WO2020066846A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2020066846A1
WO2020066846A1 PCT/JP2019/036810 JP2019036810W WO2020066846A1 WO 2020066846 A1 WO2020066846 A1 WO 2020066846A1 JP 2019036810 W JP2019036810 W JP 2019036810W WO 2020066846 A1 WO2020066846 A1 WO 2020066846A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
primary particles
metal
Prior art date
Application number
PCT/JP2019/036810
Other languages
English (en)
French (fr)
Inventor
智輝 辻
毅 小笠原
正信 竹内
典子 深道
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020548611A priority Critical patent/JPWO2020066846A1/ja
Priority to US17/277,482 priority patent/US20210359301A1/en
Priority to EP19867480.6A priority patent/EP3859840A4/en
Priority to CN201980053555.3A priority patent/CN112602212A/zh
Publication of WO2020066846A1 publication Critical patent/WO2020066846A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode contains a lithium-containing composite oxide as a positive electrode active material.
  • the lithium-containing composite oxide for example, lithium nickelate, which is advantageous in increasing the capacity, is used, and a part of nickel is replaced with a different metal such as aluminum (Patent Document 1).
  • a plurality of primary particles of a lithium-containing composite oxide are aggregated to form secondary particles.
  • the bonding force between the primary particles decreases, cracks occur at the primary particle interface of the secondary particles, the primary particles become more isolated, and the cycle characteristics deteriorate.
  • one aspect of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte, wherein the positive electrode active material includes lithium and a metal M other than lithium. And a plurality of primary particles of the composite oxide are aggregated to form secondary particles, and the metal M includes at least nickel, aluminum and / or manganese.
  • An atomic ratio of the nickel to the metal M: Ni / M is 0.8 or more and less than 1.0, and the average particle diameter of the primary particles is 0.20 ⁇ m or more and 0.35 ⁇ m or less.
  • a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics can be obtained.
  • FIG. 1 is a schematic perspective view of a non-aqueous electrolyte secondary battery according to one embodiment of the present invention, with a portion cut away.
  • a non-aqueous electrolyte secondary battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte.
  • the positive electrode active material includes a composite oxide containing lithium and a metal M other than lithium, and a plurality of primary particles of the composite oxide aggregate to form secondary particles.
  • the metal M contains at least nickel (Ni), aluminum (Al) and / or manganese (Mn), and the atomic ratio of nickel to the metal M: Ni / M is 0.8 or more and less than 1.0. is there.
  • the average particle size of the primary particles is from 0.20 ⁇ m to 0.35 ⁇ m.
  • Ni / M is 0.8 or more, the amount of Ni is large and a high capacity is obtained. However, when Ni / M is 1, the metal M does not contain any of Al and Mn, so that the cycle characteristics deteriorate.
  • the bonding force between the primary particles is enhanced. It is considered that the composite oxide containing Li and at least one of Al and Mn present near the surface of the primary particles contributes to the improvement of the bonding force between the primary particles. Al and Mn are also advantageous in terms of thermal stability.
  • the average particle size of the primary particles of the positive electrode active material is 0.20 ⁇ m or more and 0.35 ⁇ m or less, excellent cycle characteristics as well as high capacity are obtained.
  • the average particle size of the primary particles is more than 0.35 ⁇ m, the absolute amount of expansion and contraction of the primary particles due to charge and discharge increases, so that even if the composite oxide (metal M) contains Al or Mn, The bonding force between the primary particles becomes insufficient, and the cycle characteristics are likely to deteriorate.
  • the average particle size of the primary particles of the positive electrode active material is determined as follows.
  • Obtain an image of a cross section of the positive electrode active material using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the positive electrode is embedded in a resin
  • a cross section of the positive electrode mixture layer is formed by cross section polisher (CP) processing or the like
  • the cross section is photographed by SEM.
  • the powder of the positive electrode active material may be embedded in a resin
  • a cross section of the positive electrode active material particles may be formed by cross section polisher (CP) processing, or the like, and the cross section may be photographed by SEM.
  • Approximately 1 to 3 secondary particles are arbitrarily selected from the obtained image, and 100 or more primary particles are arbitrarily selected from among them, and a circle equivalent diameter is obtained by image analysis.
  • the average particle size of the primary particles is determined based on the primary particle size.
  • a circle equivalent diameter D k of the k-th primary particle arbitrarily selected by image analysis is obtained .
  • the volume V k of the primary particle is determined by the following equation.
  • V k (4 ⁇ / 3) ⁇ (D k / 2) 3
  • V n (n is an integer of 100 or more) primary particles
  • V a ( ⁇ V k ) / n
  • V k V 1 + V 2 +... + V n .
  • the degree of dispersion of the particle size of the primary particles of the positive electrode active material is preferably 5% or less.
  • the temperature is raised under relatively mild conditions (for example, a temperature rising rate of 2 to 5 ° C./min) in the temperature rising process at the time of firing in the production of the positive electrode active material. It is desirable to do.
  • the degree of dispersion of the particle size of the primary particles is determined as follows.
  • V v (1 / n) ⁇ ⁇ (V k ⁇ V a ) 2
  • ⁇ (V k ⁇ V a ) 2 (V 1 ⁇ V a ) 2 + (V 2 ⁇ V a ) 2 +... + (V n ⁇ V a ) 2 .
  • Standard deviation S v (V v ) 1/2 Using the standard deviation S v and the volume average V a obtained above to determine the degree of dispersion by the following equation.
  • Dispersion degree (S v / V a ) 1/3 ⁇ 100 It is preferable that the abundance ratio of Al and / or Mn is higher on the surface side (interface) than on the inner side of the primary particles. In this case, many composite oxides containing at least one of Al and Mn and Li are present at the interface of the primary particles, and the bonding force between the primary particles is efficiently increased. In this case, the hardness inside the primary particles and the bonding force at the surface portion (interface) of the primary particles are obtained in a well-balanced manner, and the cycle characteristics are further improved.
  • the proportion of Al and / or Mn can be made higher on the surface side than on the inner side of the primary particles.
  • concentration gradient of Al and Mn in the primary particles can be confirmed by, for example, energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • the above-mentioned concentration gradient tends to occur when a large amount of Al or Mn is used (for example, when Al / M is 0.04 or more, or when Mn / M is 0.01 or more).
  • Al / M is preferably 0.04 or more and 0.07 or less.
  • Al / M is 0.04 or more, the bonding force between the primary particles of the positive electrode active material is further improved, and the cycle characteristics are further improved.
  • Al / M is 0.07 or less, the capacity is further increased.
  • Mn / M is preferably 0.01 or more and 0.07 or less.
  • Mn / M is 0.01 or more, the bonding force between the primary particles of the positive electrode active material is further improved, and the cycle characteristics are further improved.
  • Mn / M is 0.07 or less, the capacity is further increased.
  • the total atomic ratio of Al and Mn to the metal M: (Al + Mn) / M is preferably 0.01 or more and 0.15 or less.
  • the metal M may include other metals in addition to Ni, Al, and Mn.
  • Other metals include, for example, at least one selected from the group consisting of Co, Mg, Fe, Cu, Zn, Cr, Ti, Nb, Zr, V, W, Ta, Mo, Si and B. From the viewpoint of improving the cycle characteristics, Co is particularly preferable as the other element.
  • Composite oxide is, for example, a composite oxide of rock salt having a layered structure, Li a Ni 1-b Al b O 2, Li a Ni 1-c Mn c O 2, Li a Ni 1-d-e -F Co d Al e Mn f O 2 or the like.
  • the a value indicating the Li amount is, for example, a value in a battery in a discharged state (state of charge: SOC is 0%), and increases or decreases by charging and discharging.
  • the positive electrode active material composite oxide containing lithium and metal M other than lithium
  • a lithium compound and a compound containing metal M obtained by a coprecipitation method or the like are mixed, A method in which the obtained mixture is fired under predetermined conditions can be used.
  • Aluminum oxide and / or manganese oxide powder may be further added to the mixture.
  • a large amount of Al and / or Mn is easily distributed at the interface of the primary particles.
  • the lithium compound include lithium hydroxide and lithium carbonate.
  • the compound containing the metal M include a hydroxide containing the metal M, an oxide containing the metal M, and the like.
  • the positive electrode active material obtained by the above manufacturing method forms secondary particles in which a plurality of primary particles are aggregated.
  • the average particle diameter (D50) of the secondary particles of the positive electrode active material is, for example, not less than 5 ⁇ m and not more than 20 ⁇ m.
  • the average particle diameter (D50) means a median diameter at which a volume integrated value becomes 50% in a volume-based particle size distribution.
  • the average particle size (D50) of the secondary particles is determined by measuring the particle size distribution by a laser diffraction method.
  • the average particle size of the primary particles of the positive electrode active material can be adjusted by, for example, changing firing conditions (firing temperature, firing time, etc.).
  • the firing time is, for example, 5 hours or more and 20 hours or less.
  • the firing temperature is, for example, 650 ° C or more and 850 ° C or less.
  • the firing is preferably performed in an oxygen atmosphere (for example, an oxygen concentration of 30% or more).
  • composition of the positive electrode active material can be adjusted, for example, by changing the composition of the compound containing metal M.
  • the cycle characteristics of a battery are dominated by the deterioration of the positive electrode.
  • the positive electrode active material has a high bonding force between primary particles, deterioration of the positive electrode is greatly suppressed. Therefore, the cycle characteristics of the battery can be affected by slight deterioration of the negative electrode.
  • the negative electrode active material contains graphite, by setting the BET specific surface area of the graphite to 2 m 2 / g or less, side reactions at the negative electrode are reduced, and cycle characteristics are further improved.
  • the BET specific surface area of the graphite is 2 m 2 / g or less, deterioration of the negative electrode due to a side reaction is suppressed, so that the utilization rate of the positive electrode active material increases.
  • the utilization rate of the positive electrode active material increases, the degree of expansion and contraction of the positive electrode active material increases, and the positive electrode tends to deteriorate due to a decrease in the bonding force between the primary particles.
  • the positive electrode active material by using a composite oxide of a specific composition, the average particle size of the primary particles within a specific range, the bonding force between the primary particles is increased, the primary particles Deterioration of the positive electrode due to a decrease in bonding force between them is suppressed. Therefore, the combination of the positive electrode active material and graphite having a BET specific surface area of 2 m 2 / g or less further specifically improves the cycle characteristics.
  • the positive electrode has, for example, a positive electrode current collector and a positive electrode mixture layer supported on the positive electrode current collector and containing a positive electrode active material.
  • the positive electrode mixture layer may include 3.2 g or more of the positive electrode active material per 1 cm 3 of the positive electrode mixture layer. In this case, a battery having excellent cycle characteristics and higher energy density can be obtained.
  • the positive electrode active material contained in the positive electrode mixture layer when the amount of the positive electrode active material contained in the positive electrode mixture layer is increased to 3.2 g or more per 1 cm 3 of the positive electrode mixture layer, the positive electrode active material is generated in the positive electrode mixture layer due to expansion and contraction of the positive electrode active material during charge and discharge.
  • the stress increases, the secondary particles tend to crack at the primary particle interface, and the cycle characteristics tend to decrease.
  • the binding between the primary particles of the positive electrode active material is performed by using a composite oxide having a specific composition for the positive electrode active material and setting the average particle size of the primary particles within a specific range. Power is enhanced. Therefore, even when the amount of the positive electrode active material contained in the positive electrode mixture layer is 3.2 g or more per 1 cm 3 of the positive electrode mixture layer, cracking at the primary particle interface of the secondary particles is suppressed, and cycle characteristics are improved. .
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on a surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which the positive electrode mixture is dispersed in a dispersion medium to the surface of a positive electrode current collector, and drying. The coating film after drying may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode mixture includes a positive electrode active material as an essential component, and may include a binder, a conductive agent, a thickener, and the like as optional components.
  • a resin material for example, a fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride (PVDF); a polyolefin resin such as polyethylene and polypropylene; a polyamide resin such as aramid resin; a polyimide resin such as polyimide and polyamideimide Acrylic resins such as polyacrylic acid, polymethyl acrylate, ethylene-acrylic acid copolymer; vinyl resins such as polyacrylonitrile and polyvinyl acetate; polyvinyl pyrrolidone; polyether sulfone; styrene-butadiene copolymer rubber (SBR) ) And the like. These may be used alone or in combination of two or more.
  • PVDF polytetrafluoroethylene and polyvinylidene fluoride
  • a polyolefin resin such as polyethylene and polypropylene
  • a polyamide resin such as aramid resin
  • a polyimide resin such as polyimi
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; carbon blacks such as acetylene black; conductive fibers such as carbon fiber and metal fiber; carbon fluoride; metal powders such as aluminum; Examples include conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; and organic conductive materials such as phenylene derivatives. These may be used alone or in combination of two or more.
  • thickener examples include carboxymethylcellulose (CMC) and its modified products (including salts such as Na salt), cellulose derivatives such as methylcellulose (such as cellulose ether); and polymer polymers having vinyl acetate units such as polyvinyl alcohol. And polyethers (eg, polyalkylene oxides such as polyethylene oxide). These may be used alone or in combination of two or more.
  • CMC carboxymethylcellulose
  • its modified products including salts such as Na salt
  • cellulose derivatives such as methylcellulose (such as cellulose ether)
  • polymer polymers having vinyl acetate units such as polyvinyl alcohol.
  • polyethers eg, polyalkylene oxides such as polyethylene oxide
  • a non-porous conductive substrate such as a metal foil
  • a porous conductive substrate such as a mesh body, a net body, and a punching sheet
  • the material of the positive electrode current collector include stainless steel, aluminum, an aluminum alloy, and titanium.
  • the thickness of the positive electrode current collector is not particularly limited, but is, for example, 3 to 50 ⁇ m.
  • the dispersion medium is not particularly limited, but examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), and a mixed solvent thereof. .
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on a surface of the negative electrode current collector.
  • the negative electrode mixture layer can be formed by applying a negative electrode slurry in which the negative electrode mixture is dispersed in a dispersion medium to the surface of the negative electrode current collector, and drying. The coating film after drying may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture includes a negative electrode active material as an essential component, and may include a binder, a conductive agent, a thickener, and the like as optional components.
  • the binder, the thickener, and the dispersion medium those exemplified for the positive electrode can be used.
  • the conductive agent those exemplified for the positive electrode can be used except for graphite.
  • Examples of the negative electrode active material include carbon materials, silicon compounds such as silicon and silicon oxide, and lithium alloys containing at least one selected from the group consisting of tin, aluminum, zinc and magnesium.
  • Examples of the carbon material include graphite (natural graphite, artificial graphite, and the like), amorphous carbon, and the like.
  • a non-porous conductive substrate such as a metal foil
  • a porous conductive substrate such as a mesh body, a net body, and a punching sheet
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m, from the viewpoint of the balance between the strength and the weight reduction of the negative electrode.
  • the separator has high ion permeability and has appropriate mechanical strength and insulating properties.
  • a microporous thin film, a woven fabric, a nonwoven fabric, or the like can be used.
  • a polyolefin such as polypropylene and polyethylene is preferable.
  • the non-aqueous electrolyte secondary battery As an example of the structure of the non-aqueous electrolyte secondary battery, a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are contained in an outer package is given. Alternatively, instead of the wound electrode group, another type of electrode group such as a stacked electrode group in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween may be applied.
  • the non-aqueous electrolyte secondary battery may have any form such as a cylindrical type, a square type, a coin type, a button type, and a laminate type.
  • FIG. 1 is a schematic perspective view of a prismatic non-aqueous electrolyte secondary battery according to an embodiment of the present invention, with a portion cut away.
  • the battery includes a bottomed rectangular battery case 4, an electrode group 1 and a non-aqueous electrolyte (not shown) housed in the battery case 4.
  • the electrode group 1 includes a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed therebetween and preventing direct contact.
  • the electrode group 1 is formed by winding a negative electrode, a positive electrode, and a separator around a flat core and extracting the core.
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • the other end of the negative electrode lead 3 is electrically connected to a negative electrode terminal 6 provided on the sealing plate 5 via a resin insulating plate (not shown).
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • One end of a positive electrode lead 2 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the positive electrode lead 2 is connected to the back surface of the sealing plate 5 via an insulating plate. That is, the positive electrode lead 2 is electrically connected to the battery case 4 also serving as a positive electrode terminal.
  • the insulating plate separates the electrode group 1 from the sealing plate 5 and separates the negative electrode lead 3 from the battery case 4.
  • the peripheral edge of the sealing plate 5 is fitted to the opening end of the battery case 4, and the fitted portion is laser-welded. Thus, the opening of the battery case 4 is sealed by the sealing plate 5.
  • the injection hole for the non-aqueous electrolyte provided in the sealing plate 5 is closed by a plug 8.
  • a positive electrode active material, acetylene black, and polyvinylidene fluoride were mixed at a mass ratio of 100: 2: 2, and N-methyl-2-pyrrolidone (NMP) was added. (TK, Hibismix, manufactured by Primix) to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to the surface of the aluminum foil, and after the coating film was dried and then rolled, a positive electrode having a positive electrode mixture layer (density of 3.6 g / cm 3 ) formed on both surfaces of the aluminum foil was produced. .
  • Negative Electrode A negative electrode active material, sodium carboxymethylcellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed at a mass ratio of 100: 1: 1, and water was added. The resulting mixture was stirred using a machine (manufactured by Primix, TK Hibismix) to prepare a negative electrode slurry. A negative electrode slurry was applied to the surface of the copper foil, and the coating film was dried and then rolled to produce a negative electrode in which a negative electrode mixture layer (a density of 1.7 g / cm 3 ) was formed on both surfaces of the copper foil. .
  • As the negative electrode active material graphite powder (average particle diameter: 20 ⁇ m) having a BET specific surface area of 1.4 m 2 / g was used.
  • LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a concentration of 1.6 mol / L to prepare a non-aqueous electrolyte. did.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • positive electrode active materials a1 to a3 and b1 to b2 having primary particles having the average particle diameter shown in Table 1 were obtained.
  • the average particle size of the primary particles of the positive electrode active material was determined by the method described above.
  • the average particle size of the primary particles of the positive electrode active material is adjusted by setting the firing temperature of the mixture of Ni 0.82 Co 0.15 Al 0.03 (OH) 2 and Li 2 CO 3 to 700 ° C. to 800 ° C. The test was performed by changing the time within the range of 5 hours to 10 hours.
  • the average particle size (D50) of the secondary particles of the positive electrode active materials a1 to a3 and b1 to b2 determined by the above-described method was about 12 ⁇ m.
  • the degree of dispersion of the particle diameters of the primary particles of the positive electrode active materials a1 to a3 determined by the above-described method was about 1% in all cases.
  • the distribution of Al in the primary particles of the positive electrode active materials a1 to a3 was examined using energy dispersive X-ray spectroscopy (EDX). As a result, it was confirmed that the proportion of Al increased.
  • EDX energy dispersive X-ray spectroscopy
  • Non-aqueous electrolyte secondary batteries A1 to A3 and B1 to B2 were prepared using the positive electrode active materials a1 to a3 and b1 to B2.
  • Capacity maintenance rate (%) (discharge capacity C 2 / discharge capacity C 1 ) ⁇ 100 (C) Resistance change rate
  • the charge / discharge of (B) was performed for one cycle. Thereafter, in a 25 ° C. environment, constant current charging is performed at a current of 0.2 C until the voltage reaches 4.2 V, and after the constant current charging, constant current charging is performed at a voltage of 4.2 V until the current reaches 0.02 C. Voltage charging was performed. Thus, a battery with 100% SOC was obtained.
  • a separately manufactured battery was prepared, and the charge and discharge of the above (B) was performed for 500 cycles. Thereafter, they were charged and discharged in the same manner as described above, determine the [Delta] V / I, and the DC resistance R 2.
  • Resistance change rate (%) (DC resistance R 2 / DC resistance R 1 ) ⁇ 100 ⁇ Examples 4 to 6, Comparative Examples 3 to 4 >> Ni 0.82 Co 0.13 Al 0.05 (OH) 2 and Li 2 CO 3 obtained by the coprecipitation method were used to convert the atomic ratio of Li to the total of Ni, Co and Al: Li / (Ni + Co + Al).
  • Li / (Ni + Co + Al) was adjusted to 1.05 / 1 and calcined in an oxygen atmosphere to obtain a positive electrode active material (composite oxide).
  • the heating rate during the heating process during firing was 5 ° C./min or less.
  • the composition of the positive electrode active material was Li 1.05 Ni 0.82 Co 0.13 Al 0.05 O 2 .
  • positive electrode active materials a4 to a6 and b3 to b4 having primary particles having the average particle diameter shown in Table 1 were obtained.
  • the average particle size of the primary particles of the positive electrode active material was determined by the method described above.
  • the average particle size of the primary particles of the positive electrode active material is adjusted by setting the firing temperature of a mixture of Ni 0.82 Co 0.13 Al 0.05 (OH) 2 and Li 2 CO 3 to 700 ° C. or more and 800 ° C. or less and firing The test was performed by changing the time within the range of 5 hours to 10 hours.
  • the average particle diameters (D50) of the secondary particles of the positive electrode active materials a4 to a6 determined by the above-described methods were all about 12 ⁇ m.
  • the degree of dispersion of the particle diameters of the primary particles of the positive electrode active materials a4 to a6 determined by the above-described method was about 1% in all cases. It was confirmed by EDX that the proportion of Al present on the surface side (the interface between the primary particles) was higher than on the inside of the primary particles of the positive electrode active materials a4 to a6.
  • Batteries A4 to A6 and B3 to B4 were prepared and evaluated in the same manner as in Example 1 except that the positive electrode active materials a4 to a6 and b3 to b4 were used instead of the positive electrode active material a1.
  • Table 1 shows the evaluation results of the batteries A1 to A6 and B1 to B4.
  • the positive electrode active material in the batteries A1 to A6 in which Ni / M is 0.8 or more and less than 1 and the average particle size of the primary particles is 0.2 ⁇ m or more and 0.35 ⁇ m or less, a high capacity retention and a high initial capacity are obtained. A low rate of resistance change was obtained. In the batteries A1 to A6, cracking at the primary particle interface due to the repetition of charge / discharge was suppressed.
  • the positive electrode active material in batteries B1 and B3 in which the average particle size of the primary particles is more than 0.35 ⁇ m, the absolute amount of expansion and contraction of the primary particles due to charge and discharge increases, and the bonding force between the primary particles is insufficient. Therefore, the capacity retention ratio decreased, and the resistance change rate increased.
  • Example 7 Ni 0.82 Co 0.12 Mn 0.06 (OH) 2 and Li 2 CO 3 obtained by the coprecipitation method were used to convert the atomic ratio of Li to the total of Ni, Co and Mn: Li / (Ni + Co + Mn).
  • the cathode active material a7 was produced in the same manner as in Example 1 except that the components were mixed so as to be 1.05 / 1.
  • the composition of the positive electrode active material was Li 1.05 Ni 0.82 Co 0.12 Mn 0.06 O 2 .
  • the average particle size of the primary particles of the positive electrode active material a7 determined by the method described above was 0.35 ⁇ m.
  • the average particle diameter (D50) of the secondary particles of the positive electrode active material a7 determined by the method described above was about 12 ⁇ m.
  • the degree of dispersion of the particle diameter of the primary particles of the positive electrode active material a7 determined by the above-described method was about 1%.
  • EDX confirmed that the proportion of Mn was higher on the surface side (the interface between the primary particles) than on the inside of the primary particles of the positive electrode active material a7.
  • Battery A7 was prepared and evaluated in the same manner as in Example 1, except that positive electrode active material a7 was used instead of positive electrode active material a1. Table 2 shows the evaluation results of the battery A7 together with the batteries A1 and A4.
  • Batteries A8 and A9 were prepared and evaluated in the same manner as in Example 1 except that graphite powder having a BET specific surface area having the value shown in Table 3 was used as the negative electrode active material.
  • Batteries A10 and A11 were prepared and evaluated in the same manner as in Example 4, except that graphite powder having a BET specific surface area having the value shown in Table 3 was used as the negative electrode active material.
  • Table 3 shows the evaluation results of the batteries A8 to A11 together with the batteries A1 and A4.
  • the capacity retention ratio is lower and the capacity retention ratio is lower than in the battery A9 in which the BET specific surface area of the negative electrode active material is more than 2.0 m 2 / g.
  • the resistance change rate was obtained.
  • the non-aqueous electrolyte secondary battery of the present invention is suitably used, for example, as a main power supply or a power storage device (for example, a storage device for natural energy such as sunlight) of a portable electronic device.
  • a power storage device for example, a storage device for natural energy such as sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質と、を備える。正極活物質は、リチウムと、リチウム以外の金属Mと、を含有する複合酸化物を含み、複合酸化物の一次粒子が複数凝集して二次粒子を形成している。金属Mは、少なくとも、ニッケルと、アルミニウムおよび/またはマンガンと、を含み、金属Mに対するニッケルの原子比:Ni/Mは、0.8以上1.0未満である。一次粒子の平均粒径は、0.20μm以上0.35μm以下である。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解液二次電池は、正極と、負極と、非水電解質とを備え、正極は、正極活物質としてリチウム含有複合酸化物を含む。リチウム含有複合酸化物としては、例えば、高容量化に有利なニッケル酸リチウムが用いられ、ニッケルの一部をアルミニウムなどの異種金属で置換することが行われている(特許文献1)。
特開2017-226576号公報
 正極活物質は、通常、リチウム含有複合酸化物の一次粒子が複数凝集して二次粒子を形成している。充放電時の正極活物質の膨張および収縮に伴い、一次粒子間の結合力が低下し、二次粒子の一次粒子界面での割れが生じ、一次粒子の孤立化が進み、サイクル特性が低下することがある。
 一方、電子機器などの高性能化に伴い、その電源として用いられる非水電解質二次電池の高容量化およびサイクル特性の改善が求められている。
 上記に鑑み、本発明の一側面は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質と、を備え、前記正極活物質は、リチウムと、リチウム以外の金属Mと、を含有する複合酸化物を含み、前記複合酸化物の一次粒子が複数凝集して二次粒子を形成しており、前記金属Mは、少なくとも、ニッケルと、アルミニウムおよび/またはマンガンと、を含み、前記金属Mに対する前記ニッケルの原子比:Ni/Mは、0.8以上1.0未満であり、前記一次粒子の平均粒径は、0.20μm以上0.35μm以下である、非水電解質二次電池に関する。
 本発明によれば、高容量および優れたサイクル特性を有する非水電解質二次電池を得ることができる。
本発明の一実施形態に係る非水電解質二次電池の一部を切り欠いた概略斜視図である。
 本発明の実施形態に係る非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質と、を備える。正極活物質は、リチウムと、リチウム以外の金属Mと、を含有する複合酸化物を含み、複合酸化物の一次粒子が複数凝集して二次粒子を形成している。金属Mは、少なくとも、ニッケル(Ni)と、アルミニウム(Al)および/またはマンガン(Mn)と、を含み、金属Mに対するニッケルの原子比:Ni/Mは、0.8以上1.0未満である。一次粒子の平均粒径は、0.20μm以上0.35μm以下である。
 上記構成を満たす場合、充放電時の正極活物質の膨張および収縮に伴う、一次粒子間の結合力の低下が抑制され、二次粒子の一次粒子界面での割れおよびそれに伴う一次粒子の孤立化が抑制される。これにより、サイクル特性が向上する。また、高い容量(初期容量)が得られる。
 Ni/Mが0.8以上である場合、Ni量が多く、高容量が得られる。ただし、Ni/Mが1である場合、金属MはAlおよびMnのいずれも含まないため、サイクル特性が低下する。
 金属MがAlおよび/またはMnを含むことにより、一次粒子間の結合力が高められる。一次粒子の表面付近に存在するAlおよびMnの少なくとも一方とLiとを含む複合酸化物が、一次粒子間の結合力向上に寄与しているものと考えられる。AlおよびMnは、熱的安定性の面でも有利である。
 正極活物質(複合酸化物)の一次粒子の平均粒径が0.20μm以上0.35μm以下である場合、高容量とともに優れたサイクル特性が得られる。一次粒子の平均粒径が0.35μm超である場合、充放電に伴う一次粒子の膨張および収縮の絶対量が大きくなるため、複合酸化物(金属M)にAlやMnを含ませても、一次粒子間の結合力が不十分となり、サイクル特性が低下しやすくなる。一方、一次粒子の平均粒径が0.20μm未満である場合、結晶の成長が不十分であり、充放電反応に寄与しない部分が増大するため、容量が低下しやすく、サイクル特性も低下しやすくなる。
 正極活物質の一次粒子の平均粒径は、以下のようにして求められる。
 走査型電子顕微鏡(SEM)を用いて正極活物質の断面の画像を得る。例えば、正極を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工などにより正極合剤層の断面を形成し、この断面をSEMにより撮影する。或いは、正極活物質の粉末を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工などにより正極活物質粒子の断面を形成し、この断面をSEMにより撮影してもよい。得られた画像より二次粒子を任意に1~3個程度選択し、その中から一次粒子を任意に100個以上選択し、画像解析により円相当径を求め、得られた各円相当径に基づいて一次粒子の平均粒径を求める。
 具体的には、画像解析により任意に選択されたk個目の一次粒子の円相当径Dを求める。k個目の一次粒子はD/2を半径とする球状であると仮定して、その一次粒子の体積Vを下記式より求める。
 V=(4π/3)×(D/2)
 n個(nは100以上の整数)の一次粒子に対してそれぞれ求められた体積V、V、・・・、Vを用いて、下記式より体積平均値Vを求める。
 体積平均値V=(ΣV)/n
 式中、ΣV=V+V+・・・+Vである。
 得られた体積平均値Vを用いて、下記式より一次粒子の平均粒径Dを求める。
 平均粒径D=2×(3/4π×V1/3
 安定したサイクル特性が得られる観点から、正極活物質の一次粒子の粒径の分散度合いは、5%以下であることが好ましい。上記の分散度合いを5%以下とするためには、例えば、正極活物質の作製における焼成時の昇温過程において、比較的緩やかな条件(例えば昇温速度2~5℃/min)で昇温することが望ましい。
 一次粒子の粒径の分散度合いは、以下のようにして求められる。
 上記の一次粒子の平均粒径を求める過程でn個の一次粒子に対して得られた体積V、V、・・・、Vおよび体積平均値Vを用いて、下記式より分散Vを求める。
 分散V=(1/n)×Σ(V-V
 式中、Σ(V-V=(V-V+(V-V+・・・+(V-Vである。
 上記で得られた分散Vを用いて、下記式より標準偏差Sを求める。
 標準偏差S=(V1/2
 上記で得られた標準偏差Sおよび体積平均値Vを用いて、下記式より分散度合いを求める。
 分散度合い=(S/V1/3×100
 Alおよび/またはMnの存在割合は、一次粒子の内部側よりも表面部側(界面)で大きくなっていることが好ましい。この場合、一次粒子の界面にAlおよびMnの少なくとも一方とLiとを含む複合酸化物が多く存在し、一次粒子間の結合力が効率的に高められる。この場合、一次粒子内部の硬さと一次粒子表面部(界面)での結合力とがバランス良く得られ、サイクル特性が更に向上する。
 後述の正極活物質の作製方法により、Alおよび/またはMnの存在割合を、一次粒子の内部側よりも表面部側で大きくすることができる。このような一次粒子内でのAlやMnの濃度勾配は、例えば、エネルギー分散型X線分光法(EDX)により確認することができる。上記の濃度勾配は、AlやMnを多く用いる場合(例えばAl/Mが0.04以上の場合、もしくはMn/Mが0.01以上の場合)に生じやすい。
 金属MがAlを含む場合、金属Mに対するAlの原子比:Al/Mは、0.04以上0.07以下であることが好ましい。Al/Mが0.04以上である場合、正極活物質の一次粒子間の結合力が更に向上し、サイクル特性が更に向上する。Al/Mが0.07以下である場合、容量が更に高められる。
 金属MがMnを含む場合、金属Mに対するMnの原子比:Mn/Mは、0.01以上0.07以下であることが好ましい。Mn/Mが0.01以上である場合、正極活物質の一次粒子間の結合力が更に向上し、サイクル特性が更に向上する。Mn/Mが0.07以下である場合、容量が更に高められる。
 金属MがAlおよびMnを含む場合、金属Mに対するAlおよびMnの合計の原子比:(Al+Mn)/Mは、0.01以上、0.15以下であることが好ましい。
 金属Mは、Ni、Al、Mn以外に、他の金属を含んでもよい。他の金属は、例えば、Co、Mg、Fe、Cu、Zn、Cr、Ti、Nb、Zr、V、W、Ta、Mo、SiおよびBよりなる群から選択される少なくとも1種を含む。サイクル特性向上の観点から、中でも、他の元素はCoが好ましい。
 複合酸化物は、例えば、層状構造を有する岩塩型の複合酸化物であり、LiNi1-bAl、LiNi1-cMn、LiNi1-d-e-fCoAlMnなどの一般式で表され得る。ここで、0.9≦a≦1.2、0<b≦0.2、0<c≦0.2、0<e+f、0<d+e+f≦0.2である。なお、Li量を示すa値は、例えば放電状態(state of charge:SOCが0%)の電池における値であり、充放電により増減する。
 正極活物質(リチウムとリチウム以外の金属Mとを含有する複合酸化物)の作製方法としては、例えば、リチウム化合物と、共沈法などにより得られた金属Mを含む化合物と、を混合し、得られた混合物を所定の条件で焼成する方法が挙げられる。混合物に更に酸化アルミニウムおよび/または酸化マンガンの粉末を加えてもよい。一次粒子の界面にAlおよび/またはMnを多く分布させやすい。リチウム化合物としては、水酸化リチウム、炭酸リチウムなどが挙げられる。金属Mを含む化合物としては、金属Mを含む水酸化物、金属Mを含む酸化物などが挙げられる。上記の作製方法により得られる正極活物質は、一次粒子が複数凝集した二次粒子を形成している。
 正極活物質の二次粒子の平均粒径(D50)は、例えば、5μm以上20μm以下である。なお、ここでいう平均粒径(D50)は、体積基準の粒度分布において体積積算値が50%となるメディアン径のことをいう。二次粒子の平均粒径(D50)は、レーザー回折法による粒度分布測定を行うことにより求められる。
 正極活物質の一次粒子の平均粒径は、例えば、焼成条件(焼成温度、焼成時間など)を変えることにより調整することができる。焼成時間は、例えば、5時間以上20時間以下である。焼成温度は、例えば、650℃以上850℃以下である。焼成は、酸素雰囲気下(例えば酸素濃度30%以上)で行われることが好ましい。
 正極活物質の組成は、例えば、金属Mを含む化合物の組成を変えることにより調整することができる。
 通常、電池のサイクル特性は、正極の劣化に支配される。一方、上記正極活物質は、一次粒子同士の結合力が高いため、正極の劣化が大きく抑制されている。従って、電池のサイクル特性は、負極の僅かな劣化に影響され得るようになる。この場合、サイクル特性を更に高度に向上させるためには、負極を改良して劣化を抑制することが重要となる。この点、負極活物質が黒鉛を含む場合、黒鉛のBET比表面積を2m/g以下とすることで、負極での副反応が軽減され、サイクル特性が更に改善される。
 黒鉛のBET比表面積が2m/g以下である場合、負極の副反応による劣化が抑制されるため、正極活物質の利用率が増大する。一般に、正極活物質の利用率が増大すると、正極活物質の膨張および収縮の度合が大きくなり、一次粒子間の結合力の低下により正極が劣化しやすい傾向がある。
 一方、本発明では、正極活物質について、特定の組成の複合酸化物を用い、その一次粒子の平均粒径を特定の範囲内とすることで、一次粒子間の結合力が高められ、一次粒子間の結合力の低下による正極の劣化が抑制される。よって、上記正極活物質と、BET比表面積が2m/g以下の黒鉛との組み合わせにより、特異的にサイクル特性が更に向上する。
 正極は、例えば、正極集電体と、正極集電体に担持され、かつ正極活物質を含む正極合剤層とを有する。このとき、正極合剤層は、正極活物質を正極合剤層1cmあたり3.2g以上含んでもよい。この場合、優れたサイクル特性を有するとともに、より高いエネルギー密度を有する電池が得られる。
 一般に、正極合剤層に含まれる正極活物質の量が正極合剤層1cmあたり3.2g以上に多くなると、充放電時の正極活物質の膨張および収縮に伴い正極合剤層内に生じる応力が増大し、二次粒子は一次粒子界面で割れやすくなり、サイクル特性が低下しやすい。
 これに対して、本発明では、正極活物質について、特定の組成の複合酸化物を用い、その一次粒子の平均粒径を特定の範囲内とすることで、正極活物質の一次粒子間の結合力が高められる。よって、正極合剤層に含まれる正極活物質の量が正極合剤層1cmあたり3.2g以上である場合でも、二次粒子の一次粒子界面での割れが抑制され、サイクル特性が向上する。
 以下、非水電解質二次電池の構成について詳細に説明する。
 (正極)
 正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層と、を具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。正極合剤は、必須成分として正極活物質を含み、任意成分として、結着剤、導電剤、および増粘剤などを含むことができる。
 結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;アラミド樹脂などのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体などのアクリル樹脂;ポリアクリルニトリル、ポリ酢酸ビニルなどのビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、例えば、天然黒鉛や人造黒鉛などの黒鉛;アセチレンブラックなどのカーボンブラック類;炭素繊維や金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。正極集電体の厚さは、特に限定されないが、例えば、3~50μmである。
 分散媒としては、特に制限されないが、例えば、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。
 (負極)
 負極は、例えば、負極集電体と、負極集電体の表面に形成された負極合剤層と、を具備する。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。負極合剤は、必須成分として負極活物質を含み、任意成分として、結着剤、導電剤、および増粘剤などを含むことができる。結着剤、増粘剤、および分散媒としては、正極で例示したものを用いることができる。また、導電剤としては、黒鉛を除き、正極で例示したものを用いることができる。
 負極活物質としては、炭素材料、ケイ素、ケイ素酸化物などのケイ素化合物、ならびにスズ、アルミニウム、亜鉛、およびマグネシウムよりなる群から選択される少なくとも一種を含むリチウム合金などが例示できる。炭素材料としては、黒鉛(天然黒鉛、人造黒鉛など)、非晶質炭素などが例示できる。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1~50μmが好ましく、5~20μmがより望ましい。
 (セパレータ)
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図1は、本発明の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード3の一端部が溶接などにより取り付けられている。負極リード3の他端部は、樹脂製の絶縁板(図示せず)を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極の正極集電体には、正極リード2の一端部が溶接などにより取り付けられている。正極リード2の他端部は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている非水電解質の注入孔は、封栓8により塞がれている。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1~3、比較例1~2》
 (1)正極活物質の作製
 共沈法により得られたNi0.82Co0.15Al0.03(OH)と、LiCOとを、Ni、CoおよびAlの合計に対するLiの原子比:Li/(Ni+Co+Al)が1.05/1となるように混合し、酸素雰囲気下で焼成することにより、正極活物質(複合酸化物)を得た。焼成時の昇温過程での昇温速度は5℃/min以下とした。正極活物質の組成は、Li1.05Ni0.82Co0.15Al0.03であった。なお、正極活物質の組成は、ICP発光分光分析により求められた。
 (2)正極の作製
 正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとを、100:2:2の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、正極合剤層(密度3.6g/cm)が形成された正極を作製した。
 (3)負極の作製
 負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)とを、100:1:1の質量比で混合し、水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。銅箔の表面に負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に、負極合剤層(密度1.7g/cm)が形成された負極を作製した。負極活物質には、BET比表面積が1.4m/gである黒鉛粉末(平均粒径20μm)を用いた。
 (4)非水電解質の調製
 エチレンカーボネート(EC)およびジエチルカーボネート(DEC)の混合溶媒(体積比1:1)にLiPFを1.6mol/Lの濃度で溶解させて、非水電解質を調製した。
 (5)非水電解質二次電池の作製
 上記で得られた正極にアルミニウム製の正極リードの一端部を取り付けた。上記で得られた負極にニッケル製の負極リードの一端部を取り付けた。ポリエチレン製のセパレータを介して正極および負極を巻回することにより巻回型の電極体を作製した。当該電極体を105℃で2時間真空乾燥した後、負極端子を兼ねる有底円筒形状の電池ケースに収容した。電池ケースには、鉄製ケース(外径18mm、高さ65mm)を用いた。次いで、電池ケース内に非水電解質を注入した後、正極端子を兼ねる金属製の封口体を用いて電池ケースの開口部を閉じた。このとき、封口体と電池ケースの開口端部との間に樹脂製のガスケットを介在させた。正極リードの他端部を封口体に接続し、負極リードの他端部を電池ケースの内底面に接続した。このようにして、18650型の円筒形非水電解質二次電池を作製した。
 上記の正極活物質の作製において、一次粒子の平均粒径が表1に示す値である正極活物質a1~a3、b1~b2を得た。正極活物質の一次粒子の平均粒径は、既述の方法により求められた。正極活物質の一次粒子の平均粒径の調整は、Ni0.82Co0.15Al0.03(OH)とLiCOとの混合物の焼成温度を700℃以上800℃以下および焼成時間を5時間以上10時間以下の範囲で変えることにより行った。既述の方法により求められた正極活物質a1~a3、b1~b2の二次粒子の平均粒径(D50)は、いずれも約12μmであった。
 既述の方法により求められた正極活物質a1~a3の一次粒子の粒径の分散度合いは、いずれも約1%であった。エネルギー分散型X線分光法(EDX)を用いて正極活物質a1~a3の一次粒子内のAlの分布を調べたところ、いずれも、一次粒子の内部側よりも表面側(一次粒子の界面)でAlの存在割合が大きくなっていることが確認された。
 正極活物質a1~a3、b1~B2を用いて、非水電解質二次電池A1~A3、B1~B2を作製した。
 電池A1~A3、B1~B2について、それぞれ、以下の評価を行った。
 [評価]
 (A)初期容量
 〈充電〉
 25℃の環境下で、0.2Cの電流で電圧が4.2Vに達するまで定電流充電を行い、その後、4.2Vの電圧で電流が0.02Cに達するまで定電圧充電した。充電後、20分間休止した。
 〈放電〉
 休止後、25℃の環境下で、0.2Cの電流で電圧が2.5Vに達するまで定電流放電を行い、初期の放電容量(初期容量)を求めた。なお、初期容量は、比較例1の電池B1の初期容量を100とした指数として表した。
 (B)容量維持率
 〈充電〉
 45℃の環境下で、0.5Cの電流で電圧が4.3Vに達するまで定電流充電を行った。充電後、20分間休止した。
 〈放電〉
 休止後、45℃の環境下で、0.5Cの電流で電圧が2.5Vに達するまで定電流放電を行った。
 上記の充放電を繰り返し行い、1サイクル目の放電容量Cおよび500サイクル目の放電容量Cを求めた。
 上記で得られた放電容量Cおよび放電容量Cを用い、下記式より容量維持率を求めた。
 容量維持率(%)=(放電容量C/放電容量C)×100
 (C)抵抗変化率
 上記(B)の充放電を1サイクル行った。その後、25℃の環境下で、0.2Cの電流で電圧が4.2Vに達するまで定電流充電を行い、定電流充電の後、4.2Vの電圧で電流が0.02Cに達するまで定電圧充電を行った。このようにして、SOC100%の電池を得た。
 充電後、20分間休止した。休止後、0.5Cの電流Iで定電流放電を行った。放電開始直前の電圧と放電開始後10秒経過時の電圧との差ΔVを電流Iで除した値(ΔV/I)を求め、直流抵抗Rとした。
 別途作製した電池を準備し、上記(B)の充放電を500サイクル行った。その後、上記と同様の方法により充放電を行い、ΔV/Iを求め、直流抵抗Rとした。
 上記で得られた直流抵抗Rおよび直流抵抗Rを用い、下記式より抵抗変化率を求めた。
 抵抗変化率(%)=(直流抵抗R/直流抵抗R)×100
 《実施例4~6、比較例3~4》
 共沈法により得られたNi0.82Co0.13Al0.05(OH)と、LiCOとを、Ni、CoおよびAlの合計に対するLiの原子比:Li/(Ni+Co+Al)が1.05/1となるように混合し、酸素雰囲気下で焼成することにより、正極活物質(複合酸化物)を得た。焼成時の昇温過程での昇温速度は5℃/min以下とした。正極活物質の組成は、Li1.05Ni0.82Co0.13Al0.05であった。
 上記の正極活物質の作製において、一次粒子の平均粒径が表1に示す値である正極活物質a4~a6、b3~b4を得た。正極活物質の一次粒子の平均粒径は、既述の方法により求められた。正極活物質の一次粒子の平均粒径の調整は、Ni0.82Co0.13Al0.05(OH)とLiCOとの混合物の焼成温度を700℃以上800℃以下および焼成時間を5時間以上10時間以下の範囲で変えることにより行った。既述の方法により求められた正極活物質a4~a6の二次粒子の平均粒径(D50)は、いずれも約12μmであった。
 既述の方法により求められた正極活物質a4~a6の一次粒子の粒径の分散度合いは、いずれも約1%であった。EDXにより、正極活物質a4~a6の一次粒子の内部側よりも表面側(一次粒子の界面)でAlの存在割合が大きくなっていることが確認された。
 正極活物質a1の代わりに正極活物質a4~a6、b3~b4を用いる以外、実施例1と同様の方法により、電池A4~A6、B3~B4を作製し、評価した。
 電池A1~A6、B1~B4の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 正極活物質について、Ni/Mが0.8以上1未満であり、一次粒子の平均粒径が0.2μm以上0.35μm以下である電池A1~A6では、高い初期容量とともに高い容量維持率および低い抵抗変化率が得られた。電池A1~A6では、充放電の繰り返しに伴う二次粒子の一次粒子界面での割れが抑制された。
 正極活物質について、一次粒子の平均粒径が0.35μm超である電池B1およびB3では、充放電に伴う一次粒子の膨張および収縮の絶対量が大きくなり、一次粒子間の結合力が不十分となるため、容量維持率が低下し、抵抗変化率が増大した。
 正極活物質について、一次粒子の平均粒径が0.2μm未満である電池B2およびB4では、一次粒子の結晶成長が不十分であるため、初期容量が低下した。
 《実施例7》
 共沈法により得られたNi0.82Co0.12Mn0.06(OH)と、LiCOとを、Ni、CoおよびMnの合計に対するLiの原子比:Li/(Ni+Co+Mn)が1.05/1となるように混合した以外、実施例1と同様の方法により、正極活物質a7を作製した。正極活物質の組成は、Li1.05Ni0.82Co0.12Mn0.06であった。
 既述の方法により求められた正極活物質a7の一次粒子の平均粒径は、0.35μmであった。既述の方法により求められた正極活物質a7の二次粒子の平均粒径(D50)は、約12μmであった。既述の方法により求められた正極活物質a7の一次粒子の粒径の分散度合いは、約1%であった。EDXにより、正極活物質a7の一次粒子の内部側よりも表面側(一次粒子の界面)でMnの存在割合が大きくなっていることが確認された。
 正極活物質a1の代わりに正極活物質a7を用いる以外、実施例1と同様の方法により、電池A7を作製し、評価した。電池A1およびA4とともに電池A7の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 Al/Mが0.04以上0.07以下である電池A4では、Al/Mが0.04未満である電池A1よりも高い容量維持率および低い抵抗変化率が得られた。
 Mn/Mが0.01以上0.07以下である電池A7では、高い初期容量とともに、電池A4と同じレベルの高い容量維持率および低い抵抗変化率が得られた。
 《実施例8~9》
 負極活物質に、BET比表面積が表3に示す値である黒鉛粉末を用いた以外、実施例1と同様の方法により、電池A8、A9を作製し、評価した。
 《実施例10~11》
 負極活物質に、BET比表面積が表3に示す値である黒鉛粉末を用いた以外、実施例4と同様の方法により、電池A10、A11を作製し、評価した。
 電池A1およびA4とともに電池A8~A11の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 負極活物質のBET比表面積が2.0m/g以下である電池A1およびA8では、負極活物質のBET比表面積が2.0m/g超である電池A9よりも高い容量維持率および低い抵抗変化率が得られた。
 負極活物質のBET比表面積が2.0m/g以下である電池A4およびA10では、負極活物質のBET比表面積が2.0m/g超である電池A11よりも高い容量維持率が得られた。
 本発明の非水電解質二次電池は、例えば、携帯電子機器などの主電源や蓄電装置(例えば、太陽光などの自然エネルギーの貯蔵装置)として好適に用いられる。
 1 電極群
 2 正極リード
 3 負極リード
 4 電池ケース
 5 封口板
 6 負極端子
 7 ガスケット
 8 封栓

Claims (6)

  1.  正極活物質を含む正極と、負極活物質を含む負極と、非水電解質と、を備え、
     前記正極活物質は、リチウムと、リチウム以外の金属Mと、を含有する複合酸化物を含み、
     前記複合酸化物の一次粒子が複数凝集して二次粒子を形成しており、
     前記金属Mは、少なくとも、ニッケルと、アルミニウムおよび/またはマンガンと、を含み、
     前記金属Mに対する前記ニッケルの原子比:Ni/Mは、0.8以上1.0未満であり、
     前記一次粒子の平均粒径は、0.20μm以上0.35μm以下である、非水電解質二次電池。
  2.  前記アルミニウムおよび/またはマンガンの存在割合は、前記一次粒子の内部側よりも表面部側で大きくなっている、請求項1に記載の非水電解質二次電池。
  3.  前記金属Mは、前記アルミニウムを含み、
     前記金属Mに対する前記アルミニウムの原子比:Al/Mは、0.04以上0.07以下である、請求項1または2に記載の非水電解質二次電池。
  4.  前記金属Mは、前記マンガンを含み、
     前記金属Mに対する前記マンガンの原子比:Mn/Mは、0.01以上0.07以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記負極活物質は、黒鉛を含み、
     前記黒鉛のBET比表面積は、2m/g以下である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記正極は、正極集電体と、前記正極集電体に担持され、かつ前記正極活物質を含む正極合剤層と、を有し、
     前記正極合剤層は、前記正極活物質を前記正極合剤層1cmあたり3.2g以上含む、請求項1~5のいずれか1項に記載の非水電解質二次電池。
PCT/JP2019/036810 2018-09-28 2019-09-19 非水電解質二次電池 WO2020066846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020548611A JPWO2020066846A1 (ja) 2018-09-28 2019-09-19 非水電解質二次電池
US17/277,482 US20210359301A1 (en) 2018-09-28 2019-09-19 Nonaqueous electrolyte secondary battery
EP19867480.6A EP3859840A4 (en) 2018-09-28 2019-09-19 SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
CN201980053555.3A CN112602212A (zh) 2018-09-28 2019-09-19 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185095 2018-09-28
JP2018-185095 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066846A1 true WO2020066846A1 (ja) 2020-04-02

Family

ID=69949723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036810 WO2020066846A1 (ja) 2018-09-28 2019-09-19 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20210359301A1 (ja)
EP (1) EP3859840A4 (ja)
JP (1) JPWO2020066846A1 (ja)
CN (1) CN112602212A (ja)
WO (1) WO2020066846A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080394A (ja) * 2008-09-29 2010-04-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2014142279A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2017169184A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP2017226576A (ja) 2016-06-22 2017-12-28 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物および非水系電解質二次電池
JP2018092916A (ja) * 2016-11-28 2018-06-14 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用炭素質被覆黒鉛質粒子およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867030B2 (ja) * 2002-09-02 2007-01-10 エス・イー・アイ株式会社 リチウム二次電池用負極、正極およびリチウム二次電池
CN107108264B (zh) * 2014-10-30 2019-06-04 住友金属矿山株式会社 含镍复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法、及非水系电解质二次电池
JP6287771B2 (ja) * 2014-11-18 2018-03-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
KR20170073217A (ko) * 2015-12-18 2017-06-28 삼성전자주식회사 복합 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 전지
US10749176B2 (en) * 2016-01-19 2020-08-18 Hitachi Metals, Ltd. Cathode active material used for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
US10622629B2 (en) * 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080394A (ja) * 2008-09-29 2010-04-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2014142279A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2017169184A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP2017226576A (ja) 2016-06-22 2017-12-28 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物および非水系電解質二次電池
JP2018092916A (ja) * 2016-11-28 2018-06-14 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用炭素質被覆黒鉛質粒子およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859840A4

Also Published As

Publication number Publication date
EP3859840A1 (en) 2021-08-04
US20210359301A1 (en) 2021-11-18
CN112602212A (zh) 2021-04-02
JPWO2020066846A1 (ja) 2021-09-24
EP3859840A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US9831497B2 (en) Method of manufacturing active material particles
RU2403654C1 (ru) Катодный активный материал для литиевых вторичных батарей с высокой безопасностью, способ приготовления этого материала и литиевые вторичные батареи, содержащие этот материал
JP5175826B2 (ja) 活物質粒子およびその利用
JP4061586B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
KR101503195B1 (ko) 이차 전지
JP6011888B2 (ja) 非水電解液二次電池
JP7126840B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
CN112054193A (zh) 二次电池的正极材料和使用该正极材料的二次电池
JPWO2018179934A1 (ja) 負極材料および非水電解質二次電池
US20220166007A1 (en) Non-aqueous electrolyte secondary battery
CN112054190A (zh) 锂二次电池的正极材料和使用该正极材料的锂二次电池
JP3503688B2 (ja) リチウム二次電池
JP7454559B2 (ja) 非水電解質二次電池用の負極、及び非水電解質二次電池
CN112242509B (zh) 非水电解质二次电池
JP2020035682A (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2022138451A1 (ja) 電極、非水電解質電池及び電池パック
WO2021241027A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2019175721A (ja) 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP7453037B2 (ja) 全固体電池
WO2020066846A1 (ja) 非水電解質二次電池
WO2020045257A1 (ja) 二次電池用負極活物質および二次電池
JP7325050B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2024095686A1 (ja) 二次電池用正極および二次電池
WO2023189507A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024095667A1 (ja) 二次電池用正極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867480

Country of ref document: EP

Effective date: 20210428