WO2020059997A1 - 전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서 - Google Patents

전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서 Download PDF

Info

Publication number
WO2020059997A1
WO2020059997A1 PCT/KR2019/006000 KR2019006000W WO2020059997A1 WO 2020059997 A1 WO2020059997 A1 WO 2020059997A1 KR 2019006000 W KR2019006000 W KR 2019006000W WO 2020059997 A1 WO2020059997 A1 WO 2020059997A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
oxidation
Prior art date
Application number
PCT/KR2019/006000
Other languages
English (en)
French (fr)
Other versions
WO2020059997A8 (ko
Inventor
강영재
신현서
양보나
정인석
이진선
곽수민
양현희
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Priority to US17/276,760 priority Critical patent/US20210347926A1/en
Priority to EP19862947.9A priority patent/EP3854827B1/en
Priority to JP2021514521A priority patent/JP7083069B2/ja
Priority to AU2019341169A priority patent/AU2019341169B2/en
Publication of WO2020059997A1 publication Critical patent/WO2020059997A1/ko
Publication of WO2020059997A8 publication Critical patent/WO2020059997A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3344Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/338Polymers modified by chemical after-treatment with inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer

Definitions

  • the present invention relates to an oxidation-reduction polymer containing a transition metal complex and a method for manufacturing the transition metal complex, which can be manufactured in a simple step compared to the conventional one, and the immobilization rate of the transition metal complex is increased and introduction of a functional group or a linker is easy. will be.
  • biosensors using enzymes are chemical sensors that are used to selectively detect chemical substances contained in samples by using biological detection functions, such as functional substances of microorganisms or microorganisms that react sensitively with specific substances. It was developed for medical measurement applications such as sensors, and other fields of application in food engineering and environmental measurement are also actively researched.
  • the development trend of the blood glucose sensor is instead of 00, where oxygen is involved in the enzyme reaction with glucose in the blood, in order to block the change in the measurement according to the difference in the oxygen partial pressure (1) 0 2 ) that varies depending on the blood (intravenous blood, capillary blood, etc.) Oxygen is excluded from the enzymatic reaction It is being switched to use, and in the case of electron transport media, the stability due to humidity is sensitive. A quinone derivative with excellent stability according to humidity
  • organometallic compounds such as osmium complexes.
  • the biosensor using this electron transport medium Due to its high redox stability, the biosensor using this electron transport medium is easy to manufacture and store, and has a merit of high stability due to a small change in background current even after long-term storage, but it is commercially useful because it does not match reactivity with FAD-GDH.
  • the disadvantage is that it is difficult to manufacture with a sensor.
  • the continuous glucose monitoring (CGM) system is used to continuously monitor blood sugar to manage diseases such as diabetes.
  • CGM continuous glucose monitoring
  • Existing enzyme sensors that collect blood from the fingertips suffer considerable pain due to needles during blood collection. Because it limits the frequency of measurement
  • N-hydroxysuccinimide N-hydroxysuccinimide
  • NHS active ester
  • the present invention has been devised to solve the above problems, and the object of the present invention is that it can be prepared in a simple step compared to the existing, the immobilization rate of the transition metal complex is increased and the introduction of functional groups or linkers is easy. , To provide an oxidation-reduction polymer containing a transition metal complex and a method for manufacturing the same. Another object of the present invention is to provide a electrochemical biosensor comprising an oxidation-reduction polymer comprising a transition metal complex.
  • the present invention is a simple synthesis and improved transition metal complex using a click reaction such as a cycloaddition reaction using a copper catalyst and azide-alkyne cycle using heat and a thiol-ene reaction using light. It provides an oxidation-reduction polymer and an electrochemical biosensor, such as a blood sugar sensor, comprising a transition metal complex that exhibits an immobilization rate of and is easy to introduce additional functional groups or linkers.
  • the oxidation-reduction polymer comprising the transition metal complex according to the present invention is polyvinylpyridine (1 > 0 ⁇ (11> 3 ⁇ 4) 11 ⁇ : or polyvinylimidazole (1) 017 (11> 3 ⁇ 41111 ( ⁇ 2: 01 ⁇ :) Same polymer backbone) and ⁇ Transition metal complexes including transition metals such as osmium, ruthenium, iridium, rhodium, iron, and cobalt, and ligands thereof, and linker structures linking the polymer backbone and transition metal complexes It includes, and specifically has the following formula 1 to 4 structure: 2020/059997 1 »(: 1/10 ⁇ 019/006000
  • M is 0, parent 11, Selected from the group consisting of
  • the III, parent 2 and ⁇ 1 are each independently substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted alcohol group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl halogen having 1 to 20 carbon atoms.
  • a substituted or unsubstituted thiol group having 1 to 20 carbon atoms a substituted or unsubstituted alkyl azide group having 3 to 20 carbon atoms, a substituted or unsubstituted aryl azide group having 7 to 30 carbon atoms, substituted or unsubstituted
  • An alkenyl group having 2 to 40 carbon atoms a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a cyano group, a halogen group, deuterium, and hydrogen;
  • the 113 to 1120 are each independently substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 50 carbon atoms, substituted or unsubstituted Heteroaryl group having 3 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alcohol group having 1 to 20 carbon atoms, substituted or unsubstituted alkylhalogen group having 1 to 20 carbon atoms , Substituted or unsubstituted thiol having 1 to 20 carbon atoms, substituted or unsubstituted 3 to 20 carbon atoms
  • the show line is a primary and secondary amine group, ammonium group, halogen group, epoxy group, 2020/059997 1 »(: 1 ⁇ 1 ⁇ 2019/006000
  • Azide groups acrylate groups, alkenyl groups, alkynyl groups, thiol groups, isocyanates, alcohol groups, and silane groups;
  • X is a counter ion
  • A is an integer from 1 to 15;
  • B is an integer from 1 to 15;
  • C is an integer from 1 to 15;
  • M is an integer from 10 to 600;
  • N is an integer from 10 to 600;
  • the o is an integer from 0 to 600.
  • Oxidation-reduction polymers comprising the transition metal complex provided in the present invention have a unique linker structure, so that the synthesis step is reduced compared to the existing one, and thus can be prepared in a simple step, and the immobilization rate of the transition metal complex is increased. It has the advantage of being easy to introduce functional groups or linkers.
  • the oxidation-reduction polymer comprising the transition metal complex provided in the present invention has three kinds of bidentate ligands. Therefore, such an electrochemical biosensor comprising an oxidation-reduction polymer, preferably a continuous blood glucose monitoring sensor, is economical in manufacturing, and has a merit of significantly reducing toxicity and side effects due to transition metals and high yield in manufacturing.
  • An example of the present invention is an electrochemical biosensor produced by applying an enzyme capable of oxidizing and reducing a liquid biosample to an oxidation-reduction polymer having the formulas 1 to 4 on a substrate having at least two electrodes, followed by drying. It is about.
  • the electrode include a working electrode and a counter electrode.
  • an enzyme and a transition metal polymer may be applied to or placed close to the working electrode.
  • biosensors for measuring glucose as an applicable example of an electrochemical biosensor, but by different types of enzymes included in the reagent composition of the present invention, cholesterol, lactate, creatinine, hydrogen peroxide, It can be applied to biosensors for the quantitation of various substances such as alcohol, amino acids and glutamate. 2020/059997 9 1 »(: 1 ⁇ 1 ⁇ 2019/006000
  • the counterion of the above is an anion, for example, halide, sulfate, phosphate, which can be selected from the group consisting of people (: 1, and I) , Nuclear tetrafluorophosphate, tetrafluoroborate, or cation (preferably a monovalent cation), for example, one selected from lithium, sodium, potassium, tetraalkylammonium and ammonium. More preferably, X may be chloride. Preferably, it may be an integer from 2 to 10.
  • it may be an integer from 2 to 10.
  • the 0 may be an integer from 2 to 10.
  • the III may be an integer of 15 to 550.
  • the II may be an integer of 15 to 550.
  • the 0 may be an integer from 0 to 300.
  • the oxidation according to the present invention is to reduce the polymer medium be one having a structure represented by the following formula 8 or 9 are not limited thereto.
  • the transition metal complex in the redox polymer having a structure selected from Formulas 1 to 4 according to the present invention is specifically an osmium complex, for example 2020/059997 1 1 1 »(: 1/10 ⁇ 019/006000
  • it may include a trivalent osmium complex and a divalent osmium complex, preferably an oxidized compound (trivalent Os compound).
  • the oxidizing agent used in the oxidation treatment of the present invention is not particularly limited, and specific examples
  • the transition metal complex according to the present invention may be in a salt form having suitable counter ions and ions, and the salt compound is more preferable because it has high solubility in water or other aqueous solutions or organic solvents.
  • the salt compounds when composed of small counter anions such as F, Cr, and Br, they tend to dissolve well in water or various aqueous solutions, and I, nuclear counters such as fluorophosphates (PF 6 0 and tetrafluoroborate (BF 4 )) Groups of negative ions tend to dissolve well in organic solvents, so the counter anions are halides, which can be selected from the group consisting of F, C1, Br and I.
  • the oxidation-reduction polymer according to the present invention can be synthesized by reacting a polymer skeleton and a transition metal complex by a click reaction.
  • the compound according to Formula 1 among the oxidation-reduction polymers according to the present invention is an azide-alkyne whisgen cyclone as follows.
  • the compound of Formula 2 is the following thiol-ene reaction (! 3 ⁇ 4 0 1- It can be prepared by, it can be represented according to Scheme 2, but is not limited thereto.
  • polyvinylpyridine or polyvinylimidazole may be functionalized to be a polyvinylpyridine or polyvinylimidazole precursor.
  • the functionalized polyvinylpyridine or polyvinylimidazole precursor may have a structure of Formula 10 or Formula 11, respectively. 2020/059997 1 »(: 1/10 ⁇ 019/006000
  • 3 ⁇ 4 are each independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alcohol group having 1 to 20 carbon atoms, a substituted or unsubstituted alkylhalogen group having 1 to 20 carbon atoms.
  • the functionalized polyvinylpyridine or polyvinylimidazole precursor can be synthesized, for example, as shown in Scheme 3 below.
  • the transition metal complex can be functionalized.
  • the present invention relates to a method for preparing an oxidation-reduction polymer of Formula 1 or 2 comprising the following steps:
  • the specific aspect of each step is as described above.
  • the transition metal complex of the oxidation-reduction polymer according to the present invention not only enables accurate, reproducible, rapid and continuous analysis of the target substance, but also can be produced in a simple and economical high yield, and the transition metal leak It has the advantage that the toxicity or side effects that can occur are significantly lower.
  • the oxidation-reduction polymer according to the present invention is applied to a working electrode or
  • a further aspect of the present invention relates to a composition for an electrochemical biosensor comprising an enzyme capable of redoxing a liquid biosample and the oxidation-reduction polymer.
  • Oxidation-reductase refers to an enzyme that catalyzes a redox reaction in a living body. In the present invention, it refers to an enzyme that is reduced by reacting with a target substance to be measured, such as a biosensor. The reduced enzyme reacts with the electron transport medium and quantifies the target substance by measuring signals such as current change.
  • Redox enzymes that can be used in the present invention include various dehydrogenases ((1 7 (11'0 ⁇ 61 86), oxidase (0 nin (8 ⁇ , esterification) It may be one or more selected from the group consisting of, and, depending on the redox or detection target substance, belongs to the enzyme group 2020/059997 1 »(: 1 ⁇ 1 ⁇ 2019/006000
  • an enzyme using the target substance as a substrate can be selected and used.
  • the redox enzymes include glucose dehydrogenase, glutamate dehydrogenase, and glutamate dehydrogenase.
  • Glucose oxidase, cholesterol oxidase, cholesterol esterase, lactate oxidase, ascorbic acid oxidase, alcohol oxidase ), Alcohol dehydrogenase (alcohol dehydrogenase), bilirubin oxidase (bilirubin oxidase) may be at least one selected from the group consisting of.
  • the oxidoreductase may include a cofactor that serves to store hydrogen taken from the oxidoreductase from the target substance (eg, target substance) to be measured, for example, flavin adenine dinucleo It may be one or more selected from the group consisting of tart (flavin adenine dinucleotide, FAD), nicotinamide adenine dinucleotide (NAD), pyrroloquinoline quinone (PQQ), and the like.
  • a cofactor that serves to store hydrogen taken from the oxidoreductase from the target substance (eg, target substance) to be measured, for example, flavin adenine dinucleo It may be one or more selected from the group consisting of tart (flavin adenine dinucleotide, FAD), nicotinamide adenine dinucleotide (NAD), pyrroloquinoline quinone (PQQ), and the like.
  • glucose dehydrogenase As a redox enzyme, glucose dehydrogenase (GDH) can be used, and the glucose dehydrogenase is flavin adenine dinucleotide-glucose dehydrogenase (FAD-GDH) containing FAD as a cofactor. ), And / or nicotinamide adenine dinucleotide-glucose dehydrogenase containing FAD-GDH as a cofactor.
  • GDH glucose dehydrogenase
  • FAD-GDH flavin adenine dinucleotide-glucose dehydrogenase
  • FAD-GDH flavin adenine dinucleotide-glucose dehydrogenase
  • the usable oxidoreductases are FAD-GDH (eg, EC 1.1.99.10, etc.), NAD-GDH (eg, EC 1.1.1.47, etc.), PQQ-GDH (eg, EC1.1.5.2, etc.) , Glutamic acid dehydrogenase (eg, EC 1.4.1.2, etc.), glucose oxidase (eg, EC 1.1.3.4, etc.), cholesterol oxidase (eg, EC 1.1.3.6, etc.),
  • Cholesterol esterase e.g. EC 3.1.1.13, etc.
  • lactate oxidase e.g. EC 3.1.1.13, etc.
  • bilirubin oxidase eg, EC 1.3.3.5, etc.
  • composition according to the present invention may contain 20 to 700 parts by weight of an oxidation-reduction polymer, for example, 60 to 700 parts by weight or 30 to 340 parts by weight based on 100 parts by weight of an oxidoreductase.
  • the content of the oxidation-reduction polymer is
  • composition according to the present invention may further include a crosslinking agent.
  • the composition according to the present invention is a surfactant, a water-soluble polymer, a quaternary ammonium salt, a fatty acid, a thickener, etc.
  • the surfactant may serve to cause the composition to spread evenly over the electrode and dispense at a uniform thickness.
  • the surfactant is selected from the group consisting of Triton X-100, sodium dodecyl sulfate, perfluorooctane sulfonate, sodium stearate, etc. More than one species can be used.
  • the reagent composition according to the present invention when the reagent is dispensed so that the reagent spreads evenly on the electrode to properly perform the role of dispensing the reagent to a uniform thickness, the surfactant is based on 100 parts by weight of the redox enzyme 3 To 25 parts by weight, for example, 10 to 25 parts by weight.
  • a redox enzyme having an activity of 700 U / mg it may contain 10 to 25 parts by weight of a surfactant based on 100 parts by weight of the redox enzyme, and when the activity of the redox enzyme is higher than this, the content of the surfactant You can adjust it lower than this.
  • the water-soluble polymer may serve to help stabilize and disperse the enzyme as a polymer support for the reagent composition.
  • the water-soluble polymer includes polyvinyl pyrrolidone (PVP),
  • Reagent composition according to the present invention in order to neutralize and properly play a role of helping the stabilization and dispersion (dispersing) of oxidoreductase, 10 to 70 parts by weight of the water-soluble polymer based on 100 parts by weight of redox enzyme, For example, it may contain 30 to 70 parts by weight.
  • a redox enzyme having an activity of 700 U / mg it may contain 30 to 70 parts by weight of the water-soluble polymer based on 100 parts by weight of the redox enzyme, and when the activity of the redox enzyme is higher than this, the water-soluble polymer content Can be adjusted lower than this.
  • the water-soluble polymer stabilizes and disperses the support and the enzyme
  • the weight average molecular weight may be about 2,500 to 3,000,000, for example, about 5,000 to 1,000,000 in order to effectively perform dynamics that help (dispersing).
  • the thickener serves to firmly attach the reagent to the electrode.
  • the thickener at least one selected from the group consisting of natrosol, diethylaminoethyl-textran hydrochloride, and the like can be used.
  • the electrochemical sensor according to the present invention in order to ensure that the redox polymer according to the present invention is firmly attached to the electrode, 10 to 90 parts by weight based on 100 parts by weight of the redox enzyme, such as 30 to 90 parts by weight It can be contained in an amount of wealth.
  • the activity is 700 U / mg
  • an oxidoreductase When using an oxidoreductase, it may contain 30 to 90 parts by weight of a thickener based on 100 parts by weight of the oxidoreductase, and when the activity of the oxidoreductase is higher than this, the content of the thickener can be adjusted lower.
  • the present invention provides an electrochemical biosensor comprising the redox polymer.
  • the type of the electrochemical biosensor is not limited, but may preferably be a continuous blood glucose monitoring sensor.
  • it may include an electrode, an insulator, a substrate, a sensing layer including the oxidation-reduction polymer and an oxidoreductase, a diffusion layer, a protection layer, and the like.
  • an electrode two types of electrodes such as a working electrode and a counter electrode may be included, and three types of electrodes such as a working electrode, a counter electrode and a reference electrode may be included.
  • the biosensor on a substrate having at least two, preferably two or three electrodes, is liquid with an oxidation-reduction polymer having the formula (1) or (2) above.
  • an electrochemical biosensor produced by applying and drying a reagent composition containing an enzyme capable of redoxing a biological sample.
  • a working electrode and a counter electrode are provided on opposite sides of a substrate, and a sensing film containing the oxidation-reduction polymer according to the present invention is stacked on the working electrode, and the working electrode and the counter electrode
  • a planar electrochemical biosensor is provided in which an insulator, a diffusion film and a protective film are sequentially stacked on both sides of the provided substrate.
  • the substrate is PET (polye ⁇ lylene tereph ⁇ lalate),
  • PC polycarbonate
  • Pl polyimide
  • the working electrode may be a carbon, gold, platinum, silver or silver / silver chloride electrode.
  • the counter electrode functions as a reference electrode
  • gold, platinum, silver or silver / silver chloride electrodes can be used as the counter electrode, and the three electrodes including the reference electrode can also be used.
  • a gold electrode, a platinum electrode, a silver electrode, or a silver / silver chloride electrode can be used as a reference electrode
  • a carbon electrode can be used as a counter electrode.
  • Nafion, cellulose acetate, and silicone rubber may be used as the diffusion film, and silicone rubber, polyurethane, and polyurethane-based copolymer may be used as the protective film, but is not limited thereto.
  • silver chloride or silver may be used because the counter electrode acts as a reference electrode.
  • silver or silver chloride is used as the reference electrode, and a carbon electrode can be used as the counter electrode.
  • the oxidation-reduction polymer according to the present invention is economical due to the small number of process steps during production, the immobilization rate of the transition metal complex is increased, and the introduction of functional groups or linkers is easy, so that the electrochemical biosensor applied thereto is simple, quick to detect and economical There is an advantage.
  • FIG. 1 is a view showing the structure of a biosensor according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the results of measuring a circulating voltage current curve using a compound of Formula 8 and a single 03 complex, which is an oxidation-reduction polymer for electron transport mediators according to the present invention.
  • the organic disease is concentrated under reduced pressure to remove the solvent, and ethyl acetate and nucleic acid are removed.
  • a 100 mL 3-neck round bottom flask was equipped with a reflux condenser, gas inlet and thermometer, and 2 g (13 mmol) of N, N'-methyl- 2,2'-biimidazole,
  • a working electrode, a reference electrode, and an opposite electrode were connected to the degassed solution, and electrical signal changes according to voltage changes were measured under argon.
  • EmStat P almS ens Co.

Abstract

본 발명은 특유의 구조를 가짐으로 인해 기존에 대비하여 간이한 단계로 제조가 가능하며, 전이금속 복합체의 고정화율이 증가되고 작용기 또는 링커의 도입이 용이한, 전이금속 복합체를 포함하는 산화-환원 중합체, 이의 제조방법 및 상기 산화-환원중합체를 포함하는 전기화학적 바이오센서에 관한 것이다.

Description

2020/059997 1 1»(:1^1{2019/006000
【발명의 설명】
【발명의 명칭】
전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서
【기술분야】
관련 출원(들)과의 상호 인용
본 출원은 2018년 9월 18일자 한국특허출원 제 10-2018-0111633호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 기존에 대비하여 간이한 단계로 제조가가능하며, 전이금속 복합체의 고정화율이 증가되고 작용기 또는 링커의 도입이 용이한, 전이금속 복합체를 포함하는 산화-환원 중합체 및 이의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
최근 의료 분야부터 환경 및 식품 분야까지 목표 분석물의 정량, 정성 분석을 위해 바이오센서의 개발에 대한 관심이 날로 증대되고 있다. 특히 효소를 이용한 바이오센서는 생물체의 기능 물질 또는 미생물 등 생물체가 특정 물질과 예민하게 반응하는 생물 감지 기능을 이용하여 시료에 함유되어 있는 화학 물질을 선택적으로 검줄 계즉하는 데 사용하는 화학 센서로 주로 혈당 센서와 같은 의료 계측 용도로 개발되었으며, 그 외 식품 공학이나 환경 계측 분야의 응용에서 역시 연구가 활발하게
이루어지고 있다.
당뇨 관리에 있어 혈당의 주기적인 측정은 대단히 중요하며, 이에 휴대용 계측기를 이용하여 손쉽게 혈당을 측정할 수 있도록 다양한 혈당 측정기가 제작되고 있다. 이러한 바이오센서의 작동원리는 광학적 방법 또는 전기화학적 방법에 기초하고 있고, 이러한 전기화학적 바이오센서는 종래의 광학적 방법에 의한 바이오센서와는 달리 산소에 의한 영향을 줄일 수 있으며, 시료가 혼탁하더라도 시료를 별도 전처리 없이 사용 가능하다는 장점을 갖는다. 따라서, 정확성과 정밀성을 갖춘 다양한 종류의 전기화학적 바이오센서가 널리 쓰이고 있다. 2020/059997 2 1»(:1^1{2019/006000
현재 상용화 된 전기화학적 혈당센서는 주로 효소 전극을 이용하는 것으로서,보다구체적으로는 전기적 신호를 변환할수 있는 전극 위에 글루코스산화효소를 화학적 또는 물리적 방법으로 고정시킨 구조를 가진다. 이러한 전기화학적 혈당센서는 혈액 등의 분석물 내의 글루코스가 효소에 의해 산화되어 발생하는 전자를 전극에 전달하여 생성되는 전류를 측정함으로써 분석물 내의 글루코스 농도를측정하는 원리에 의한 것이다. 효소 전극을 이용하는 바이오센서의 경우 효소의 활성 중심과의 거리가 너무 멀기 때문에 기질이 산화되어 발생 되는 전자를 직접적으로 전극에 전달하는 것이 용이하지 않은 문제가 발생한다. 따라서 이러한 전자 전달 반응을용이하게 수행하기 위하여 산화환원 매개체, 즉 전자전달매개체가 필수적으로 요구된다. 따라서, 혈당을측정하는 전기화학적 바이오센서의 특성을 가장크게 좌우하는 것은사용하는 효소의 종류와 전자 전달 매개체의 특성이다.
채혈 혈당 센서의 개발추이는 혈액 (정맥혈,모세혈 등)에 따라 달라지는산소 분압(1)02) 차이에 따른측정치 변화를 차단하기 위하여 혈액 내 글루코오스와의 효소 반응에서 산소가 참여하는 00 대신에 효소반응에 산소가 배제된
Figure imgf000004_0001
사용으로 전환되고 있으며, 전자 전달 매개체의 경우 습도에 따른 안정성이 민감한
Figure imgf000004_0002
습도에 따른 안정성이 우수한 퀴논 유도체
Figure imgf000004_0003
같은유기화합물과
Figure imgf000004_0004
오스뮴 착물과 같은 유기금속 화합물로 대체되고 있다.
가장보편적으로사용되는 전자 전달 매개체로는
포타슘페리시아나이드 [K3Fe(CN)6]가 있는데, 가격이 저렴하고 반응성이 좋아서
Figure imgf000004_0005
이용한 센서 모두에 유용하다. 그러나, 이 전자 전달 매개체를 이용한 센서는 혈액에 존재하는
Figure imgf000004_0006
측정오차가 발생하고, 온도와습도에 의하여 변질되기 쉽기 때문에 제조와 보관에 각별히 주의해야 하며, 장시간보관후 바탕전류의 변화로 낮은 농도의 글루코오스를 정확하게 검출하는데 어려움이 있다.
핵사아민루테늄클로라이드 [1111어¾)6(:13]는 페리시아나이드에 비하여 2020/059997 3 1»(:1^1{2019/006000
산화환원 안정성이 높아 이 전자 전달 매개체를 사용한 바이오센서는 제조와 보관이 용이하고 장시간 보관에도 바탕전류의 변화가 작아 안정성이 높은 장점을 갖지만, FAD-GDH와 사용하기에는 반응성이 서로 맞지 않아 상업적으로 유용한 센서로 제작하기가 어렵다는 단점이 있다.
또한, 이와 같은 바이오센서를 사용함에 있어 소량의 시료로
정확하게 빠른 측정값을 얻는 것은 사용자의 편리를 극대화한다는 점에서 대단히 중요한 문제이다.
따라서, 이와 같은 종래 전자 전달 매개체의 단점 및 측정 시간의 단축을 달성할 수 있는 새로운 전자 전달 매개체의 개발은 여전히 요구되고 있는 실정이다. 한편, 혈당을 지속적으로 관찰하여 당뇨병 등의 질환을 관리하기 위하여 연속적인 혈당 모니터링 (continuous glucose monitoring; CGM) 시스템을 이용하는데 손가락 끝에서 혈액을 채취하는 기존 효소센서는 채혈시 바늘로 인하여 상당한 고통을 유발하기 때문에 측정 빈도를 제한하므로 이러한
CGM에 이용될 수 없다. 이러한 문제점을 해소하기 위해서 최근에는 신체에 부착할 수 있어 침습을 최소화하는 개선된 버전의 효소센서가 개발되어오고 있다. 이러한 연속적인 혈당 모니터링 효소 센서의 경우 인체 내에 센서의 일부가 들어가기 때문에, 상기와 같이 전이금속 등을 포함하는 전자 전달 매개체가 인체에 흡수되어 독성 및 부작용을 발생하지 않도록 폴리비닐피리딘이나 폴리비닐이미다졸 등과 같은 중합체 백본으로 고정하여, 전자 전달 매개체의 인체 내 유실로 인한 문제점을 방지하고자 한다.
이와 같이, 전자 전달 매개체가 연결된 산화-환원 고분자의 경우 종래에는 주로 고분자 주골격에 전이금속 복합체를 효율적으로 고정하기 위하여, 활성화 에스테르 (active ester)인 N-하이드로석신이미드 (N- hydroxysuccinimide: NHS)를 이용한 짝지음 반응을 주로 사용하였다. 그러나, 이러한 기존 합성 방법에 의하는 경우 최종적으로 제조되는 산화-환원 고분자로 합성되기까지 매우 복잡한 단계를 거쳐야 하고, NHS를 사용한 짝지음 반응 진행시에 가수분해로 인한 전이금속 복합체의 고정화 효율이 실제로 높지 않으며, 고분자의 주골격에 다른 종류의 링커나 기능기를 2020/059997 4 1»(:1^1{2019/006000
도입하기 어렵다는문제가존재하였는바, 이러한문제를 해결할 수 있는 바이오센서용산화-환원 고분자의 개발에 대한요구가증가하고 있다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 상기와 같은문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 기존에 대비하여 간이한 단계로 제조가가능하며, 전이금속 복합체의 고정화율이 증가되고 작용기 또는 링커의 도입이 용이한, 전이금속 복합체를 포함하는산화-환원 중합체 및 이의 제조방법을 제공하는 것이다. 본 발명의 또 다른목적은 전이금속 복합체를 포함하는산화-환원 중합체를포함하는 전가화학적 바이오센서를 제공하는 것이다.
【과제의 해결 수단】
상기와 같은 목적을 달성하기 위하여, 본 발명은 구리 촉매 및 열을 사용한 아자이드-알킨의 사이클로 부가반응과 빛을 이용한싸이올-엔 반응 등의 클릭 반응을 이용해 합성이 간단하고, 향상된 전이금속 복합체의 고정화율을 나타내며,추가적인 작용기 또는 링커의 도입이 용이한, 전이금속 복합체를 포함하는산화-환원 중합체 및 전기화학적 바이오센서, 예컨대 혈당 센서를 제공한다.
본 발명에 따른상기 전이금속 복합체를포함하는산화-환원 중합체는 폴리비닐피리딘 (1>0沙( 11>¾) 11句: 혹은 폴리비닐이미다졸 (1)017( 11>¾1111(切2:01句: ) 같은 중합체 골격여 )과 ·오스뮴, 루쎄늄, 이리듐, 로듐, 철,코발트 등과 같은 전이금속 및 이의 배위자를 포함하는 전이금속 복합체, 그리고 상기 중합체 골격과 전이금속 복합체를 연결하는 링커 구조를 포함하는 것으로, 구체적으로는 하기 화학식 1 내지 4의 구조를 가진다: 2020/059997 1»(:1/10公019/006000
5
[화학식 1]
Figure imgf000007_0001
2020/059997 1»(:1/10公019/006000
6
[화학식 4]
Figure imgf000008_0001
상기 식에서,
M 은 0 ,모 11,
Figure imgf000008_0002
이루어진 군으로부터 선택되는
1종의 전이금속이고;
상기 식에서, 1^1 및 는 서로 합쳐져 하기 화학식 5 내지 7로부터 선택되는 바이덴테이트 리간드를 형성하고;
Figure imgf000008_0003
합쳐져 하기 화학식 5 내지 7로부터 선택되는 바이덴테이트 리간드를 형성하고;
느5 및 I 는 각각 서로 합쳐져 하기 화학식 5 내지 7로부터 선택되는 바이덴테이트 리간드를 형성하고;
[화학식 5]
Figure imgf000008_0004
2020/059997 7 1»(:1^1{2019/006000
[화학식 7]
Figure imgf000009_0001
상기 III,모2 및 ^1 은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알코올기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬할로젠기, 치환 또는 비치환된 탄소수 1 내지 20의 싸이올기, 치환 또는 비치환된 탄소수 3 내지 20의 알킬아자이드기, 치환 또는 비치환된 탄소수 7 내지 30의 아릴아자이드기, 치환 또는 비치환된 탄소수 2 내지 40의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 40의 알키닐기, 시아노기, 할로겐기, 중수소 및 수소로 이루어진 군으로부터 선택되고,
상기 113 내지 1120은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 50의 아릴기, 치환 또는 비치환된 탄소수 3 내지 50의 헤테로아릴기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 알코올기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬할로젠기, 치환 또는 비치환된 탄소수 1 내지 20의 싸이올기, 치환 또는 비치환된 탄소수 3 내지 20의
알킬아자이드기, 치환 또는 비치환된 탄소수 7 내지 30의 아릴아자이드기, 치환또는 비치환된 탄소수 6 내지 30의 아릴옥시기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬아미노기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴아미노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬실릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴실릴기 , 치환 또는 비치환된 탄소수 1 내지 50의 아릴알킬아미노기 , 치환 또는 비치환된 탄소수 2 내지 40의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 40의 알키닐기 , 시아노기, 할로겐기, 중수소 및 수소로 이루어진 군으로부터 선택되고;
상기 쇼선는 1차 및 2차 아민기, 암모늄기, 할로젠기, 에폭시기, 2020/059997 1»(:1^1{2019/006000
8
아자이드기 , 아크릴레이트기, 알케닐기 , 알키닐기 , 싸이올기 , 이소시아네이트, 알코올기, 맟 실란기로 이루어진 군으로부터 선택되고;
상기 X는 반대 이온 (counter ion)이고;
상기 a는 1 내지 15 의 정수이고;
상기 b는 1 내지 15 의 정수이고;
상기 c는 1 내지 15 의 정수이고;
상기 m은 10 내지 600 의 정수이고;
상기 n은 10 내지 600 의 정수이고;
상기 o는 0 내지 600 의 정수이다. 본 발명에서 제공되는 전이금속 복합체를 포함하는 산화-환원 중합체는 특유의 링커 구조를 가지고 있어, 기존에 대비하여 합성 단계가 감소하여 간이한 단계로 제조가 가능하며, 전이금속 복합체의 고정화율이 증가되고 작용기 또는 링커의 도입이 용이하다는 장점을 갖는다. 또한 본 발명에서 제공되는 전이금속 복합체를 포함하는 산화-환원 중합체는 3종의 바이덴테이트 리간드를 갖는 것이 바람직하다. 따라서, 이러한 산화-환원 중합체를 포함하는 전기화학적 바이오센서, 바람직하게는 연속적인 혈당 모니터링 센서는 제조시 경제적이고, 전이금속으로 인한 독성 및 부작용이 현저히 감소하고, 제조시 수율이 높다는 장점이 있다.
본 발명의 예는 적어도 두개의 전극을 갖춘 기판에, 상기 화학식 1 내지 4를 갖는 산화-환원 중합체에 액체성 생체시료를 산화환원시킬 수 있는 효소를 도포한 후 건조하여 제작한 전기화학적 바이오센서에 관한 것이다. 상기 전극의 예로는 작동전극 (working electrode)과 대향전극 (counter
electrode)일 수 있으며, 예컨대 효소와 전이금속 중합체는 작동전극에 도포되거나 그에 근접하여 위치할 수 있다.
본 발명의 구체예는 전기화학적 바이오센서의 적용 가능한 예로서 글루코오스를 측정하기 위한 바이오센서를 예시하고 있지만, 본 발명의 시약조성물에 포함되는 효소의 종류를 달리함으로써 콜레스테롤, 락테이트, 크레아티닌, 과산화수소, 알코올, 아미노산, 글루타메이트와 같은 다양한 물질의 정량을 위한 바이오센서에 적용할 수 있다. 2020/059997 9 1»(:1^1{2019/006000
이하, 본 발명을 더욱 자세히 설명한다. 바람직하게, 본 발명에 따른 상기 화학식 1 내지 4의 산화-환원 중합체에서 상기 의 반대이온은, 음이온, 예를 들어,民(:1, 및 I로 이루어지는 군에서 선택될 수 있는 할라이드, 설페이트, 포스페이트, 핵사플루오로포스페이트, 테트라플루오로보레이트, 또는 양이온(바람직하게 1가 양이온), 예를 들어 리륨, 나트륨, 칼륨, 테트라알킬암모늄 및 암모늄에서 선택되는 것일 수 있다. 더욱 바람직하게, 상기 X는 클로라이드일 수 있다. 바람직하게, 상기 는 2 내지 10 의 정수일 수 있다.
바람직하게, 상기 는 2 내지 10 의 정수일 수 있다.
바람직하게, 상기 0는 2 내지 10 의 정수일 수 있다.
바람직하게, 상기 III은 15 내지 550 의 정수일 수 있다.
바람직하게, 상기 II은 15 내지 550 의 정수일 수 있다.
바람직하게, 상기 0는 0 내지 300 의 정수일 수 있다. ' 바람직하게, 본 발명에 따른 산화-환원 중합체 매개체는 하기 화학식 8 또는 9의 구조를 가지는 것일 수 있으며 이에 제한되는 것은 아니다.
2020/059997 1»(:1^1{2019/006000
10
[화학식 8]
Figure imgf000012_0001
본 발명에 따른 화학식 1 내지 4에서 선택되는 구조를 갖는 산화- 환원 중합체 중의 전이금속 복합체는 구체적으로는 오스뮴 복합체, 예를 2020/059997 1 1 1»(:1/10公019/006000
들어 3가오스뮴 복합체와 2가오스뮴 복합체를 포함할수 있으며, 바람직하게는산화상태의 화합물 (3가 Os 화합물)일 수 있다. 본 발명의 산화처리에 사용되는산화제는 특별히 한정하지 않으며, 구체적인 예는
NaOCl, H2O2, O2, O3, Pb()2, M11O2, KM11O4, CIO2, F2, CI2, H2Cr()4, N2O, Ag2), OSO4, H2S2O8, 세릭 암모늄 나이트레이트 (CAN: Ceric ammonium nitrate) 피리디늄 클로로크로메이트 (pyridinium chlorochromate), 및 2,2’-디피리딜디설파이드 (2,2’- Dipyridyldisulfide)로 이루어지는 군에서 선택된 1종 이상일 수 있다. 또한, 전이금속 복합체로서 산화상태와환원상태의 화합물을 포함하는 혼합물인 경우,산화 처리하여 산화상태의 전이금속 복합체 또는 산화상태의 전이금속 복합체의 염화합물을 제공할수 있다.
본 발명에 따른 전이금속 복합체는 적당한 반대 이온 및 이온을 갖고있는 염형태일 수 있으며, 염 화합물은 물 혹은 다른 수용액 혹은 유기용매에 높은 용해도를 가지므로 더욱 바람직하다. 상기 염화합물중에서 F, Cr 및 Br 등과 같은 작은 반대 음이온으로 이루어지는 경우 물 혹은 다양한수용액에 잘녹는 경향이 있으며 I , 핵사플루오로포스페이트 (PF60 및 테트라플루오로보레이트 (BF4 ) 등과 같은 큰 반대 음이온으로 이루어진 군들은유기용매에 잘녹는 경향을 갖고 있다. 따라서 반대 음이온은, F, C1, Br및 I로 이루어지는 군에서 선택될 수 있는 할라이드와
핵사플루오로포스페이트 및 테트라플루오로보레이트, 또는 반대
양이온으로서 Li염, Na염, K염, Rb염, Cs염, Fr염, 테트라알킬암모늄 및 암모늄으로 이루어지는 군에서 선택된 1종 이상의 염화합물일 수 있으나 이에 한정되는 것은 아니다. 구체적인 실시예에서, 본 발명에 따른산화-환원 중합체는 클릭 반응 (Click reaction)에 의해 중합체 골격과 전이금속 복합체를 반응시켜 합성할수 있다. 구체적으로 본 발명에 따른산화-환원 중합체 중 화학식 1에 따른 화합물은 하기와 같은 아자이드-알킨 휘스겐 사이클로
부가반응 (Azide-alkyne Huisgen cycloaddition)에 의해 제조될 수 있으며 , 이를 반응식 1에 나타냈으나, 이에 제한되는 것은 아니다. \¥0 2020/059997 1»(:1^1{2019/006000
12
[반응식 1]
Figure imgf000014_0001
또한, 상기 화학식 2의 화합물은 다음과 같은 싸이올-엔 반응(!¾01-
Figure imgf000014_0002
의해 제조될 수 있으며 , 이를 반응식 2에 따라 나타낼 수 있으나, 이에 제한되는 것은 아니다.
[반응식 2]
Figure imgf000014_0003
바람직하게, 상기 반응식 1 또는 2에 따라 산화-환원 중합체를 제조하기 위한 출발물질로서 , 폴리비닐피리딘 또는 폴리비닐이미다졸을 기능화시켜 폴리비닐피리딘 또는 폴리비닐이미다졸 전구체로 할 수 있다. 이러한 기능화된 폴리비닐피리딘 또는 폴리비닐이미다졸 전구체는 각각 하기 화학식 10 또는 화학식 11의 구조를 갖는 것일 수 있다. 2020/059997 1»(:1/10公019/006000
13
[화학식 10]
Figure imgf000015_0001
상기 고분자 전구체 구조에서 및 ¾ 는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알코올기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬할로젠기, 치환 또는 비치환된 탄소수 1 내지 20의 싸이올기, 치환 또는 비치환된 탄소수 3 내지 20의 알킬아자이드기, 치환 또는 비치환된 탄소수 7 내지 30의 아릴아자이드기, 치환 또는 비치환된 탄소수 2 내지 40의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 40의 알키닐기로 이루어진 군으로부터 선택된다. 상기 기능화된 폴리비닐피리딘 또는 폴리비닐이미다졸 전구체는 예를 들어 하기 반응식 3에 나타낸 바와 같이 합성할 수 있다.
[반응식 3]
Figure imgf000015_0002
2020/059997 1»(:1/10公019/006000
14
바람직하게,상기 반응식 1 또는 2에 따라산화-환원 중합체를 제조하기 위한출발물질로서, 전이금속 복합체를 기능화시킬 수 있다.
이러한 기능화된 전이금속 복합체는 예를 들어 하기 반응식 4와 5에 나타낸 바와 같이 합성할수 있다.
[반응식 4]
Figure imgf000016_0001
따라서, 추가적인 하나의 양태로서, 본 발명은 하기의 단계를 포함하는 화학식 1 또는 2의 산화-환원 중합체의 제조방법에 관한 것이다:
0)폴리비닐피리딘 또는 폴리이미다졸을 기능화 시켜 폴리비닐피리딘 전구체 혹은폴리이미다졸 전구체를 제조하는 단계;
(11) 전이금속 복합체를 기능화시키는 단계; 및 2020/059997 15 1»(:1^1{2019/006000
(111)상기 단계 ( 에서 제조된 폴리비닐피리딘 전구체 혹은
폴리이미다졸 전구체 및 상기 단계 어)에서 제조된 기능화된 전이금속 복합체를 클릭 반응에 의해 반응시켜 상기 화학식 1 또는 2의 산화-환원 중합체를 제조하는 단계. 상기 각 단계의 구체적인 양태는 앞서 설명한 바와 같다. 이러한본 발명에 따른산화-환원 중합체의 전이금속 복합체는 정확하고, 재현성있고,신속하고 연속적으로 대상물질의 분석이 가능하게 할 뿐 아니라, 간이하고 경제적으로 높은 수율로 제조될 수 있고, 전이금속 유출로 인하여 발생할수 있는 독성이나부작용 문제가 현저하게 낮다는 장점을 갖는다. 본 발명에 따른산화-환원 중합체는 작동전극에 도포 또는
적층되거나 작동전극주변에 위치(예를 들어 용액 내에서 전극을 둘러싸는 구조)하여 작동전극과분석 대상물질 사이에서의 전자를 효소를 통하여 전달한다. 이러한산화-환원 중합체는 전기화학적 바이오 센서 내에서 작동 전극상에 여과될 수 없는 코팅을 형성할수 있다. 본 발명의 추가 일 양태는 액체성 생체시료를산화환원시킬 수 있는 효소와상기 산화-환원 중합체를 포함하는 전기화학적 바이오센서용 조성물에 관한 것이다.
산화환원효소는 생체의 산화환원반응을 촉매하는 효소를총칭하는 것으로, 본 발명에서는 측정하고자 하는 대상물질, 예컨대 바이오센서의 경우에는측정하고자 하는 대상물질과 반응하여 환원되는 효소를 의미한다. 이와 같이 환원된 효소는 전자 전달 매개체와 반응하며, 이 때 발생한 전류변화등의 신호를 측정하여 대상물질을 정량하게 된다. 본 발명에 사용 가능한산화환원효소는 각종 탈수소효소((1 7(11'0§61 86),산화효소(0닌( 8句, 에스테르화
Figure imgf000017_0001
등으로 이루어진 군에서 선택된 1종 이상의 것일 수 있으며,산화환원 또는 검출 대상물질에 따라서, 상기 효소 군에 속하는 2020/059997 1»(:1^1{2019/006000
16
효소들 중에서 상기 대상물질을 기질로 하는 효소를 선택하여 사용할수 있다.
보다구체적으로 상기 산화환원효소는 글루코오스탈수소효소 (glucose dehydrogenase), 글루탐산탈수소 JL소 (glutamate dehydrogenase),
글루코오스산화효소 (glucose oxidase), 콜레스테롤산화효소 (cholesterol oxidase), 콜레스테롤에스테르화효소 (cholesterol esterase), 락테이트산화효소 (lactate oxidase), 아스코르브산산화효소 (ascorbic acid oxidase), 알코올산화효소 (alcohol oxidase), 알코올탈수소효소 (alcohol dehydrogenase), 빌리루빈산화효소 (bilirubin oxidase)등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
한편,상기 산화환원효소는측정하고자 하는 대상물질 (예컨대, 대상물질)로부터 산화환원효소가 뺏어온 수소를 보관하는 역할을 하는 보조인자 (cofactor)를 함께 포함할수 있는데, 예컨대, 플라빈 아데닌 디뉴클레오타티드 (flavin adenine dinucleotide, FAD), 니코틴아미드 아데닌 디뉴클레오티드 (nicotinamide adenine dinucleotide, NAD), 피롤로퀴놀린 퀴논 (Pyrroloquinoline quinone, PQQ)등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
예컨대, 혈중 글루코오스 농도를 측정하고자 하는 경우, 상기
산화환원효소로서 글루코오스 탈수소효소 (glucose dehydrogenase, GDH)를 사용할수 있으며, 상기 글루코오스 탈수소효소는 보조인자로서 FAD를 포함하는 플라빈아데닌디뉴클레오티드-글루코오스탈수소효소 (flavin adenine dinucleotide- glucose dehydrogenase, FAD-GDH), 및/또는보조인자로서 FAD- GDH를 포함하는 니코틴아미드아데닌디뉴클레오티드-글루코오스탈수소효소 (nicotinamide adenine dinucleotide- glucose dehydrogenase)일 수 있다.
구체예에서,상기 사용 가능한산화환원효소는 FAD-GDH (예컨대, EC 1.1.99.10등), NAD-GDH (예컨대, EC 1.1.1.47 등), PQQ-GDH (예컨대, EC1.1.5.2 등), 글루탐산탈수소효소 (예컨대, EC 1.4.1.2 등), 글루코오스산화효소 (예컨대, EC 1.1.3.4등), 콜레스테롤산화효소 (예컨대, EC 1.1.3.6 등),
콜레스테롤에스테르화효소 (예컨대, EC 3.1.1.13 등), 락테이트산화효소
(예컨대, EC 1丄3.2 등), 아스코빅산산화효소 (예컨대, EC 1.10.3.3 등), 알코올산화효소 (예컨대, EC L1.3.13 등), 알코올탈수소효소 (예컨대, EC U.1.1 2020/059997 17 1»(:1^1{2019/006000
등), 빌리루빈산화효소 (예컨대, EC 1.3.3.5 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 발명에 따른조성물은 산화환원효소 100 중량부를 기준으로산화- 환원 중합체 20내지 700중량부, 예컨대 60내지 700 중량부 또는 30내지 340중량부를 함유할수 있다. 상기 산화-환원 중합체의 함량은
산화환원효소의 활성도에 따라서 적절히 조절할수 있다. 또한,본 발명에 따른 조성물은 가교제를 더 포함할수 있다.
한편,본 발명에 따른조성물은 계면활성제, 수용성 고분자, 4차 암모늄염, 지방산, 점증제 등으로 이루어진 군에서 선택된 1종 이상의 첨가제를 시약 용해시의 분산제, 시약 제조시의 점착제, 장기 보관의 안정제 등의 역할을 위하여 추가로 포함할수 있다.
상기 계면활성제는 조성물을 분주할 때 조성물이 전극위에서 골고루 퍼져서 균일한두께로 분주되게 하는 역할을 하는 것일 수 있다. 상기 계면활성제로 트리톤 X- 100 (Triton X- 100), 소듐도데실설페이트 (sodium dodecyl sulfate), 퍼플루오로옥탄설포네이트 (perfluorooctane sulfonate), 소둠스테아레이트 (sodium stearate) 등으로 이루어진 군에서 선택된 1종 이상을사용할수 있다. 본 발명에 따른 시약조성물은, 시약을 분주할 때 시약이 전극위에서 골고루 퍼져서 시약이 균일한두께로 분주되게 하는 역할을 적절하게 수행하도록 하기 위하여, 상기 계면활성제를산화환원효소 100중량부를 기준으로 3 내지 25 중량부, 예컨대 10 내지 25 중량부의 양으로 함유할수 있다. 예컨대, 활성도가 700 U/mg인 산화환원효소를 사용하는 경우산화환원효소 100중량부를 기준으로 계면활성제 10 내지 25 중량부를 함유할수 있으며,산화환원효소의 활성도가 이보다높아지면, 계면활성제의 함량을 이보다낮게 조절할수 있다.
상기 수용성 고분자는 시약조성물의 고분자지지체로서 효소의 안정화 및 분산 (dispersing)을 돕는 역할을 수행하는 것일 수 있다. 상기 수용성 고분자로는 폴리비닐피롤리돈 (polyvinyl pyrrolidone; PVP),
폴리비닐알코올 (polyvinyl alcohol; PVA), 폴리플루오로설포네이트 (perfluoro sulfonate), 하이드록시에틸 셀룰로오즈 (hydroxyethyl cellulose; HEC), 2020/059997 18 1»(:1^1{2019/006000
하이드록시프로필 셀룰로오즈 (hydroxypropyl cellulose; HPC), 카르복시메틸 셀룰로오즈 (carboxy methyl cellulose; CMC), 셀룰로오즈 아세테이트 (cellulose acetate), 폴리아미드 (polyamide)등으로 이루어진 군에서 선택된 1종 이상을 사용할수 있다. 본 발명에 따른 시약 조성물은, 산화환원효소의 안정화 및 분산 (dispersing)을 돕는 역할을중분하고 적절하게 발휘하도록 하기 위하여, 상기 수용성 고분자를산화환원효소 100 중량부를 기준으로 10 내지 70 중량부, 예컨대 30 내지 70 중량부의 양으로 함유할수 있다. 예컨대, 활성도가 700 U/mg인 산화환원효소를사용하는 경우산화환원효소 100 중량부를 기준으로수용성 고분자 30내지 70중량부를 함유할 수 있으며, 산화환원효소의 활성도가 이보다높아지면,수용성 고분자의 함량을 이보다 낮게 조절할수 있다.
상기 수용성 고분자는 지지체 및 효소의 안정화 및 분산
(dispersing)을 돕는 역학을 효과적으로 수행하기 위하여 중량평균분자량이 2,500내지 3,000,000 정도, 예컨대, 5,000 내지 1,000,000 정도일 수 있다.
상기 점증제는 시약을 전극에 견고하게 부착하도록 하는 역할을 한다. 상기 점증제로는 나트로졸, 디에틸아미노에틸-텍스트란하이드로클로라이드 (DEAE-Dextran hydrochloride)등으로 이루어진 군에서 선택된 1종 이상을 사용할수 있다. 본 발명에 따른 전기화학적 센서는,본 발명에 따른 산화- 환원 중합체가 전극에 견고하게 부착되도록 하기 위하여, 상기 점증제를 산화환원효소 100중량부를 기준으로 10 내지 90중량부, 예컨대 30 내지 90 중량부의 양으로 함유할수 있다. 예컨대, 활성도가 700 U/mg인
산화환원효소를사용하는 경우산화환원효소 100 중량부를 기준으로 점증제 30 내지 90중량부를 함유할수 있으며, 산화환원효소의 활성도가 이보다 높아지면, 점증제의 함량을 이보다낮게 조절할수 있다. 추가적인 양태로서, 본 발명은상기 산화-환원 중합체를 포함하는 전기화학적 바이오센서를 제공한다.
구체적으로, 상기 전기화학적 바이오센서의 종류에는 제한이 없으나, 바람직하게는 연속적인 혈당모니터링 센서일 수 있다.
이러한 연속적인 혈당모니터링 센서의 구성으로, 본 발명은, 예를 2020/059997 19 1»(:1^1{2019/006000
들어 전극, 절연체 (insulator), 기판, 상기 산화-환원 중합체 및 산화환원효소를 포함하는 센싱 막 (sensing layer), 확산 막 (diffusion layer), 보호 막 (protection layer) 등을포함할수 있다. 전극의 경우, 작동 전극 및 대향 전극과 같은 2종의 전극을 포함할수도 있고, 작동 전극, 대향 전극 및 기준 전극과 같은 3종의 전극을 포함할수도 있다. 일 구현예에서,본 발명에 따른
바이오센서는, 적어도두개, 바람직하게는 두개 또는 세개의 전극을 갖춘 기판에, 상기 화학식 1 또는 2를 갖는 산화-환원 중합체와 액체성
생체시료를산화환원시킬 수 있는 효소를포함하는 시약조성물을 도포한 후 건조하여 제작한 전기화학적 바이오센서일 수 있다. 예를 들면, 전기화학적 바이오센서에 있어서 작동 전극 및 대향 전극이 기판의 서로 반대면에 구비되고,상기 작동 전극 위에 본 발명에 따른산화-환원 중합체가포함되는 센싱 막이 적층되고, 작동 전극 및 대향 전극이 구비된 기판의 양쪽 면에 차례로 절연체, 확산막 및 보호막이 적층되는 것을 특징으로 하는 평면형 전기화학적 바이오센서가 제공된다. 구체적인 양태로서, 상기 기판은 PET(polye仕 lylene tereph仕 lalate),
PC(polycarbonate) 및 Pl(polyimide)로 이루어진 군으로부터 선택되는 1종 이상의 소재로 된 것일 수 있다.
또한, 작동 전극은 탄소, 금, 백금, 은 또는 은/염화은 전극을사용할 수 있다.
또한, 2 전극을 갖는 전기화학적 바이오센서의 경우 대향 전극이 기준 전극의 역할까지 같이 하기 때문에, 대향 전극으로 금, 백금,은 또는 은/염화은 전극을사용할수 있고, 기준 전극까지 포함하는 3 전극의 전기화학적 바이오센서의 경우, 기준 전극으로 금, 백금, 은또는 은/염화은 전극을사용할 수 있고, 대향 전극으로 탄소 전극을사용할수 있다.
확산막으로는 Nafion, cellulose acetate, silicone rubber를사용할수 있으며 ,보호막으로는 silicone rubber, polyurethane, polyurethane기반 copolymer 등을사용할수 있으나 이에 제한되는 것은 아니다.
제한되지 않은 예로서, 2 전극인 경우 대향전극이 기준전극의 역할까지 같이 하기 때문에 염화은 또는 은이 사용 될 수 있으며, 3 전극일 2020/059997 1»(:1^1{2019/006000
20
경우 기준전극이 염화은또는 은이 사용되고, 대향 전극은 탄소 전극을 사용할수 있다.
【발명의 효과】
본 발명에 따른산화-환원 중합체는 생산시 공정 단계의 수가 적어 경제적이고, 전이금속 복합체의 고정화율이 증가되고 작용기 또는 링커의 도입이 용이하여 이를 적용한 전기화학적 바이오센서는 간편하며 검출이 신속하고 경제적이라는 장점이 있다.
【도면의 간단한설명】
도 1은 본 발명의 일 실시예에 따른 바이오센서의 구조를 나타낸 도면이다.
도 2는 본 발명에 따른 전자 전달 매개체용산화-환원 중합체인 화학식 8의 화합물과 단일 03복합체를사용하여 순환 전압 전류 곡선을 측정한 결과를 나타내는 그래프이다.
【발명을실시하기 위한구체적인 내용】
이하,본 발명을 더욱상세하게 설명한다. 이하,본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 단, 하기의 실시예는본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시 예에 의해 한정되는 것은 아니다.
[실시예] 제조예 1:『화학식 81로표시되는산화-환원 중합체 화합물의 합성
1-1. 2,2,-바이이미다졸합성
Figure imgf000022_0001
500 11止의 3구 둥근 바닥플라스크에 40%글라이옥살(민 표 ) 수용액 79 11止(0.69 11101)를 넣고 0 ¾로 냉각후 암모늄아세테이트 370 11止(2.76X101)를 드롭핑 깔때기를 통해 3시간동안온도 상승에 주의해가며(30 이하) 천천히 적가하였다. 적가종료 후 45-50 °0 에서 하룻밤교반후 2020/059997 21 1»(:1^1{2019/006000
상온으로 냉각하였다. 생성된 고체는 여과후 에틸레글리콜에 녹여 핫-필터 (hot-filter)로 정제해 최종적으로 2, 2’-바이이미다졸을 얻었다. (10.1& 수율: 33%)
1-2. 메틸- 2, -바이이미다졸 합성
Figure imgf000023_0001
250 11止의 3구 둥근 바닥 플라스크에 2, 2’-바이이미다졸 2 g (l5
_01)을 넣고 무수디메틸포름아마이드 60 11止 에 녹인 후 0ᄋ 0:로 냉각한다. 수소화소듐 0.6은 (15 11111101)을 온도 상승에 주의해가며 소량씩 넣는다. 이 혼합물은 0ᄋ(:에서 한 시간 동안 교반 후에 아이오도메탄 1 11止(15 _01)를 실린지 펌프를 통해 천천히 적가한다. 적가 종료 후 상온에서 12시간 동안 교반한다. 최종 반응용액에 에틸아세테이트 100 11止를 넣고 생성된
요오드화소듐은 여과하여 제거한다. 여액은 감압농축하여 용매 제거 후 남은 고체는 에틸아세테이트와 핵산을 전개용매로 하여 컬럼크로마토그래피로 정제한다. 최종적으로 메틸- 2,2’-바이이미다졸을 얻었다. (0.8 & 수율: 37%)
1-3. -디메틸- 2,2’-바이이미다졸 합성
Figure imgf000023_0002
500 mL의 3구 둥근 바닥 플라스크에 2,2’-바이이미다졸 5 g (37 mmol)을 넣고 무수디메틸포름아마이드 60 mL 에 녹인 후 우로 냉각한다. 수소화소듐 3 g (40 mmol)을 온도 상승에 주의해가며 소량씩 넣는다. 이 혼합물은 0 °C에서 한 시간 동안 교반 후에 아이오도메탄 2.5 mL (40 mmol)를 실린지 펌프를 통해 천천히 적가한다. 적가 종료 후 상온에서 24시간 동안 교반한다. 최종 반응용액에 물을 넣고 에틸아세테이트 (200 mL X 3) 와 함께 추출한후 유기층은 모아서 황산마그네슘으로 건조한다. 유기층은
감압농축하여 용매 제거 후 에틸 아세테이트와 핵산을 전개용매로 하여 2020/059997 1»(:1/10公019/006000
22
컬럼크로마토그래피로 정제한다. 최종적으로尺 '-디메틸- 2,2’-바이이미다졸을 얻었다. (5.1 & 84%)
1-4. 부티닐- 메틸- 2,2’-바이이미다졸합성
Figure imgf000024_0001
NaH, Nal
Figure imgf000024_0003
0, 24 11
Figure imgf000024_0004
Figure imgf000024_0002
100 mL의 3구 둥근 바닥플라스크에 7V-메틸- 2,2’-바이이미다졸 1.5 g (lO mmol)을 넣고 질소하에서 무수디메틸포름아마이드 30 mL 에 녹인 후 수소화소듐 0.5 g (13 mmol)을 가한다. 이 혼합물은 상온에서 한 시간동안 교반후에 4 -브로모- 1-부틴 1.7 g (13 mmol)과요오드화소듐 1.5 g (10 mmol)을 넣는다. 반응용액은 질소하에서 80 °C로 가열하여 24 시간동안 교반한다. 최종 반응용액은 상온으로 냉각후 물 (100 mL)과 에틸아세테이트 (200 mL X 3) 와함께 추출한후유기층은 모아서 황산마그네슘으로 건조한다.
유기증은 감압농죽하여 용매 제거 하고 에틸 아세테이트와 핵산을
전개용매로 하여 컬럼크로마토그래피로 정제한다. 최종적으로 AT-부티닐- iv'- 메틸- 2,2’-바이이미다졸을 얻었다. (1.5 g, 74%)
1-5. [오스뮴 (111)( 八"-디메틸- 2,2’-바이이미다졸) 2( -부티닐-八^-메틸- 2,2’- 바이이미다졸)] (핵사플루오로포스핀) 3 합성
Figure imgf000024_0005
100 mL의 3구 둥근 바닥플라스크에 환류응축기 , 기체유입구 및 온도계를 장착하고 N,N’-다메틸- 2,2’-바이이미다졸 2 g (13 mmol),
암모늄핵사클로로 오스메이트 (IV) 3 g (6.5 mmol)과 50 mL의 에틸렌글리콜을 2020/059997 1»(:1/10公019/006000
23
질소하에서 140 °(:로 24시간동안교반한다. -부티닐- -메틸- 2,2’- 바이이미다졸 1.3 § (6.5 _01)은 10 11 의 에틸렌글리콜에 녹인 후 상기 반응혼합물에 실린지를 이용해 넣는다. 이 혼합물은 다시 질소하에서 140 로 24시간동안교반한다. 반응 종류후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 잔여물을 여과하여 제거한다. 여액은 300 11 의 물로 묶힌 후에 01X4클로라이드 레진을 넣고 공기중에서 충분히 산화시키기 위해 24시간동안교반한다. 상기 용액은 암모늄핵사플로오로포스핀 수용액에 적가하여 이온 교환된 금속 복합체를 침전물을 얻는다. 생성된 고체는 여과 후 물로 여러 번 씻어준 후 진공오븐에서 건조시켜 최종화합물 오스뮴 (III) 복합체를 얻는다. (5 & 67%)
1-6.폴리 (4-(2 -아지도에틸)피리디늄)- -(4-(2 -아미노에틸)피리디늄)-에- 4 -비닐피리딘) 합성
Figure imgf000025_0001
250 mL의 3구둥근 바닥플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 폴리비닐피리딘 (poly(4-vinylpyridine): number average molecular weight: -160,000 g/mol) 20 g을 150 mL의 디메틸포름아마이드에 녹인다. 이 용액에 1-아지도- 2 -브로모에탄 4.5 g (30 mmol)과 2 - 브로모에틸아민 6.0 g (30 mmol)을 넣는다. 이 용액은 기계식 교반기를 이용해 90 °C에서 24시간동안교반한다. 반응 종류후 반응혼합물은 상온으로 냉각하고 에틸아세테이트 용액에 부어 침전물을 생성한다. 용매는 따라 버리고 생성된 고체는 메탄올 300 mL에 다시 녹여 감압농축한후 (150 mL) 다시 디에틸에터에서 침전물을 생성한다. 생성된 고체는 진공오븐에서 건조시켜 폴리비닐피리딘 전구체를 얻는다. (27 & 90%) 2020/059997 1»(:1/10公019/006000
24
1-7.산화-환원 중합체 1 합성 [화학식 8]
Figure imgf000026_0001
50 mL의 컬쳐튜브에 폴리 (4-(2 -아지도에틸)피리디늄) -co-(4-(2- 아미노에틸)피리디늄) -co-4 -비닐피리딘) 0.5 g을 10 mL의 증류수에 녹인 후 5 mL의 디메틸포름아마이드에 녹인 [오스뮴 (III)(AW-디메틸- 2,2’- 바이이미다졸) 2(iV-부티닐- 메틸- 2, 2’-바이이미다졸)] (핵사플루오로포스핀) 3 0.8 g을 넣는다. 반응혼합물에 구리 (I)촉매 (CuTc: Copper(I)仕 liophene carboxylate) 25 mg을 넣고 상온에서 12시간동안교반한다. 반응 종류후 반응혼합물은 에틸아세테이트 용액에 부어 침전물을 생성한다. 용매는 따라 버리고 생성된 고체는 아세토나이트릴 50 mL에 다시 녹이고 AG1X4클로라이드 레진과 물 (150 mL)을 넣어 24시간동안교반한다. 고분자 용액은 감압농축한후 (50 mL) 저분자량 (10,000 g/mol 이하)의 물질들을 제거하기 위해 투석
(dialysis)을 한다. 투석된 고분자 용액은동결 건조하여 최종산화-환원 중합체 1을 얻는다. (0.7 g) 실험예: 순환전압전류법을 이용한본 발명에 따른 전자전달 매개체용산화-환원 중합체[화학식 8]와 08복합체의 전기화학적 특성 확인 본 발명에 따른 08복합체를 포함하는산환-환원 중합체의 전자 전달 매개체로서의 성능을 확인하기 위하여, 다음과 같은 실험방법에 따라순환 전압 전류법을 이용한 전기화학적 특성을측정하였다. 2020/059997 1»(:1^1{2019/006000
25
실험방법
① 하기 화학식 12 및 13의 오스뮴 복합체 2종 (03(111^111)3,
Figure imgf000027_0001
발명에 따른 화학식 8의 오스뮴-중합체 (어- |)01>1161·)각각 20 1¾을 탈이온수와 0.1N1 염화나트륨 (30(1^111 ( 1011{16) 용액 5 에 녹였다.
② 용액 안의 산소를 제거하기 위해 10분 동안 아르곤으로 탈기하였다.
③ 산소가 탈기된 상기 용액에 작동 전극, 기준 전극, 대향 전극을 연결하고 아르곤하에서 전압의 변화에 따른 전기적 신호 변화를 측정하였다.
④ 이 실함결과를 각각도 2와표 1에 나타내었다.
[화학식 8]
Figure imgf000027_0002
2020/059997 1»(:1/10公019/006000
26
[화학식 12]
Figure imgf000028_0001
실험재료/조건
작동전극 (working electrode): 유리탄소 전극 (dia: 3.0 mm)
기준전극 (Reference electrode): Ag/AgCl 전극
대향전극 (Counter electrode): 백금 로드 (Platinum rod)
시험 파라미터
-장비 : EmStat(P almS ens Co.)
-Technique: cyclic voltammetry
-Potential range: -1.0〜 1.0 V
-Scan rate: 10 mV/s
【표 1 ]
Figure imgf000028_0002
2020/059997 1»(:1^1{2019/006000
27
Figure imgf000029_0001
도 2와 표 1에서 나타낸 것과 같이 오스뭄 트리스 (111)( "-디메틸- 2,2’-바이이미다졸), 오스뮴 (111)(尺 :디메틸- 2,2’-바이이미다졸) 2( -부티닐-八"- 메틸- 2,2’-바이이미다졸)과 함께 산화-환원 중합체 [화학식 8]의 순환 전압 전류 곡선을 측정한 결과 3개의 화합물 모두 거의 동일한 위치에서 산화- 환원 전위가 나타났다. 따라서 본 발명에 따른 산화-환원 중합체의 전자전달 매개체로서의 성능은 단일 오스뮴 복합체와 동일함을 간접적으로 확인할 수 있었다.

Claims

2020/059997 1»(:1^1{2019/006000 28 - 【청구범위】 【청구항 1】 하기 화학식 1 내지 4 중 어느 하나의 구조를 갖는, 전기화학적 바이오센서의 전자 전달 매개체용 산화-환원 중합체:
[화학식 1]
Figure imgf000030_0001
2020/059997 1»(:1/10公019/006000
29
[화학식 3]
Figure imgf000031_0001
이루어진 군으로부터 선택되는 1종의 전이금속이고;
상기 식에서,느1
Figure imgf000031_0002
합쳐져 하기 화학식 5 내지 7로부터 선택되는 바이덴테이트 리간드를 형성하고;
Figure imgf000031_0003
합쳐져 하기 화학식 5 내지 7로부터 선택되는 바이덴테이트 리간드를 형성하고;
5 및 는 각각서로 합쳐져 하기 화학식 5 내지 7로부터 선택되는 바이덴테이트 리간드를 형성하고; 2020/059997 1»(:1^1{2019/006000
30
[화학식 5]
Figure imgf000032_0002
[화학식 7]
Figure imgf000032_0001
상기 111 , 112 및 ^1 은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알코올기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬할로젠기, 치환 또는 비치환된 탄소수 1 내지 20의 싸이올기, 치환 또는 비치환된 탄소수 3 내지 20의 알킬아자이드기, 치환 또는 비치환된 탄소수 7 내지 30의 아릴아자이드기, 치환 또는 비치환된 탄소수 2 내지 40의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 40의 알키닐기 , 시아노기 , 할로겐기, 중수소 및 수소로 이루어진 군으로부터 선택되고,
상기 113 내지 1120은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 3 내지 40의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 50의 아릴기 , 치환 또는 비치환된 탄소수 3 내지 50의 헤테로아릴기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기 , 치환 또는 비치환된 탄소수 1 내지 20의 알코올기 , 치환 또는 비치환된 탄소수 1 내지 20의 알킬할로젠기, 치환 또는 비치환된 탄소수 1 2020/059997 1»(:1^1{2019/006000
31
내지 20의 싸이올기, 치환 또는 비치환된 탄소수 3 내지 20의
알킬아자이드기, 치환 또는 비치환된 탄소수 7 내지 30의 아릴아자이드기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴옥시기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬아미노기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴아미노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬실릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴실릴기, 치환 또는 비치환된 탄소수 1 내지 50의 아릴알킬아미노기 , 치환 또는 비치환된 탄소수 2 내지 40의 알케닐기, 치환 또는 비치환된 탄소수 2 내지 40의 알키닐기, 시아노기, 할로겐기, 중수소 및 수소로 이루어진 군으로부터 선택되고;
Figure imgf000033_0001
아민기, 암모늄기, 할로젠기, 에폭시기, 아자이드기 , 아크릴레이트기 , 알케닐기 , 알키닐기, 싸이올기 , 이소시아네이트, 알코올기, 실란기로 이루어진 군으로부터 선택되고;
상기 는 반대 이온(。011 이고;
상기 는 1 내지 15 의 정수이고;
상기 15는 1 내지 15 의 정수이고;
상기 0는 1 내지 15 의 정수이고;
상기 111은 10 내지 600 의 정수이고;
상기 II은 10 내지 600 의 정수이고;
상기 0는 0 내지 600 의 정수이다.
【청구항 2】
제 1 항에 있어서, 상기 화학식 1의 화합물은 하기 화학식 8 또는 화학식 9의 구조를 갖는 것인, 전자 전달 매개체용 산화-환원 중합체: 2020/059997 1»(:1/10公019/006000
32
[화학식 8]
Figure imgf000034_0001
【청구항 3】
(1) 폴리비닐피리딘 또는 폴리이미다졸을 기능화 시켜
폴리비닐피리딘 전구체 또는 폴리비닐이미다졸 전구체를 제조하는 단계; 2020/059997 1»(:1^1{2019/006000
33
(ii) 전이금속 복합체를 기능화시키는 단계; 및
(iii)상기 단계 (i)에서 제조된 폴리비닐피리딘 전구체 또는
폴리비닐이미다졸 전구체, 및 상기 단계 (비에서 제조된 기능화된 전이금속 복합체를 클릭 반응에 의해 반응시켜 제 1항에 따른산화-환원 중합체를 제조하는 단계를 포함하는, 제 1항에 따른산화-환원 중합체의 제조방법:
【청구항 4】
제 3 항에 있어서, 상기 단계 (iii)의 클릭 반응은 아자이드-알킨 휘스겐 사이클로어디션 반응 (Azide-alkyne Huisgen cycloaddition)또는싸이올- 엔 반응 (Thiol-ene reaction)인 것인, 제조방법.
【청구항 5】
액체성 생체시료를산화환원시킬 수 있는 효소; 및
제 1항에 따른산화-환원 중합체를 포함하는 전기화학적 바이오센서용 조성물.
【청구항 6]
제 5항에 있어서, 상기 효소는
탈수소효소 (dehydrogenase),산화효소 (oxidase), 및 에스테르화효소 (esterase)로 이루어진 군에서 선택된 1종 이상의 산화환원효소; 또는
탈수소효소,산화효소, 및 에스테르화효소로 이루어진 군에서 선택된 1종 이상의 산화환원효소와플라빈 아데닌 디뉴클레오타티드 (flavin adenine dinucleotide, FAD), 니코틴아미드 아데닌 디뉴클레오티드 (nicotinamide adenine dinucleotide, NAD), 및 피롤로퀴놀린 퀴논 (Pyrroloquinoline quinone, PQQ)로 이루어진 군에서 선택된 1종 이상의 보조인자를 포함하는 것인, 조성물.
【청구항 7】
제 5항에 있어서, 상기 효소는 플라빈아데닌디뉴클레오티드- 글루코오스탈수소효소 (flavin adenine dinucleotide-glucose dehydrogenase, FAD- GDH), 및 니코틴아미드아데닌디뉴클레오티드-글루코오스탈수소효소
(nicotinamide adenine dinucleotide-glucose dehydrogenase)로 이루어진 군에서 선택된 1종 이상의 것인, 조성물.
【청구항 8】
제 5항에 있어서, 계면활성제, 수용성 고분자, 및 점증제로 이루어진 2020/059997 1»(:1^1{2019/006000
34
군에서 선택된 1종 이상의 첨가제, 및 가교제를 추가로 포함하는,조성물.
【청구항 9]
제 1항에 따른산화-환원 중합체를 포함하는 전기화학적 바이오센서.
【청구항 10】
제 9항에 있어서, 제 1항에 따른산화-환원 중합체 및 산화환원효소를 포함하는 센싱 막 (sensing layer), 확산 막 (diffusion layer), 보호 막 (protection layer), 2종 이상의 전극, 절연체 (insulator) 및 기판을 더 포함하는 것인, 전기화학적 바이오센서.
【청구항 11】
제 10항에 있어서, 상기 전극은 작동 전극 및 대향 전극으로 이루어진 2 전극이거나작동 전극, 대향 전극 및 기준 전극으로 이루어진 3 전극인 것인, 전기화학적 바이오센서.
【청구항 12】
제 9항에 있어서, 상기 생체시료는 혈액인 전기화학적 바이오센서.
PCT/KR2019/006000 2018-09-18 2019-05-09 전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서 WO2020059997A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/276,760 US20210347926A1 (en) 2018-09-18 2019-05-09 Oxidation-reduction polymer including transition metal complex, and electrochemical biosensor using same
EP19862947.9A EP3854827B1 (en) 2018-09-18 2019-05-09 Oxidation-reduction polymer including transition metal complex, and electrochemical biosensor using same
JP2021514521A JP7083069B2 (ja) 2018-09-18 2019-05-09 遷移金属複合体を含む酸化-還元高分子およびこれを利用した電気化学的バイオセンサ
AU2019341169A AU2019341169B2 (en) 2018-09-18 2019-05-09 Oxidation-reduction polymer including transition metal complex, and electrochemical biosensor using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180111633 2018-09-18
KR10-2018-0111633 2018-09-18

Publications (2)

Publication Number Publication Date
WO2020059997A1 true WO2020059997A1 (ko) 2020-03-26
WO2020059997A8 WO2020059997A8 (ko) 2021-04-08

Family

ID=69887424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006000 WO2020059997A1 (ko) 2018-09-18 2019-05-09 전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서

Country Status (6)

Country Link
US (2) US20210347926A1 (ko)
EP (2) EP3854827B1 (ko)
JP (2) JP7083069B2 (ko)
KR (1) KR102244655B1 (ko)
AU (2) AU2019341169B2 (ko)
WO (1) WO2020059997A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062931A1 (ja) * 2021-10-15 2023-04-20 デンカ株式会社 化合物及び当該化合物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220096570A (ko) * 2020-12-31 2022-07-07 주식회사 아이센스 펜타플루오로페닐 에스터를 포함하는 고분자 및 이를 포함하는 전기화학적 바이오센서
KR102589294B1 (ko) * 2021-08-03 2023-10-13 단국대학교 천안캠퍼스 산학협력단 작동전극, 이의 제조방법 및 이를 포함하는 바이오센서 및 생체연료전지
CN115215953B (zh) * 2022-07-15 2023-10-24 江西司托迈医疗科技有限公司 自组装氧化还原聚合物、传感器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042137A1 (en) * 2001-05-15 2003-03-06 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
KR101694982B1 (ko) * 2014-12-31 2017-01-10 주식회사 아이센스 전기화학적 바이오센서

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241924A (ja) * 1986-04-14 1987-10-22 Nippon Shokubai Kagaku Kogyo Co Ltd ポリエン−ポリチオ−ル系硬化性組成物
US5264104A (en) * 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
JP3083307B2 (ja) * 1990-01-12 2000-09-04 旭電化工業株式会社 光学的造形用樹脂組成物
JP3181284B2 (ja) * 1990-01-12 2001-07-03 旭電化工業株式会社 エネルギー線反応性粘着剤組成物
DK1230249T3 (da) * 1999-11-15 2004-08-30 Therasense Inc Overgangsmetalkomplekser med bidentatligand, der har en imidazolring
US6676816B2 (en) 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
GB0711849D0 (en) 2007-06-19 2007-07-25 Oxford Biosensors Ltd Redox Mediators
US20090294307A1 (en) 2008-06-02 2009-12-03 Zenghe Liu Redox polymer based reference electrodes having an extended lifetime for use in long term amperometric sensors
KR20140132869A (ko) * 2013-05-08 2014-11-19 동국대학교 산학협력단 혈당, 당화 단백질 및 총 단백질을 측정할 수 있는 바이오 센서 어레이
AU2015302326A1 (en) 2014-08-15 2017-03-02 Abbott Diabetes Care Inc. Temperature insensitive in vivo analyte devices, methods and systems
KR102430818B1 (ko) * 2015-10-02 2022-08-11 삼성디스플레이 주식회사 하이브리드 수지 제조용 조성물, 이로부터 제조된 하이브리드 수지 및 하이브리드 수지 필름
US11371957B2 (en) 2017-06-30 2022-06-28 Abbott Diabetes Care Inc. Method and apparatus for analyte detection using an electrochemical biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042137A1 (en) * 2001-05-15 2003-03-06 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
KR101694982B1 (ko) * 2014-12-31 2017-01-10 주식회사 아이센스 전기화학적 바이오센서

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEN FELDMAN, RONALD BRAZG, SHERWYN SCHWARTZ, RICHARD WEINSTEIN: "A Continuous Glucose Sensor Based on Wired Enzyme Technology -Results from a 3-Day Trial in Patients with Type I Diabetes", DIABETES TECHNOLOGY & THERAPEUTICS, vol. 5, no. 5, 1 October 2003 (2003-10-01), pages 769 - 779, XP055730562, ISSN: 1520-9156, DOI: 10.1089/152091503322526978 *
NATALIA ZABARSKA, ANNE STUMPER, SVEN RAU: "CuAAC Click Reactions for the Design of Multifunctional Luminescent Ruthenium Complexes", DALTON TRANSACTIONS, vol. 45, no. 6, 1 January 2016 (2016-01-01), pages 2338 - 2351, XP055694617, ISSN: 1477-9226, DOI: 10.1039/C5DT04599A *
T J OHARA : "Osmium Bipyridyl Redox Polymers Used in Enzyme Electrodes", PLATINUM METALS REVIEW, vol. 39, no. 2, 1 January 1995 (1995-01-01), pages 54 - 62, XP002083853 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062931A1 (ja) * 2021-10-15 2023-04-20 デンカ株式会社 化合物及び当該化合物の製造方法

Also Published As

Publication number Publication date
EP3854833A4 (en) 2022-09-07
AU2019343627A1 (en) 2021-04-01
JP2022501588A (ja) 2022-01-06
AU2019341169A1 (en) 2021-04-15
AU2019341169B2 (en) 2022-07-28
WO2020059997A8 (ko) 2021-04-08
KR20200032653A (ko) 2020-03-26
JP2021532899A (ja) 2021-12-02
US20220025114A1 (en) 2022-01-27
US20210347926A1 (en) 2021-11-11
EP3854827A4 (en) 2022-07-06
KR102244655B1 (ko) 2021-04-26
EP3854827A1 (en) 2021-07-28
EP3854833A1 (en) 2021-07-28
JP7083069B2 (ja) 2022-06-09
EP3854827B1 (en) 2023-11-08
AU2019343627B2 (en) 2023-02-16
JP7237141B2 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
JP4420899B2 (ja) (ピリジル)イミダゾール配位子を有する遷移金属錯体
EP3854827B1 (en) Oxidation-reduction polymer including transition metal complex, and electrochemical biosensor using same
KR102352758B1 (ko) 신규한 전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서
US20090255811A1 (en) Biosensor coating composition and methods thereof
KR102610156B1 (ko) C-n 리간드를 갖는 신규 전이금속 전자전달 착체 및 이를 이용한 전기화학적 바이오센서
KR102085709B1 (ko) 신규 루테늄계 전자전달 매개체를 포함하는 산화환원반응용 시약조성물 및 바이오센서
KR101694982B1 (ko) 전기화학적 바이오센서
US8226814B2 (en) Transition metal complexes with pyridyl-imidazole ligands
WO2019235755A1 (ko) 제니핀을 포함하는 전기화학적 센서의 센싱 막 또는 확산제어막의 제조용 가교제
KR102266197B1 (ko) 글루코스 탈수소화효소 감응형 신규 루테늄계 전자전달 매개체, 이의 제조방법, 이를 포함하는 산화환원반응용 시약조성물 및 바이오센서
EP4328232A1 (en) Electrochemical biosensor, or sensing membrane for electrochemical biosensor containing transition metal complex or oxidation-reduction polymer
KR102596519B1 (ko) 산화 환원 반응용 시약 조성물 및 이를 포함하는 바이오센서
US20240158426A1 (en) Transition metal complex containing tetradentate nitrogen donor ligand and electrochemical biosensor comprising same
KR20220096570A (ko) 펜타플루오로페닐 에스터를 포함하는 고분자 및 이를 포함하는 전기화학적 바이오센서
JP2024505810A (ja) テトラデンテート窒素供与体リガンドを含む遷移金属錯体およびこれを含む電気化学的バイオセンサー
AU2011239358A1 (en) Transition metal complexes with (pyridyl)imidazole ligands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019341169

Country of ref document: AU

Date of ref document: 20190509

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019862947

Country of ref document: EP

Effective date: 20210419