the pattern conductor 6c are connected by a via conductor 7a at one end in the longitudinal direction of the insulator layers 5d to 5g. The pattern conductor 6c and the pattern conductor 6f are connected by the via conductor 7b at the other ends of the insulator layers 5d to 5h in the longitudinal direction. Thereby, the inductor L has a spiral shape.
- the first capacitor C1, the second capacitor C2, and the inductor L are, like the equivalent circuit diagram of FIG. 3A, a first port PO1 corresponding to the external electrode 4a and a second port PO1 corresponding to the external electrode 4b. They are connected in parallel with the port PO2.
- the inductor L is disposed between the first capacitor C1 and the second capacitor C2 inside the multilayer body LB, as shown in the cross-sectional views of FIGS. 7A and 7B. ing.
- the width of the stacked body LB in the short direction of the stacked body LB is W
- the width of the pattern conductors 6c to 6f forming the inductor L is also Let the minimum value be PW.
- the minimum value PW of the width W of the stacked body LB and the width of the pattern conductors 6c to 6f satisfies 0.5W ⁇ PW ⁇ W.
- the multilayer filter 200 does not have a helical inductor formed inside the multilayer body LB. That is, it is not necessary to make the width of the pattern conductor 6 forming the inductor L narrower than the width of the multilayer body LB.
- the width of the pattern conductor 6 is made wider than that in the case of forming a helical inductor so that the minimum value PW of the width of the pattern conductor 6 forming the inductor L satisfies the above expression. be able to. As a result, the resistance of the pattern conductor 6 can be reduced. Therefore, the equivalent series resistance of the inductor L formed inside the multilayer body LB can be reduced.
- FIG. 8 is an exploded perspective view of the multilayer filter 100C used in this experimental example.
- the multilayer filter 100 ⁇ / b> C is formed by stacking rectangular insulator layers 8, and includes a rectangular parallelepiped multilayer body LB including a plurality of pattern conductors 9 and a plurality of via conductors 10.
- the laminate LB is formed by laminating insulator layers 8a to 8l, and includes pattern conductors 9a to 9k and via conductors 10a to 10f.
- Each via conductor is an aggregate of three cylindrical via conductors arranged along the short direction of the insulator layer.
- External electrodes 4 (not shown) are provided on the laminate LB.
- the multilayer filter 100C has the same structure as the multilayer filter 100. That is, the first capacitor C1 is formed inside the multilayer body LB by the pattern conductors 9a and 9b. A second capacitor C2 is formed by the pattern conductors 9h to 9k. The pattern conductors 9b to 9h and the via conductors 10a to 10f form an inductor L.
- the pattern conductors 9b to 9h and the via conductors 10a to 10f are connected so that the inductor L has a so-called meander shape. ing. Further, the inductor L is disposed between the first capacitor C1 and the second capacitor C2 inside the multilayer body LB.
- the external dimensions of the laminated body LB of the laminated filter 100C are such that when viewed along the laminating direction of the insulating layers 8a to 8l, the longitudinal length is 1.0 mm, the width direction is 0.5 mm, The thickness in the direction is 0.5 mm.
- the length in the width direction of the pattern conductors 9b to 9h forming the inductor L is 0.45 mm. That is, the minimum value PW of the width W of the stacked body LB and the width of the pattern conductors 9b to 9h satisfies 0.5W ⁇ PW ⁇ W.
- FIG. 9 shows the filter characteristics of the multilayer filter 100C. That is, it was found that the multilayer filter 100C had an attenuation pole at 2.45 GHz. Therefore, the multilayer filter 100C can function as a so-called trap filter that removes noise in the 2.4 GHz band, which is the Bluetooth (registered trademark) frequency band.
- the equivalent series resistance of the multilayer filter 100C was measured with an LCR meter, and was found to be 0.03 ⁇ .
- the equivalent series resistance of an inductor having the same external dimensions and the same attenuation pole at 2.5 GHz due to self-resonance was measured and found to be 0.29 ⁇ . Therefore, the multilayer filter according to this disclosure has an extremely small equivalent series resistance as compared with an inductor having the same amount of attenuation due to self-resonance, and can reduce the influence on the performance of the DC-DC converter. it can.
- FIG. 10 is a schematic configuration diagram of the communication device 1000.
- Communication device 1000 includes multilayer filter 100 according to the present disclosure, communication control device 110, antenna 120, and power supply switch 130.
- the communication control device 110 includes a power management system 111, a main system 112, and an RF system 113.
- the power management system 111 has a DC-DC converter 111a, a low-dropout linear regulator 111b, a power switch 111c, and a switching control signal generator 111d.
- the first external power of 3.3V is input to the power supply switch 111c of the power management system 111 and the main system 112 such as the CPU.
- the power switch 111c switches the input destination of the first external power to either the DC-DC converter 111a or the low dropout linear regulator 111b.
- the power switch 111c is connected to the main system 112 via a switch control signal generator 111d.
- the antenna 120 is connected to the RF system 113.
- the RF system 113 is connected to the power switch 130.
- the power supply switch 130 switches so that either the first external power or the second external power having a voltage of 1.3 V to 1.8 V is input to the RF system 113.
- the voltage of the first external power is adjusted by the DC-DC converter 111a or the low dropout linear regulator 111b.
- ⁇ ⁇ Laminated filter 100 is connected between DC-DC converter 111a and power supply switch 130.
- the equivalent series resistance of the inductor L formed inside the multilayer body LB is reduced. Therefore, since the communication device 1000 uses the multilayer filter 100, the efficiency of the DC-DC converter can be improved, and thus efficient communication can be performed.
- the invention according to this disclosure is applied to, for example, a stacked filter connected to a DC-DC converter in a Bluetooth (registered trademark) module, but is not limited thereto.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
複数のパターン導体(2)のうちの一部のパターン導体(2)を含む第1のキャパシタが形成されている。複数のパターン導体(2)のうちの他の一部のパターン導体(2)を含む第2のキャパシタが形成されている。複数のパターン導体(2)および複数のビア導体(3)のうちの、第1のキャパシタと第2のキャパシタとの間に位置する、パターン導体(2)およびビア導体を含む、インダクタが形成されている。第1のキャパシタ、第2のキャパシタおよびインダクタは、互いに並列に外部電極(4)に接続されている。複数の絶縁体層(1)の積層方向に沿って見たとき、積層体(LB)の短手方向において、積層体(LB)の幅をWとし、複数のパターン導体(2)のうちのインダクタに含まれるパターン導体(2)の幅の最小値をPWとすると、0.5W<PW<Wである。
Description
この開示は、積層型フィルタおよびそれを用いた通信装置に関する。
積層体内にインダクタとキャパシタとが形成された積層型フィルタの一例として、特開2007-129345号公報(特許文献1)に記載された積層型フィルタが挙げられる。図11は、特許文献1の積層型フィルタ300の分解斜視図である。積層型フィルタ300は、絶縁体層301a~301sが積層されてなり、パターン導体302a~302qと、ビア導体303a~303lとを含む積層体を備えている。積層体内には、インダクタL300と第1のキャパシタC301と第2のキャパシタC302とが形成されている。
第1のキャパシタC301は、積層体内に配置された互いに対向するパターン導体302a、302bにより形成されている。第2のキャパシタC302も、同様にパターン導体302p、302qにより形成されている。インダクタL300は、それぞれ絶縁体層の層間に配置されたパターン導体302c~302oと、絶縁体層を貫通して配置されたビア導体303b~303lとにより形成されている。第1のキャパシタC301と第2のキャパシタC302とは、積層体内においてインダクタL300を挟むように配置されている。
このような積層型フィルタは、例えばBluetooth(登録商標)モジュール内のDC-DCコンバータに接続されるなど、通信装置に用いられることがある。その場合、積層型フィルタは、Bluetooth(登録商標)の周波数帯である2.4GHz帯のノイズを除去する、いわゆるトラップフィルタとして機能する。上記のDC-DCコンバータの効率は、接続されている積層型フィルタの等価直列抵抗に影響を受けやすい。したがって、その影響を小さくするためには、積層型フィルタの等価直列抵抗を低減する必要がある。
一方、図11に示されているように、特許文献1の積層型フィルタの積層体内には、ヘリカル形状のインダクタL300が形成されている。そのためには、パターン導体302c~302iおよび302k~302oの幅を積層体の幅に対して狭くする必要がある。その結果、インダクタL300の等価直列抵抗の低減が困難となっていた。
すなわち、この開示の目的は、積層体内に形成されたインダクタの等価直列抵抗を低減することができる積層型フィルタと、それを用いた通信装置とを提供することである。
この開示に従う積層型フィルタでは、積層体内に形成されるインダクタの構造についての改良が図られる。
この開示は、まず積層型フィルタに向けられる。
この開示に従う積層型フィルタは、積層体と、外部電極とを備える。積層体は、直方体形状である。外部電極は、積層体に設けられている。積層体は、積層された複数の絶縁体層と、複数のパターン導体と、複数のビア導体とを含む。複数のパターン導体は、複数の絶縁体層の層間の各々に配置されている。複数のビア導体は、複数の絶縁体層のうちの少なくとも1つの絶縁体層を貫通するように配置されている。複数のパターン導体のうちの一部のパターン導体を含む第1のキャパシタが形成されている。複数のパターン導体のうちの他の一部のパターン導体を含む第2のキャパシタが形成されている。複数のパターン導体および複数のビア導体のうちの、第1のキャパシタと第2のキャパシタとの間に位置する、パターン導体およびビア導体を含む、インダクタが形成されている。第1のキャパシタ、第2のキャパシタおよびインダクタは、互いに並列に外部電極に接続されている。複数の絶縁体層の積層方向に沿って見たとき、積層体の短手方向において、積層体の幅をWとし、複数のパターン導体のうちのインダクタに含まれるパターン導体の幅の最小値をPWとすると、0.5W<PW<Wである。
この開示に従う積層型フィルタは、積層体と、外部電極とを備える。積層体は、直方体形状である。外部電極は、積層体に設けられている。積層体は、積層された複数の絶縁体層と、複数のパターン導体と、複数のビア導体とを含む。複数のパターン導体は、複数の絶縁体層の層間の各々に配置されている。複数のビア導体は、複数の絶縁体層のうちの少なくとも1つの絶縁体層を貫通するように配置されている。複数のパターン導体のうちの一部のパターン導体を含む第1のキャパシタが形成されている。複数のパターン導体のうちの他の一部のパターン導体を含む第2のキャパシタが形成されている。複数のパターン導体および複数のビア導体のうちの、第1のキャパシタと第2のキャパシタとの間に位置する、パターン導体およびビア導体を含む、インダクタが形成されている。第1のキャパシタ、第2のキャパシタおよびインダクタは、互いに並列に外部電極に接続されている。複数の絶縁体層の積層方向に沿って見たとき、積層体の短手方向において、積層体の幅をWとし、複数のパターン導体のうちのインダクタに含まれるパターン導体の幅の最小値をPWとすると、0.5W<PW<Wである。
また、この開示は、通信装置にも向けられる。
この開示に従う通信装置は、この開示に従う積層型フィルタと、積層型フィルタと電気的に接続されたDC-DCコンバータを有するパワーマネジメントシステムを含む通信制御装置と、通信制御装置に接続されたアンテナとを備える。
この開示に従う通信装置は、この開示に従う積層型フィルタと、積層型フィルタと電気的に接続されたDC-DCコンバータを有するパワーマネジメントシステムを含む通信制御装置と、通信制御装置に接続されたアンテナとを備える。
この開示に従う積層型フィルタは、積層体内に形成されたインダクタの等価直列抵抗を低減することができる。また、この開示に従う通信装置は、この開示に従う積層型フィルタが用いられているため、DC-DCコンバータの効率を向上させることができる。
この開示の特徴とするところを、この開示の実施形態に基づき、図面を参照しながら説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さないことがある。
-積層型フィルタの第1の実施形態-
この開示に従う積層型フィルタの第1の実施形態である積層型フィルタ100について、図1~図3を用いて説明する。
この開示に従う積層型フィルタの第1の実施形態である積層型フィルタ100について、図1~図3を用いて説明する。
図1は、積層型フィルタ100の分解斜視図である。図2は、図1に示されたA-A線を含むS1面で切断された積層型フィルタ100の矢視断面図である。また、図3(A)は、積層型フィルタ100の等価回路図である。図3(B)は、図3(A)の等価回路図における第1のキャパシタC1および第2のキャパシタC2(後述)をまとめ、さらに簡略化したものである。
積層型フィルタ100は、図1および図2に示されるように、矩形状の絶縁体層1が積層されてなり、複数のパターン導体2と、複数のビア導体3とを含む直方体形状の積層体LBを備える。この実施形態においては、積層体LBは、絶縁体層1a~1hが積層されてなり、パターン導体2a~2gと、ビア導体3a~3dとを含んでいる。また、積層体LBには、外部電極4が設けられている。積層体LBの長手方向の一方端部に外部電極4aが設けられ、他方端部に外部電極4bが設けられている(図1において外部電極4は不図示)。
パターン導体2a~2gは、それぞれ絶縁体層1a~1hのうち対応する2つの層間に配置されている。この実施形態では、例えばパターン導体2aは、隣接する絶縁体層1aと絶縁体層1bとの間に配置されている。パターン導体2b~2gも同様に配置されている。パターン導体2a、2fは、積層体LBの長手方向の一方端部に引き出され、外部電極4aと接続されている。また、パターン導体2b、2gは、積層体LBの長手方向の他方端部に引き出され、外部電極4bと接続されている。
ビア導体3a~3dは、それぞれ複数の絶縁体層1のうち対応する絶縁体層の長手方向の端部に、絶縁体層を貫通して配置されている。この実施形態では、例えばビア導体3aは、絶縁体層1cの長手方向の外部電極4a側の端部に、絶縁体層1cを貫通して配置され、パターン導体2bとパターン導体2cとを接続している。また、ビア導体3aは、絶縁体層1cの短手方向に沿って並ぶ、柱状のビア導体3a1~3a4の集合体である。
ここで、絶縁体層の長手方向の端部とは、絶縁体層1a~1hの積層方向に沿って見たとき、絶縁体層を長手方向に4等分した場合の両端の2つの領域を指す。
なお、この実施形態では、柱状のビア導体3a1~3a4は、それぞれ円柱状であるが、形状はこれに限られない。また、それぞれの中心軸が同一線上にあるように配列されているが、それぞれの中心軸は、同一線上からずれていてもよい。ビア導体3b~3dも同様に配置されており、同様の構造および接続関係を有している。
積層体LBの内部には、パターン導体2a、2bにより、第1のキャパシタC1が形成されている。また、パターン導体2f、2gにより、第2のキャパシタC2が形成されている。そして、パターン導体2b~2fとビア導体3a~3dとにより、インダクタLが形成されている。なお、第1のキャパシタC1および第2のキャパシタC2の各々には、他のパターン導体が含まれていてもよい。インダクタLには、他のパターン導体および他のビア導体が含まれていてもよい。
この実施形態では、図2に示されるように、積層体LBの短手方向に沿って見たとき、パターン導体2b~2fとビア導体3a~3dとは、インダクタLがいわゆるミアンダ形状となるように接続されている。
すなわち、パターン導体2において、外部電極4a側を長手方向の一方端部とし、外部電極4b側を長手方向の他方端部とする。その場合、パターン導体2bの一方端部とパターン導体2cの一方端部とが、絶縁体層1cを貫通するビア導体3aにより接続されている。また、パターン導体2cの他方端部とパターン導体2dの他方端部とが、絶縁体層1dを貫通するビア導体3bにより接続されている。
以下同様に、パターン導体2の長手方向の一方端部と他方端部とが、交互にビア導体3により接続されることにより、ミアンダ形状が形成される。
第1のキャパシタC1、第2のキャパシタC2およびインダクタLは、図3(A)の等価回路図に示されるように、外部電極4aに相当する第1のポートPO1と外部電極4bに相当する第2のポートPO2との間で互いに並列接続されている。また、図3(A)の等価回路図は、図3(B)に示されるように、第1のキャパシタC1および第2のキャパシタC2をまとめてキャパシタCとすることで、単純なLC共振回路に簡略化することができる。
また、インダクタLは、図2の矢視断面図に示されるように、積層体LBの内部において、第1のキャパシタC1と第2のキャパシタC2との間に配置されている。
ここで、絶縁体層1a~1hの積層方向に沿って見たとき、積層体LBの短手方向における積層体LBの幅をWとし、同じくインダクタLを形成するパターン導体2b~2fの幅の最小値をPWとする。その場合、積層体LBの幅Wおよびパターン導体2b~2fの幅の最小値PWは、0.5W<PW<Wを満足する。
積層型フィルタ100は、積層体LBの内部にヘリカル形状のインダクタを形成していない。すなわち、インダクタLを形成するパターン導体2の幅を、積層体LBの幅に対して狭くする必要がない。
そのため、積層型フィルタ100では、インダクタLを形成するパターン導体2の幅の最小値PWが上式を満足するように、パターン導体2の幅をヘリカル形状のインダクタを形成する場合に比べて広くすることができる。その結果、パターン導体2の抵抗を低減することができる。したがって、積層体LBの内部に形成されたインダクタLの等価直列抵抗を低減することができる。
また、インダクタLがミアンダ形状である場合、パターン導体2の幅を積層体LBの幅に近づけることが容易になる。その結果、パターン導体2の抵抗をより低減することができる。したがって、積層体LBの内部に形成されたインダクタLの等価直列抵抗をより低減することができる。また、折り返しの回数を増減させることで、インダクタLのインダクタンスを容易に調整することができる。
そして、2つのパターン導体を接続するビア導体が、複数の柱状のビア導体により接続されている場合、ビア導体の断面積を大きくすることができる。そのため、ビア導体の抵抗を低減することができる。したがって、積層体LBの内部に形成されたインダクタLの等価直列抵抗をより低減することができる。
-積層型フィルタの第1の実施形態の第1の変形例-
この開示に従う積層型フィルタの第1の実施形態の第1の変形例である積層型フィルタ100Aについて、図4を用いて説明する。
この開示に従う積層型フィルタの第1の実施形態の第1の変形例である積層型フィルタ100Aについて、図4を用いて説明する。
図4は、積層型フィルタ100Aの分解斜視図である。積層型フィルタ100Aは、ビア導体3a~3dの形状が積層型フィルタ100と異なっている。それ以外の構成は、積層型フィルタ100と同様であるため、詳細な説明は省略される。
第1の変形例である積層型フィルタ100Aでは、絶縁体層1a~1hの積層方向に沿って見たとき、積層体LBの短手方向に沿って延伸する1枚の壁状のビア導体3a~3dが、複数のパターン導体2のうち、対応する2つのパターン導体を接続している。例えばビア導体3aは、上記の方向に延伸し、かつ絶縁体層1cを貫通して配置され、パターン導体2bとパターン導体2cとを接続している。
なお、この実施形態では、ビア導体3aは、平坦な壁状であるが、形状はこれに限られない。ビア導体3b~3dも同様に配置されており、同様の構造および接続関係を有している。なお、ビア導体3a~3dは、それぞれ複数の壁状のビア導体を含んでいてもよい。
この実施形態でも、図4に示されるように、積層体LBの短手方向に沿って見たとき、パターン導体2b~2fとビア導体3a~3dとは、インダクタLがいわゆるミアンダ形状となるように接続されている。
積層型フィルタ100Aにおいても、ビア導体の断面積を大きくすることができる。そのため、ビア導体の抵抗を低減することができる。したがって、積層体LBの内部に形成されたインダクタLの等価直列抵抗をより低減することができる。
-積層型フィルタの第1の実施形態の第2の変形例-
この開示に従う積層型フィルタの第1の実施形態の第2の変形例である積層型フィルタ100Bについて、図5を用いて説明する。
この開示に従う積層型フィルタの第1の実施形態の第2の変形例である積層型フィルタ100Bについて、図5を用いて説明する。
図5は、積層型フィルタ100Bの分解斜視図である。積層型フィルタ100Bは、インダクタLを形成するパターン導体2のうち、パターン導体2c~2eの形状が積層型フィルタ100と異なっている。また、それに伴い、ビア導体3a~3dの配置が積層型フィルタ100と異なっている。それ以外の構成は、積層型フィルタ100と同様であるため、詳細な説明は省略される。
第2の変形例である積層型フィルタ100Bでは、絶縁体層1a~1hの積層方向に沿って見たとき、パターン導体2c~2eがC字状になっている。また、ビア導体3a~3dは、それぞれ複数の絶縁体層1のうち対応する絶縁体層の短手方向の端部に、絶縁体層を貫通して配置されている。
この実施形態では、例えばビア導体3aは、絶縁体層1cの短手方向の端部に絶縁体層1cを貫通して配置され、パターン導体2bとパターン導体2cとを接続している。また、ビア導体3aは、絶縁体層1cの長手方向に沿って並ぶ、柱状のビア導体3a1~3a3の集合体である。
ここで、絶縁体層の短手方向の端部とは、絶縁体層1a~1hの積層方向に沿って見たとき、絶縁体層を短手方向に4等分した場合の両端の2つの領域を指す。
この実施形態でも、図5に示されるように、積層体LBの短手方向に沿って見たとき、パターン導体2b~2fとビア導体3a~3dとは、インダクタLがいわゆるミアンダ形状となるように接続されている。
すなわち、C字状のパターン導体の開口形状となっている側を短手方向の一方端部とする。その場合、パターン導体2bの一方端部の外部電極4a側の領域と、パターン導体2cの一方端部の外部電極4a側の領域とが、絶縁体層1cを貫通するビア導体3aにより接続されている。また、パターン導体2cの一方端部の外部電極4b側の領域と、パターン導体2dの一方端部の外部電極4b側の領域とが、絶縁体層1dを貫通するビア導体3bにより接続されている。
以下同様に、パターン導体2の短手方向の一方端部の外部電極4a側の領域と外部電極4b側の他方端部とが、交互にビア導体3により接続されることにより、ミアンダ形状が形成される。
積層型フィルタ100Bにおいては、インダクタLの経路を長くすることができる。したがって、インダクタLのインダクタンスを増加させることができる。
-積層型フィルタの第2の実施形態-
この開示に従う積層型フィルタの第2の実施形態である積層型フィルタ200について、図6および図7を用いて説明する。
この開示に従う積層型フィルタの第2の実施形態である積層型フィルタ200について、図6および図7を用いて説明する。
図6は、積層型フィルタ200の分解斜視図である。図7(A)は、図6に示されたB-B線を含むS2面で切断された積層型フィルタ200の矢視断面図である。また、図7(B)は、同じくC-C線を含むS3面で切断された積層型フィルタ200の矢視断面図である。
積層型フィルタ200は、図6および図7に示されるように、矩形状の絶縁体層5が積層されてなり、複数のパターン導体6と、複数のビア導体7とを含む直方体形状の積層体LBを備える。この実施形態においては、積層体LBは、絶縁体層5a~5lが積層されてなり、パターン導体6a~6iと、ビア導体7a~7cとを含んでいる。また、積層体LBには、外部電極4が設けられている。積層体LBの短手方向の一方端部に外部電極4aが設けられ、他方端部に外部電極4bが設けられている(図6において外部電極4は不図示)。
パターン導体6a~6iは、それぞれ絶縁体層5a~5lのうち対応する2つの層間に配置されている。この実施形態では、例えばパターン導体6aは、隣接する絶縁体層5aと絶縁体層5bとの間に配置されている。パターン導体6b~6iも同様に配置されている。パターン導体6a、6f、6hは、積層体LBの短手方向の一方端部に引き出され、外部電極4aと接続されている。また、パターン導体6b、6d、6g、6iは、積層体LBの短手方向の他方端部に引き出され、外部電極4bと接続されている。
ビア導体7a~7cは、それぞれ複数の絶縁体層5のうち対応する絶縁体層の長手方向の端部および対応する絶縁体層の中央部に、絶縁体層を貫通して配置されている。この実施形態では、ビア導体7aは、絶縁体層5d~5gの長手方向の一方端部に、絶縁体層5d~5gを貫通して配置され、パターン導体6cとパターン導体6eとを接続している。また、ビア導体7aは、積層体LBの短手方向に沿って並ぶ、柱状のビア導体7a1~7a3の集合体である。
ビア導体7bは、絶縁体層5d~5hの長手方向の他方端部に、絶縁体層5d~5hを貫通して配置され、パターン導体6cとパターン導体6fとを接続している。ビア導体7bも、ビア導体7aと同様に、積層体LBの短手方向に沿って並ぶ、柱状のビア導体7b1~7b3の集合体である。
ビア導体7cは、絶縁体層5e~5gの長手方向の中央部に、絶縁体層5e~5gを貫通して配置され、パターン導体6dとパターン導体6eとを接続している。ビア導体7cも、ビア導体7a、7bと同様に、積層体LBの短手方向に沿って並ぶ、柱状のビア導体7c1~7c3の集合体である。
ここで、絶縁体層の長手方向の端部とは、絶縁体層5a~5lの積層方向に沿って見たとき、絶縁体層を長手方向に4等分した場合の両端の2つの領域を指す。また、絶縁体層の長手方向の中央部とは、絶縁体層を長手方向に4等分した場合の中央の2つの領域を指す。
なお、この実施形態では、柱状のビア導体7a1~7a3は、それぞれ円柱状であるが、形状はこれに限られない。また、それぞれの中心軸が同一線上にあるように配列されているが、それぞれの中心軸は、同一線上からずれていてもよい。ビア導体7b1~7b3およびビア導体7c1~7c3も同様の構造を有している。
積層体LBの内部には、パターン導体6a~6cにより、第1のキャパシタC1が形成されている。また、パターン導体6f~6iにより、第2のキャパシタC2が形成されている。そして、パターン導体6c~6fとビア導体7a~7cとにより、インダクタLが形成されている。なお、第1のキャパシタC1、第2のキャパシタC2およびインダクタLには、上記の他のパターン導体、またはパターン導体およびビア導体が含まれていてもよい。
この実施形態では、図7(A)に示されるように、積層体LBの短手方向に沿って見たとき、パターン導体6c~6fとビア導体7a~7cとは、インダクタLがいわゆるスパイラル形状となるように接続されている。
すなわち、パターン導体6dとパターン導体6eとが、絶縁体層5e~5gの長手方向の中央部において、ビア導体7cにより接続されている。また、パターン導体6eとパターン導体6cとが、絶縁体層5d~5gの長手方向の一方端部において、ビア導体7aにより接続されている。そして、パターン導体6cとパターン導体6fとが、絶縁体層5d~5hの長手方向の他方端部において、ビア導体7bにより接続されている。これにより、インダクタLはスパイラル形状となっている。
第1のキャパシタC1、第2のキャパシタC2およびインダクタLは、図3(A)の等価回路図と同様に、外部電極4aに相当する第1のポートPO1と外部電極4bに相当する第2のポートPO2との間で互いに並列接続されている。
また、インダクタLは、図7(A)、(B)の矢視断面図に示されるように、積層体LBの内部において、第1のキャパシタC1と第2のキャパシタC2との間に配置されている。
ここで、絶縁体層5a~5lの積層方向に沿って見たとき、積層体LBの短手方向における積層体LBの幅をWとし、同じくインダクタLを形成するパターン導体6c~6fの幅の最小値をPWとする。その場合、積層体LBの幅Wおよびパターン導体6c~6fの幅の最小値PWは、0.5W<PW<Wを満足する。
積層型フィルタ200も、積層型フィルタ100と同様に、積層体LBの内部にヘリカル形状のインダクタを形成していない。すなわち、インダクタLを形成するパターン導体6の幅を、積層体LBの幅に対して狭くする必要がない。
そのため、積層型フィルタ200でも、インダクタLを形成するパターン導体6の幅の最小値PWが上式を満足するように、パターン導体6の幅をヘリカル形状のインダクタを形成する場合に比べて広くすることができる。その結果、パターン導体6の抵抗を低減することができる。したがって、積層体LBの内部に形成されたインダクタLの等価直列抵抗を低減することができる。
また、インダクタLがスパイラル形状である場合も、パターン導体6の幅を積層体LBの幅に近づけることが容易になる。その結果、パターン導体6の抵抗をより低減することができる。したがって、積層体LBの内部に形成されたインダクタLの等価直列抵抗をより低減することができる。また、ビア導体7の長さにより、インダクタLのインダクタンスを容易に調整することができる。
-積層型フィルタの実験例-
この開示に従う積層型フィルタの実験例について、図8および図9を用いて説明する。
この開示に従う積層型フィルタの実験例について、図8および図9を用いて説明する。
図8は、この実験例に用いられた積層型フィルタ100Cの分解斜視図である。積層型フィルタ100Cは、図8に示されるように、矩形状の絶縁体層8が積層されてなり、複数のパターン導体9と、複数のビア導体10とを含む直方体形状の積層体LBを備える。積層体LBは、絶縁体層8a~8lが積層されてなり、パターン導体9a~9kと、ビア導体10a~10fとを含んでいる。各ビア導体は、絶縁体層の短手方向に沿って並ぶ、3本の円柱状のビア導体の集合体である。積層体LBには、不図示の外部電極4が設けられている。
積層型フィルタ100Cは、積層型フィルタ100と同様の構造を有している。すなわち、積層体LBの内部には、パターン導体9a、9bにより、第1のキャパシタC1が形成されている。また、パターン導体9h~9kにより、第2のキャパシタC2が形成されている。そして、パターン導体9b~9hとビア導体10a~10fとにより、インダクタLが形成されている。
そして、図8に示されるように、積層体LBの短手方向に沿って見たとき、パターン導体9b~9hとビア導体10a~10fとは、インダクタLがいわゆるミアンダ形状となるように接続されている。また、インダクタLは、積層体LBの内部において、第1のキャパシタC1と第2のキャパシタC2との間に配置されている。
積層型フィルタ100Cの積層体LBの外形寸法は、絶縁体層8a~8lの積層方向に沿って見たとき、長手方向の長さが1.0mm、幅方向の長さが0.5mm、積層方向の厚みが0.5mmである。また、インダクタLを形成するパターン導体9b~9hの幅方向の長さは、0.45mmである。すなわち、積層体LBの幅Wおよびパターン導体9b~9hの幅の最小値PWは、0.5W<PW<Wを満足する。
図9は、積層型フィルタ100Cのフィルタ特性である。すなわち、積層型フィルタ100Cは、2.45GHzに減衰極を有していることが分かった。したがって、積層型フィルタ100Cは、Bluetooth(登録商標)の周波数帯である2.4GHz帯のノイズを除去する、いわゆるトラップフィルタとして機能することができる。
また、この積層型フィルタ100Cの等価直列抵抗をLCRメータで測定したところ、0.03Ωであった。比較例として、同様の外形寸法で、2.5GHzに自己共振による同等の減衰極を有するインダクタの等価直列抵抗を測定したところ、0.29Ωであった。したがって、この開示に従う積層型フィルタは、自己共振により同等の減衰量を有するインダクタに比較して、極めて小さい等価直列抵抗を有しており、DC-DCコンバータの性能に与える影響を小さくすることができる。
-通信装置の実施形態-
この開示に従う通信装置の実施形態である通信装置1000について、図10を用いて説明する。
この開示に従う通信装置の実施形態である通信装置1000について、図10を用いて説明する。
図10は、通信装置1000の概略構成図である。通信装置1000は、この開示に従う積層型フィルタ100と、通信制御装置110と、アンテナ120と、電源切り替えスイッチ130とを備えている。通信制御装置110は、パワーマネジメントシステム111とメインシステム112とRFシステム113とを含んでいる。パワーマネジメントシステム111は、DC-DCコンバータ111aと低ドロップアウトリニアレギュレータ111bと電源切り替えスイッチ111cと切り替え制御信号発生器111dとを有している。
パワーマネジメントシステム111の電源切り替えスイッチ111cおよびCPUなどのメインシステム112には、電圧3.3Vの第1の外部電力が入力される。電源切り替えスイッチ111cは、第1の外部電力の入力先をDC-DCコンバータ111aまたは低ドロップアウトリニアレギュレータ111bのいずれかに切り替える。電源切り替えスイッチ111cは、切り替え制御信号発生器111dを介してメインシステム112と接続されている。
アンテナ120は、RFシステム113に接続されている。RFシステム113は、電源切り替えスイッチ130に接続されている。電源切り替えスイッチ130は、第1の外部電力または電圧1.3V~1.8Vの第2の外部電力のいずれかが、RFシステム113に入力されるように切り替える。なお、第1の外部電力は、DC-DCコンバータ111aあるいは低ドロップアウトリニアレギュレータ111bにより電圧が調整されている。
この開示に従う積層型フィルタ100は、DC-DCコンバータ111aと電源切り替えスイッチ130との間に接続されている。
積層型フィルタ100では、前述したように、積層体LBの内部に形成されたインダクタLの等価直列抵抗が低減されている。したがって、通信装置1000は、積層型フィルタ100が用いられているため、DC-DCコンバータの効率を向上させることができ、延いては効率的な通信を行なうことができる。
この明細書に開示された実施形態は、例示的なものであって、この開示に係る発明は、上記の実施形態および変形例に限定されるものではない。すなわち、この開示に係る発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、上記の範囲内において、種々の応用、変形を加えることができる。
この開示に係る発明は、例えばBluetooth(登録商標)モジュール内のDC-DCコンバータに接続される積層型フィルタなどに適用されるが、これに限られない。
1,1a,1b,1c,1d,5,5a,5b,5d,5e,8,8a,301a 絶縁体層、2,2a,2b,2c,2d,2f,6,6a,6b,6c,6d,6e,6f,9,9a,9b,9h,302a,302c,302p パターン導体、3,3a1,3a,3b,7,7a,7a1,7b,7b1,7c,7c1,10,10a,303a,303b ビア導体、4,4a,4b 外部電極、100,100A,100B,100C,200,300 積層型フィルタ、110 通信制御装置、111 パワーマネジメントシステム、111a コンバータ、111b 低ドロップアウトリニアレギュレータ、111c,130 電源切り替えスイッチ、111d 切り替え制御信号発生器、112 メインシステム、113 システム、120 アンテナ、1000 通信装置、C キャパシタ、C1,C301 第1のキャパシタ、C2,C302 第2のキャパシタ、L,L300 インダクタ、PO1 第1のポート、PO2 第2のポート。
Claims (7)
- 直方体形状の積層体と、
前記積層体に設けられた外部電極とを備え、
前記積層体は、
積層された複数の絶縁体層と、
前記複数の絶縁体層の層間の各々に配置された複数のパターン導体と、
前記複数の絶縁体層のうちの少なくとも1つの絶縁体層を貫通するように配置された複数のビア導体とを含み、
前記複数のパターン導体のうちの一部のパターン導体を含む第1のキャパシタが形成されており、
前記複数のパターン導体のうちの他の一部のパターン導体を含む第2のキャパシタが形成されており、
前記複数のパターン導体および前記複数のビア導体のうちの、前記第1のキャパシタと前記第2のキャパシタとの間に位置する、パターン導体およびビア導体を含む、インダクタが形成されており、
前記第1のキャパシタ、前記第2のキャパシタおよび前記インダクタは、互いに並列に前記外部電極に接続されており、
前記複数の絶縁体層の積層方向に沿って見たとき、前記積層体の短手方向において、前記積層体の幅をWとし、前記複数のパターン導体のうちの前記インダクタに含まれる前記パターン導体の幅の最小値をPWとすると、0.5W<PW<Wである、積層型フィルタ。 - 前記インダクタは、前記積層体の前記短手方向に沿って見たとき、ミアンダ形状に形成されている、請求項1に記載の積層型フィルタ。
- 前記インダクタに含まれる前記パターン導体は、前記複数の絶縁体層の積層方向に沿って見たとき、C字状である、請求項2に記載の積層型フィルタ。
- 前記インダクタは、前記積層体の前記短手方向に沿って見たとき、スパイラル形状である、請求項1に記載の積層型フィルタ。
- 前記インダクタに含まれる前記パターン導体においては、パターン導体同士は、前記複数のビア導体のうちの複数の柱状のビア導体により互いに接続されている、請求項1から4のいずれか1項に記載の積層型フィルタ。
- 前記インダクタに含まれる前記パターン導体においては、パターン導体同士は、前記複数のビア導体のうちの少なくとも1つの壁状のビア導体により互いに接続されている、請求項1から4のいずれか1項に記載の積層型フィルタ。
- 請求項1から6のいずれか1項に記載の積層型フィルタと、
前記積層型フィルタと電気的に接続されたDC-DCコンバータを有するパワーマネジメントシステムを含む通信制御装置と、
前記通信制御装置に接続されたアンテナとを備える、通信装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182635 | 2018-09-27 | ||
JP2018-182635 | 2018-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020067405A1 true WO2020067405A1 (ja) | 2020-04-02 |
Family
ID=69951946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/038097 WO2020067405A1 (ja) | 2018-09-27 | 2019-09-27 | 積層型フィルタおよびそれを用いた通信装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020067405A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002198710A (ja) * | 2000-12-22 | 2002-07-12 | Kyocera Corp | 高周波伝送線路 |
JP2003174347A (ja) * | 2001-12-04 | 2003-06-20 | Fdk Corp | 積層チップ部品 |
JP2005184127A (ja) * | 2003-12-16 | 2005-07-07 | Murata Mfg Co Ltd | Lc共振子 |
JP2006283436A (ja) * | 2005-04-01 | 2006-10-19 | Tokai Rika Co Ltd | 通信制御装置 |
JP2008527808A (ja) * | 2005-01-04 | 2008-07-24 | Tdk株式会社 | バンドパスフィルタ構造を用いたマルチプレクサ |
WO2014181681A1 (ja) * | 2013-05-09 | 2014-11-13 | 株式会社村田製作所 | Lc並列共振素子および帯域阻止フィルタ |
-
2019
- 2019-09-27 WO PCT/JP2019/038097 patent/WO2020067405A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002198710A (ja) * | 2000-12-22 | 2002-07-12 | Kyocera Corp | 高周波伝送線路 |
JP2003174347A (ja) * | 2001-12-04 | 2003-06-20 | Fdk Corp | 積層チップ部品 |
JP2005184127A (ja) * | 2003-12-16 | 2005-07-07 | Murata Mfg Co Ltd | Lc共振子 |
JP2008527808A (ja) * | 2005-01-04 | 2008-07-24 | Tdk株式会社 | バンドパスフィルタ構造を用いたマルチプレクサ |
JP2006283436A (ja) * | 2005-04-01 | 2006-10-19 | Tokai Rika Co Ltd | 通信制御装置 |
WO2014181681A1 (ja) * | 2013-05-09 | 2014-11-13 | 株式会社村田製作所 | Lc並列共振素子および帯域阻止フィルタ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101148893B1 (ko) | 적층콘덴서, 및 적층콘덴서의 등가직렬저항 조정방법 | |
JP4356803B2 (ja) | 積層帯域通過フィルタ | |
KR101148894B1 (ko) | 적층 콘덴서 | |
US20060018081A1 (en) | Laminated ceramic capacitor | |
WO2011114746A1 (ja) | 構造体 | |
JP5817925B2 (ja) | 高周波モジュール | |
US10944376B2 (en) | LC resonator and LC filter | |
TW201644191A (zh) | 包含線圈及電容的層積複合電子零件 | |
US9564685B2 (en) | Antenna and communication apparatus | |
KR101386540B1 (ko) | 적층 콘덴서 | |
US10049807B2 (en) | Laminated coil component and matching circuit | |
WO2013157161A1 (ja) | インダクタアレイチップ及びdc-dcコンバータ | |
KR101020530B1 (ko) | 적층 콘덴서 어레이 | |
WO2017026266A1 (ja) | コイルデバイス | |
CN101860337B (zh) | 一种基于磁集成的emi滤波器模块 | |
JP2009218756A (ja) | 積層型バンドパスフィルタ | |
JP2006049432A (ja) | 積層型電子部品 | |
JP2018078450A (ja) | 積層型フィルタ | |
WO2020067405A1 (ja) | 積層型フィルタおよびそれを用いた通信装置 | |
WO2009096474A1 (ja) | Lc複合部品 | |
JP5601334B2 (ja) | 電子部品 | |
KR101027308B1 (ko) | 적층 콘덴서 어레이 | |
JPWO2005043750A1 (ja) | 電磁遅延線のインダクタンス素子 | |
JP3511569B2 (ja) | 積層コンデンサ | |
US20190305673A1 (en) | Noise reduction circuit and noise reduction element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19865630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19865630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |