WO2020066387A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2020066387A1
WO2020066387A1 PCT/JP2019/032791 JP2019032791W WO2020066387A1 WO 2020066387 A1 WO2020066387 A1 WO 2020066387A1 JP 2019032791 W JP2019032791 W JP 2019032791W WO 2020066387 A1 WO2020066387 A1 WO 2020066387A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
electric machine
actual
rotating electric
rotation speed
Prior art date
Application number
PCT/JP2019/032791
Other languages
English (en)
French (fr)
Inventor
細井宣宏
杉本大希
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US17/266,218 priority Critical patent/US20210309209A1/en
Priority to JP2020548169A priority patent/JP7103426B2/ja
Priority to EP19867608.2A priority patent/EP3819176A4/en
Priority to CN201980057376.7A priority patent/CN112638731A/zh
Publication of WO2020066387A1 publication Critical patent/WO2020066387A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0295Inhibiting action of specific actuators or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a control device that controls a vehicle drive device provided with a rotating electric machine.
  • a control device for a vehicle drive device that can appropriately determine that a negative torque that may make the running of a vehicle unstable may occur in a rotating electric machine.
  • the characteristic configuration of the control device of the vehicle drive device is as follows: A control device for controlling a vehicle drive device having a rotating electric machine, An actual rotation speed acquisition unit that acquires an actual rotation speed that is an actual rotation speed of the rotating electric machine, An actual torque acquisition unit that acquires an actual torque that is an actual torque of the rotating electric machine, A determining unit for determining a state of the rotating electric machine, When the actual torque is a negative value smaller than a torque threshold set according to a relationship between the actual rotational speed and the target torque of the rotating electric machine, the state of the rotating electric machine is negative. The point is that it is determined that the torque is abnormal.
  • the torque threshold value for determining the state of the rotating electric machine is set according to the relationship between the actual rotation speed of the rotating electric machine and the target torque. Therefore, regardless of the actual rotational speed and the target torque of the rotating electric machine, the negative torque abnormality can be appropriately determined in accordance with the values. Therefore, it is possible to appropriately determine that a negative torque that may make the running of the vehicle unstable becomes generated in the rotating electric machine.
  • the characteristic configuration of the control device of the vehicle drive device is as follows: A control device for controlling a vehicle drive device having a rotating electric machine, An actual rotation speed acquisition unit that acquires an actual rotation speed that is an actual rotation speed of the rotating electric machine, An actual torque acquisition unit that acquires an actual torque that is an actual torque of the rotating electric machine, A determining unit for determining a state of the rotating electric machine, The determination unit is configured to stop the rotating electric machine when the actual torque is a negative value smaller than a torque threshold set according to a relationship between the actual rotation speed and a target torque of the rotating electric machine. The point is that the electric machine stop control is executed.
  • the torque threshold value for determining the state of the rotating electric machine is set according to the relationship between the actual rotation speed of the rotating electric machine and the target torque. Therefore, regardless of the actual rotational speed and the target torque of the rotating electric machine, whatever value the actual rotating speed and the target torque are, it is appropriately determined that a negative torque that may destabilize the running of the vehicle is generated in the rotating electric machine. can do. Then, when the actual torque of the rotating electric machine is a negative value smaller than the torque threshold, the rotating electric machine stop control for stopping the rotating electric machine is executed. Thereby, the driving force transmitted from the rotating electric machine to the wheels can be reduced. Therefore, even when an unintended negative torque is generated in the rotating electric machine, it is possible to prevent the traveling of the vehicle from becoming unstable.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle drive device and a control device according to an embodiment. Schematic diagram showing the circuit of the inverter device FIG. 1 is a block diagram illustrating a configuration of a control device according to an embodiment. The figure which shows the relationship between the torque threshold value and the actual rotation speed and actual torque of the rotary electric machine The figure which shows the three-dimensional orthogonal coordinate system showing a torque threshold value Flowchart showing the determination of the state of the rotating electric machine by the determination unit Time chart showing the state determination of the rotating electric machine by the determination unit
  • the control device 10 is a device that controls the vehicle drive device 1 as a control target.
  • the control device 10 is mounted on a vehicle together with the vehicle drive device 1.
  • the internal combustion engine control device 20 is also mounted on the vehicle.
  • the internal combustion engine control device 20 is a device that controls the internal combustion engine ENG as a driving force source.
  • the vehicle drive device 1 includes a rotating electric machine MG.
  • the vehicle drive device 1 selectively drives the input shaft I that is drivingly connected to the internal combustion engine ENG, the output shaft O that is drivingly connected to the wheels W, and the internal combustion engine ENG and the rotary electric machine MG. It further includes a first engagement device CL1 to be connected, and a transmission TM that changes the speed of rotation of the input shaft I and transmits the speed to the output shaft O.
  • the first engagement device CL1, the rotary electric machine MG, and the transmission TM are arranged in the power transmission path connecting the input shaft I and the output shaft O in order from the side of the internal combustion engine ENG.
  • the input shaft I corresponds to an “input member”
  • the output shaft O corresponds to an “output member”.
  • drive connection refers to a state in which two rotating elements are connected to be able to transmit a driving force, and a state in which the two rotating elements are connected so as to rotate integrally, or This includes a state in which the rotating element is connected so as to be able to transmit a driving force via one or more transmission members.
  • a transmission member includes various members (for example, a shaft, a gear mechanism, a belt, a chain, etc.) that transmit rotation at the same speed or at a variable speed.
  • the transmission member may include an engagement device (for example, a friction engagement device, a meshing engagement device, or the like) that selectively transmits rotation and driving force.
  • the internal combustion engine ENG is a prime mover (gasoline engine, diesel engine, or the like) driven by combustion of fuel to extract power.
  • the output shaft Eo of the internal combustion engine such as the crankshaft of the internal combustion engine ENG is selectively drivingly connected to the input shaft I via the first engagement device CL1.
  • the internal combustion engine output shaft Eo is provided with a damper (not shown) for attenuating fluctuations in the transmitted torque.
  • the rotating electric machine MG includes a stator and a rotor rotatably supported by the stator.
  • the rotor of the rotary electric machine MG is drivingly connected to the input shaft I so as to rotate integrally with the input shaft I. That is, in the present embodiment, both the internal combustion engine ENG and the rotary electric machine MG are driven and connected to the input shaft I.
  • the rotating electrical machine MG is electrically connected to the battery BT via an inverter INV that performs DC / AC conversion.
  • the rotating electric machine MG has a function as a motor (electric motor) that receives power and generates power, and a function as a generator (generator) that receives power and generates power. That is, the rotating electrical machine MG performs power running by receiving power supply from the battery BT via the inverter INV, or outputs power generated by the torque of the internal combustion engine ENG or the inertia of the vehicle via the inverter INV.
  • BT is charged. Note that, in the present embodiment, the battery BT corresponds to a “DC power supply”.
  • the inverter INV is connected to the battery BT and also connected to the rotating electrical machine MG, so that the inverter device INV supplies electric power between a DC of the battery BT and a plurality of phases (here, three phases) AC of the rotating electrical machine.
  • the inverter device INV has a DC link capacitor C that smoothes the voltage on the DC side of the inverter circuit.
  • the inverter INV has a plurality of switching elements SW.
  • the switching element SW includes an IGBT (Insulated Gate Bipolar Transistor), a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), a SiC-MOSFET (Silicon Carbide-Metal Oxide Semiconductor Semiconductor FET), SiC-SIT (SiC-Static) Induction Transistor.
  • -It is preferable to apply a power semiconductor element capable of operating at a high frequency, such as a MOSFET (Gallium @ Nitride @-@ MOSFET).
  • an IGBT is applied as the switching element SW.
  • the plurality of switching elements SW include a plurality of upper switching elements SWa connected to the positive electrode side of the battery BT and a plurality of lower switching elements SWb connected to the negative electrode side of the battery BT.
  • a freewheel diode FD is provided in parallel with a direction from the negative electrode to the positive electrode (a direction from the lower stage toward the upper stage) as a forward direction.
  • the switching of the plurality of switching elements SW is controlled by a rotating electrical machine control unit 12 described later.
  • the transmission TM includes one or more second engagement devices CL2 that are engaged when a shift speed is established.
  • the transmission TM forms a shift speed according to the state of engagement of the second engagement device CL2, and transmits the rotation of the input shaft I to the output shaft O by shifting the speed of the rotation of the input shaft I at a speed ratio according to the shift speed.
  • the torque transmitted from the transmission TM to the output shaft O is distributed to a plurality of (two in this example) axles AX via the differential gear device DF, and transmitted to the wheels W that are drivingly connected to each axle AX. Is done.
  • each of the first engagement device CL1 and the second engagement device CL2 is a hydraulically driven friction engagement device.
  • the friction engagement device is configured such that an engagement state is controlled based on a hydraulic pressure supplied to the friction engagement device.
  • the friction engagement device transmits torque between the pair of friction members by friction between the pair of friction members included in the friction engagement device.
  • a torque (slip torque) having a transmission torque capacity is transmitted from a member having a higher rotation speed to a member having a smaller rotation speed due to dynamic friction. Is done.
  • the friction engagement device transmits the torque acting between the pair of friction members due to the static friction, with the upper limit of the transmission torque capacity. I do.
  • the transmission torque capacity is the maximum torque that the friction engagement device can transmit by friction.
  • the magnitude of the transmission torque capacity changes in proportion to the engagement pressure of the friction engagement device.
  • the engagement pressure is a pressure with which the friction member on the input side and the friction member on the output side are pressed against each other.
  • the engagement pressure changes in proportion to the supplied hydraulic pressure. That is, the magnitude of the transmission torque capacity changes in proportion to the magnitude of the hydraulic pressure supplied to the friction engagement device.
  • the friction engagement device includes a return spring, and the friction member is urged toward the release side by a reaction force of the return spring.
  • a transmission torque capacity starts to be generated in the friction engagement device, and the friction engagement device changes from the disengaged state to the engaged state. Changes to The hydraulic pressure at which this transmission torque capacity starts to occur is referred to as stroke end pressure.
  • the friction engagement device is configured such that after the supplied hydraulic pressure exceeds the stroke end pressure, the transmission torque capacity increases in proportion to the increase in the hydraulic pressure.
  • the friction engagement device may have a structure that does not include a return spring and is controlled by a differential pressure of hydraulic pressure applied to both sides of a piston of a hydraulic cylinder.
  • the “engaged state” is a state in which a transmission torque capacity is generated in the frictional engagement device, and includes a sliding engagement state and a directly connected engagement state.
  • the “slip engagement state” is an engagement state in which there is a rotational speed difference (slip) between a pair of friction members of the friction engagement device.
  • the “directly engaged state” is an engaged state in which there is no rotational speed difference (slip) between the pair of friction members of the friction engagement device.
  • the “disengaged state” is a state in which the transmission torque capacity is not generated in the friction engagement device.
  • the hydraulic control system of the vehicle drive device 1 includes a driving force source (in the present embodiment, the internal combustion engine ENG and the rotary electric machine MG) and a dedicated motor.
  • a hydraulic control device PC for adjusting the hydraulic pressure of the hydraulic oil supplied from the driven hydraulic pump to a predetermined pressure is provided.
  • the hydraulic control device PC adjusts the opening degree of one or more adjusting valves based on a signal pressure from a hydraulic control valve such as a linear solenoid valve for adjusting hydraulic pressure.
  • a hydraulic control valve such as a linear solenoid valve for adjusting hydraulic pressure.
  • the hydraulic oil adjusted to the predetermined pressure is supplied to the first engagement device CL1 and the second engagement device CL2 at the required hydraulic pressure levels.
  • control device 10 for controlling the vehicle drive device 1 and the internal combustion engine control device 20 for controlling the internal combustion engine ENG will be described.
  • Each of the control device 10 and the internal combustion engine control device 20 includes an arithmetic processing device such as a CPU as a core member and a RAM (random access memory) capable of reading and writing data from the arithmetic processing device. And a storage device such as a ROM (Read Only Memory) from which data can be read from the arithmetic processing unit. Further, each of the control device 10 and the internal combustion engine control device 20 has software (program) stored in a storage device, hardware such as a separately provided arithmetic circuit, or both.
  • control device 10 includes a communication unit 11, a rotating electrical machine control unit 12, an engagement control unit 13, an actual rotation speed acquisition unit 14, an actual torque acquisition unit 15, A part 16.
  • the communication unit 11 is configured to be able to communicate with the control device 10 and the command device 30 which is a higher-level control device of the internal combustion engine control device 20.
  • the communication unit 11 receives a command to the rotating electrical machine control unit 12, a command to the engagement control unit 13, and the like from the command device 30.
  • the communication unit 11 is configured to be able to communicate with the rotating electric machine control unit 12 and the engagement control unit 13 and the internal combustion engine control device 20. It should be noted that the internal combustion engine control device 20 and the command device 30 may be configured by the same device.
  • the rotating electrical machine control unit 12 controls the rotating electrical machine MG.
  • the rotating electrical machine MG determines that the rotating electrical machine MG determines the MG target torque Tmt. Control to output.
  • the rotating electrical machine control unit 12 sets the rotating electrical machine MG to the target rotating speed. Control. Specifically, the rotating electrical machine control unit 12 controls the output torque and the rotating speed of the rotating electrical machine MG by controlling the plurality of switching elements SW in the inverter INV.
  • the engagement control unit 13 controls the state of engagement of the first engagement device CL1.
  • the engagement control unit 13 determines that the oil pressure supplied to the first engagement device CL1 matches the target oil pressure (oil pressure command) of the first engagement device CL1 commanded from the command device 30. And controls the signal value supplied to a hydraulic control valve provided in the hydraulic control device PC.
  • the engagement control unit 13 controls the state of engagement of the second engagement device CL2 of the transmission TM to control the state of the transmission TM. That is, the engagement control unit 13 controls the hydraulic pressure supplied to the second engagement device CL2 via the hydraulic control device PC to form the target shift speed commanded by the command device 30 in the transmission TM. Let it. Specifically, the engagement control unit 13 instructs the hydraulic control device PC of a target hydraulic pressure (hydraulic command) of the second engaging device CL2, and the hydraulic control device PC changes the target hydraulic pressure (hydraulic command) to the commanded target hydraulic pressure (hydraulic command). The corresponding hydraulic pressure is supplied to the second engagement device CL2. In the present embodiment, the engagement control unit 13 controls the hydraulic pressure supplied to the second engagement device CL2 by controlling the signal value supplied to the hydraulic control valve provided in the hydraulic control device PC.
  • the actual rotation speed acquisition unit 14 acquires the MG actual rotation speed Nm that is the actual rotation speed of the rotary electric machine MG.
  • the rotor of the rotary electric machine MG is integrally drivingly connected to the input shaft I, so that the MG actual rotation speed Nm corresponds to the actual rotation speed of the input shaft I.
  • the actual rotation speed acquisition unit 14 calculates the actual rotation speed (angular speed) of the input shaft I based on the output signal of the actual rotation speed sensor Se1.
  • the actual rotation speed sensor Se1 is a sensor for detecting the actual rotation speed of the input shaft I, that is, the MG actual rotation speed Nm.
  • the actual rotation speed sensor Se1 As the actual rotation speed sensor Se1, a resolver, a sensor using a magnetoresistive element (MR element), a sensor using a Hall element, or the like can be used.
  • the actual rotation speed sensor Se1 is a resolver included in the rotary electric machine MG. Therefore, the actual rotation speed acquisition unit 14 detects the position of the rotor of the rotary electric machine MG by converting the output signal of the actual rotation speed sensor Se1 into a digital signal, and calculates the MG actual rotation speed Nm based on the position of the rotor. calculate.
  • the actual torque acquisition unit 15 acquires the MG actual torque Tm, which is the actual torque of the rotary electric machine MG.
  • the actual torque obtaining unit 15 calculates the actual current flowing through the stator coil of each phase of the rotating electrical machine MG by converting the output signal of the current sensor Se2 into a digital signal. A fixed relationship is established between the actual current flowing through the stator coil of each phase of the rotating electrical machine MG and the torque output by the rotating electrical machine MG. Therefore, the actual torque obtaining unit 15 calculates the MG actual torque Tm output by the rotary electric machine MG based on the actual current and the angular speed of the input shaft I calculated by the actual rotation speed obtaining unit 14.
  • the determination unit 16 determines the state of the rotary electric machine MG based on the MG actual rotation speed Nm acquired by the actual rotation speed acquisition unit 14, the MG actual torque Tm acquired by the actual torque acquisition unit 15, and the like. The detailed operation of the determination unit 16 will be described later.
  • the internal combustion engine control device 20 When there is a request to start combustion of the internal combustion engine ENG, the internal combustion engine control device 20 performs control to start combustion of the internal combustion engine ENG by, for example, starting fuel supply and ignition to the internal combustion engine ENG.
  • the internal combustion engine ENG receives a command to stop combustion of the internal combustion engine ENG from the command device 30 via the communication unit 11, the internal combustion engine control device 20 stops fuel supply, ignition, and the like to the internal combustion engine ENG.
  • ENG is brought into a combustion stop state. Further, the internal combustion engine control device 20 outputs the target torque commanded from the command device 30 via the communication unit 11 or the target rotational speed commanded from the command device 30 via the communication unit 11. Next, the internal combustion engine ENG is controlled.
  • the determination unit 16 determines that the negative torque is abnormal.
  • the state of the rotating electrical machine MG is abnormally negative torque means that the rotating electrical machine MG is outputting a torque different from the MG target torque Tmt, and makes the traveling of the vehicle unstable. Indicates a state where a possible negative torque is being output.
  • Torque threshold THt is set in accordance with the relationship between MG actual rotation speed Nm and MG target torque Tmt. As shown in FIG. 4, in the present embodiment, the torque threshold value THt is determined according to the MG actual rotation speed Nm and the MG target torque Tmt by a first threshold value THt1, a second threshold value THt2, a third threshold value THt3, and a fourth threshold value THt. It is set to one of THt4.
  • the torque threshold THt is set to the first threshold THt1. Then, when MG actual torque Tm is a negative value smaller than first threshold value THt1, determination unit 16 determines that state of rotating electrical machine MG is abnormal negative torque.
  • the torque threshold THt is set to the second threshold THt2. Then, when MG actual torque Tm is a negative value smaller than second threshold value THt2, determination unit 16 determines that state of rotating electrical machine MG is abnormal negative torque. In the present embodiment, when the MG actual rotation speed Nm is higher than the rotation speed threshold THn, the determination unit 16 does not perform the state determination of the rotary electric machine MG. This is because if the MG actual rotation speed Nm is large to some extent, even if an unintended negative torque is generated, there is a low possibility that the rotating electrical machine MG will reverse.
  • the torque threshold THt is set to the third threshold THt3. Then, when MG actual torque Tm is a negative value smaller than third threshold value THt3, determination unit 16 determines that state of rotating electrical machine MG is abnormal negative torque.
  • the torque threshold THt is set to the fourth threshold THt4. Then, when MG actual torque Tm is a negative value smaller than fourth threshold value THt4, determination unit 16 determines that state of rotating electrical machine MG is abnormal negative torque.
  • FIG. 5 shows a three-dimensional rectangular coordinate system representing these threshold values THt1 to THt4.
  • the three coordinate axes of this coordinate system are the MG actual rotation speed Nm, the MG target torque Tmt, and the MG actual torque Tm, respectively.
  • the virtual plane S1 indicates the first threshold THt1
  • the virtual plane S2 indicates the second threshold THt2
  • the virtual plane S3 indicates the third threshold THt3
  • the virtual plane S4 indicates the fourth threshold THt4.
  • the virtual plane S5 indicates the rotation speed threshold value THn.
  • the upper limit of the positive threshold and the lower limit of the negative threshold of the MG target torque Tmt respectively correspond to the upper limit and the lower limit of the torque that can be output by the rotary electric machine MG, and the negative of the MG actual rotation speed Nm.
  • the lower limit of the threshold value on the side corresponds to the lower limit of the rotational speed at which the rotating electrical machine MG can operate.
  • the first threshold value THt1 is set to a constant value that does not change according to the MG actual rotation speed Nm and the MG target torque Tmt.
  • the MG actual rotation speed Nm is negative and the MG target torque Tmt is positive, that is, when the rotating electrical machine MG is outputting a torque in a direction of decreasing its rotation speed while rotating reversely, the vehicle moves backward. This corresponds to a situation where the vehicle is decelerating. In such a situation, it is not preferable that the rotating electrical machine MG unintentionally outputs a negative torque, because it leads to unintended acceleration of the vehicle in the reverse direction.
  • the first fixed constant value set to a negative value is independent of the magnitudes of the MG actual rotation speed Nm and the MG target torque Tmt. If the MG actual torque Tm exceeds the threshold value THt1 in the negative direction, it is determined that the state of the rotary electric machine MG is abnormal negative torque.
  • the first threshold value THt1 is set to a negative value slightly smaller than zero (for example, ⁇ 5 N ⁇ m) in consideration of the error of the MG actual torque Tm calculated by the actual torque acquisition unit 15. .
  • the first threshold value THt1 is set such that, when the MG actual rotation speed Nm is negative, the MG actual torque Tm, which should be a positive torque if normal, becomes negative, It is set so that it is determined that the negative torque is abnormal.
  • the second threshold value THt2 does not change according to the MG target torque Tmt, but is set to a value that decreases as the MG actual rotation speed Nm increases.
  • the MG actual rotation speed Nm is positive and the MG target torque Tmt is positive, that is, when the rotating electric machine MG is outputting a torque in a direction to increase the rotation speed while rotating forward, the vehicle moves forward. It is a situation that is accelerating.
  • the third threshold value THt3 does not change according to the MG actual rotation speed Nm, but is set to a value that decreases as the MG target torque Tmt decreases. If the MG actual rotation speed Nm is negative and the MG target torque Tmt is negative, that is, if the rotating electrical machine MG is outputting a torque in the direction of increasing its rotation speed while rotating in reverse, the vehicle moves backward. This is the situation that is accelerating. In such a situation, it is not preferable that the rotating electric machine MG unintentionally outputs a negative torque larger than the MG target torque Tmt in the negative direction, because the vehicle is accelerated in the reverse direction more than necessary.
  • the third threshold value THt3 Tmt + THt1 (Tmt ⁇ 0) As described above, the first threshold value THt1 is set to a constant value.
  • the third threshold value THt3 is smaller than the MG actual torque target torque Tmt by a fixed value that is relatively small (here, the same value as the first threshold value THt1).
  • the torque Tm increases in the negative direction, it is set so that it is determined that the negative torque is abnormal.
  • the fourth threshold value THt4 is set to a value that decreases as the MG target torque Tmt decreases and decreases as the MG actual rotation speed Nm increases. If the MG actual rotation speed Nm is positive and the MG target torque Tmt is negative, that is, if the rotating electrical machine MG is outputting a torque in the direction of decreasing its rotation speed while rotating forward, the vehicle moves forward. This corresponds to a situation where the vehicle is decelerating. In such a situation, it is not preferable that the rotating electrical machine MG unintentionally outputs a negative torque larger than the MG target torque Tmt in the negative direction, because the vehicle is decelerated more than necessary.
  • the fourth threshold value THt4 which is set to a negative value that increases in the negative direction as Nm increases, in the negative direction, it is determined that the state of the rotary electric machine MG is abnormal negative torque.
  • the fourth threshold value THt4 is represented by the following equation.
  • the torque Tm increases in the negative direction, it is set so that it is determined that the negative torque is abnormal. Accordingly, it is possible to prevent the rotating electric machine MG that is rotating forward from decelerating more than necessary or the rotating electric machine MG from rotating in the reverse direction.
  • FIG. 6 shows a flowchart for determining the state of the rotating electrical machine MG by the determination unit 16 according to the present embodiment. As shown in FIG. 6, first, the determination unit 16 determines whether or not the MG actual rotation speed Nm is smaller than zero (STEP 1).
  • determination unit 16 determines whether MG target torque Tmt is equal to or greater than zero (STEP 10). On the other hand, when determining that the MG actual rotation speed Nm is equal to or higher than zero, the determination unit 16 determines whether the MG actual rotation speed Nm is equal to or lower than the rotation speed threshold THn (STEP 2).
  • determination unit 16 determines whether MG actual torque Tm is smaller than first threshold value THt1 (STEP 11). On the other hand, when determining that MG target torque Tmt is smaller than zero, determination unit 16 determines whether MG actual torque Tm is smaller than third threshold value THt3 (STEP 12).
  • the determination unit 16 determines whether the MG actual torque Tm is smaller than the first threshold value THt1 in STEP 11 or determines that the MG actual torque Tm is smaller than the third threshold value THt3 in STEP 12. Is temporarily determined that the state is a negative torque abnormality (hereinafter referred to as “negative torque abnormality temporary determination”) (STEP 13). On the other hand, when the determination unit 16 determines that the MG actual torque Tm is equal to or greater than the first threshold value THt1 in STEP11, or when the determination unit 16 determines that the MG actual torque Tm is equal to or greater than the third threshold value THt3, the rotation is performed. The state determination of the electric machine MG ends.
  • the determination unit 16 determines whether or not a time ⁇ t has elapsed since the negative torque abnormality provisional determination was first performed (STEP 14). When determining that the time ⁇ t has not elapsed since the negative torque abnormality provisional determination was first performed, the determination unit 16 returns to STEP 1 and determines the state of the rotary electric machine MG. On the other hand, if the state of the negative torque abnormality provisional determination continues even after the time ⁇ t has elapsed after the negative torque abnormality provisional determination is first performed, the determination unit 16 determines that the state of the rotary electric machine MG is negative torque. A final determination of abnormality (hereinafter referred to as "negative torque abnormality main determination”) is made (STEP 15).
  • the determination unit 16 executes a rotating electric machine stop control for stopping the rotating electric machine MG (STEP 16).
  • a rotating electric machine stop control for stopping the rotating electric machine MG (STEP 16).
  • at least one of the active short circuit control, the shutdown control, and the rotating electrical machine zero torque control is executed in the rotating electrical machine stop control.
  • the active short circuit control is a control in which one of all of the plurality of upper switching elements SWa and all of the plurality of lower switching elements SWb in the inverter INV is turned on and the other is turned off.
  • the shutdown control is a control for turning off all of the plurality of upper-stage switching elements SWa and the plurality of lower-stage switching elements SWb in the inverter INV.
  • the rotating electric machine zero torque control is control for operating the inverter INV such that the MG actual torque Tm becomes zero.
  • this control is executed, the output torque of the rotary electric machine MG becomes zero, so that the rotary electric machine MG rotates by inertia but does not output torque.
  • the engagement / disengagement control for disengaging the first engagement device CL1 and the neutral control for setting the state of the transmission TM to the neutral state where the driving force is not transmitted. May be performed.
  • the neutral control By executing the neutral control, power transmission from rotating electric machine MG to wheels W is shut off. Therefore, even when the state of the rotary electric machine MG becomes abnormal negative torque, unstable running of the vehicle can be avoided with high certainty.
  • the engagement / disengagement control is executed, power transmission between the internal combustion engine ENG and the rotary electric machine MG is shut off. Therefore, it is possible to prevent the state of the rotary electric machine MG from being affected by the abnormal negative torque on the internal combustion engine ENG.
  • the internal combustion engine zero torque control for controlling the internal combustion engine ENG so that the internal torque of the internal combustion engine ENG, which is the actual torque of the internal combustion engine ENG, may become zero.
  • the determination unit 16 determines whether the MG target torque Tmt is equal to or greater than zero (STEP 20). On the other hand, if it is determined in STEP 2 that the actual MG rotation speed Nm is greater than the rotation speed threshold THn, the state determination of the rotary electric machine MG is terminated.
  • determination section 16 determines whether MG actual torque Tm is smaller than second threshold value THt2 (STEP 21). On the other hand, when determining that MG target torque Tmt is smaller than zero, determination unit 16 determines whether MG actual torque Tm is smaller than fourth threshold value THt4 (STEP 22).
  • the determination unit 16 determines that the MG actual torque Tm is smaller than the second threshold THt2 in STEP 21 or that determines that the MG actual torque Tm is smaller than the fourth threshold THt4 in STEP 22. A tentative determination is made (STEP 23). On the other hand, when the determination unit 16 determines in step 21 that the MG actual torque Tm is equal to or greater than the second threshold THt2, or when determines in step 22 that the MG actual torque Tm is equal to or greater than the fourth threshold THt4, The state determination of the electric machine MG ends.
  • the determination unit 16 determines whether or not the time ⁇ t has elapsed since the negative torque abnormality provisional determination was first performed (STEP 24). When determining that the time ⁇ t has not elapsed since the negative torque abnormality provisional determination was first performed, the determination unit 16 returns to STEP 1 and determines the state of the rotary electric machine MG. On the other hand, if the state of the negative torque abnormality provisional determination continues even after the time ⁇ t has elapsed since the negative torque abnormality provisional determination is first performed, the determination unit 16 performs the negative torque abnormality main determination ( (STEP 25).
  • the determination unit 16 executes a rotating electric machine stop control for stopping the rotating electric machine MG (STEP 26). Since the rotating electric machine stop control executed in STEP 26 is the same as the rotating electric machine stop control executed in STEP 16, detailed description will be omitted. Also in this case, at least one of the engagement release control and the neutral control may be executed in addition to the rotating electric machine stop control. Further, when performing the engagement / disengagement control, the internal combustion engine zero torque control may be performed.
  • FIG. 7 shows a time chart for an example of the state determination of the rotary electric machine MG by the determination unit 16.
  • the wheel brake is actuated and decelerated while the vehicle is traveling forward, and the transmission TM enters the neutral state
  • an abnormality occurs in which the rotating electrical machine MG outputs a negative torque different from the MG target torque Tmt.
  • the MG actual rotation speed Nm decreases stepwise and becomes zero at time t4. Further, the vehicle speed V gradually decreases from time t1 to time t4, and becomes zero at time t4. Further, MG target torque Tmt becomes a negative value at time t1, increases stepwise from time t1 to time t4, and becomes zero at time t4. Accordingly, the MG actual torque Tm also becomes a negative value at the time t1, increases stepwise from the time t1 to the time t4, and becomes zero after the time t4.
  • the torque threshold THt is set to the fourth threshold THt4.
  • the MG actual rotation speed Nm decreases and the MG target torque Tmt increases, so the fourth threshold value THt4 increases.
  • the MG actual rotation speed Nm and the MG target torque Tmt are maintained at zero.
  • the MG actual rotation speed Nm is equal to or greater than zero and the MG target torque Tmt is equal to or greater than zero, so that the torque threshold THt is set to the second threshold THt2.
  • the second threshold value THt2 is actually equal to the first threshold value THt1.
  • the torque threshold THt is set to the first threshold THt1.
  • the MG actual torque Tm further decreases and becomes smaller than the first threshold value THt1 at the time point after the time point t6. Therefore, the above-described temporary determination of the negative torque abnormality is performed at the time when the time t6 has elapsed. Then, after the negative torque abnormality provisional determination is first performed and before the time ⁇ t elapses, the negative torque abnormality provisional determination is not canceled, and when the time ⁇ t has elapsed (time t7), the above-described negative torque abnormality main determination is performed. A determination is made.
  • the above-described rotating electrical machine stop control is started.
  • active short circuit control is performed as the rotating electric machine stop control.
  • a torque is generated in a direction to reduce the rotation of the rotary electric machine MG, so that the MG actual torque Tm starts increasing at time t7.
  • the time t8 has elapsed, the MG actual torque Tm becomes a positive value.
  • the further increased MG actual torque Tm starts decreasing from time t9 and becomes zero at time t10.
  • MG actual rotation speed Nm starts increasing at time t8 and becomes zero at time t10.
  • the transmission TM when it is determined that the state of the rotary electric machine MG has become a negative torque abnormality, the transmission TM is already in the neutral state, and thus the neutral control is not executed.
  • the state of the rotary electric machine MG becomes abnormal with a negative torque while the transmission TM is in the gear position, for example, while the vehicle is running, it is preferable to immediately execute the neutral control. In this case, it is preferable to execute the engagement / disengagement control and the internal combustion engine zero torque control as necessary.
  • the configuration in which the first threshold value THt1 is set to a constant value that does not change according to the MG actual rotation speed Nm and the MG target torque Tmt has been described as an example.
  • the first threshold value THt1 may be set to a value that changes according to at least one of the MG actual rotation speed Nm and the MG target torque Tmt.
  • the second threshold value THt2 does not change according to the MG target torque Tmt, but is set to a value that decreases as the MG actual rotation speed Nm increases.
  • the second threshold value THt2 may be set to a constant value that does not change according to the MG actual rotation speed Nm and the MG target torque Tmt.
  • the second threshold value THt2 does not change according to the MG actual rotation speed Nm, but may be set to a value that changes according to the MG target torque Tmt.
  • the configuration in which the second threshold value THt2 is proportional to the MG actual rotation speed Nm has been described as an example.
  • the configuration is not limited to such a configuration, and the second threshold value THt2 may be set to a value that changes without being proportional to the MG actual rotation speed Nm.
  • the third threshold value THt3 did not change in accordance with the MG actual rotation speed Nm, but was set to a value that became smaller as the MG target torque Tmt became smaller.
  • the third threshold value THt3 may be set to a constant value that does not change according to the MG actual rotation speed Nm and the MG target torque Tmt.
  • the third threshold value THt3 does not change according to the MG target torque Tmt, but may be set to a value that changes according to the MG actual rotation speed Nm.
  • the configuration in which the third threshold value THt3 is proportional to the MG target torque Tmt has been described as an example.
  • the configuration is not limited to such a configuration, and the third threshold value THt3 may be set to a value that changes without being proportional to the MG target torque Tmt.
  • the configuration in which the fourth threshold value THt4 is set to a value that decreases as the MG target torque Tmt decreases and decreases as the MG actual rotation speed Nm increases.
  • a configuration may be adopted in which the fourth threshold value THt4 is set to a constant value that does not change according to the MG target torque Tmt and the MG actual rotation speed Nm.
  • the fourth threshold value THt4 does not change according to the MG target torque Tmt but changes according to the MG actual rotation speed Nm, or does not change according to the MG actual rotation speed Nm but changes according to the MG target torque Tmt. May be set to a value.
  • the fourth threshold value THt4 is proportional to the MG target torque Tmt and the MG actual rotation speed Nm.
  • the fourth threshold value THt4 may be set to a value that changes without being proportional to at least one of the MG target torque Tmt and the MG actual rotation speed Nm.
  • the transmission TM is a stepped transmission having a shift speed corresponding to the engagement state of the second engagement device CL2.
  • the transmission TM may be a continuously variable transmission.
  • the engagement device that switches between the forward, reverse, and neutral states corresponds to the second engagement device CL2.
  • the control device (10) of the vehicle drive device (1) includes: A control device (10) having a vehicle drive device (1) including a rotating electric machine (MG) as a control target, An actual rotation speed acquisition unit (14) for acquiring an actual rotation speed (Nm) that is an actual rotation speed of the rotating electric machine (MG); An actual torque acquisition unit (15) for acquiring an actual torque (Tm) that is an actual torque of the rotating electric machine (MG); A determination unit (16) for determining a state of the rotating electric machine (MG), The determination unit (16) determines that the actual torque (Tm) is a torque threshold (THt) set according to a relationship between the actual rotation speed (Nm) and a target torque (Tmt) of the rotating electric machine (MG). When the negative value is smaller than the negative value, it is determined that the state of the rotary electric machine (MG) is abnormal negative torque.
  • THt torque threshold
  • the torque threshold (THt) for determining the state of the rotary electric machine (MG) is set according to the relationship between the actual rotation speed (Nm) of the rotary electric machine (MG) and the target torque (Tmt). Have been. Therefore, regardless of the actual rotational speed (Nm) and the target torque (Tmt) of the rotary electric machine (MG), it is possible to appropriately determine the negative torque abnormality according to the values. Therefore, it is possible to appropriately determine that a negative torque that may make the running of the vehicle unstable becomes generated in the rotating electric machine (MG).
  • the determination unit (16) determines that the state of the rotating electrical machine (MG) is the negative torque abnormality, it is preferable that the determining unit (16) execute rotating electrical machine stop control for stopping the rotating electrical machine (MG). is there.
  • the control device (10) of the vehicle drive device (1) includes: A control device (10) having a vehicle drive device (1) including a rotating electric machine (MG) as a control target, An actual rotation speed acquisition unit (14) for acquiring an actual rotation speed (Nm) that is an actual rotation speed of the rotating electric machine (MG); An actual torque acquisition unit (15) for acquiring an actual torque (Tm) that is an actual torque of the rotating electric machine (MG); A determination unit (16) for determining a state of the rotating electric machine (MG), The determination unit (16) determines that the actual torque (Tm) is a torque threshold (THt) set according to a relationship between the actual rotation speed (Nm) and a target torque (Tmt) of the rotating electric machine (MG). When the negative value is smaller than the negative value, a rotating electrical machine stop control for stopping the rotating electrical machine (MG) is executed.
  • a control device (10) having a vehicle drive device (1) including a rotating electric machine (MG) as a control target
  • An actual rotation speed acquisition unit (14) for acquiring an actual rotation speed
  • the torque threshold (THt) for determining the state of the rotary electric machine (MG) is set according to the relationship between the actual rotation speed (Nm) of the rotary electric machine (MG) and the target torque (Tmt). Have been. Therefore, no matter what the actual rotational speed (Nm) and the target torque (Tmt) of the rotating electric machine (MG) are, the negative torque which may make the running of the vehicle unstable according to them is generated. It can be appropriately determined that an electric machine (MG) has occurred.
  • the actual torque (Tm) of the rotating electric machine (MG) is a negative value smaller than the torque threshold (THt)
  • the rotating electric machine stop control for stopping the rotating electric machine (MG) is executed. Thereby, the driving force transmitted from the rotating electric machine (MG) to the wheels (W) can be reduced. Therefore, even when an unintended negative torque is generated in the rotating electric machine (MG), it is possible to prevent the traveling of the vehicle from becoming unstable.
  • the vehicle drive device (1) is connected to a DC power supply (BT) and to the rotating electric machine (MG), and is connected to the DC of the DC power supply (BT) and the rotating electric machine (MG). Further comprising an inverter device (INV) for converting power to and from a plurality of phases of AC,
  • the inverter device (INV) includes a plurality of upper-stage switching elements (SWa) connected to a positive electrode side of the DC power supply (BT) and a plurality of lower-stage switching elements connected to a negative electrode side of the DC power supply (BT). And an element (SWb).
  • Active short circuit control in which one of all of the plurality of upper-stage switching elements (SWa) and all of the plurality of lower-stage switching elements (SWb) is turned on and the other is turned off, Shutdown control for turning off all of the plurality of upper-stage switching elements (SWa) and the plurality of lower-stage switching elements (SWb); At least one of a rotating electrical machine zero torque control that controls the rotating electrical machine (MG) such that the actual torque (Tm) becomes zero.
  • MG rotating electrical machine
  • a torque is generated in a direction to decelerate the rotation of the rotating electric machine (MG), and in the rotating electric machine torque control, the actual torque (Tm) of the rotating electric machine (MG) approaches zero.
  • the rotating electrical machine stop control at least one of the active short circuit control, the shutdown control, and the rotating electrical machine zero torque control is executed. Therefore, the driving force transmitted from the rotating electric machine (MG) to the wheels (W) can be appropriately reduced. Therefore, even when an unintended negative torque is generated in the rotating electric machine (MG), it is possible to appropriately prevent the traveling of the vehicle from becoming unstable.
  • Machine (TM) is provided, When the actual torque (Tm) is a negative value smaller than the torque threshold (THt), the determination unit (16) releases the engagement device (CL1) in addition to the rotating electric machine stop control. At least one of the engagement / disengagement control for setting the state of the transmission (TM) and the neutral control for setting the state of the transmission (TM) to the neutral state where the driving force is not transmitted is executed.
  • the determination unit (16) controls the internal combustion engine (ENG) such that the internal combustion engine actual torque, which is the actual torque of the internal combustion engine (ENG), becomes zero.
  • the internal combustion engine zero torque control is performed.
  • the torque threshold (THt) is When the actual rotation speed (Nm) is positive, the actual rotation speed (Nm) decreases as the actual rotation speed (Nm) increases, When the actual rotation speed (Nm) is negative, it is preferable that the actual rotation speed (Nm) does not change according to the actual rotation speed (Nm).
  • the rotating electric machine (MG) When the actual rotating speed (Nm) of the rotating electric machine (MG) is positive, that is, when the rotating electric machine (MG) is rotating forward, the rotating electric machine (MG) reversely rotates as the actual rotating speed (Nm) decreases. It becomes easier to rotate, and as the actual rotation speed (Nm) increases, the amount of change in the rotation speed up to the reverse rotation increases, so that the rotating electric machine (MG) is less likely to reverse.
  • the torque threshold (THt) when the actual rotation speed (Nm) is positive, the torque threshold (THt) is reduced as the actual rotation speed (Nm) increases, and the actual rotation speed (Nm) is smaller than when the actual rotation speed (Nm) is smaller.
  • the torque threshold (THt) is set so that the value when the rotation speed (Nm) is large has a margin. Therefore, when the actual rotation speed (Nm) is positive, it is possible to appropriately determine the negative torque abnormality.
  • the actual rotation speed (Nm) of the rotating electric machine (MG) is negative, that is, when the rotating electric machine (MG) is rotating in reverse, the rotating speed of the rotating electric machine (MG) is unintentionally changed in the reverse direction. Accelerating is not preferable because it leads to accelerating the vehicle in the reverse direction.
  • the actual rotation speed (Nm) is negative, the negative torque of the rotating electric machine (MG) exceeds the specified torque threshold (THt) regardless of the magnitude of the actual rotation speed (Nm). In this case, it is determined that the state of the rotating electric machine (MG) is a negative torque abnormality. Therefore, even when the actual rotation speed (Nm) is negative, it is possible to appropriately determine the negative torque abnormality.
  • the torque threshold (THt) is When the target torque (Tmt) of the rotating electric machine (MG) is positive, it does not change according to the target torque (Tmt), When the target torque (Tmt) of the rotary electric machine (MG) is negative, it is preferable that the target torque (Tmt) decreases as the target torque (Tmt) decreases.
  • the target torque (Tmt) of the rotary electric machine (MG) When the target torque (Tmt) of the rotary electric machine (MG) is positive, the fact that the actual torque (Tm) becomes a negative value contrary to the target torque (Tmt) means, for example, to accelerate the vehicle. Despite this, it is not preferable because it leads to unintentional deceleration or backward movement of the vehicle.
  • the target torque (Tmt) when the target torque (Tmt) is positive, when the negative torque of the rotary electric machine (MG) exceeds the specified torque threshold (THt) regardless of the magnitude of the target torque (Tmt). It is determined that the state of the rotating electric machine (MG) is abnormal negative torque. Therefore, when the target torque (Tmt) is positive, it is possible to appropriately determine the negative torque abnormality.
  • the fact that the actual torque (Tm) increases in the negative direction with respect to the target torque (Tmt) means, for example, that the vehicle is decelerated or moved backward. However, it is not preferable because the deceleration is unintentionally increased or the vehicle is accelerated in the reverse direction.
  • the torque threshold (THt) decreases as the target torque (Tmt) decreases. Then, when the actual torque (Tm) becomes larger than the target torque (Tmt) in the negative direction by a certain amount or more, it is determined that the state of the rotating electrical machine (MG) is abnormal negative torque. Therefore, even when the target torque (Tmt) is negative, it is possible to appropriately determine the negative torque abnormality.
  • the determination unit (16) does not perform the state determination of the rotating electric machine (MG) when the actual rotation speed (Nm) is equal to or greater than a predetermined rotation speed threshold (THn).
  • the technology according to the present disclosure can be used for a control device that controls a vehicle drive device including a rotating electric machine as a control target.
  • Vehicle drive device 10 Control device 14: Actual rotation speed acquisition unit 15: Actual torque acquisition unit 16: Judgment unit 30: Command device ENG: Internal combustion engine MG: Rotating electric machine I: Input shaft (input member) O: Output shaft (output member) TM: Transmission CL1: First engagement device (engagement device) W: Wheel Nm: MG actual rotation speed (actual rotation speed) Tm: MG actual torque (actual torque) Tmt: MG target torque (target torque) THt: torque threshold

Abstract

制御装置(10)は、回転電機(MG)を備えた車両用駆動装置(1)を制御対象とし、回転電機(MG)の実際の回転速度である実回転速度(Nm)を取得する実回転速度取得部(14)と、回転電機(MG)の実際のトルクである実トルク(Tm)を取得する実トルク取得部(15)と、回転電機(MG)の状態判定を行う判定部(16)と、を備え、判定部(16)は、実トルク(Tm)が、実回転速度(Nm)と回転電機(MG)の目標トルク(Tmt)との関係に応じて設定されたトルク閾値(THt)よりも小さい負の値である場合に、回転電機(MG)の状態が負トルク異常であると判定する。

Description

車両用駆動装置の制御装置
 本発明は、回転電機を備えた車両用駆動装置を制御対象とする制御装置に関する。
 従来、上記のような構成の車両用駆動装置において、回転電機の異常を判定する技術が公知となっている。例えば、下記の特許文献1には、回転電機の回転中に当該回転電機に供給される相電流が許容値を超えた場合、過電流異常が発生したと判定し、回転電機の回転速度を低下させる制御を行う技術が開示されている。
 ところで、上記のような構成の車両用駆動装置において、何らかの故障が発生した場合には、回転電機が意図しない負トルクを出力する可能性も零ではない。このような意図しない負トルクが回転電機に発生した場合、正転していた回転電機の回転速度が急激に低下して回転電機が逆転したり、逆転していた回転電機の回転速度が更に負方向に大きくなったりする事態が生じる可能性があった。このような事態が生じた場合、車両の走行が不安定となるおそれがある。しかし、特許文献1の技術は、このような事態について考慮されていなかった。
特開2014-241690号公報(図13)
 そこで、車両の走行を不安定にする可能性のある負トルクが回転電機に発生したことを適切に判定できる車両用駆動装置の制御装置の実現が望まれる。
 上記に鑑みた、車両用駆動装置の制御装置の特徴構成は、
 回転電機を備えた車両用駆動装置を制御対象とする制御装置であって、
 前記回転電機の実際の回転速度である実回転速度を取得する実回転速度取得部と、
 前記回転電機の実際のトルクである実トルクを取得する実トルク取得部と、
 前記回転電機の状態判定を行う判定部と、を備え、
 前記判定部は、前記実トルクが、前記実回転速度と前記回転電機の目標トルクとの関係に応じて設定されたトルク閾値よりも小さい負の値である場合に、前記回転電機の状態が負トルク異常であると判定する点にある。
 この特徴構成によれば、回転電機の状態を判定するためのトルク閾値が、回転電機の実回転速度と目標トルクとの関係に応じて設定されている。そのため、回転電機の実回転速度及び目標トルクがどのような値であっても、それらに応じて適切に負トルク異常を判定することができる。したがって、車両の走行を不安定にする可能性のある負トルクが回転電機に発生したことを適切に判定できる。
 上記に鑑みた、車両用駆動装置の制御装置の特徴構成は、
 回転電機を備えた車両用駆動装置を制御対象とする制御装置であって、
 前記回転電機の実際の回転速度である実回転速度を取得する実回転速度取得部と、
 前記回転電機の実際のトルクである実トルクを取得する実トルク取得部と、
 前記回転電機の状態判定を行う判定部と、を備え、
 前記判定部は、前記実トルクが、前記実回転速度と前記回転電機の目標トルクとの関係に応じて設定されたトルク閾値よりも小さい負の値である場合に、前記回転電機を停止させる回転電機停止制御を実行する点にある。
 この特徴構成によれば、回転電機の状態を判定するためのトルク閾値が、回転電機の実回転速度と目標トルクとの関係に応じて設定されている。そのため、回転電機の実回転速度及び目標トルクがどのような値であっても、それらに応じて車両の走行を不安定にする可能性のある負トルクが回転電機に発生したことを適切に判定することができる。そして、回転電機の実トルクがトルク閾値よりも小さい負の値である場合には、回転電機を停止させる回転電機停止制御を実行する。これにより、回転電機から車輪に伝達される駆動力を減少させることができる。したがって、意図しない負トルクが回転電機に発生した場合であっても、車両の走行が不安定となることを回避できる。
実施形態に係る車両用駆動装置及び制御装置の構成を示す模式図 インバータ装置の回路を示す模式図 実施形態に係る制御装置の構成を示すブロック図 トルク閾値と回転電機の実回転速度及び実トルクとの関係を示す図 トルク閾値を表す3次元の直交座標系を示す図 判定部による回転電機の状態判定を示すフローチャート 判定部による回転電機の状態判定を示すタイムチャート
 以下では、実施形態に係る車両用駆動装置1の制御装置10について図面を参照して説明する。制御装置10は、車両用駆動装置1を制御対象とする装置である。制御装置10は、車両用駆動装置1と共に車両に搭載される。本実施形態では、内燃機関制御装置20も車両に搭載される。内燃機関制御装置20は、駆動力源としての内燃機関ENGを制御する装置である。
1.車両用駆動装置の構成
 まず、車両用駆動装置1の構成について説明する。図1に示すように、車両用駆動装置1は、回転電機MGを備えている。本実施形態では、車両用駆動装置1は、内燃機関ENGに駆動連結された入力軸Iと、車輪Wに駆動連結された出力軸Oと、内燃機関ENGと回転電機MGとを選択的に駆動連結する第1係合装置CL1と、入力軸Iの回転を変速して出力軸Oに伝達する変速機TMと、を更に備えている。そして、入力軸Iと出力軸Oとを結ぶ動力伝達経路に、内燃機関ENGの側から順に、第1係合装置CL1、回転電機MG、及び変速機TMが配置されている。なお、本実施形態では、入力軸Iが「入力部材」に相当し、出力軸Oが「出力部材」に相当する。
 ここで、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材(例えば、軸、歯車機構、ベルト、チェーン等)が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置(例えば、摩擦係合装置、噛み合い式係合装置等)が含まれていても良い。
 内燃機関ENGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。本実施形態では、内燃機関ENGのクランクシャフト等の内燃機関出力軸Eoは、第1係合装置CL1を介して入力軸Iと選択的に駆動連結される。内燃機関出力軸Eoには、伝達されるトルクの変動を減衰するダンパ(図示を省略)が設けられている。
 回転電機MGは、ステータと、当該ステータに対して回転自在に支持されたロータと、を備えている。回転電機MGのロータは、入力軸Iと一体回転するように、入力軸Iに駆動連結されている。つまり、本実施形態では、内燃機関ENG及び回転電機MGの双方が、入力軸Iに駆動連結される構成となっている。
 図1に示すように、回転電機MGは、直流交流変換を行うインバータ装置INVを介してバッテリBTに電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能、及び動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能を有している。つまり、回転電機MGは、インバータ装置INVを介してバッテリBTからの電力供給を受けて力行し、或いは、内燃機関ENGのトルクや車両の慣性力により発電した電力を、インバータ装置INVを介してバッテリBTに蓄電させる。なお、本実施形態では、バッテリBTが「直流電源」に相当する。
 図2に示すように、インバータ装置INVは、バッテリBTに接続されると共に回転電機MGに接続されて、バッテリBTの直流と回転電機の複数相(ここでは3相)の交流との間で電力を変換する。図示の例では、インバータ装置INVは、インバータ回路の直流側の電圧を平滑する直流リンクコンデンサCを有している。
 インバータ装置INVは、複数のスイッチング素子SWを有している。スイッチング素子SWには、IGBT(Insulated Gate Bipolar Transistor)、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)、SiC-MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)、SiC-SIT(SiC - Static Induction Transistor)、GaN-MOSFET(Gallium Nitride - MOSFET)等の高周波での動作が可能なパワー半導体素子を適用すると好適である。ここでは、スイッチング素子SWとしてIGBTを適用している。
 複数のスイッチング素子SWは、バッテリBTの正極側に接続された複数の上段側スイッチング素子SWaと、バッテリBTの負極側に接続された複数の下段側スイッチング素子SWbと、を含む。複数のスイッチング素子SWのそれぞれには、負極から正極へ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にフリーホイールダイオードFDが設けられている。複数のスイッチング素子SWは、後述の回転電機制御部12によってスイッチング制御される。
 図1に示すように、変速機TMは、変速段を形成する場合に係合状態とされる1つ以上の第2係合装置CL2を備えている。変速機TMは、第2係合装置CL2の係合の状態に応じた変速段を形成し、当該変速段に応じた変速比で入力軸Iの回転を変速して出力軸Oに伝達する。変速機TMから出力軸Oへ伝達されたトルクは、差動歯車装置DFを介して複数(本例では、2つ)の車軸AXに分配され、各車軸AXに駆動連結された車輪Wに伝達される。
 本実施形態では、第1係合装置CL1及び第2係合装置CL2のそれぞれは、油圧駆動式の摩擦係合装置である。摩擦係合装置は、当該摩擦係合装置に供給される油圧に基づいて、係合の状態が制御されるように構成されている。摩擦係合装置は、当該摩擦係合装置が有する一対の摩擦部材間の摩擦により、当該一対の摩擦部材間でトルクを伝達する。摩擦係合装置の一対の摩擦部材間に回転速度差(滑り)がある場合、動摩擦により回転速度の大きい方の部材から小さい方の部材に伝達トルク容量の大きさのトルク(スリップトルク)が伝達される。摩擦係合装置の一対の摩擦部材間に回転速度差(滑り)がない場合、摩擦係合装置は、伝達トルク容量の大きさを上限として、静摩擦により一対の摩擦部材間に作用するトルクを伝達する。
 ここで、伝達トルク容量とは、摩擦係合装置が摩擦により伝達することができる最大のトルクの大きさである。伝達トルク容量の大きさは、摩擦係合装置の係合圧に比例して変化する。係合圧とは、入力側の摩擦部材と出力側の摩擦部材とを相互に押し付け合う圧力である。係合圧は、供給される油圧の大きさに比例して変化する。つまり、伝達トルク容量の大きさは、摩擦係合装置に供給される油圧の大きさに比例して変化する。
 摩擦係合装置は、戻しばねを備えており、当該戻しばねの反力により摩擦部材が解放側に付勢されている。そして、摩擦係合装置の油圧シリンダに供給される油圧により生じる力が戻しばねの反力を上回ると、摩擦係合装置に伝達トルク容量が生じ始め、摩擦係合装置が解放状態から係合状態に変化する。この伝達トルク容量が生じ始めるときの油圧を、ストロークエンド圧と記す。摩擦係合装置は、供給される油圧がストロークエンド圧を上回った後、油圧の増加に比例して、その伝達トルク容量が増加するように構成されている。なお、摩擦係合装置は、戻しばねを備えず、油圧シリンダのピストンの両側にかかる油圧の差圧によって制御される構造であっても良い。
 ここで、「係合状態」とは、摩擦係合装置に伝達トルク容量が生じている状態であり、滑り係合状態と直結係合状態とを含む。「滑り係合状態」とは、摩擦係合装置の一対の摩擦部材間に回転速度差(滑り)がある係合状態である。そして、「直結係合状態」とは、摩擦係合装置の一対の摩擦部材間に回転速度差(滑り)がない係合状態である。また、「解放状態」とは、摩擦係合装置に伝達トルク容量が生じていない状態である。
2.油圧制御系の構成
 図1及び図3に示すように、車両用駆動装置1の油圧制御系は、車両の駆動力源(本実施形態では、内燃機関ENG及び回転電機MG)や専用のモータによって駆動される油圧ポンプから供給される作動油の油圧を所定圧に調整するための油圧制御装置PCを備えている。ここでは詳しい説明を省略するが、油圧制御装置PCは、油圧調整用のリニアソレノイド弁等の油圧制御弁からの信号圧に基づいて、1つ又は2つ以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、第1係合装置CL1及び第2係合装置CL2に供給される。
3.制御装置の構成
 次に、車両用駆動装置1の制御を行う制御装置10、及び内燃機関ENGの制御を行う内燃機関制御装置20の構成について説明する。
 制御装置10及び内燃機関制御装置20のそれぞれは、CPU等の演算処理装置を中核部材として備えると共に、当該演算処理装置からのデータの読み出し及びデータの書き込みが可能なRAM(ランダム・アクセス・メモリ)や、演算処理装置からのデータの読み出しが可能なROM(リード・オンリ・メモリ)等の記憶装置を有している。更に、制御装置10及び内燃機関制御装置20のそれぞれは、記憶装置に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方を有している。
 図1及び図3に示すように、制御装置10は、通信部11と、回転電機制御部12と、係合制御部13と、実回転速度取得部14と、実トルク取得部15と、判定部16と、を備えている。
 通信部11は、制御装置10及び内燃機関制御装置20の上位の制御装置である指令装置30と通信可能に構成されている。通信部11は、回転電機制御部12に対する指令、係合制御部13に対する指令等を、指令装置30から受け取る。また、通信部11は、回転電機制御部12及び係合制御部13、並びに内燃機関制御装置20とも通信可能に構成されている。なお、内燃機関制御装置20と指令装置30とが同一の装置で構成されていても良い。
 回転電機制御部12は、回転電機MGを制御する。回転電機制御部12は、回転電機MGに対して要求される目標トルクであるMG目標トルクTmtが通信部11を介して指令装置30から指令されている場合、回転電機MGがMG目標トルクTmtを出力するように制御する。また、回転電機制御部12は、回転電機MGに対して要求される目標回転速度が通信部11を介して指令装置30から指令されている場合、回転電機MGが当該目標回転速度となるように制御する。具体的には、回転電機制御部12は、インバータ装置INVにおける複数のスイッチング素子SWを制御することにより、回転電機MGの出力トルク及び回転速度を制御する。
 係合制御部13は、第1係合装置CL1の係合の状態を制御する。本実施形態では、係合制御部13は、第1係合装置CL1に供給される油圧が、指令装置30から指令された第1係合装置CL1の目標油圧(油圧指令)に一致するように、油圧制御装置PCに備えられた油圧制御弁に供給される信号値を制御する。
 また、係合制御部13は、変速機TMの第2係合装置CL2の係合の状態を制御して、変速機TMの状態を制御する。つまり、係合制御部13は、油圧制御装置PCを介して、第2係合装置CL2に供給される油圧を制御することにより、指令装置30から指令された目標変速段を変速機TMに形成させる。具体的には、係合制御部13は、油圧制御装置PCに第2係合装置CL2の目標油圧(油圧指令)を指令し、油圧制御装置PCは、指令された目標油圧(油圧指令)に応じた油圧を第2係合装置CL2に供給する。本実施形態では、係合制御部13は、油圧制御装置PCに備えられた油圧制御弁に供給される信号値を制御することにより、第2係合装置CL2に供給される油圧を制御する。
 実回転速度取得部14は、回転電機MGの実際の回転速度であるMG実回転速度Nmを取得する。前述のように、入力軸Iには回転電機MGのロータが一体的に駆動連結されているため、MG実回転速度Nmは入力軸Iの実際の回転速度に相当する。本実施形態では、実回転速度取得部14は、実回転速度センサSe1の出力信号に基づいて、入力軸Iの実際の回転速度(角速度)を算出する。実回転速度センサSe1は、入力軸Iの実際の回転速度、つまり、MG実回転速度Nmを検出するためのセンサである。実回転速度センサSe1としては、レゾルバ、磁気抵抗素子(MR素子)を用いたセンサ、ホール素子を用いたセンサ等を採用可能である。ここでは、実回転速度センサSe1は回転電機MGが備えるレゾルバである。よって、実回転速度取得部14は、実回転速度センサSe1の出力信号をデジタル信号に変換することによって回転電機MGのロータの位置を検出し、当該ロータの位置に基づいてMG実回転速度Nmを算出する。
 実トルク取得部15は、回転電機MGの実際のトルクであるMG実トルクTmを取得する。本実施形態では、実トルク取得部15は、電流センサSe2の出力信号をデジタル信号に変換することによって、回転電機MGの各相のステータコイルを流れる実電流を算出する。回転電機MGの各相のステータコイルを流れる実電流と、回転電機MGが出力するトルクとの間には一定の関係が成立する。よって、実トルク取得部15は、当該実電流と、実回転速度取得部14が算出した入力軸Iの角速度とに基づいて回転電機MGが出力するMG実トルクTmを算出する。
 判定部16は、実回転速度取得部14が取得したMG実回転速度Nm、実トルク取得部15が取得したMG実トルクTm等に基づいて、回転電機MGの状態判定を行う。判定部16の詳細な動作については後述する。
 内燃機関制御装置20は、内燃機関ENGの燃焼開始要求があった場合は、内燃機関ENGへの燃料供給及び点火を開始する等して、内燃機関ENGの燃焼を開始する制御を行う。また、内燃機関制御装置20は、通信部11を介して指令装置30から内燃機関ENGの燃焼停止指令があった場合には、内燃機関ENGへの燃料供給や点火等を停止して、内燃機関ENGを燃焼停止状態にする。更に、内燃機関制御装置20は、通信部11を介して指令装置30から指令された目標トルクを出力するように、或いは通信部11を介して指令装置30から指令された目標回転速度となるように、内燃機関ENGを制御する。
4.回転電機MGの状態判定
 続いて、判定部16による回転電機MGの状態判定について説明する。判定部16は、MG実トルクTmが、MG実回転速度NmとMG目標トルクTmtとの関係に応じて設定されたトルク閾値THtよりも小さい負の値である場合に、回転電機MGの状態が負トルク異常であると判定する。ここで、「回転電機MGの状態が負トルク異常である」とは、回転電機MGが、MG目標トルクTmtとは異なるトルクを出力している状態であって、車両の走行を不安定にする可能性のある負トルクを出力している状態を指す。
4-1.トルク閾値THt
 ここでは、トルク閾値THtについて説明する。トルク閾値THtは、MG実回転速度NmとMG目標トルクTmtとの関係に応じて設定される。図4に示すように、本実施形態では、トルク閾値THtは、MG実回転速度Nm及びMG目標トルクTmtに応じて、第1閾値THt1、第2閾値THt2、第3閾値THt3、及び第4閾値THt4のいずれかに設定される。
 MG実回転速度Nmが零より小さく、かつ、MG目標トルクTmtが零以上の場合には、トルク閾値THtは第1閾値THt1に設定される。そして、判定部16は、MG実トルクTmが第1閾値THt1よりも小さい負の値である場合に、回転電機MGの状態が負トルク異常であると判定する。
 MG実回転速度Nmが零以上、かつ、MG目標トルクTmtが零以上の場合には、トルク閾値THtは第2閾値THt2に設定される。そして、判定部16は、MG実トルクTmが第2閾値THt2よりも小さい負の値である場合に、回転電機MGの状態が負トルク異常であると判定する。なお、本実施形態では、判定部16は、MG実回転速度Nmが回転速度閾値THnよりも大きい場合には、回転電機MGの状態判定を行わない。これは、MG実回転速度Nmがある程度大きければ、意図しない負トルクが発生した場合であっても、回転電機MGが逆転する可能性は低いためである。
 MG実回転速度Nmが零よりも小さく、かつ、MG目標トルクTmtが零よりも小さい場合には、トルク閾値THtは第3閾値THt3に設定される。そして、判定部16は、MG実トルクTmが第3閾値THt3よりも小さい負の値である場合に、回転電機MGの状態が負トルク異常であると判定する。
 MG実回転速度Nmが零以上、かつ、MG目標トルクTmtが零よりも小さい場合には、トルク閾値THtは第4閾値THt4に設定される。そして、判定部16は、MG実トルクTmが第4閾値THt4よりも小さい負の値である場合に、回転電機MGの状態が負トルク異常であると判定する。
 図5に、これらの閾値THt1~THt4を表す3次元の直交座標系を示す。この座標系の3つの座標軸は、それぞれ、MG実回転速度Nm、MG目標トルクTmt、及びMG実トルクTmである。
 図5において、仮想平面S1が第1閾値THt1を示し、仮想平面S2が第2閾値THt2を示し、仮想平面S3が第3閾値THt3を示し、仮想平面S4が第4閾値THt4を示している。また、仮想平面S5が回転速度閾値THnを示している。なお、MG目標トルクTmtの正側の閾値の上限値及び負側の閾値の下限値は、それぞれ回転電機MGが出力可能なトルクの上限値及び下限値に対応し、MG実回転速度Nmの負側の閾値の下限値は、回転電機MGが動作可能な回転速度の下限値に対応している。
 第1閾値THt1は、MG実回転速度Nm及びMG目標トルクTmtに応じて変化しない一定の値に設定されている。MG実回転速度Nmが負であってMG目標トルクTmtが正の場合、つまり、回転電機MGが逆転しつつその回転速度を低下させる方向のトルクを出力している場合は、車両が後進しつつ減速している状況に該当する。このような状況において、意図せずに回転電機MGが負トルクを出力することは、意図せずに車両を後進方向に加速させることに繋がり好ましくない。そこで、MG実回転速度Nmが負であってMG目標トルクTmtが正の場合は、MG実回転速度Nm及びMG目標トルクTmtの大きさによらず、負の値に設定された一定の第1閾値THt1をMG実トルクTmが負方向に超えた場合に、回転電機MGの状態が負トルク異常であると判定する。ここでは、第1閾値THt1は、実トルク取得部15によって算出されるMG実トルクTmの誤差を考慮して、零よりも若干小さい負の値(例えば、-5N・m)に設定されている。つまり、第1閾値THt1は、MG実回転速度Nmが負の場合において、正常であれば正トルクであるはずのMG実トルクTmが負になったときに、比較的小さい負トルクであっても負トルク異常であると判定するように設定されている。
 第2閾値THt2は、MG目標トルクTmtに応じて変化しないが、MG実回転速度Nmが大きくなるに従って小さくなる値に設定されている。MG実回転速度Nmが正であってMG目標トルクTmtが正の場合、つまり、回転電機MGが正転しつつその回転速度を増加させる方向のトルクを出力している場合は、車両が前進しつつ加速している状況に該当する。このような状況においては、意図せずに回転電機MGが負トルクを出力した場合に、MG実回転速度Nmが小さくなるに従って回転電機MGが逆転し易くなり、MG実回転速度Nmが大きくなるに従って逆転までの回転速度の変化量が大きくなるため回転電機MGが逆転し難くなる。そこで、MG実回転速度Nmが正であってMG目標トルクTmtが正の場合は、MG目標トルクTmtの大きさによらず、MG実トルクTmが、MG実回転速度Nmが大きくなるに従って負方向に大きくなる負の値に設定された第2閾値THt2を負方向に超えた場合に、回転電機MGの状態が負トルク異常であると判定する。ここでは、第2閾値THt2は、以下の式で表される。なお、式中のaは、予め設定される負の値である。
 THt2=a・Nm+THt1(Nm>=0,a<0)
 つまり、第2閾値THt2は、MG実回転速度Nmが正の場合において、正常であれば正トルクであるはずのMG実トルクTmが負になった場合には、回転電機MGが逆転する可能性がある大きさの負トルクが出力されたことを条件に負トルク異常であると判定するように設定されている。
 第3閾値THt3は、MG実回転速度Nmに応じて変化しないが、MG目標トルクTmtが小さくなるに従って小さくなる値に設定されている。MG実回転速度Nmが負であってMG目標トルクTmtが負の場合、つまり、回転電機MGが逆転しつつその回転速度を増加させる方向のトルクを出力している場合は、車両が後進しつつ加速している状況に該当する。このような状況においては、意図せずに回転電機MGがMG目標トルクTmtよりも負方向に大きい負トルクを出力することは、車両を後進方向に必要以上に加速させることになり好ましくない。そこで、MG実回転速度Nmが負であってMG目標トルクTmtが負の場合は、MG実回転速度Nmの大きさによらず、MG実トルクTmが、MG目標トルクTmtが負方向に大きくなるに従って負方向に大きくなる負の値に設定された第3閾値THt3を負方向に超えた場合に、回転電機MGの状態が負トルク異常であると判定する。ここでは、第3閾値THt3は、以下の式で表される。
 THt3=Tmt+THt1(Tmt<0)
 上記のとおり、第1閾値THt1は一定の値に設定されている。つまり、第3閾値THt3は、MG実回転速度Nmが負の場合において、正常なMG目標トルクTmtに対して比較的小さい一定の値(ここでは第1閾値THt1と同じ値)よりも、MG実トルクTmが負方向に大きくなった場合には、負トルク異常であると判定するように設定されている。
 第4閾値THt4は、MG目標トルクTmtが小さくなるに従って小さくなると共に、MG実回転速度Nmが大きくなるに従って小さくなる値に設定されている。MG実回転速度Nmが正であってMG目標トルクTmtが負の場合、つまり、回転電機MGが正転しつつその回転速度を低下させる方向のトルクを出力している場合は、車両が前進しつつ減速している状況に該当する。このような状況においては、意図せずに回転電機MGがMG目標トルクTmtよりも負方向に大きい負トルクを出力することは、車両を必要以上に大きく減速させることになり好ましくない。そこで、MG実回転速度Nmが正であってMG目標トルクTmtが負の場合は、MG実トルクTmが、MG目標トルクTmtが負方向に大きくなるに従って負方向に大きくなると共に、MG実回転速度Nmが大きくなるに従って負方向に大きくなる負の値に設定された第4閾値THt4を負方向に超えた場合に、回転電機MGの状態が負トルク異常であると判定する。ここでは、第4閾値THt4は、以下の式で表される。
 THt4=Tmt+THt2
     =Tmt+a・Nm+THt1(Tmt<0,Nm>=0,a<0)
 つまり、第4閾値THt4は、MG実回転速度Nmが正の場合において、正常なMG目標トルクTmtに対して、MG実回転速度Nmが大きくなるに従って負方向に大きくなる規定値よりも、MG実トルクTmが負方向に大きくなった場合には、負トルク異常であると判定するように設定されている。これにより、正転している回転電機MGの減速が必要以上に大きくなり、或いは回転電機MGが逆転することを抑制できる。
4-2.フローチャート
 図6に、本実施形態に係る判定部16による回転電機MGの状態判定についてのフローチャートを示す。図6に示すように、まず、判定部16は、MG実回転速度Nmが零よりも小さいか否かを判定する(STEP1)。
 判定部16は、MG実回転速度Nmが零よりも小さいと判定した場合には、MG目標トルクTmtが零以上であるか否かを判定する(STEP10)。
 一方、判定部16は、MG実回転速度Nmが零以上であると判定した場合には、MG実回転速度Nmが回転速度閾値THn以下であるか否かを判定する(STEP2)。
 まず、STEP10以降の制御を説明し、STEP2以降の制御については後述する。
 判定部16は、MG目標トルクTmtが零以上であると判定した場合には、MG実トルクTmが第1閾値THt1よりも小さいか否かを判定する(STEP11)。
 一方、判定部16は、MG目標トルクTmtが零よりも小さいと判定した場合には、MG実トルクTmが第3閾値THt3よりも小さいか否かを判定する(STEP12)。
 判定部16は、STEP11においてMG実トルクTmが第1閾値THt1よりも小さいと判定した場合、又は、STEP12においてMG実トルクTmが第3閾値THt3よりも小さいと判定した場合には、回転電機MGの状態が負トルク異常であるとの仮の判定(以下、「負トルク異常仮判定」と記す)を行う(STEP13)。
 一方、判定部16は、STEP11においてMG実トルクTmが第1閾値THt1以上であると判定した場合、又は、STEP12においてMG実トルクTmが第3閾値THt3以上であると判定した場合には、回転電機MGの状態判定を終了する。
 続いて、判定部16は、最初に負トルク異常仮判定が行われてから時間Δtが経過したか否かを判定する(STEP14)。判定部16は、最初に負トルク異常仮判定が行われてから時間Δtが経過していないと判定した場合には、STEP1に戻って回転電機MGの状態判定を行う。一方、判定部16は、最初に負トルク異常仮判定が行われてから時間Δtが経過しても負トルク異常仮判定の状態が継続している場合には、回転電機MGの状態が負トルク異常であるとの最終的な判定(以下、「負トルク異常本判定」と記す)を行う(STEP15)。
 負トルク異常本判定を行った後、判定部16は、回転電機MGを停止させる回転電機停止制御を実行する(STEP16)。本実施形態では、回転電機停止制御において、アクティブショートサーキット制御、シャットダウン制御、及び回転電機零トルク制御の少なくとも一つを実行する。
 アクティブショートサーキット制御は、インバータ装置INVにおける複数の上段側スイッチング素子SWaの全て及び複数の下段側スイッチング素子SWbの全てのいずれか一方をオン状態とし、他方をオフ状態とする制御である。シャットダウン制御は、インバータ装置INVにおける複数の上段側スイッチング素子SWa及び複数の下段側スイッチング素子SWbの全てをオフ状態とする制御である。アクティブショートサーキット制御又はシャットダウン制御を実行すると、電流(還流電流等)の有するエネルギーがインバータ回路や回転電機MGのステータコイル等において熱等に変換されて消費され、それに伴って回転電機MGの回転を減速させる方向のトルクが発生する。
 回転電機零トルク制御は、MG実トルクTmが零となるようにインバータ装置INVを動作させる制御である。この制御を実行すると、回転電機MGの出力トルクが零となるため、回転電機MGは慣性によって回転するがトルクを出力しない状態となる。
 また、このような回転電機停止制御に加えて、第1係合装置CL1を解放状態にする係合解放制御、及び、変速機TMの状態を駆動力の伝達を行わないニュートラル状態にするニュートラル制御の少なくとも一方を実行しても良い。ニュートラル制御を実行することにより、回転電機MGから車輪Wへの動力伝達が遮断される。したがって、回転電機MGの状態が負トルク異常となった場合であっても、車両の走行が不安定となることを確実性高く回避できる。また、係合解放制御を実行した場合には、内燃機関ENGと回転電機MGとの間における動力伝達が遮断される。したがって、回転電機MGの状態が負トルク異常による影響が内燃機関ENGに及ぶことを回避できる。
 更に、係合解放制御を実行する場合には、内燃機関ENGの実際のトルクである内燃機関実トルクが零となるように内燃機関ENGを制御する内燃機関零トルク制御を実行しても良い。
 判定部16は、STEP2においてMG実回転速度Nmが回転速度閾値THn以下であると判定した場合には、MG目標トルクTmtが零以上であるか否かを判定する(STEP20)。
 一方、STEP2においてMG実回転速度Nmが回転速度閾値THnよりも大きいと判定した場合には、回転電機MGの状態判定を終了する。
 判定部16は、MG目標トルクTmtが零以上であると判定した場合には、MG実トルクTmが第2閾値THt2よりも小さいか否かを判定する(STEP21)。
 一方、判定部16は、MG目標トルクTmtが零よりも小さいと判定した場合には、MG実トルクTmが第4閾値THt4よりも小さいか否かを判定する(STEP22)。
 判定部16は、STEP21においてMG実トルクTmが第2閾値THt2よりも小さいと判定した場合、又は、STEP22においてMG実トルクTmが第4閾値THt4よりも小さいと判定した場合には、負トルク異常仮判定を行う(STEP23)。
 一方、判定部16は、STEP21においてMG実トルクTmが第2閾値THt2以上であると判定した場合、又は、STEP22においてMG実トルクTmが第4閾値THt4以上であると判定した場合には、回転電機MGの状態判定を終了する。
 続いて、判定部16は、最初に負トルク異常仮判定が行われてから時間Δtが経過したか否かを判定する(STEP24)。判定部16は、最初に負トルク異常仮判定が行われてから時間Δtが経過していないと判定した場合には、STEP1に戻って回転電機MGの状態判定を行う。一方、判定部16は、最初に負トルク異常仮判定が行われてから時間Δtが経過しても負トルク異常仮判定の状態が継続している場合には、負トルク異常本判定を行う(STEP25)。
 負トルク異常本判定を行った後、判定部16は、回転電機MGを停止させる回転電機停止制御を実行する(STEP26)。このSTEP26で実行する回転電機停止制御は、STEP16で実行する回転電機停止制御と同様であるため、詳細な説明は省略する。またこの場合にも、回転電機停止制御に加えて、係合解放制御及びニュートラル制御の少なくとも一方を実行しても良い。更に、係合解放制御を実行する場合には内燃機関零トルク制御を実行しても良い。
4-3.タイムチャート
 図7に、判定部16による回転電機MGの状態判定の一例についてのタイムチャートを示す。図7には、車両が前進走行中に車輪ブレーキが作動されて減速し、変速機TMがニュートラル状態となった後に、回転電機MGがMG目標トルクTmtとは異なる負トルクを出力する異常が生じた場合の例を示している。なお、図7における「4th」~「1st」は、それぞれ変速機TMが形成する第4変速段~第1変速段を示しており、第4変速段から第1変速段に向かうに従って変速比が大きくなっている。
 図7に示すように、時刻t1までは、変速機TMが第4変速段を形成した状態で車両が前進走行している。このとき、MG実回転速度Nmは一定の正の値に維持されており、車両の速度(以下、「車速」と記す)Vも一定の正の値に維持されている。また、MG目標トルクTmtは零に維持されており、これに伴ってMG実トルクTmも零に維持されている。
 このように、時刻t1までは、MG実回転速度Nmが零以上、かつ、MG目標トルクTmtが零以上であるため、トルク閾値THtは第2閾値THt2に設定される。なお、時刻t1までは、MG実回転速度Nmは一定に維持されているため、第2閾値THt2は変動しない。
 時刻t1以降、車両の車輪ブレーキが作動される。これによって車速Vが低下し、それに伴って、ダウンシフト制御が行われる。本例では、時刻t1から時刻t2までは第3変速段が形成され、時刻t2から時刻t3までは第2変速段が形成され、時刻t3から時刻t4までは第1変速段が形成される。そして、時刻t4以降は、変速機TMは変速段が形成されていないニュートラル状態となる。なお、車輪ブレーキは、時刻t1以降、継続して作動した状態となっている。
 時刻t1から時刻t4にかけて、MG実回転速度Nmは段階的に減少し、時刻t4において零となっている。更に、車速Vも、時刻t1から時刻t4にかけて次第に減少し、時刻t4において零となっている。また、MG目標トルクTmtは、時刻t1において負の値となり、時刻t1から時刻t4にかけて段階的に増加し、時刻t4において零となっている。これに伴い、MG実トルクTmも時刻t1において負の値となり、時刻t1から時刻t4にかけて段階的に増加し、時刻t4を過ぎてから零となっている。
 このように、時刻t1から時刻t4までは、MG実回転速度Nmが零以上、かつ、MG目標トルクTmtが零よりも小さいため、トルク閾値THtは第4閾値THt4に設定される。時刻t1から時刻t4にかけて、MG実回転速度Nmが減少し、MG目標トルクTmtが増加するため、第4閾値THt4は増加する。
 時刻t4から時刻t5までは、MG実回転速度Nm及びMG目標トルクTmtが零に維持されている。このように、時刻t4から時刻t5までは、MG実回転速度Nmが零以上、かつ、MG目標トルクTmtが零以上であるため、トルク閾値THtは第2閾値THt2に設定される。ただし、MG実回転速度Nmが零であるため、実際には、第2閾値THt2は第1閾値THt1に等しくなっている。
 時刻t5では、回転電機MGやインバータ装置INV等に何らかの故障が発生し、MG目標トルクTmtが零であるにも関わらず、MG実トルクTmが零から減少し始めている。これに伴い、MG実回転速度Nmも零から減少し始めている。このとき、MG実回転速度Nmが零より小さく、かつ、MG目標トルクTmtが零以上であるため、トルク閾値THtは第1閾値THt1に設定される。
 そして、MG実トルクTmが更に減少し、時刻t6を経過した時点で第1閾値THt1よりも小さくなっている。そのため、時刻t6を経過した時点で上述した負トルク異常仮判定が行われる。そして、この負トルク異常仮判定が最初に行われてから時間Δtが経過するまでに負トルク異常仮判定が解消されず、時間Δtが経過した時点(時刻t7)で、上述した負トルク異常本判定が行われる。
 そのため、時刻t7で、上述した回転電機停止制御が開始される。ここでは、回転電機停止制御としてアクティブショートサーキット制御が行われる。これに伴い、回転電機MGの回転を減速させる方向のトルクが発生するため、時刻t7からMG実トルクTmが増加し始める。そして、時刻t8を経過した時点でMG実トルクTmが正の値となる。そして、更に増加したMG実トルクTmは、時刻t9から減少し始め、時刻t10において零となる。また、MG実回転速度Nmは、時刻t8から増加し始め、時刻t10において零となる。これにより、回転電機MGの状態が負トルク異常となった場合であっても、車両の状態を安定させることができる。
 なお、本例では、回転電機MGの状態が負トルク異常となったと判定した時点で、既に変速機TMはニュートラル状態となっているため、ニュートラル制御は実行していない。一方、車両の走行中等であって変速機TMが変速段を形成している状態で、回転電機MGの状態が負トルク異常となった場合には、直ちにニュートラル制御を実行することが好ましい。また、この場合には、必要に応じて係合解放制御及び内燃機関零トルク制御を実行することが好ましい。
〔その他の実施形態〕
(1)上記の実施形態では、回転電機MGの状態が負トルク異常となったと判定した場合に、回転電機停止制御を実行する構成を例として説明した。しかし、そのような構成に限定されることなく、回転電機MGの状態が負トルク異常となったと判定した場合に、他の制御を実行する構成としても良い。例えば、回転電機停止制御を実行せずに、変速機TMをニュートラル状態とするニュートラル制御を実行する構成としても良い。
(2)上記の実施形態では、第1閾値THt1がMG実回転速度Nm及びMG目標トルクTmtに応じて変化しない一定の値に設定された構成を例として説明した。しかし、そのような構成に限定されることなく、第1閾値THt1がMG実回転速度Nm及びMG目標トルクTmtの少なくとも一方に応じて変化する値に設定されても良い。
(3)上記の実施形態では、第2閾値THt2が、MG目標トルクTmtに応じて変化しないが、MG実回転速度Nmが大きくなるに従って小さくなる値に設定された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第2閾値THt2がMG実回転速度Nm及びMG目標トルクTmtに応じて変化しない一定の値に設定されても良い。或いは、第2閾値THt2がMG実回転速度Nmに応じて変化しないが、MG目標トルクTmtに応じて変化する値に設定されても良い。また、上記の実施形態では、第2閾値THt2がMG実回転速度Nmに比例する構成を例として説明した。しかし、そのような構成に限定されることなく、第2閾値THt2がMG実回転速度Nmに比例せずに変化する値に設定された構成としても良い。
(4)上記の実施形態では、第3閾値THt3が、MG実回転速度Nmに応じて変化しないが、MG目標トルクTmtが小さくなるに従って小さくなる値に設定された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第3閾値THt3がMG実回転速度Nm及びMG目標トルクTmtに応じて変化しない一定の値に設定されても良い。或いは、第3閾値THt3がMG目標トルクTmtに応じて変化しないが、MG実回転速度Nmに応じて変化する値に設定されても良い。また、上記の実施形態では、第3閾値THt3がMG目標トルクTmtに比例する構成を例として説明した。しかし、そのような構成に限定されることなく、第3閾値THt3がMG目標トルクTmtに比例せずに変化する値に設定された構成としても良い。
(5)上記の実施形態では、第4閾値THt4が、MG目標トルクTmtが小さくなるに従って小さくなると共に、MG実回転速度Nmが大きくなるに従って小さくなる値に設定された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第4閾値THt4がMG目標トルクTmt及びMG実回転速度Nmに応じて変化しない一定の値に設定された構成としても良い。或いは、第4閾値THt4がMG目標トルクTmtに応じて変化しないがMG実回転速度Nmに応じて変化する値、又は、MG実回転速度Nmに応じて変化しないがMG目標トルクTmtに応じて変化する値に設定されても良い。また、上記の実施形態では、第4閾値THt4がMG目標トルクTmt及びMG実回転速度Nmに比例する構成を例として説明した。しかし、そのような構成に限定されることなく、第4閾値THt4がMG目標トルクTmt及びMG実回転速度Nmの少なくとも一方に比例せずに変化する値に設定された構成としても良い。
(6)上記の実施形態では、回転速度閾値THnを設定し、MG実回転速度Nmが回転速度閾値THn以上の場合には回転電機MGの状態判定を行わない構成を例として説明した。しかし、そのような構成に限定されることなく、回転速度閾値THnを設定しない構成としても良い。
(7)上記の実施形態では、最初に負トルク異常仮判定が行われてから時間Δtが経過した場合に負トルク異常本判定を行う構成を例として説明した。しかし、そのような構成に限定されることなく、負トルク異常仮判定を経ずに負トルク異常本判定を行う構成としても良い。
(8)上記の実施形態では、変速機TMが第2係合装置CL2の係合の状態に応じた変速段を有する有段の変速機である構成を例として説明した。しかし、そのような構成に限定されることなく、変速機TMが無段変速機であっても良い。この場合、前進、後進、及びニュートラルの状態の切り替えを行う係合装置が第2係合装置CL2に相当する。
(9)上記の実施形態では、車両用駆動装置1が内燃機関ENG及び回転電機MGを駆動力源とするハイブリッド自動車に搭載される構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、車両用駆動装置1が回転電機MGのみを駆動力源とする電気自動車に搭載される構成であっても良い。この構成において、動力伝達経路における回転電機MGと車輪Wとの間に、変速機TMが設けられていても良いし、当該変速機TMが設けられていなくてもよい。
(10)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
 以下、上記において説明した車両用駆動装置(1)の制御装置(10)の概要について説明する。
 車両用駆動装置(1)の制御装置(10)は、
 回転電機(MG)を備えた車両用駆動装置(1)を制御対象とする制御装置(10)であって、
 前記回転電機(MG)の実際の回転速度である実回転速度(Nm)を取得する実回転速度取得部(14)と、
 前記回転電機(MG)の実際のトルクである実トルク(Tm)を取得する実トルク取得部(15)と、
 前記回転電機(MG)の状態判定を行う判定部(16)と、を備え、
 前記判定部(16)は、前記実トルク(Tm)が、前記実回転速度(Nm)と前記回転電機(MG)の目標トルク(Tmt)との関係に応じて設定されたトルク閾値(THt)よりも小さい負の値である場合に、前記回転電機(MG)の状態が負トルク異常であると判定する。
 この構成によれば、回転電機(MG)の状態を判定するためのトルク閾値(THt)が、回転電機(MG)の実回転速度(Nm)と目標トルク(Tmt)との関係に応じて設定されている。そのため、回転電機(MG)の実回転速度(Nm)及び目標トルク(Tmt)がどのような値であっても、それらに応じて適切に負トルク異常を判定することができる。したがって、車両の走行を不安定にする可能性のある負トルクが回転電機(MG)に発生したことを適切に判定できる。
 ここで、前記判定部(16)は、前記回転電機(MG)の状態が前記負トルク異常であると判定した場合に、前記回転電機(MG)を停止させる回転電機停止制御を実行すると好適である。
 この構成によれば、回転電機(MG)の状態が負トルク異常であると判定した場合に、回転電機(MG)から車輪(W)に伝達される駆動力を減少させることができる。したがって、意図しない負トルクが回転電機(MG)に発生した場合であっても、車両の走行が不安定となることを回避できる。
 車両用駆動装置(1)の制御装置(10)は、
 回転電機(MG)を備えた車両用駆動装置(1)を制御対象とする制御装置(10)であって、
 前記回転電機(MG)の実際の回転速度である実回転速度(Nm)を取得する実回転速度取得部(14)と、
 前記回転電機(MG)の実際のトルクである実トルク(Tm)を取得する実トルク取得部(15)と、
 前記回転電機(MG)の状態判定を行う判定部(16)と、を備え、
 前記判定部(16)は、前記実トルク(Tm)が、前記実回転速度(Nm)と前記回転電機(MG)の目標トルク(Tmt)との関係に応じて設定されたトルク閾値(THt)よりも小さい負の値である場合に、前記回転電機(MG)を停止させる回転電機停止制御を実行する。
 この構成によれば、回転電機(MG)の状態を判定するためのトルク閾値(THt)が、回転電機(MG)の実回転速度(Nm)と目標トルク(Tmt)との関係に応じて設定されている。そのため、回転電機(MG)の実回転速度(Nm)及び目標トルク(Tmt)がどのような値であっても、それらに応じて車両の走行を不安定にする可能性のある負トルクが回転電機(MG)に発生したことを適切に判定することができる。そして、回転電機(MG)の実トルク(Tm)がトルク閾値(THt)よりも小さい負の値である場合には、回転電機(MG)を停止させる回転電機停止制御を実行する。これにより、回転電機(MG)から車輪(W)に伝達される駆動力を減少させることができる。したがって、意図しない負トルクが回転電機(MG)に発生した場合であっても、車両の走行が不安定となることを回避できる。
 ここで、前記車両用駆動装置(1)は、直流電源(BT)に接続されると共に前記回転電機(MG)に接続されて、前記直流電源(BT)の直流と前記回転電機(MG)の複数相の交流との間で電力を変換するインバータ装置(INV)を更に備え、
 前記インバータ装置(INV)は、前記直流電源(BT)の正極側に接続された複数の上段側スイッチング素子(SWa)と、前記直流電源(BT)の負極側に接続された複数の下段側スイッチング素子(SWb)と、を有し、
 前記回転電機停止制御では、
 複数の前記上段側スイッチング素子(SWa)の全て及び複数の前記下段側スイッチング素子(SWb)の全てのいずれか一方をオン状態とし、他方をオフ状態とするアクティブショートサーキット制御と、
 複数の前記上段側スイッチング素子(SWa)及び複数の前記下段側スイッチング素子(SWb)の全てをオフ状態とするシャットダウン制御と、
 前記実トルク(Tm)が零となるように前記回転電機(MG)を制御する回転電機零トルク制御と、の少なくとも一つを実行する。
 アクティブショートサーキット制御又はシャットダウン制御では回転電機(MG)の回転を減速させる方向のトルクが発生し、回転電機トルク制御では回転電機(MG)の実トルク(Tm)が零に近づく。本構成によれば、回転電機停止制御において、アクティブショートサーキット制御、シャットダウン制御、及び回転電機零トルク制御の少なくとも一つを実行する。そのため、回転電機(MG)から車輪(W)に伝達される駆動力を適切に減少させることができる。したがって、意図しない負トルクが回転電機(MG)に発生した場合であっても、車両の走行が不安定となることを適切に回避できる。
 また、内燃機関(ENG)に駆動連結された入力部材(I)と、車輪(W)に駆動連結された出力部材(O)と、係合装置(CL1)と、変速機(TM)と、を更に備え、
 前記入力部材(I)と前記出力部材(O)とを結ぶ動力伝達経路に、前記内燃機関(ENG)の側から順に、前記係合装置(CL1)、前記回転電機(MG)、及び前記変速機(TM)が設けられ、
 前記判定部(16)は、前記実トルク(Tm)が前記トルク閾値(THt)よりも小さい負の値である場合に、前記回転電機停止制御に加えて、前記係合装置(CL1)を解放状態にする係合解放制御、及び、前記変速機(TM)の状態を駆動力の伝達を行わないニュートラル状態にするニュートラル制御の少なくとも一方を実行する。
 この構成によれば、係合解放制御を実行した場合には、内燃機関(ENG)と回転電機(MG)との間における動力伝達が遮断される。したがって、回転電機(MG)に発生した負トルクによる影響が内燃機関(ENG)に及ぶことを回避できる。
 また、この構成によれば、ニュートラル制御を実行した場合には、回転電機(MG)から車輪(W)への動力伝達が遮断される。したがって、意図しない負トルクが回転電機(MG)に発生した場合であっても、車両の走行が不安定となることを確実性高く回避できる。
 また、前記判定部(16)は、前記係合解放制御を実行する場合、前記内燃機関(ENG)の実際のトルクである内燃機関実トルクが零となるように前記内燃機関(ENG)を制御する内燃機関零トルク制御を実行する。
 係合解放制御を実行した場合には、内燃機関(ENG)と回転電機(MG)との間における動力伝達が遮断されるため、内燃機関(ENG)の負荷が小さくなって内燃機関(ENG)の回転速度が大幅に上昇するおそれがある。本構成によれば、係合解放制御を実行する場合に、内燃機関実トルクが零となるように内燃機関(ENG)を制御する内燃機関零トルク制御を実行する。したがって、内燃機関(ENG)と回転電機(MG)との間における動力伝達が遮断された場合であっても、内燃機関(ENG)の回転速度が大幅に上昇することを回避できる。
 また、前記トルク閾値(THt)は、
 前記実回転速度(Nm)が正の場合は、前記実回転速度(Nm)が大きくなるに従って小さくなり、
 前記実回転速度(Nm)が負の場合は、前記実回転速度(Nm)に応じて変化しないと好適である。
 回転電機(MG)の実回転速度(Nm)が正の場合、つまり、回転電機(MG)が正転している場合は、実回転速度(Nm)が小さくなるに従って回転電機(MG)が逆転し易くなり、実回転速度(Nm)が大きくなるに従って逆転までの回転速度の変化量が大きくなるため回転電機(MG)が逆転し難くなる。本構成によれば、実回転速度(Nm)が正の場合は、実回転速度(Nm)が大きくなるに従ってトルク閾値(THt)を小さくして、実回転速度(Nm)が小さい場合よりも実回転速度(Nm)が大きい場合の方が余裕を持った値となるようにトルク閾値(THt)を設定している。したがって、実回転速度(Nm)が正の場合に、適切に負トルク異常を判定することができる。
 また、回転電機(MG)の実回転速度(Nm)が負の場合、つまり、回転電機(MG)が逆転している場合は、意図せずに回転電機(MG)の回転速度が逆転方向に加速することは、車両を後進方向に加速させることに繋がるため好ましくない。本構成によれば、実回転速度(Nm)が負の場合は、実回転速度(Nm)の大きさによらず、回転電機(MG)の負トルクが規定のトルク閾値(THt)を超えた場合に、回転電機(MG)の状態が負トルク異常であると判定する。したがって、実回転速度(Nm)が負の場合にも、適切に負トルク異常を判定することができる。
 また、前記トルク閾値(THt)は、
 前記回転電機(MG)の前記目標トルク(Tmt)が正の場合は、前記目標トルク(Tmt)に応じて変化せず、
 前記回転電機(MG)の前記目標トルク(Tmt)が負の場合は、前記目標トルク(Tmt)が小さくなるに従って小さくなると好適である。
 回転電機(MG)の目標トルク(Tmt)が正の場合は、目標トルク(Tmt)に反して実トルク(Tm)が負の値となることは、例えば、車両を加速させることを意図しているにも関わらず、意図せず車両を減速或いは後進させることに繋がるため好ましくない。本構成によれば、目標トルク(Tmt)が正の場合は、目標トルク(Tmt)の大きさによらず、回転電機(MG)の負トルクが規定のトルク閾値(THt)を超えた場合に、回転電機(MG)の状態が負トルク異常であると判定する。したがって、目標トルク(Tmt)が正の場合に、適切に負トルク異常を判定することができる。
 また、回転電機(MG)の目標トルク(Tmt)が負の場合は、目標トルク(Tmt)に対して実トルク(Tm)が負方向に大きくなることは、例えば、車両を減速又は後進させることを意図しているにも関わらず、意図せずにその減速を大きくし或いは車両を後進方向に加速させることに繋がるため好ましくない。本構成によれば、目標トルク(Tmt)が負の場合は、目標トルク(Tmt)が小さくなるに従ってトルク閾値(THt)が小さくなっている。そして、目標トルク(Tmt)に対して実トルク(Tm)が一定以上負方向に大きくなった場合に、回転電機(MG)の状態が負トルク異常であると判定する。したがって、目標トルク(Tmt)が負の場合にも、適切に負トルク異常を判定することができる。
 また、前記判定部(16)は、前記実回転速度(Nm)が規定の回転速度閾値(THn)以上の場合には、前記回転電機(MG)の状態判定を行わないと好適である。
 回転電機(MG)の実回転速度(Nm)がある程度大きければ、意図しない負トルクが発生した場合であっても、回転電機(MG)が逆転する可能性は低い。本構成によれば、実回転速度(Nm)が回転速度閾値(THn)以上の場合には、回転電機(MG)の状態判定を行わない。これにより、回転電機(MG)が逆転する可能性が低い場合にまで回転電機(MG)の状態判定を行うことがないため、判定部(16)の演算負荷を軽減することができる。
 本開示に係る技術は、回転電機を備えた車両用駆動装置を制御対象とする制御装置に利用することができる。
1   :車両用駆動装置
10  :制御装置
14  :実回転速度取得部
15  :実トルク取得部
16  :判定部
30  :指令装置
ENG :内燃機関
MG  :回転電機
I   :入力軸(入力部材)
O   :出力軸(出力部材)
TM  :変速機
CL1 :第1係合装置(係合装置)
W   :車輪
Nm  :MG実回転速度(実回転速度)
Tm  :MG実トルク(実トルク)
Tmt :MG目標トルク(目標トルク)
THt :トルク閾値

Claims (9)

  1.  回転電機を備えた車両用駆動装置を制御対象とする制御装置であって、
     前記回転電機の実際の回転速度である実回転速度を取得する実回転速度取得部と、
     前記回転電機の実際のトルクである実トルクを取得する実トルク取得部と、
     前記回転電機の状態判定を行う判定部と、を備え、
     前記判定部は、前記実トルクが、前記実回転速度と前記回転電機の目標トルクとの関係に応じて設定されたトルク閾値よりも小さい負の値である場合に、前記回転電機の状態が負トルク異常であると判定する、車両用駆動装置の制御装置。
  2.  前記判定部は、前記回転電機の状態が前記負トルク異常であると判定した場合に、前記回転電機を停止させる回転電機停止制御を実行する、請求項1に記載の車両用駆動装置の制御装置。
  3.  回転電機を備えた車両用駆動装置を制御対象とする制御装置であって、
     前記回転電機の実際の回転速度である実回転速度を取得する実回転速度取得部と、
     前記回転電機の実際のトルクである実トルクを取得する実トルク取得部と、
     前記回転電機の状態判定を行う判定部と、を備え、
     前記判定部は、前記実トルクが、前記実回転速度と前記回転電機の目標トルクとの関係に応じて設定されたトルク閾値よりも小さい負の値である場合に、前記回転電機を停止させる回転電機停止制御を実行する、車両用駆動装置の制御装置。
  4.  前記車両用駆動装置は、直流電源に接続されると共に前記回転電機に接続されて、前記直流電源の直流と前記回転電機の複数相の交流との間で電力を変換するインバータ装置を更に備え、
     前記インバータ装置は、前記直流電源の正極側に接続された複数の上段側スイッチング素子と、前記直流電源の負極側に接続された複数の下段側スイッチング素子と、を有し、
     前記回転電機停止制御では、
     複数の前記上段側スイッチング素子の全て及び複数の前記下段側スイッチング素子の全てのいずれか一方をオン状態とし、他方をオフ状態とするアクティブショートサーキット制御と、
     複数の前記上段側スイッチング素子及び複数の前記下段側スイッチング素子の全てをオフ状態とするシャットダウン制御と、
     前記実トルクが零となるように前記回転電機を制御する回転電機零トルク制御と、の少なくとも一つを実行する、請求項2又は3に記載の車両用駆動装置の制御装置。
  5.  内燃機関に駆動連結された入力部材と、車輪に駆動連結された出力部材と、係合装置と、変速機と、を更に備え、
     前記入力部材と前記出力部材とを結ぶ動力伝達経路に、前記内燃機関の側から順に、前記係合装置、前記回転電機、及び前記変速機が設けられ、
     前記判定部は、前記実トルクが前記トルク閾値よりも小さい負の値である場合に、前記回転電機停止制御に加えて、前記係合装置を解放状態にする係合解放制御、及び、前記変速機の状態を駆動力の伝達を行わないニュートラル状態にするニュートラル制御の少なくとも一方を実行する、請求項2から4のいずれか一項に記載の車両用駆動装置の制御装置。
  6.  前記判定部は、前記係合解放制御を実行する場合、前記内燃機関の実際のトルクである内燃機関実トルクが零となるように前記内燃機関を制御する内燃機関零トルク制御を実行する、請求項5に記載の車両用駆動装置の制御装置。
  7.  前記トルク閾値は、
     前記実回転速度が正の場合は、前記実回転速度が大きくなるに従って小さくなり、
     前記実回転速度が負の場合は、前記実回転速度に応じて変化しない、請求項1から6のいずれか一項に記載の車両用駆動装置の制御装置。
  8.  前記トルク閾値は、
     前記回転電機の前記目標トルクが正の場合は、前記目標トルクに応じて変化せず、
     前記回転電機の前記目標トルクが負の場合は、前記目標トルクが小さくなるに従って小さくなる、請求項1から7のいずれか一項に記載の車両用駆動装置の制御装置。
  9.  前記判定部は、前記実回転速度が規定の回転速度閾値以上の場合には、前記回転電機の状態判定を行わない、請求項1から8のいずれか一項に記載の車両用駆動装置の制御装置。
PCT/JP2019/032791 2018-09-27 2019-08-22 車両用駆動装置の制御装置 WO2020066387A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/266,218 US20210309209A1 (en) 2018-09-27 2019-08-22 Control device for vehicle drive device technical field
JP2020548169A JP7103426B2 (ja) 2018-09-27 2019-08-22 車両用駆動装置の制御装置
EP19867608.2A EP3819176A4 (en) 2018-09-27 2019-08-22 CONTROL DEVICE FOR VEHICLE DRIVING DEVICE
CN201980057376.7A CN112638731A (zh) 2018-09-27 2019-08-22 车辆用驱动装置的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-181842 2018-09-27
JP2018181842 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066387A1 true WO2020066387A1 (ja) 2020-04-02

Family

ID=69951843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032791 WO2020066387A1 (ja) 2018-09-27 2019-08-22 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US20210309209A1 (ja)
EP (1) EP3819176A4 (ja)
JP (1) JP7103426B2 (ja)
CN (1) CN112638731A (ja)
WO (1) WO2020066387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173080A (zh) * 2021-06-11 2021-07-27 浙江吉利新能源商用车集团有限公司 燃料电池车辆控制方法、控制系统及燃料电池车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107602A (ja) * 1995-10-09 1997-04-22 Hitachi Ltd 電気車の制御装置
JP2014093849A (ja) * 2012-11-02 2014-05-19 Ntn Corp 電気自動車の制御装置およびその電気自動車
JP2014241690A (ja) 2013-06-12 2014-12-25 トヨタ自動車株式会社 車両
JP2018020773A (ja) * 2011-02-01 2018-02-08 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited ハイブリッド電気自動車の制御器及び制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605312B2 (ja) * 2011-06-08 2014-10-15 株式会社デンソー 回転機の制御装置
JP5958094B2 (ja) * 2012-05-31 2016-07-27 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
JP5928438B2 (ja) 2013-11-05 2016-06-01 株式会社デンソー 交流電動機の制御装置
US10118667B2 (en) * 2015-05-28 2018-11-06 Shimano Inc. Bicycle motor control system
US10207699B2 (en) * 2016-10-19 2019-02-19 GM Global Technology Operations LLC Hybrid vehicle propulsion systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107602A (ja) * 1995-10-09 1997-04-22 Hitachi Ltd 電気車の制御装置
JP2018020773A (ja) * 2011-02-01 2018-02-08 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited ハイブリッド電気自動車の制御器及び制御方法
JP2014093849A (ja) * 2012-11-02 2014-05-19 Ntn Corp 電気自動車の制御装置およびその電気自動車
JP2014241690A (ja) 2013-06-12 2014-12-25 トヨタ自動車株式会社 車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173080A (zh) * 2021-06-11 2021-07-27 浙江吉利新能源商用车集团有限公司 燃料电池车辆控制方法、控制系统及燃料电池车辆
CN113173080B (zh) * 2021-06-11 2022-06-14 浙江吉利新能源商用车集团有限公司 燃料电池车辆控制方法、控制系统及燃料电池车辆

Also Published As

Publication number Publication date
EP3819176A1 (en) 2021-05-12
CN112638731A (zh) 2021-04-09
EP3819176A4 (en) 2021-09-15
JP7103426B2 (ja) 2022-07-20
US20210309209A1 (en) 2021-10-07
JPWO2020066387A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP5252171B2 (ja) 車両用制御装置
JP5403377B2 (ja) 制御装置
JP6256378B2 (ja) 車両用自動変速機の制御装置
JP5131112B2 (ja) ハイブリッド車両の制御装置
JP6158915B2 (ja) ハイブリッド車両の異常検知装置及び異常検知方法
JP5029275B2 (ja) 駆動力制御装置
WO2020066387A1 (ja) 車両用駆動装置の制御装置
JP6269268B2 (ja) 車両制御システム及び車両の制御方法
JP7092199B2 (ja) 車両用駆動装置の制御装置
WO2020136996A1 (ja) 制御装置
JP6350676B2 (ja) 車両用駆動装置の制御装置
JP4974087B2 (ja) ハイブリッド車両
JP5445867B2 (ja) 車両用駆動装置の制御装置
JPWO2019031277A1 (ja) 車両の制御装置及び制御方法
WO2014054534A1 (ja) ハイブリッド車両の制御装置
JP6341135B2 (ja) ハイブリッド車両の制御装置
JP6175943B2 (ja) 車両制御装置
JP2019031193A (ja) 車両の制御装置及び車両の制御方法
EP3620656B1 (en) Control device
JP7448085B2 (ja) 車両用駆動装置
JP2004204852A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE