WO2020067181A1 - ガス処理方法及びガス処理装置 - Google Patents

ガス処理方法及びガス処理装置 Download PDF

Info

Publication number
WO2020067181A1
WO2020067181A1 PCT/JP2019/037637 JP2019037637W WO2020067181A1 WO 2020067181 A1 WO2020067181 A1 WO 2020067181A1 JP 2019037637 W JP2019037637 W JP 2019037637W WO 2020067181 A1 WO2020067181 A1 WO 2020067181A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
carbon dioxide
adsorption
unit
gas
Prior art date
Application number
PCT/JP2019/037637
Other languages
English (en)
French (fr)
Inventor
和都 夏山
心 濱地
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019555043A priority Critical patent/JP6680960B1/ja
Priority to EP19866257.9A priority patent/EP3858464A4/en
Priority to CN201980058298.2A priority patent/CN112654414A/zh
Priority to US17/275,432 priority patent/US11772039B2/en
Publication of WO2020067181A1 publication Critical patent/WO2020067181A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/049Composition of the impurity the impurity being carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a gas processing method and a gas processing apparatus for processing a source gas containing at least carbon dioxide and nitrogen.
  • a gasification method by thermal decomposition is known.
  • a raw material gas containing carbon monoxide and hydrogen is obtained by thermally decomposing waste.
  • the source gas can be used for various uses.
  • a raw material gas is introduced into a culture tank containing a culture solution containing microorganisms, and an organic substance such as ethanol is generated by microbial fermentation.
  • an organic substance generation device such as a culture tank that generates an organic substance from a raw material gas
  • foam is easily generated on a liquid surface due to a reaction. If the foam grows excessively, it is conceivable that the foam may enter into a device on the downstream side of the organic substance generating device, causing a failure or causing contamination.
  • An object of the present invention is to treat a raw material gas so as to suppress generation of bubbles in an organic substance generation device.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, we focused on carbon dioxide and nitrogen that are not or rarely used in the production of organic substances in the organic substance generator, and when the total concentration of these exceeds a threshold, the concentration of carbon dioxide in the source gas is reduced. The inventors have found that the above problem can be solved by reducing the amount, and have completed the present invention. That is, the gist of the present invention is as follows.
  • a monitor that measures the concentration of carbon dioxide and the concentration of nitrogen in the raw material gas before or after passing through the adsorption unit, or the concentration of carbon dioxide and the concentration of nitrogen supplied to the organic substance generating device.
  • the adsorbing unit used in the adsorbing step includes a first adsorbing unit and a second adsorbing unit that alternately perform an adsorption process for adsorbing carbon dioxide on the adsorbent and a regeneration process for releasing carbon dioxide adsorbed on the adsorbent.
  • the capacity adjusting step includes the step of causing the first adsorption unit and the second adsorption unit to alternately perform the operation when the total concentration of the carbon dioxide concentration and the nitrogen concentration monitored in the monitoring process exceeds a threshold.
  • the adsorbing unit used in the adsorbing step includes a first adsorbing unit and a second adsorbing unit that alternately perform an adsorption process of adsorbing carbon dioxide on the adsorbent and a regeneration process of releasing carbon dioxide adsorbed on the adsorbent.
  • the supply is performed to the adsorption unit including the first adsorption unit and the second adsorption unit.
  • a gas processing apparatus for a raw material gas containing at least carbon dioxide and nitrogen An adsorbing section containing an adsorbent for adsorbing carbon dioxide, an introducing section for introducing the source gas into the adsorbing section, and a deriving section for extracting the source gas from the adsorbing section;
  • the control unit is the total concentration of the concentration of carbon dioxide and the concentration of nitrogen in the source gas before or after passing through the adsorption unit, or in the source gas supplied to the organic substance generation device If the total concentration of the concentration of carbon dioxide and the concentration of nitrogen exceeds a threshold, shorten the switching cycle of the adsorption process and the regeneration process to be performed alternately by the first adsorption unit and the second adsorption unit,
  • the gas processing apparatus according to [7].
  • the adsorption unit of the adsorption device includes a first adsorption unit and a second adsorption unit that alternately perform an adsorption process of adsorbing carbon dioxide on an adsorbent and a regeneration process of releasing carbon dioxide adsorbed on the adsorbent.
  • the control unit is the total concentration of the concentration of carbon dioxide and the concentration of nitrogen in the source gas before or after passing through the adsorption unit, or in the source gas supplied to the organic substance generation device When the total concentration of the carbon dioxide concentration and the nitrogen concentration exceeds the threshold value, the flow rate of the raw material gas supplied to the adsorption unit including the first adsorption unit and the second adsorption unit is reduced, [7]. Or the gas processing apparatus according to [8]. [10] The gas treatment apparatus according to any one of [7] to [9], wherein the adsorption section reduces the concentration of carbon dioxide in the source gas by a pressure swing adsorption method.
  • the raw material gas can be treated so as to suppress the generation of foam in the organic substance generation device.
  • FIG. 1 is a diagram for explaining an embodiment of the present invention, and is a block diagram for explaining a schematic configuration of a gas processing system to which a gas processing device is applied.
  • FIG. 2 is a block diagram for explaining a schematic configuration of the gas processing apparatus of the gas processing system of FIG.
  • FIG. 3 is a diagram schematically illustrating an example of an adsorption device of the gas processing system of FIG.
  • FIG. 4 is a diagram schematically showing an organic substance generating device of the gas processing system of FIG.
  • FIG. 5 is a diagram for explaining an example of a control method of the suction device.
  • FIG. 6 is a diagram for explaining an example of a control method of the suction device.
  • FIG. 7 is a diagram schematically illustrating a modified example of the suction device.
  • FIG. 8 is a diagram for explaining an example of a control method of the suction device.
  • FIG. 9 is a diagram schematically showing a modification of the suction device.
  • a gas processing apparatus is an apparatus that processes a source gas, adjusts the concentrations of various gases included in the source gas, and supplies the processed source gas to an organic substance generation device. It is.
  • the gas processing device is devised to process the raw material gas so as to suppress the generation of foam in the organic substance generation device.
  • this gas processing apparatus is applied to a gas processing system that generates an organic substance from a raw material gas obtained by gasifying waste containing a carbon compound.
  • the gas piping device according to the present embodiment is not limited to application to a gas processing system, but can be applied to various systems using a raw material gas.
  • a source gas generator 12 for generating a source gas, a gas processor 14 for processing a gas generated by the source gas generator 12, and a gas processed by the gas processor 14 are reacted.
  • the source gas generator 12 can be an apparatus that generates a source gas by gasifying a carbon source.
  • a gasification furnace for burning (incomplete combustion) a carbon source for example, a shaft furnace, a kiln furnace, a fluidized bed furnace, a gasification reforming furnace, or the like can be used.
  • the gasification furnace that constitutes the raw material gas generator 12 is preferably a fluidized bed furnace type because partial combustion of waste enables high hearth load and excellent operability.
  • waste Decomposes waste into gas (carbon monoxide, carbon dioxide, hydrogen, methane, etc.) and carbon-rich char by gasifying waste in a fluidized bed furnace at low temperature (about 450-600 ° C) and low oxygen atmosphere can do. Further, since incombustibles contained in the waste are separated from the furnace bottom in a sanitary and low-oxidation state, it is possible to selectively collect valuable resources such as iron and aluminum in the incombustibles. Therefore, such gasification of waste enables efficient resource recycling.
  • gas carbon monoxide, carbon dioxide, hydrogen, methane, etc.
  • the gasification temperature is usually 100 ° C. to 1500 ° C., preferably 200 ° C. to 1200 ° C.
  • the gasification reaction time is usually 2 seconds or more, preferably 5 seconds or more.
  • the carbon source supplied to the raw material gas generator 12 is not particularly limited.
  • Various types of carbon-containing materials can be suitably used for the purpose of recycling, such as general waste and industrial waste introduced into the above, and carbon dioxide by-produced by various industries.
  • carbon sources include plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, household waste such as futons and paper, waste such as building materials, coal, oil, Examples include petroleum-derived compounds, natural gas, and shale gas.
  • various wastes are preferable, and unsorted municipal waste is more preferable from the viewpoint of separation cost.
  • the raw material gas obtained by gasifying the carbon source contains carbon monoxide and hydrogen in combination with the organic substance generation device 16 described later.
  • carbon monoxide is converted by performing heat treatment (commonly called gasification) for burning (incompletely burning) the carbon source, that is, by partially oxidizing the carbon source. It is preferable to generate a source gas containing a large amount.
  • the source gas further contains carbon dioxide and nitrogen.
  • the raw material gas may further include components such as soot, tar, nitrogen compound, sulfur compound, phosphorus compound, and aromatic compound.
  • the gas processing device 14 processes the source gas generated by the source gas generation device 12 so as to be suitable for use in the organic substance generation device 16 on the downstream side.
  • the gas processing device 14 processes the source gas and appropriately adjusts the concentrations of various gases included in the source gas.
  • the gas treatment device 14 may remove or reduce various pollutants, dust particles, impurities, and undesired amounts of compounds and other specific substances from the source gas generated by the source gas generator 12.
  • the gas processing device 14 includes, for example, a gas chiller (moisture separation device), a low-temperature separation (deep cooling) separation device, a cyclone, a fine particle (soot) separation device such as a bag filter, a scrubber (water-soluble impurity separation device), Desulfurization unit (sulfide separation unit), membrane separation type separation unit, deoxygenation unit, pressure swing adsorption type separation unit (PSA), temperature swing adsorption type separation unit (TSA), pressure temperature swing adsorption type separation unit (PTSA), one or more of a separation device using activated carbon and a separation device using a palladium catalyst may be included.
  • a gas chiller moisture separation device
  • a low-temperature separation (deep cooling) separation device such as a bag filter
  • a scrubber water-soluble impurity separation device
  • Desulfurization unit sulfide separation unit
  • membrane separation type separation unit deoxygenation unit
  • PSA pressure swing adsorption type separation unit
  • the gas treatment device 14 includes a scrubber 30, a gas piping device 40 configured as a water separation device, an adsorption device 50, and a supply device 60.
  • the scrubber 30 is used to remove contaminants and the like in the raw material gas, and any of a wet cleaning method and a dry cleaning method can be used according to the purpose.
  • a wet cleaning method performed by bringing particulate matter into contact with a cleaning liquid can be preferably used, and as an example, a cleaning method using a so-called water curtain can be used.
  • the cleaning liquid includes, for example, water, an acidic solution, an alkaline solution and the like, and is preferably water.
  • the temperature of the washing solution is usually 40 ° C. or lower, preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and further preferably 15 ° C. or lower.
  • the gas piping device 40 functioning as a moisture separator cools the raw material gas processed by the scrubber 30 and removes water from the raw material gas.
  • the adsorption device 50 has a performance of adsorbing carbon dioxide in the raw material gas.
  • the adsorption device 50 has at least one of PSA, TSA, and PTSA.
  • PSA PSA
  • TSA TSA
  • PTSA PTSA
  • an example in which the adsorption device 50 has a PSA will be described.
  • the adsorption device 50 may have a performance of adsorbing gases other than carbon dioxide.
  • FIG. 3 is a diagram schematically showing an example of the suction device 50.
  • the suction device 50 includes a suction unit 52 including an introduction unit 51, a first suction unit 521, and a second suction unit 522, a derivation unit 54, a control unit 55, and a monitor unit 56.
  • the introduction unit 51 introduces the pressurized source gas into the adsorption unit 52.
  • the introduction unit 51 switches the flow path of the source gas so that the pressurized source gas is introduced into one of the first adsorption unit 521 and the second adsorption unit 522 of the adsorption unit 52.
  • a switching unit 511 is included.
  • Both the first adsorbing section 521 and the second adsorbing section 522 of the adsorbing section 52 contain an adsorbent 53 that adsorbs carbon dioxide.
  • an adsorbent 53 a porous material such as activated carbon, zeolite, or molecular sieves, or an aqueous solution such as an amine solution can be used.
  • the first suction unit 521 and the second suction unit 522 alternately perform the suction process and the regeneration process.
  • the adsorption treatment is a treatment in which carbon dioxide is adsorbed on an adsorbent under a pressurized environment.
  • the regeneration treatment is a treatment in which carbon dioxide adsorbed on the adsorbent is released under a reduced pressure environment.
  • the above-described introduction unit 51 introduces the raw material gas to the one of the first adsorption unit 521 and the second adsorption unit 522 where the adsorption process is to be performed.
  • the deriving unit 54 derives the raw material gas that has passed through the adsorption unit 52 to the downstream side.
  • the derivation-side switching unit 541 is configured to discharge the source gas that has passed through the adsorption unit of the first adsorption unit 521 or the second adsorption unit 522 on which the adsorption process is performed to the downstream side.
  • Outgoing-side switching unit 541 for switching the flow path of the power supply.
  • the control unit 55 controls the introduction-side switching unit 511 to switch the flow path of the introduction unit 51, thereby causing the first adsorption unit 521 and the second adsorption unit 522 to alternately perform the adsorption process and the regeneration process.
  • the control unit 55 controls the output side switching unit so as to output the raw material gas that has passed through the adsorption unit of the first adsorption unit 521 or the second adsorption unit 522 on which the adsorption process is performed to the supply device 60 on the downstream side. 541 is controlled.
  • the supply device 60 supplies the raw material gas whose carbon dioxide concentration has been reduced by the adsorption device 50 to the organic substance generation device 16.
  • the carbon monoxide concentration, the hydrogen concentration, the carbon dioxide concentration, and the nitrogen concentration in the raw material gas supplied from the supply device 60 of the gas treatment device 14 to the organic substance generation device 16 are, for example, 35 to 45% by volume, 35 to 45%, respectively. 45% by volume, 5 to 15% by volume, and 5 to 15% by volume.
  • the supply device 60 includes, for example, a pipe connecting the adsorption device 50 and the organic substance generation device 16. Further, the supply device 60 may include an adjustment unit that adjusts the flow rate of the source gas supplied to the organic substance generation device 16 per unit time.
  • the adjustment unit includes, for example, a valve.
  • the organic substance producing device 16 produces an organic substance by bringing a raw material gas into contact with a microorganism fermentation or a metal catalyst.
  • the substance obtained by microbial fermentation of the raw material gas or metal catalysis include methanol, ethanol, 2,3-butanediol, acetic acid, lactic acid, isoprene, butadiene, and the like. Of these, alcohols or diols having 1 to 4 carbon atoms are preferably contained, and ethanol is more preferably contained.
  • the use of the obtained organic substance is not particularly limited.
  • the obtained organic substance may be used, for example, as a raw material such as plastic or resin, or may be used as various solvents, bactericides, or fuels.
  • High-concentration ethanol can be used as fuel ethanol to be mixed with gasoline and the like, and can also be used as an additive in raw materials such as cosmetics, beverages, chemical substances, fuels (jet fuel), foods, etc. Extremely high.
  • the organic substance generating device 16 has, for example, a fermenter 161 containing microorganisms (species) as shown in FIG.
  • the fermenter 161 may include a medium (culture solution) 162 in addition to the microorganism species.
  • a supply pipe 163 for supplying a raw material gas, a recovery pipe 164 for recovering the obtained organic substance, and a discharge pipe 165 for discharging gas not used for generation of the organic substance are connected to the organic substance generation device 16. doing.
  • reference numeral 166 represents a bubble 166 in the culture solution 162. Bubbles 166 mainly contain gases that have not been used to produce organic matter, such as nitrogen and carbon dioxide. The bubbles 166 float up to the liquid level of the culture medium (culture solution) 162 and are then discharged by the discharge pipe 165.
  • Certain anaerobic microorganisms are known to produce valuable organic substances, such as ethanol, from substrate gases, such as raw material gas, by fermentation.
  • Culture medium For example, the culture solution and the gas-assimilating bacterium may be supplied and stored, and the raw material gas may be supplied into the fermenter while stirring the culture solution in this state.
  • the gas-assimilating bacteria can be cultured in the culture solution, and an organic substance can be generated from the raw material gas by the fermentation action.
  • the culture solution is a liquid containing water as a main component and nutrients (for example, vitamins and phosphoric acids) dissolved or dispersed in the water.
  • nutrients for example, vitamins and phosphoric acids
  • the microorganism (species) for microbial fermentation of the raw material gas is not particularly limited as long as a desired organic substance can be produced by microbial fermentation of the raw material gas using hydrogen and carbon monoxide as main raw materials.
  • the microorganism (species) is one that produces an organic substance from the raw material gas by the fermentation action of gas-assimilating bacteria.
  • the gas-assimilating bacteria the genus Clostridium is more preferred, and Clostridium autoethanogenum is particularly preferred, but is not limited thereto.
  • Gas assimilating bacteria include both eubacteria and archaebacteria. Examples of the true bacteria include Clostridium, Moorella, Acetobacterium, Carboxydocella, Rhodopseudomonas, and Eubacterium. (Eubacterium) bacteria, Butyribacterium bacteria, Oligotropha bacteria, Bradyrhizobium bacteria, and aerobic hydrogen oxidizing bacteria Ralsotonia bacteria.
  • examples of archaea include Methanobacterium, Methanobrevibacter, Methanocalculus, Methanococcus, Methanosarcina, Methanosphaera, Methanothermobacter, Methanothrix, Methanoculleus, Methanofollis, Methanogenium.
  • examples include bacteria, Methanospirillium bacteria, Methanosaeta bacteria, Thermococcus bacteria, Thermofilum bacteria, Arcaheoglobus bacteria, and the like.
  • preferred archaea are Methanosarcina, Methanococcus, Methanothermobacter, Methanothrix, Thermococcus, Thermofilum and Archaeoglobus bacteria.
  • Methanosarcina bacteria, Methanothermobactor bacteria or Methanococcus bacteria are preferred as archaea, and Methanosarcina bacteria or Methanococcus bacteria are particularly preferred as archaea because they are excellent in assimilation of carbon monoxide and carbon dioxide.
  • Specific examples of the bacteria belonging to the genus Methanosarcina include, for example, Methanosarcinaosbarkeri, Methanosarcina mazei, Methanosarcina acetivorans, and the like.
  • gas-assimilating bacteria having a high ability to produce an intended organic substance is selected and used.
  • gas-assimilating bacteria having a high ethanol-producing ability include Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium aceticum, and Clostridium carbodidicarbans. , Moorella thermoacetica, Acetobacterium woodii, and the like.
  • the medium used for culturing the above-mentioned microorganism is not particularly limited as long as it has an appropriate composition according to the bacterium.
  • the culture medium in the case where Clostridium is used as the microorganism reference can be made to “0097” to “0099” in US Patent Application Publication No. 2017/260552.
  • the temperature (culture temperature) of the culture medium (culture solution) may be any temperature, but is preferably about 30 to 45 ° C., more preferably about 33 to 42 ° C., and still more preferably 36.5. ⁇ 37.5 ° C.
  • the culture time is preferably 12 hours or more in continuous culture, more preferably 7 days or more, particularly preferably 30 days or more, and most preferably 60 days or more. From the viewpoint, it is preferably 720 days or less, more preferably 365 days or less.
  • the culturing time means the time from the addition of the inoculum to the culturing tank to the discharge of the entire amount of the culture solution in the culturing tank.
  • a metal catalyst used in the reactor, a known metal catalyst used for obtaining a target organic substance from a raw material gas can be used.
  • ruthenium, rhodium, palladium, osmium, iridium, and platinum can be used.
  • a metal catalyst containing at least one selected platinum group element is preferred from the viewpoint of increasing the CO conversion.
  • the organic substance refining device 18 is a device that purifies an organic substance-containing liquid obtained through microbial fermentation in the organic substance generating device 16. For example, the organic substance refining device 18 separates the obtained organic substance-containing liquid into a distillate in which the concentration of the target organic substance is increased and a residual liquid in which the concentration of the target organic substance is decreased in the purification section. I do.
  • Examples of such an organic substance refining apparatus 18 include a distillation apparatus, a processing apparatus including a pervaporation membrane, a processing apparatus including a zeolite dehydration membrane, a processing apparatus for removing a low-boiling substance having a lower boiling point than the organic substance, and a boiling apparatus from the organic substance. And high-boiling substances having a high concentration, and a processing apparatus including an ion-exchange membrane. These devices may be used alone or in combination of two or more. As the unit operation, heat distillation or membrane separation may be suitably used.
  • Distillation equipment can be used for heat distillation.
  • the temperature in the still during distillation of the organic substance is not particularly limited, but is preferably 100 ° C. or lower, and more preferably about 70 to 95 ° C.
  • separation of a necessary organic substance from other components, that is, distillation (purification) of the organic substance can be performed more reliably.
  • the pressure in the distillation apparatus during the distillation of the organic substance may be normal pressure, but is preferably lower than atmospheric pressure, more preferably about 60 to 95 kPa (absolute pressure).
  • the yield of the organic substance is preferably 90% by weight or more, more preferably 99% by weight or more, and particularly preferably 99.5% by weight or more.
  • a known separation membrane can be appropriately used, and for example, a zeolite membrane can be suitably used.
  • an organic substance can be produced from a raw material gas.
  • the concentration of each gas contained in the source gas generated by the source gas generator 12 may fluctuate.
  • examples of such a case include a case where the carbon source is not constant, a case where the reaction performed in the raw material gas generator 12 is not a homogeneous reaction, and the like.
  • an organic substance generation device that generates an organic substance from a raw material gas such as a culture tank
  • bubbles are easily generated on the liquid surface due to the reaction.
  • the amount of the inert gas in the source gas increases, even if it is temporary, foam may be generated.
  • bubbles may enter the device downstream of the organic substance generating device, resulting in a failure or contamination.
  • This tendency is due to plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, household waste such as futons and paper, preferably plastic waste, garbage, etc. , Municipal waste (MSW), waste tires, and more preferably municipal waste (MSW).
  • the total concentration of the concentration of carbon dioxide and the concentration of nitrogen in the raw material gas is focused on, and the foam is prevented or suppressed by adjusting the ability to increase the ability to reduce the concentration of carbon dioxide.
  • carbon dioxide and nitrogen are not or rarely used for the production of organic substances, they directly contribute to foam generation in the fermenter 161 and have little or no effect on the production of organic substances. Therefore, attention or attention to these facilitates prevention or suppression of foam generation.
  • the concentration of carbon dioxide is easily controlled by the adsorption device. Therefore, in this embodiment, the concentration of carbon dioxide is particularly controlled. Thereby, generation of foam can be prevented or suppressed.
  • the concentration of carbon dioxide and the concentration of nitrogen before passing through the adsorption section, or the concentration of carbon dioxide and the concentration of nitrogen after passing through the adsorption section are measured.
  • the concentration of carbon dioxide and the concentration of nitrogen both before and after passing through the adsorption section can be measured.
  • the “threshold” is usually 5% or more of the total concentration (vol%) of the concentration (vol%) of carbon dioxide and the concentration (vol%) of nitrogen contained in the raw material gas. Means high.
  • the total concentration (vol%) of the concentration (vol%) of carbon dioxide and the concentration (vol%) of nitrogen contained in the raw material gas refers to the case where the raw material gas is continuously generated from the carbon source for 24 hours. Means the average.
  • the configuration of the suction device 50 will be described in detail.
  • the adsorption device 50 has a monitor unit 56 for measuring the concentration of carbon dioxide and the concentration of nitrogen in the raw material gas.
  • the monitor unit 56 is provided in the outlet unit 54 on the downstream side of the suction unit 52. In this case, the monitor unit 56 measures the concentration of carbon dioxide and the concentration of nitrogen in the raw material gas after passing through the adsorption unit 52.
  • the control unit 55 of the adsorption device 50 sends the first adsorption unit 521 and the second adsorption unit 522
  • the introduction unit 51 and the derivation unit 54 are controlled so as to shorten the switching cycle of the adsorption process and the regeneration process that are performed alternately.
  • the ability of the adsorption section 52 to reduce the concentration of carbon dioxide in the source gas (hereinafter, also referred to as carbon dioxide removal ability) can be increased.
  • the concentration of carbon dioxide in the source gas after passing through the adsorption section 52 can be reduced. The reason why the shortening of the switching period between the adsorption process and the regeneration process enhances the carbon dioxide removal capability of the adsorption unit 52 will be described later.
  • the main components of the gases that are not used or hardly used for generating organic substances are nitrogen and carbon dioxide. Therefore, even if the concentration of nitrogen in the source gas is increased, if the concentration of carbon dioxide in the source gas is reduced and the concentration of carbon dioxide in the source gas is reduced, it can be used for the generation of organic substances. The increase in the total amount of no gas can be suppressed. Accordingly, it is possible to suppress the formation of foam on the liquid surface of the culture medium (culture liquid) 162.
  • the gas treatment device 14 treats the raw material gas generated by the raw material gas generation device 12 with the scrubber 30, the gas piping device 40, and the like, and then introduces the raw material gas into the adsorption device 50.
  • the adsorption device 50 performs an adsorption step of passing the source gas through the adsorption unit 52 to reduce the concentration of carbon dioxide in the source gas.
  • the first adsorption unit 521 and the second adsorption unit 522 of the adsorption unit 52 alternately perform the adsorption process and the regeneration process.
  • the control unit 55 controls the introduction-side switching unit 511 of the introduction unit 51 in the first switching cycle T1 so that the pressurized source gas is alternately introduced into the first adsorption unit 521 and the second adsorption unit 522. Switch.
  • the control unit 55 derives the first switching period T1 so as to derive the raw material gas that has passed through the adsorption unit of the first adsorption unit 521 or the second adsorption unit 522 on which the adsorption process is being performed to the downstream side.
  • the deriving side switching unit 541 of the unit 54 is switched.
  • FIG. 5 is a diagram showing the concentration of carbon dioxide in the raw material gas after passing through the adsorption section 52 when the adsorption processing and the regeneration processing are switched in the first switching cycle T1.
  • the first suction unit 521 performs the suction process
  • the second suction unit 522 performs the suction process. I have.
  • the ability of the adsorbent 53 to adsorb carbon dioxide is highest immediately after the start of the adsorption process after the regeneration process. Thereafter, as the adsorption process is continued, the ability of the adsorbent 53 to adsorb carbon dioxide gradually decreases. For this reason, as shown in FIG. 5, the concentration of carbon dioxide in the source gas after passing through the adsorption unit 52 becomes lowest immediately after the first adsorption unit 521 or the second adsorption unit 522 starts the adsorption process. .
  • Symbol C0 is the concentration of carbon dioxide immediately after the first adsorption unit 521 or the second adsorption unit 522 starts the adsorption process, and is, for example, about 0% by volume.
  • a symbol C1 indicates the concentration of carbon dioxide immediately before the first adsorption unit 521 or the second adsorption unit 522 ends the adsorption process when the adsorption process and the regeneration process are switched in the first switching period T1, and is, for example, about 20%. % By volume.
  • the average value C1 (ave) of the concentrations of carbon dioxide in the source gas after passing through the adsorption section 52 is an intermediate value between the concentrations C0 and C1, for example, about 10% by volume.
  • the raw material gas that has been subjected to the adsorption step in the adsorption section 52 is sent to the supply device 60 through the outlet section 54.
  • the supply device 60 supplies the raw material gas whose carbon dioxide concentration has been reduced by the adsorption process to the organic substance generation device 16.
  • the monitor unit 56 of the adsorption device 50 performs a monitor step of measuring the concentration of carbon dioxide and the concentration of nitrogen in the raw material gas passed through the adsorption unit 52.
  • the concentration of nitrogen in the source gas is, for example, 10% by volume.
  • the control unit 55 of the adsorption device 50 determines whether or not the total concentration of the concentrations of carbon dioxide and nitrogen monitored in the monitoring process exceeds the threshold.
  • the threshold value can be changed depending on the level of the medium (culture solution) 162 in the fermenter 161 and is preferably in the range of 10 to 20% by volume, for example, 15% by volume.
  • the control unit 55 performs a capability adjustment process of increasing the carbon dioxide removal capability of the adsorption unit 52. Specifically, the control unit 55 sets the switching cycle of the suction process and the regeneration process to be performed alternately by the first suction unit 521 and the second suction unit 522 to a second switching cycle shorter than the first switching cycle T1. Change to T2.
  • the second switching cycle T2 is, for example, 4/5 or less of the first switching cycle T1. Further, the second switching cycle T2 may be 3/5 or less of the first switching cycle T1, or may be 2/5 or less of the first switching cycle T1.
  • FIG. 6 is a diagram illustrating the concentration of carbon dioxide in the source gas after passing through the adsorption unit 52 when the adsorption process and the regeneration process are switched in the second switching period T2 shorter than the first switching period T1. is there.
  • the first suction unit 521 performs the suction process during the period indicated by the arrow A, and performs the second suction process during the period indicated by the arrow B.
  • the unit 522 performs the suction process.
  • the ability of the adsorbent 53 to adsorb carbon dioxide is highest immediately after the start of the adsorption treatment after the regeneration treatment, and thereafter, the ability gradually decreases.
  • the suction process and the regeneration process are switched in the second switching period T2 shorter than the first switching period T1. Therefore, as shown in FIG. 6, the ability of the adsorbent 53 to adsorb carbon dioxide immediately before the first adsorbing section 521 or the second adsorbing section 522 ends the adsorbing process is determined in the first switching cycle T1. Higher than when switching between processing and playback processing. Therefore, in the example shown in FIG.
  • the concentration C2 of carbon dioxide immediately before the first adsorption unit 521 or the second adsorption unit 522 ends the adsorption process is lower than the concentration C1 of carbon dioxide in the example shown in FIG. .
  • the concentration C2 is about 10% by volume.
  • the average value C2 (ave) of the concentrations of carbon dioxide in the raw material gas after passing through the adsorption section 52 is an intermediate value between the concentrations C0 and C2, for example, about 5% by volume.
  • the average value of the concentration of carbon dioxide in the source gas after passing through the adsorption unit 52 can be reduced. That is, by shortening the switching period between the adsorption process and the regeneration process, the carbon dioxide removal capability of the adsorption unit 52 can be increased.
  • the carbon dioxide removal capability of the adsorption unit 52 can be increased.
  • the concentration of carbon dioxide in the source gas after passing through the adsorption unit 52 can be made lower than in the case where the adsorption unit 52 is controlled in the first switching cycle T1.
  • the total concentration can be reduced by reducing the carbon dioxide concentration.
  • control unit 55 may return the switching period of the adsorption process and the regeneration process from the period T2 to the period T1. Good.
  • FIG. 7 is a diagram illustrating the suction device 50 according to the present modification.
  • the adsorption device 50 has a flow rate adjustment unit 58 that adjusts the flow rate of the raw material gas supplied from the introduction unit 51 to the adsorption unit 52.
  • the flow rate adjusting unit 58 is, for example, a throttle valve.
  • the flow controller 58 is controlled by the controller 55.
  • control unit 55 When the total concentration of the concentration of carbon dioxide and the concentration of nitrogen monitored in the monitoring process exceeds the threshold, the control unit 55 performs a capability adjustment process of increasing the carbon dioxide removal capability of the adsorption unit 52. In this modification, the control unit 55 reduces the flow rate of the raw material gas supplied to the adsorption unit 52.
  • FIG. 8 shows the concentration of carbon dioxide in the source gas after passing through the adsorption unit 52 when the source gas is supplied to the adsorption unit 52 at a lower flow rate than in the case of the above-described embodiment shown in FIG. FIG.
  • the first suction unit 521 performs the suction process during the period indicated by the arrow A, and performs the second suction process during the period indicated by the arrow B.
  • the unit 522 performs the suction process.
  • the ability of the adsorbent 53 to adsorb carbon dioxide is highest immediately after the start of the adsorption treatment after the regeneration treatment, and thereafter, the ability gradually decreases.
  • the degree of the decrease in capacity corresponds to the cumulative amount of carbon dioxide adsorbed by the adsorbent 53. Therefore, even when the adsorption process and the regeneration process are switched in the first switching period T1 as in the case shown in FIG. 5, if the flow rate of the raw material gas supplied to the adsorption section 52 is low, the adsorption material 53 adsorbs the material. Since the accumulated amount of carbon dioxide is small, the degree of decrease in the ability of the adsorbent 53 to adsorb carbon dioxide is small. Therefore, in the example shown in FIG.
  • the concentration C3 of carbon dioxide immediately before the first adsorption unit 521 or the second adsorption unit 522 ends the adsorption process is lower than the concentration C1 of carbon dioxide in the example shown in FIG. .
  • the average value C3 (ave) of the concentrations of carbon dioxide in the raw material gas after passing through the adsorption section 52 is an intermediate value between the concentrations C0 and C3, for example, about 5% by volume.
  • the carbon dioxide removal capability of the adsorption unit 52 can be increased. Therefore, even when the total concentration of carbon dioxide and nitrogen in the source gas increases, the total concentration can be reduced by reducing the concentration of carbon dioxide. Thus, it is possible to suppress the formation of foam on the liquid surface of the culture medium (culture liquid) 162 in the organic substance generation device 16.
  • the adsorption device 50 is a pressure swing adsorption type separation device (PSA) has been described, but the type of the adsorption device 50 is not particularly limited.
  • the adsorption device 50 may be a temperature swing adsorption type separation device (TSA) or a pressure temperature swing adsorption type separation device (PTSA).
  • TSA temperature swing adsorption type separation device
  • PTSA pressure temperature swing adsorption type separation device
  • FIG. 9 is a diagram showing an example of the adsorption device 50 configured as a temperature swing adsorption type separation device (TSA).
  • TSA temperature swing adsorption type separation device
  • the control unit 55 causes the first suction unit 521 and the second suction unit 522 to alternately increase the temperature of the first suction unit 521 and the second suction unit 522, thereby causing the first suction unit 521 and the second suction unit 522 to perform suction processing and regeneration processing. And are performed alternately.
  • the carbon dioxide removal capability of the adsorption device 50 can be adjusted.
  • the example in which the monitor unit 56 of the suction device 50 is provided in the outlet unit 54 on the downstream side of the outlet-side switching unit 541 has been described. That is, in the monitoring step, an example was shown in which the concentration of carbon dioxide and the concentration of nitrogen in the raw material gas after passing through the adsorption section 52 were measured.
  • the position where the concentration of carbon dioxide and the concentration of nitrogen in the source gas are measured is not particularly limited.
  • the monitor unit 56 of the suction device 50 may be provided in the introduction unit 51 on the upstream side of the suction unit 52.
  • the concentration of carbon dioxide and the concentration of nitrogen in the source gas before passing through the adsorption section 52 are measured.
  • a monitor unit that measures the concentration of carbon dioxide and the concentration of nitrogen in the source gas may be provided in the organic substance generation device 16. In this case, in the monitoring step, the concentration of carbon dioxide and the concentration of nitrogen supplied to the organic substance generating device 16 are measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

有機物質生成装置における泡沫の発生を抑制する。 二酸化炭素および窒素を少なくとも含む原料ガスを、二酸化炭素を吸着する吸着材が収容された吸着部に通して、前記原料ガス中の二酸化炭素の濃度を低減する吸着工程と、前記吸着工程によって二酸化炭素の濃度が低減された前記原料ガスを、有機物質を生成する有機物質生成装置に供給する供給工程と、前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度、若しくは前記有機物質生成装置に供給された二酸化炭素の濃度および窒素の濃度を測定するモニタ工程と、を有し、前記吸着工程は、前記モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記吸着部が前記原料ガス中の二酸化炭素の濃度を低減する能力を高める能力調整工程を有する、ガス処理方法。

Description

ガス処理方法及びガス処理装置
 本発明は、二酸化炭素および窒素を少なくとも含む原料ガスを処理するガス処理方法及びガス処理装置に関する。
 産業廃棄物や一般廃棄物の処理方法として、熱分解によるガス化方法が知られている。この方法によれば、廃棄物を熱分解することで、一酸化炭素及び水素を含む原料ガスが得られる。原料ガスは、種々の用途に利用可能である。例えば特許文献1では、原料ガスを、微生物を含む培養液が収容された培養槽に導入して、微生物発酵によってエタノール等の有機物質を生成している。
特開2018-58042号公報
 培養槽などの、原料ガスから有機物質を生成する有機物質生成装置においては、反応に起因して液面上に泡沫が生じ易い。泡沫が過度に成長すると、有機物質生成装置の下流側の装置に泡沫が入り込むことで故障の原因になったり、コンタミネーションの原因になったりすることが考えられる。
 本発明は、有機物質生成装置における泡沫の発生を抑制するように原料ガスを処理することを目的とする。
 本発明者らは上記課題を解決するべく鋭意検討を行った。その結果、有機物質生成装置において有機物質の生成に用いられない、またはほとんど用いられない二酸化炭素および窒素に着目し、これらの総濃度が閾値を超えた場合に原料ガス中の二酸化炭素の濃度を低減させることで、上記課題が解決されうることを見出し、本発明を完成させるに至った。すなわち、本発明の要旨は以下の通りである。
 [1]二酸化炭素および窒素を少なくとも含む原料ガスを、二酸化炭素を吸着する吸着材が収容された吸着部に通して、前記原料ガス中の二酸化炭素の濃度を低減する吸着工程と、
 前記吸着工程によって二酸化炭素の濃度が低減された前記原料ガスを、有機物質を生成する有機物質生成装置に供給する供給工程と、
 前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度、若しくは前記有機物質生成装置に供給された二酸化炭素の濃度および窒素の濃度を測定するモニタ工程と、
を有し、
 前記吸着工程は、前記モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記吸着部が前記原料ガス中の二酸化炭素の濃度を低減する能力を高める能力調整工程を有する、ガス処理方法。
 [2]前記吸着工程で用いられる前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
 前記能力調整工程は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部に交互に実施させる前記吸着処理及び前記再生処理の切替周期を短くする、[1]に記載のガス処理方法。
 [3]前記吸着工程で用いられる前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
 前記能力調整工程は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部を含む前記吸着部に供給する原料ガスの流量を低下させる、[1]または[2]に記載のガス処理方法。
 [4]前記原料ガスが、さらに水素及び一酸化炭素を含む合成ガスであることを特徴とする、[1]~[3]のいずれかに記載のガス処理方法。
 [5]前記有機物質が一酸化炭素と水素を原料として生成される、[4]に記載のガス処理方法。
 [6]前記吸着工程は、圧力スイング吸着方式により前記原料ガス中の二酸化炭素の濃度を低減する、[1]~[5]のいずれかに記載のガス処理方法。
 [7]二酸化炭素および窒素を少なくとも含む原料ガスのガス処理装置であって、
 二酸化炭素を吸着する吸着材が収容された吸着部と、前記原料ガスを前記吸着部に導入する導入部と、前記原料ガスを前記吸着部から導出する導出部と、を有する、前記原料ガス中の二酸化炭素の濃度を低減する吸着装置と、
 前記吸着装置によって二酸化炭素の濃度が低減された前記原料ガスを、有機物質を生成する有機物質生成装置に供給する供給装置と、
 前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度を測定するモニタ部と、
 前記モニタ部で測定された二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記吸着部が前記原料ガス中の二酸化炭素の濃度を低減する能力を高めるよう前記吸着部、前記導入部又は前記導出部を制御する制御部と、
を有する、ガス処理装置。
 [8]前記吸着装置の前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
 前記制御部は、前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度、若しくは前記有機物質生成装置に供給された前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部に交互に実施させる前記吸着処理及び前記再生処理の切替周期を短くする、[7]に記載のガス処理装置。
 [9]前記吸着装置の前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
 前記制御部は、前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度、若しくは前記有機物質生成装置に供給された前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部を含む前記吸着部に供給する原料ガスの流量を低下させる、[7]または[8]に記載のガス処理装置。
 [10]前記吸着部は、圧力スイング吸着方式により前記原料ガス中の二酸化炭素の濃度を低減する、[7]~[9]のいずれかに記載のガス処理装置。
 本発明によれば、有機物質生成装置における泡沫の発生を抑制するように原料ガスを処理することができる。
図1は、本発明の一実施の形態を説明するための図であって、ガス処理装置が適用されたガス処理システムの概略構成を説明するためのブロック図である。 図2は、図1のガス処理システムのガス処理装置の概略構成を説明するためのブロック図である。 図3は、図1のガス処理システムの吸着装置の一例を模式的に示す図である。 図4は、図1のガス処理システムの有機物質生成装置を模式的に示す図である。 図5は、吸着装置の制御方法の一例を説明するための図である。 図6は、吸着装置の制御方法の一例を説明するための図である。 図7は、吸着装置の一変形例を模式的に示す図である。 図8は、吸着装置の制御方法の一例を説明するための図である。 図9は、吸着装置の一変形例を模式的に示す図である。
 以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
 以下に説明する一実施の形態において、ガス処理装置は、原料ガスを処理して、原料ガスに含まれる各種のガスの濃度を調整し、処理後の原料ガスを有機物質生成装置に供給する装置である。このガス処理装置には、有機物質生成装置において泡沫が発生することを抑制するように原料ガスを処理するための工夫が施されている。以下、このガス処理装置を、炭素化合物を含んだ廃棄物をガス化してなる原料ガスから有機物質を生成するガス処理システムに適用した例について、説明する。しかしながら、本実施の形態によるガス配管装置は、ガス処理システムへの適用に限られず、原料ガスを利用する種々のシステムへ適用可能である。
 まず、ガス処理システム10の全体構成について説明する。図1に示すように、原料ガスを生成する原料ガス生成装置12と、原料ガス生成装置12で生成されたガスを処理するガス処理装置14と、ガス処理装置14で処理されたガスを反応させて有機物質を生成する有機物質生成装置16と、有機物質生成装置16で生成された有機物質を精製する有機物質精製装置18と、を有している。
 このうち、原料ガス生成装置12は、炭素源をガス化させることによって原料ガスを生成する装置とすることができる。原料ガス生成装置12として、炭素源を燃焼(不完全燃焼)させるガス化炉、例えば、シャフト炉、キルン炉、流動床炉、ガス化改質炉等を用いることができる。原料ガス生成装置12をなすガス化炉は、廃棄物を部分燃焼させることにより、高い炉床負荷、優れた運転操作性が可能となるため、流動層炉式であることが好ましい。廃棄物を低温(約450~600℃)かつ低酸素雰囲気の流動床炉中でガス化することにより、ガス(一酸化炭素、二酸化炭素、水素、メタン等)および炭素分を多く含むチャーに分解することができる。さらに廃棄物に含まれる不燃物が炉底から、衛生的でかつ酸化度の低い状態で分離されるため、不燃物中の鉄やアルミニウム等といった有価物を選択回収することが可能である。従って、このような廃棄物のガス化は、効率の良い資源リサイクルが可能となる。
 ガス化炉としての原料ガス生成装置12において、ガス化の温度は、通常100℃以上1500℃以下、好ましくは200℃以上1200℃以下である。ガス化炉としての原料ガス生成装置12において、ガス化の反応時間は、通常2秒以上、好ましくは5秒以上である。
 原料ガス生成装置12に投入される炭素源は、特に限定されず、例えば、製鉄所のコークス炉、高炉(高炉ガス)、転炉や石炭火力発電所に用いる石炭、焼却炉(特にガス化炉)に導入される一般廃棄物および産業廃棄物、各種産業によって副生した二酸化炭素等、リサイクルを目的として種々の炭素含有材料も好適に利用することができる。より詳しくは、炭素源には、プラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、バイオマス廃棄物、布団や紙等の家庭ごみ、建築部材等の廃棄物や、石炭、石油、石油由来化合物、天然ガス、シェールガス等が挙げられ、その中でも各種廃棄物が好ましく、分別コストの観点から未分別の都市廃棄物がより好ましい。
 炭素源をガス化して得られる原料ガスは、後述する有機物質生成装置16との組み合わせにおいて、一酸化炭素および水素を含む。とりわけ後述する有機物質生成装置16との組み合わせにおいて、炭素源を燃焼(不完全燃焼)させる熱処理(通称:ガス化)を行うことにより、即ち、炭素源を部分酸化させることにより、一酸化炭素を多く含む原料ガスを生成することが好ましい。原料ガスは、二酸化炭素、及び窒素をさらに含む。さらにその他の成分として、原料ガスは、スス、タール、窒素化合物、硫黄化合物、リン系化合物、芳香族系化合物等の成分をさらに含んでもよい。
 次に、原料ガス生成装置12で生成された原料ガスを処理するガス処理装置14について説明する。ガス処理装置14は、原料ガス生成装置12で生成された原料ガスを、下流側となる有機物質生成装置16での使用に適するよう処理する。例えば、ガス処理装置14は、原料ガスを処理して、原料ガスに含まれる各種のガスの濃度を適切に調整する。また、ガス処理装置14は、原料ガス生成装置12で生成された原料ガスから様々な汚染物質、ばいじん粒子、不純物、好ましくない量の化合物等の特定の物質を除去ないし低減してもよい。ガス処理装置14は、例えば、ガスチラー(水分分離装置)、低温分離方式(深冷方式)の分離装置、サイクロン、バグフィルターのような微粒子(スス)分離装置、スクラバー(水溶性不純物分離装置)、脱硫装置(硫化物分離装置)、膜分離方式の分離装置、脱酸素装置、圧力スイング吸着方式の分離装置(PSA)、温度スイング吸着方式の分離装置(TSA)、圧力温度スイング吸着方式の分離装置(PTSA)、活性炭を用いた分離装置またはパラジウム触媒を用いた分離装置等のうちの1種または2種以上を含むようにしてもよい。
 図2に示された例において、ガス処理装置14は、スクラバー30、水分分離装置として構成されたガス配管装置40、吸着装置50、及び供給装置60を含んでいる。
 スクラバー30は、原料ガス中の汚染物質等を除去するために用いられ、その目的に応じて、湿式洗浄法または乾式洗浄法のいずれも用いることができる。このうち、粒子状の物質が洗浄液と接触することにより行われる湿式洗浄法を好適に用いることができ、一例として、いわゆるウォーターカーテンを用いた洗浄法を用いることができる。湿式洗浄法を使用した場合、洗浄液は、例えば、水、酸性溶液、アルカリ性溶液等が挙げられ、水であることが好ましい。また、洗浄液の液温は、通常40℃以下、好ましくは30℃以下、より好ましくは25℃以下、さらに好ましくは15℃以下である。
 水分分離装置として機能するガス配管装置40は、スクラバー30で処理された原料ガスを冷却して、原料ガス中から水分を除去する。
 吸着装置50は、原料ガス中の二酸化炭素を吸着する性能を有する。吸着装置50は、PSA、TSA、PTSAの少なくともいずれか1つを有する。本実施の形態においては、吸着装置50がPSAを有する例について説明する。なお、吸着装置50は、二酸化炭素以外のガスを吸着する性能を有していてもよい。
 図3は、吸着装置50の一例を模式的に示す図である。吸着装置50は、導入部51、第1吸着部521及び第2吸着部522を含む吸着部52、導出部54、制御部55及びモニタ部56を有する。
 導入部51は、加圧した原料ガスを吸着部52に導入する。図3に示す例において、導入部51は、加圧した原料ガスを吸着部52の第1吸着部521又は第2吸着部522のいずれか一方に導入するよう原料ガスの流路を切り替える導入側切替部511を含む。
 吸着部52の第1吸着部521及び第2吸着部522はいずれも、二酸化炭素を吸着する吸着材53を収容している。吸着材53としては、活性炭、ゼオライト、モレキュラーシーブズ等の多孔質材や、アミン溶液等の水溶液を用いることが出来る。
 第1吸着部521及び第2吸着部522は、吸着処理と再生処理とを交互に実施する。吸着処理とは、吸着材に二酸化炭素を、加圧環境下で吸着させる処理である。再生処理とは、吸着材に吸着した二酸化炭素が、減圧環境下で放出される処理である。上述の導入部51は、第1吸着部521又は第2吸着部522のうち吸着処理が実施されるべき吸着部に原料ガスを導入する。
 導出部54は、吸着部52を通った原料ガスを下流側へ導出する。図3に示す例において、導出側切替部541は、第1吸着部521又は第2吸着部522のうち吸着処理が実施されている吸着部を通った原料ガスを下流側へ導出するよう原料ガスの流路を切り替える導出側切替部541を含む。
 制御部55は、導入側切替部511を制御して導入部51の流路を切り替えることにより、第1吸着部521及び第2吸着部522に吸着処理と再生処理とを交互に実施させる。また、制御部55は、第1吸着部521又は第2吸着部522のうち吸着処理が実施されている吸着部を通った原料ガスを下流側の供給装置60へ導出するよう、導出側切替部541を制御する。
 供給装置60は、吸着装置50によって二酸化炭素の濃度が低減された原料ガスを有機物質生成装置16に供給する。ガス処理装置14の供給装置60が有機物質生成装置16に供給する原料ガス中の、一酸化炭素濃度、水素濃度、二酸化炭素濃度、及び窒素濃度はそれぞれ、例えば、35~45体積%、35~45体積%、5~15体積%、及び5~15体積%である。供給装置60は、例えば、吸着装置50と有機物質生成装置16とを接続する配管を含む。また、供給装置60は、単位時間あたりに有機物質生成装置16に供給される原料ガスの流量を調整する調整部を含んでいてもよい。調整部は、例えばバルブを含む。
 次に有機物質生成装置16について説明する。有機物質生成装置16は、原料ガスを微生物発酵又は金属触媒と接触させて有機物質を製造する。原料ガスの微生物発酵又は金属触媒反応により得られる有物物質として、例えば、メタノール、エタノール、2,3-ブタンジオール、酢酸、乳酸、イソプレン、ブタジエン等が挙げられる。これらのうち、炭素数1~4のアルコールまたはジオール類を含むことが好ましく、エタノールを含むことがより好ましい。得られる有機物質の用途は、特に限定されない。得られた有機物質は、例えば、プラスチックや樹脂等の原料として用いてもよいし、各種溶媒、殺菌剤、または燃料として用いてもよい。高濃度のエタノールは、ガソリン等に混合する燃料エタノールとして用いることができる他、例えば、化粧品、飲料、化学物質、燃料(ジェット燃料)等の原材料、食品等の添加物として用いることができ、汎用性が極めて高い。
 有機物質生成装置16は、例えば、図4に示すように、微生物(種)を含む発酵槽161を有している。発酵槽161は、微生物種の他に培地(培養液)162を含んでもよい。有機物質生成装置16には、原料ガスを供給する供給管163と、得られた有機物質を回収する回収管164と、有機物質の生成に用いられなかったガスを排出する排出管165とが接続している。図4において、符号166は、培養液162中の気泡166を表す。気泡166は、主に、有機物質の生成に用いられなかったガスを含み、例えば窒素及び二酸化炭素を含む。気泡166は、培地(培養液)162の液面まで浮上した後、排出管165によって排出される。
 ある種の嫌気性微生物は、発酵作用によって、原料ガス等の基質ガスから、エタノール等の有価物である有機物質を生成することが知られており、この種のガス資化性微生物は、液状の培地で培養される。例えば、培養液とガス資化性細菌とを供給して収容しておき、この状態で培養液を撹拌しつつ、発酵槽内に原料ガスを供給してもよい。これにより、培養液中でガス資化性細菌を培養して、その発酵作用により原料ガスから有機物質を生成することができる。培養液は、主成分の水と、この水に溶解または分散された栄養分(例えば、ビタミン、リン酸等)とを含有する液体である。このような培養液の組成は、ガス資化性細菌が良好に成育し得るように調製される。
 原料ガスを微生物発酵させる微生物(種)は、水素及び一酸化炭素を主たる原料として原料ガスを微生物発酵させることによって所望の有機物質を製造できるものであれば、特に限定されない。例えば、微生物(種)は、ガス資化性細菌の発酵作用によって、原料ガスから有機物質を生成するものであることが好ましい。ガス資化性細菌のなかでも、クロストリジウム(Clostridium)属がより好ましく、クロストリジウム・オートエタノゲナムが特に好ましいが、これに限定されるものではない。以下、さらに例示する。
 ガス資化性細菌は、真性細菌および古細菌の双方を含む。真性細菌としては、例えば、クロストリジウム(Clostridium)属細菌、ムーレラ(Moorella)属細菌、アセトバクテリウム(Acetobacterium)属細菌、カルボキシドセラ(Carboxydocella)属細菌、ロドシュードモナス(Rhodopseudomonas)属細菌、ユーバクテリウム(Eubacterium)属細菌、ブチリバクテリウム(Butyribacterium)属細菌、オリゴトロファ(Oligotropha)属細菌、ブラディリゾビウム(Bradyrhizobium)属細菌、好気性水素酸化細菌であるラルソトニア(Ralsotonia)属細菌等が挙げられる。
 一方、古細菌としては、例えば、Methanobacterium属細菌、Methanobrevibacter属細菌、Methanocalculus属、Methanococcus属細菌、Methanosarcina属細菌、Methanosphaera属細菌、Methanothermobacter属細菌、Methanothrix属細菌、Methanoculleus属細菌、Methanofollis属細菌、Methanogenium属細菌、Methanospirillium属細菌、Methanosaeta属細菌、Thermococcus属細菌、Thermofilum属細菌、Arcaheoglobus属細菌等が挙げられる。これらの中でも、古細菌としては、Methanosarcina属細菌、Methanococcus属細菌、Methanothermobacter属細菌、Methanothrix属細菌、Thermococcus属細菌、Thermofilum属細菌、Archaeoglobus属細菌が好ましい。
 さらに、一酸化炭素および二酸化炭素の資化性に優れることから、古細菌としては、Methanosarcina属細菌、Methanothermobactor属細菌、またはMethanococcus属細菌が好ましく、Methanosarcina属細菌、またはMethanococcus属細菌が特に好ましい。なお、Methanosarcina属細菌の具体例として、例えば、Methanosarcina barkeri、Methanosarcina mazei、Methanosarcina acetivorans等が挙げられる。
 以上のようなガス資化性細菌の中から、目的とする有機物質の生成能の高い細菌が選択されて用いられる。例えば、エタノール生成能の高いガス資化性細菌としては、クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)、クロストリジウム・ユングダリイ(Clostridium ljungdahlii)、クロストリジウム・アセチクム(Clostridium aceticum)、クロストリジウム・カルボキシジボランス(Clostridium carboxidivorans)、ムーレラ・サーモアセチカ(Moorella thermoacetica)、アセトバクテリウム・ウッディイ(Acetobacterium woodii)等が挙げられる。
 上記した微生物(種)を培養する際に用いる培地は、菌に応じた適切な組成であれば特に限定されない。例えば、微生物にクロストリジウム属を用いる場合の培地は、米国特許出願公開第2017/260552号明細書の「0097」~「0099」等を参考にすることができる。
 発酵槽において、培地(培養液)の温度(培養温度)は、任意の温度を採用してよいが、好ましくは30~45℃程度、より好ましくは33~42℃程度、さらに好ましくは36.5~37.5℃程度とすることができる。また、培養時間は、好ましくは連続培養で12時間以上、より好ましくは7日以上、特に好ましくは30日以上、最も好ましくは60日以上であり、上限は特に設定されないが設備の定修等の観点から720日以下が好ましく、より好ましくは365日以下である。なお、培養時間とは、種菌を培養槽に添加してから、培養槽内の培養液を全量排出するまでの時間を意味するものとする。
 また、反応装置に金属触媒を用いる場合は、原料ガスから目的の有機物質を得るために使用される公知の金属触媒が適用可能であり、例えば、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金から選択される1種以上の白金族元素を含む金属触媒が、CO転化率を高める観点から好ましい。
 次に、有機物質精製装置18について説明する。有機物質精製装置18は、有機物質生成装置16での微生物発酵を経て得られた有機物質含有液を、精製する装置である。例えば有機物質精製装置18は、得られた有機物質含有液を、精製部において、目的の有機物質の濃度を高めた留出液と、目的の有機物質の濃度を低下させた残留液とに分離する。このような有機物質精製装置18として、例えば、蒸留装置、浸透気化膜を含む処理装置、ゼオライト脱水膜を含む処理装置、有機物質より沸点の低い低沸点物質を除去する処理装置、有機物質より沸点の高い高沸点物質を除去する処理装置、イオン交換膜を含む処理装置等が挙げられる。これらの装置は単独でまたは2種以上を組み合わせてもよい。単位操作としては、加熱蒸留や膜分離を好適に用いてもよい。
 加熱蒸留では、蒸留装置を用いることができる。有機物質(特に、エタノール)の蒸留時における蒸留器内の温度は、特に限定されないが、100℃以下であることが好ましく、70~95℃程度であることがより好ましい。蒸留器内の温度を前記範囲に設定することにより、必要な有機物質とその他の成分との分離、即ち、有機物質の蒸留(精製)をより確実に行うことができる。
 有機物質の蒸留時における蒸留装置内の圧力は、常圧であってもよいが、好ましくは大気圧未満、より好ましくは60~95kPa(絶対圧)程度である。蒸留装置内の圧力を前記範囲に設定することにより、有機物質の分離効率を向上させること、ひいては有機物質の収率を向上させることができる。有機物質の収率(蒸留後に得られた有機物質の濃度)は、好ましくは90重量%以上、より好ましくは99重量%以上、特に、99.5重量%以上とすることが好ましい。
 膜分離では、公知の分離膜を適宜用いることができ、例えばゼオライト膜を好適に用いることができる。
 以上のようにして、ガス処理システム10において、原料ガスから有機物質を製造することができる。
 ところで、原料ガス生成装置12によって生成される原料ガスに含まれる各ガスの濃度は変動することがある。このような場合として、炭素源が一定でない場合、原料ガス生成装置12で行われる反応が均一系の反応ではない場合等が挙げられる。上記の通り、培養槽などの原料ガスから有機物質を生成する有機物質生成装置においては、反応に起因して液面上に泡沫が生じ易い。このような状況で、原料ガス中の不活性ガスのガス量が増大すると、仮にそれが一時的なものであっても、泡沫が生じうる。その結果、有機物質生成装置の下流側の装置に泡沫が入り込むことで故障の原因になったり、コンタミネーションの原因になったりする。この傾向は、炭素源が一定でないプラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、バイオマス廃棄物、布団や紙等の家庭ごみ等の廃棄物、好ましくはプラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、より好ましくは都市廃棄物(MSW)で顕著となりうる。
 これに対し、本実施形態では、原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度に着目し、二酸化炭素の濃度を低減する能力を高める能力調整によって泡沫を防止または抑制する。二酸化炭素および窒素は、有機物質の生成に用いられない、またはほとんど用いられないことから発酵槽161の泡沫発生に直接的に寄与するとともに、有機物質の生成への影響がない、またはほとんどない。よって、これらに着目することで泡沫発生の防止または抑制が容易となる。また、このうち、二酸化炭素については、吸着装置によって濃度調整が容易であることから、本実施形態では、特に二酸化炭素の濃度を制御する。これによって、泡沫の発生を防止または抑制することができる。
 より詳細には、吸着部に通される前の二酸化炭素の濃度および窒素の濃度、または吸着部に通される後の二酸化炭素の濃度および窒素の濃度を測定する。なお、吸着部に通される前および後の両方の二酸化炭素の濃度および窒素の濃度を測定することもできる。測定した二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合、吸着部が前記原料ガス中の二酸化炭素の濃度を低減する能力を高め、二酸化炭素の濃度を低減する。これによって、二酸化炭素の濃度および窒素の濃度の総濃度を低減し、泡沫の発生を抑制できる。なお、本明細書において、「閾値」とは、通常、原料ガスに含まれる二酸化炭素の濃度(体積%)および窒素の濃度(体積%)の総濃度(体積%)に対して、5%以上高いことを意味する。この際、「原料ガスに含まれる二酸化炭素の濃度(体積%)および窒素の濃度(体積%)の総濃度(体積%)」とは、炭素源から原料ガスを24時間連続して生成した場合の平均値を意味する。以下、吸着装置50の構成について詳細に説明する。
 本実施の形態において、吸着装置50は、図3に示すように、原料ガス中の二酸化炭素の濃度および窒素の濃度を測定するモニタ部56を有する。図3に示す例において、モニタ部56は、吸着部52の下流側において導出部54に設けられている。この場合、モニタ部56は、吸着部52を通った後の原料ガス中の二酸化炭素の濃度および窒素の濃度を測定する。
 本実施の形態において、吸着装置50の制御部55は、原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、第1吸着部521及び第2吸着部522に交互に実施させる吸着処理及び再生処理の切替周期を短くするよう、導入部51及び導出部54を制御する。これにより、吸着部52が原料ガス中の二酸化炭素の濃度を低減する能力(以下、二酸化炭素除去能力とも称する)を高めることができる。この結果、吸着部52を通った後の原料ガス中の二酸化炭素の濃度を低減することができる。なお、吸着処理及び再生処理の切替周期を短くすることにより吸着部52の二酸化炭素除去能力が高まることの理由については、後述する。
 有機物質生成装置16に供給される原料ガスのうち、有機物質の生成に用いられない、またはほとんど用いられないガスの主成分は、窒素及び二酸化炭素である。従って、原料ガス中の窒素の濃度が増加した場合であっても、吸着部52の二酸化炭素除去能力を高め、原料ガス中の二酸化炭素の濃度を低減させれば、有機物質の生成に用いられないガスの合計量の増加を抑制できる。これにより、培地(培養液)162の液面に泡沫が形成されることを抑制することができる。
 次に、以上のような構成からなるガス処理装置14を用いて原料ガスを処理する方法について説明する。
 ガス処理装置14は、原料ガス生成装置12によって生成された原料ガスを、スクラバー30、ガス配管装置40などによって処理した後、吸着装置50に導入する。吸着装置50は、原料ガスを吸着部52に通して原料ガス中の二酸化炭素の濃度を低減する吸着工程を実施する。
 吸着工程においては、吸着部52の第1吸着部521及び第2吸着部522が、吸着処理及び再生処理を交互に実施する。例えば、制御部55が、加圧された原料ガスが第1吸着部521及び第2吸着部522に交互に導入されるよう、第1の切替周期T1で導入部51の導入側切替部511を切り替える。また、制御部55は、第1吸着部521又は第2吸着部522のうち吸着処理が実施されている吸着部を通った原料ガスを下流側へ導出するよう、第1の切替周期T1で導出部54の導出側切替部541を切り替える。
 図5は、第1の切替周期T1で吸着処理及び再生処理を切り替える場合の、吸着部52を通った後の原料ガス中の二酸化炭素の濃度を示す図である。図5において、矢印Aで示される期間の間は、第1吸着部521が吸着処理を実施しており、矢印Bで示される期間の間は、第2吸着部522が吸着処理を実施している。
 吸着材53が二酸化炭素を吸着する能力は、再生処理の後に吸着処理を開始した直後に最も高い。その後、吸着処理を継続して実施するにつれて、吸着材53が二酸化炭素を吸着する能力が次第に低下していく。このため、図5に示すように、吸着部52を通った後の原料ガス中の二酸化炭素の濃度は、第1吸着部521又は第2吸着部522が吸着処理を開始した直後に最も低くなる。符号C0は、第1吸着部521又は第2吸着部522が吸着処理を開始した直後の二酸化炭素の濃度であり、例えば約0体積%である。符号C1は、第1の切替周期T1で吸着処理及び再生処理を切り替える場合の、第1吸着部521又は第2吸着部522が吸着処理を終了する直前の二酸化炭素の濃度であり、例えば約20体積%である。吸着部52を通った後の原料ガス中の二酸化炭素の濃度の平均値C1(ave)は、濃度C0と濃度C1の中間の値になり、例えば約10体積%である。
 吸着部52において吸着工程が施された原料ガスは、導出部54を介して供給装置60に送られる。供給装置60は、吸着工程によって二酸化炭素の濃度が低減された原料ガスを有機物質生成装置16に供給する
 吸着工程の間、吸着装置50のモニタ部56は、吸着部52に通された後の原料ガス中の二酸化炭素の濃度および窒素の濃度を測定するモニタ工程を実施する。原料ガス中の窒素の濃度は、例えば10体積%である。
 また、吸着工程の間、吸着装置50の制御部55は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えているか否かを判定する。閾値は、発酵槽161内の培地(培養液)162の液面の高さによって変えることができ、好ましくは10~20体積%の範囲内であり、例えば15体積%である。
 制御部55は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合、吸着部52の二酸化炭素除去能力を高める能力調整工程を実施する。具体的には、制御部55は、第1吸着部521及び第2吸着部522に交互に実施させる吸着処理及び再生処理の切替周期を、第1の切替周期T1よりも短い第2の切替周期T2に変更する。第2の切替周期T2は、例えば第1の切替周期T1の4/5以下である。また、第2の切替周期T2は、第1の切替周期T1の3/5以下であってもよく、第1の切替周期T1の2/5以下であってもよい。
 以下、吸着処理及び再生処理の切替周期を短くすることによって吸着部52の二酸化炭素除去能力が高まることの理由について、図6を参照して説明する。図6は、第1の切替周期T1よりも短い第2の切替周期T2で吸着処理及び再生処理を切り替える場合の、吸着部52を通った後の原料ガス中の二酸化炭素の濃度を示す図である。図6においても、図5の場合と同様に、矢印Aで示される期間の間は、第1吸着部521が吸着処理を実施しており、矢印Bで示される期間の間は、第2吸着部522が吸着処理を実施している。
 上述のように、吸着材53が二酸化炭素を吸着する能力は、再生処理の後に吸着処理を開始した直後に最も高く、その後、能力が次第に低下していく。ここで、図6に示す例においては、第1の切替周期T1よりも短い第2の切替周期T2で吸着処理及び再生処理を切り替えている。このため、図6に示すように、第1吸着部521又は第2吸着部522が吸着処理を終了する直前の、吸着材53が二酸化炭素を吸着する能力は、第1の切替周期T1で吸着処理及び再生処理を切り替える場合に比べて高い。従って、図6に示す例における、第1吸着部521又は第2吸着部522が吸着処理を終了する直前の二酸化炭素の濃度C2は、図5に示す例における二酸化炭素の濃度C1に比べて低い。例えば、濃度C2は約10体積%である。この場合、吸着部52を通った後の原料ガス中の二酸化炭素の濃度の平均値C2(ave)は、濃度C0と濃度C2の中間の値になり、例えば約5体積%である。このように、吸着処理及び再生処理の切替周期を短くすることにより、吸着部52を通った後の原料ガス中の二酸化炭素の濃度の平均値を低くすることができる。すなわち、吸着処理及び再生処理の切替周期を短くすることにより、吸着部52の二酸化炭素除去能力を高めることができる。
 このように、本実施の形態によれば、吸着処理及び再生処理の切替周期を周期T1から周期T2に変更することにより、吸着部52の二酸化炭素除去能力を高めることができる。これにより、吸着部52に通された後の原料ガス中の二酸化炭素の濃度を、第1の切替周期T1で吸着部52が制御されている場合に比べて低くすることができる。このため、原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が増加した場合であっても、二酸化炭素の濃度の低減によって、前記総濃度を低い値とすることができる。これにより、有機物質生成装置16において培地(培養液)162の液面に泡沫が形成されることを抑制することができる。
 その後、制御部55は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を下回った場合に、吸着処理及び再生処理の切替周期を周期T2から周期T1に戻してもよい。
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
 (第1の変形例)
 本変形例においては、吸着部52に供給する原料ガスの流量を調整することにより、吸着部52の二酸化炭素除去能力を調整する例について説明する。図7は、本変形例における吸着装置50を示す図である。
 図7に示すように、吸着装置50は、導入部51が吸着部52に供給する原料ガスの流量を調整する流量調整部58を有する。流量調整部58は、例えば絞り弁である。流量調整部58は制御部55によって制御される。
 制御部55は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合、吸着部52の二酸化炭素除去能力を高める能力調整工程を実施する。本変形例において、制御部55は、吸着部52に供給する原料ガスの流量を低下させる。
 以下、吸着部52に供給する原料ガスの流量を低下させることによって吸着部52の二酸化炭素除去能力が高まることの理由について、図8を参照して説明する。図8は、図5に示す上述の実施の形態の場合よりも低い流量で吸着部52に原料ガスを供給する場合の、吸着部52を通った後の原料ガス中の二酸化炭素の濃度を示す図である。図8においても、図5の場合と同様に、矢印Aで示される期間の間は、第1吸着部521が吸着処理を実施しており、矢印Bで示される期間の間は、第2吸着部522が吸着処理を実施している。
 上述のように、吸着材53が二酸化炭素を吸着する能力は、再生処理の後に吸着処理を開始した直後に最も高く、その後、能力が次第に低下していく。能力の低下の程度は、吸着材53によって吸着された二酸化炭素の累積量に対応する。このため、図5に示す場合と同様に第1の切替周期T1で吸着処理及び再生処理を切り替える場合であっても、吸着部52に供給する原料ガスの流量が低いと、吸着材53によって吸着された二酸化炭素の累積量が少ないので、吸着材53が二酸化炭素を吸着する能力の低下の程度も小さい。従って、図8に示す例における、第1吸着部521又は第2吸着部522が吸着処理を終了する直前の二酸化炭素の濃度C3は、図5に示す例における二酸化炭素の濃度C1に比べて低い。この場合、吸着部52を通った後の原料ガス中の二酸化炭素の濃度の平均値C3(ave)は、濃度C0と濃度C3の中間の値になり、例えば約5体積%である。
 このように、吸着部52に供給する原料ガスの流量を低下させることにより、吸着部52の二酸化炭素除去能力を高めることができる。このため、原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が増加した場合であっても、二酸化炭素の濃度の低減によって、前記総濃度を低い値とすることができる。これにより、有機物質生成装置16において培地(培養液)162の液面に泡沫が形成されることを抑制することができる。
 (第2の変形例)
 上述の実施の形態及び変形例においては、吸着装置50が圧力スイング吸着方式の分離装置(PSA)である例について説明したが、吸着装置50のタイプは特には限定されない。図示はしないが、吸着装置50は、温度スイング吸着方式の分離装置(TSA)であってもよく、圧力温度スイング吸着方式の分離装置(PTSA)であってもよい。吸着装置50の方式に依らず、吸着装置50の二酸化炭素除去能力を原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度に応じて調整することにより、有機物質生成装置16において培地(培養液)162の液面に泡沫が形成されることを抑制することができる。
 図9は、温度スイング吸着方式の分離装置(TSA)として構成された吸着装置50の一例を示す図である。図9に示す例において、制御部55は、第1吸着部521及び第2吸着部522の温度を交互に高くすることにより、第1吸着部521及び第2吸着部522に吸着処理と再生処理とを交互に実施させる。また、吸着処理と再生処理の切替周期を調整したり、吸着部52に供給する原料ガスの流量を調整したりすることによって、吸着装置50の二酸化炭素除去能力を調整することができる。
 (第3の変形例)
 上述の実施の形態及び変形例においては、吸着装置50のモニタ部56が、導出側切替部541の下流側において導出部54に設けられている例を示した。すなわち、モニタ工程において、吸着部52を通った後の原料ガス中の二酸化炭素の濃度および窒素の濃度が測定される例を示した。しかしながら、原料ガス中の二酸化炭素の濃度および窒素の濃度を測定する位置が特に限られることはない。例えば、図示はしないが、吸着装置50のモニタ部56が、吸着部52の上流側において導入部51に設けられていてもよい。この場合、モニタ工程において、吸着部52を通る前の原料ガス中の二酸化炭素の濃度および窒素の濃度が測定される。また、原料ガス中の二酸化炭素の濃度および窒素の濃度を測定するモニタ部が、有機物質生成装置16に設けられていてもよい。この場合、モニタ工程において、有機物質生成装置16に供給された二酸化炭素の濃度および窒素の濃度が測定される。
 なお、上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。
10  ガス処理システム
12  原料ガス生成装置
14  ガス処理装置
16  有機物質生成装置
18  有機物質精製装置
20  監視装置
30  スクラバー
40  ガス配管装置
50  吸着装置
51  導入部
511 導入側切替部
52  吸着部
521 第1吸着部
522 第2吸着部
53  吸着材
54  導出部
541 導出側切替部
55  制御部
56  モニタ部
58  流量調整部
60  供給装置

Claims (10)

  1.  二酸化炭素および窒素を少なくとも含む原料ガスを、二酸化炭素を吸着する吸着材が収容された吸着部に通して、前記原料ガス中の二酸化炭素の濃度を低減する吸着工程と、
     前記吸着工程によって二酸化炭素の濃度が低減された前記原料ガスを、有機物質を生成する有機物質生成装置に供給する供給工程と、
     前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度、若しくは前記有機物質生成装置に供給された二酸化炭素の濃度および窒素の濃度を測定するモニタ工程と、
    を有し、
     前記吸着工程は、前記モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記吸着部が前記原料ガス中の二酸化炭素の濃度を低減する能力を高める能力調整工程を有する、ガス処理方法。
  2.  前記吸着工程で用いられる前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
     前記能力調整工程は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部に交互に実施させる前記吸着処理及び前記再生処理の切替周期を短くする、請求項1に記載のガス処理方法。
  3.  前記吸着工程で用いられる前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
     前記能力調整工程は、モニタ工程においてモニタされた二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部を含む前記吸着部に供給する原料ガスの流量を低下させる、請求項1または2に記載のガス処理方法。
  4.  前記原料ガスが、さらに水素及び一酸化炭素を含む合成ガスであることを特徴とする、請求項1~3のいずれか一項に記載のガス処理方法。
  5.  前記有機物質が一酸化炭素と水素を原料として生成される、請求項4に記載のガス処理方法。
  6.  前記吸着工程は、圧力スイング吸着方式により前記原料ガス中の二酸化炭素の濃度を低減する、請求項1~5のいずれか一項に記載のガス処理方法。
  7.  二酸化炭素および窒素を少なくとも含む原料ガスのガス処理装置であって、
     二酸化炭素を吸着する吸着材が収容された吸着部と、前記原料ガスを前記吸着部に導入する導入部と、前記原料ガスを前記吸着部から導出する導出部と、を有する、前記原料ガス中の二酸化炭素の濃度を低減する吸着装置と、
     前記吸着装置によって二酸化炭素の濃度が低減された前記原料ガスを、有機物質を生成する有機物質生成装置に供給する供給装置と、
     前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度を測定するモニタ部と、
     前記モニタ部で測定された二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記吸着部が前記原料ガス中の二酸化炭素の濃度を低減する能力を高めるよう前記吸着部、前記導入部又は前記導出部を制御する制御部と、
    を有する、ガス処理装置。
  8.  前記吸着装置の前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
     前記制御部は、前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度、若しくは前記有機物質生成装置に供給された前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部に交互に実施させる前記吸着処理及び前記再生処理の切替周期を短くする、請求項7に記載のガス処理装置。
  9.  前記吸着装置の前記吸着部は、吸着材に二酸化炭素を吸着させる吸着処理と吸着材に吸着した二酸化炭素を放出する再生処理とを交互に実施する第1吸着部及び第2吸着部を含み、
     前記制御部は、前記吸着部に通される前又は通された後の前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度、若しくは前記有機物質生成装置に供給された前記原料ガス中の二酸化炭素の濃度および窒素の濃度の総濃度が閾値を超えた場合に、前記第1吸着部及び前記第2吸着部を含む前記吸着部に供給する原料ガスの流量を低下させる、請求項7または8に記載のガス処理装置。
  10.  前記吸着部は、圧力スイング吸着方式により前記原料ガス中の二酸化炭素の濃度を低減する、請求項7~9のいずれか一項に記載のガス処理装置。
PCT/JP2019/037637 2018-09-25 2019-09-25 ガス処理方法及びガス処理装置 WO2020067181A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019555043A JP6680960B1 (ja) 2018-09-25 2019-09-25 ガス処理方法及びガス処理装置
EP19866257.9A EP3858464A4 (en) 2018-09-25 2019-09-25 GAS TREATMENT METHOD AND GAS TREATMENT DEVICE
CN201980058298.2A CN112654414A (zh) 2018-09-25 2019-09-25 气体处理方法和气体处理装置
US17/275,432 US11772039B2 (en) 2018-09-25 2019-09-25 Gas treatment method and gas treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018179532 2018-09-25
JP2018-179532 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020067181A1 true WO2020067181A1 (ja) 2020-04-02

Family

ID=69952882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037637 WO2020067181A1 (ja) 2018-09-25 2019-09-25 ガス処理方法及びガス処理装置

Country Status (5)

Country Link
US (1) US11772039B2 (ja)
EP (1) EP3858464A4 (ja)
JP (1) JP6680960B1 (ja)
CN (1) CN112654414A (ja)
WO (1) WO2020067181A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255302A1 (ja) * 2019-06-19 2020-12-24

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830321A (ja) * 1981-08-14 1983-02-22 Hitachi Ltd ガス精製装置
JPS60155521A (ja) * 1984-01-26 1985-08-15 Kawasaki Steel Corp 吸着法を使用して一酸化炭素を含む混合ガスより一酸化炭素を精製する方法
JPH0768120A (ja) * 1993-06-24 1995-03-14 Nippondenso Co Ltd 酸素富化空気生成装置
JPH0856646A (ja) * 1994-06-17 1996-03-05 Sanyo Denshi Kogyo Kk 低酸素培養器
JPH08117542A (ja) * 1994-10-21 1996-05-14 Nippon Steel Corp 圧力変動吸着分離法における製品ガス安定化方法
JP2005331862A (ja) * 2004-05-21 2005-12-02 Inst Of Research & Innovation 顕微鏡観察用培養装置
US20100242722A1 (en) * 2009-03-25 2010-09-30 Belanger Paul W Adsorption control method and controller
CN102431967A (zh) * 2011-07-18 2012-05-02 何巨堂 一种用含h2、n2多组分气制备特定组成氢氮气的方法
JP2012183002A (ja) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp 微細藻類連続培養装置およびこの装置を用いた微細藻類連続培養方法
US20170260552A1 (en) 2014-05-13 2017-09-14 Evonik Degussa Gmbh Method of Producing Organic Compounds
JP2017164683A (ja) * 2016-03-16 2017-09-21 株式会社Ihi 二酸化炭素の回収方法及び回収装置
JP2018058042A (ja) 2016-10-06 2018-04-12 積水化学工業株式会社 合成ガスの浄化処理方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2930782A1 (de) 1979-07-28 1981-02-12 Linde Ag Verfahren zur adsorptiven reinigung oder zerlegung von gasgemischen
JPS62241524A (ja) 1986-04-14 1987-10-22 Kawasaki Steel Corp 純度安定化に優れる一酸化炭素の分離精製方法
US20090259323A1 (en) 2008-04-09 2009-10-15 Partha Kesavan Adsorption control method
JP6013864B2 (ja) * 2012-10-10 2016-10-25 メタウォーター株式会社 メタン発酵ガスの精製方法および精製システム
US9067169B2 (en) * 2013-05-28 2015-06-30 Uop Llc Methods of preparing an impurity-depleted hydrogen stream, methods of analyzing content of an impurity-depleted hydrogen stream, and pressure swing adsorption apparatuses
CN107789949B (zh) 2016-08-30 2020-06-16 四川天采科技有限责任公司 一种负压变压吸附的气体分离方法
US11566267B2 (en) * 2018-03-26 2023-01-31 Sekiguji Chemical Co., Ltd. Method for producing organic substance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830321A (ja) * 1981-08-14 1983-02-22 Hitachi Ltd ガス精製装置
JPS60155521A (ja) * 1984-01-26 1985-08-15 Kawasaki Steel Corp 吸着法を使用して一酸化炭素を含む混合ガスより一酸化炭素を精製する方法
JPH0768120A (ja) * 1993-06-24 1995-03-14 Nippondenso Co Ltd 酸素富化空気生成装置
JPH0856646A (ja) * 1994-06-17 1996-03-05 Sanyo Denshi Kogyo Kk 低酸素培養器
JPH08117542A (ja) * 1994-10-21 1996-05-14 Nippon Steel Corp 圧力変動吸着分離法における製品ガス安定化方法
JP2005331862A (ja) * 2004-05-21 2005-12-02 Inst Of Research & Innovation 顕微鏡観察用培養装置
US20100242722A1 (en) * 2009-03-25 2010-09-30 Belanger Paul W Adsorption control method and controller
JP2012183002A (ja) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp 微細藻類連続培養装置およびこの装置を用いた微細藻類連続培養方法
CN102431967A (zh) * 2011-07-18 2012-05-02 何巨堂 一种用含h2、n2多组分气制备特定组成氢氮气的方法
US20170260552A1 (en) 2014-05-13 2017-09-14 Evonik Degussa Gmbh Method of Producing Organic Compounds
JP2017164683A (ja) * 2016-03-16 2017-09-21 株式会社Ihi 二酸化炭素の回収方法及び回収装置
JP2018058042A (ja) 2016-10-06 2018-04-12 積水化学工業株式会社 合成ガスの浄化処理方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255302A1 (ja) * 2019-06-19 2020-12-24
JP7199537B2 (ja) 2019-06-19 2023-01-05 日揮グローバル株式会社 天然ガス前処理システム及び天然ガスの前処理方法

Also Published As

Publication number Publication date
US20220047985A1 (en) 2022-02-17
EP3858464A4 (en) 2022-07-06
CN112654414A (zh) 2021-04-13
EP3858464A1 (en) 2021-08-04
US11772039B2 (en) 2023-10-03
JP6680960B1 (ja) 2020-04-15
JPWO2020067181A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP2023126758A (ja) ガス流から構成成分を濾過するための統合プロセス
US10626070B2 (en) Device for manufacturing organic substance and method for manufacturing organic substance
US8158378B2 (en) Utilizing waste tail gas from a separation unit biogas upgrade systems as beneficial fuel
JP2020203284A (ja) ゼオライト吸着材の再利用方法および再生吸着材
JP6680960B1 (ja) ガス処理方法及びガス処理装置
WO2020158752A1 (ja) ゼオライト吸着材の再利用方法および再生吸着材
JP6943733B2 (ja) 有機物質の製造方法
JP7284738B2 (ja) 有機物質の製造方法
EP3778908A1 (en) Method for producing organic substance
WO2020067050A1 (ja) 有機物質の製造方法
JP7149864B2 (ja) ゼオライト吸着材の再利用方法および再生吸着材
JP6757536B2 (ja) 有機物質の製造装置およびガス処理システム
US20210079327A1 (en) An apparatus for producing an organic substance
JP2020049406A (ja) ガス配管装置、ガス処理システムおよび管の洗浄方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019555043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019866257

Country of ref document: EP

Effective date: 20210426