WO2023062931A1 - 化合物及び当該化合物の製造方法 - Google Patents

化合物及び当該化合物の製造方法 Download PDF

Info

Publication number
WO2023062931A1
WO2023062931A1 PCT/JP2022/030810 JP2022030810W WO2023062931A1 WO 2023062931 A1 WO2023062931 A1 WO 2023062931A1 JP 2022030810 W JP2022030810 W JP 2022030810W WO 2023062931 A1 WO2023062931 A1 WO 2023062931A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
polymerization
monomer unit
methacrylate
Prior art date
Application number
PCT/JP2022/030810
Other languages
English (en)
French (fr)
Inventor
渉 西野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202280067990.3A priority Critical patent/CN118076649A/zh
Publication of WO2023062931A1 publication Critical patent/WO2023062931A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation

Definitions

  • the present invention relates to a compound and a method for producing the compound.
  • Comb-shaped polymers such as bottlebrush polymers are graft polymers that are expected to be developed as stimuli-responsive polymers such as temperature, polymer templates, or polymers for drug delivery systems.
  • Such graft polymers can be obtained by various graft polymerizations, and a grafting-through method using a macromonomer is expected as a new technique (Non-Patent Document 1).
  • the macromonomer that can be used in the grafting-through method is required to be a compound that has a polymer portion that can become a side chain in the graft polymer and a polymerizable group that can constitute the main chain.
  • the number of types of compounds provided as such macromonomers is still small, and methods for synthesizing them are also limited.
  • the present invention has been made in view of such problems, and provides a novel compound having a polymer portion and a polymerizable group, and a method for synthesizing the same.
  • the present invention comprises a first portion and a second portion, wherein the first portion has a polymer chain, and the second portion comprises a triazole skeleton and a polymerizable group attached to the triazole skeleton. having a compound provided
  • a compound comprising a first portion and a second portion, wherein the first portion has a polymer chain, and the second portion has a triazole skeleton and a polymerizable group bonded to the triazole skeleton.
  • the polymer chain has radically polymerizable monomer units, and the radically polymerizable monomer units are styrene monomer units, (meth)acrylic monomer units, and diene monomer units.
  • the compound according to [1] which is at least one monomer unit selected from the group consisting of a body unit, a vinyl ether-based monomer unit, and an unsaturated nitrile-based monomer unit.
  • [3] The compound according to [1] or [2], wherein the polymerizable group is a vinyl group.
  • [4] The compound according to any one of [1] to [3], wherein the first portion has a terminal group derived from an atom transfer radical polymerization initiator or an iodine transfer polymerization initiator.
  • a polymerization step, an azide group introduction step, and a polymerizable group introduction step wherein in the polymerization step, the radically polymerizable monomer is polymerized to produce a first intermediate, and the azide group is introduced.
  • the first intermediate is subjected to an azidation reaction to produce a second intermediate, and in the step of introducing a polymerizable group, the second intermediate is reacted with monovinylacetylene or a monovinylacetylene derivative, [1] A method for producing the compound according to any one of [4].
  • Compound A compound according to one embodiment of the present invention comprises a first portion and a second portion.
  • the first portion and the second portion are covalently attached to each other.
  • the first portion has a polymer chain. Also, the first portion may have a terminal group derived from an atom transfer radical polymerization initiator or an iodine transfer polymerization initiator. The polymer chains and the terminal groups derived from the atom transfer radical polymerization initiator or the iodine transfer polymerization initiator are covalently bonded to each other.
  • the polymer chain has radically polymerizable monomer units.
  • a radically polymerizable monomer unit is a structural unit of a polymer chain derived from a radically polymerizable monomer. Radically polymerizable monomer units include, for example, styrene-based monomer units, (meth)acrylic-based monomer units, diene-based monomer units, vinyl ether-based monomer units, and unsaturated nitrile-based monomer units. etc. These can be used singly or in combination.
  • Styrenic monomer units include, for example, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, and It is a unit derived from a styrenic monomer such as ⁇ -methyl-p-methylstyrene.
  • (Meth)acrylic monomer units include, for example, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, normal propyl acrylate, normal propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, normal butyl acrylate, normal Butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, secondary butyl acrylate, secondary butyl methacrylate, tertiary butyl acrylate, tertiary butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, normal octyl acrylate, normal octyl methacrylate, isooctyl methacrylate, normal nonyl acrylate, normal nonyl acrylate, normal nonyl
  • the diene-based monomer unit is, for example, a unit derived from a conjugated diene monomer such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. .
  • Vinyl ether monomer units include, for example, vinyl ether monomers such as vinyl acetate, vinyl propionate, 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, vinyl methyl ether, vinyl butyl ether and vinyl octyl ether. is a unit derived from
  • the unsaturated nitrile-based monomer units are units derived from unsaturated nitrile-based monomers such as acrylonitrile, methacrylonitrile, ethacrylonitrile, and phenylacrylonitrile.
  • the polymer chain may be a homopolymer composed of monomer units derived from a single monomer, or a copolymer composed of monomer units derived from a plurality of types of monomers. may be When the polymer chain is a copolymer, it may be a random copolymer, alternating copolymer, block copolymer, graft copolymer, or the like.
  • Terminal Group Derived from Atom Transfer Radical Polymerization Initiator is a site derived from the polymerization initiator used for atom transfer radical polymerization (ATRP).
  • ATRP initiators are organohalogen compounds.
  • Organic halogen compounds as ATRP initiators include, for example, methyl 2-chloropropionate, 2,2-dichloroacetophenone, 3-(trimethoxysilyl)propyl 2-bromo-2-methylpropanoate, chloroacetonitrile, and methyl chloroacetate.
  • tert-butyl 2-bromoisobutyrate (1-bromoethyl)benzene, methyl 2-bromopropionate, methyl 2-chloropropionate, 3-(trichlorosilyl)propyl 2-bromo-2-methylpropanoate, 2-bromo -3-(triethoxysilyl)propyl 2-methylpropanoate, 2-[(2-hydroxyethyl)disulfanyl]ethyl 2-bromo-2-methylpropionate, 11-mercapto 2-bromo-2-methylpropanoate undecyl, bromoacetonitrile, (1-chloroethyl)benzene, ethyl 2-bromoisobutyrate, [11-[(2-bromo-2-methylpropanoyl)oxy]undecyl]phosphonic acid, 2-bromo-2-methylpropanoic acid 2-hydroxyethyl, ethyl bromoacetate, ally
  • YX (Y is an organic group and X is a halogen group) is used as the organic halogen compound
  • Y is the terminal group derived from the atom transfer radical polymerization initiator.
  • Y is bonded to the polymer chain through the carbon atom or the like in Y to which the halogen group was bonded.
  • Y preferably has a substituent capable of delocalizing an unpaired electron such as a carbonyl group, a cyano group, a nitro group, or a phenyl group.
  • the carbon atom to which the halogen group X is bonded is preferably adjacent to the electron-withdrawing group.
  • the terminal group derived from the atom transfer radical polymerization initiator has a structure represented by the following general formula (1).
  • A1 represents a bond with a polymer chain.
  • Terminal Groups Derived from Iodine Transfer Polymerization Initiator are moieties derived from the polymerization initiator used for iodine transfer polymerization. ITP initiators are organoiodine compounds.
  • Organic iodine compounds as ITP initiators include, for example, 2-iodoacetic acid, methyl 2-iodoacetate, ethyl 2-iodoacetate, 2-iodopropionic acid, ethyl 2-iodopropionate, ethyl 2-iodobutyrate, 2-iodo Ethyl valerate, methyl 2-iodoisobutyrate, ethyl 2-iodoisobutyrate, benzyl 2-iodoisobutyrate, ⁇ -iodo- ⁇ -butyrolactone, 2-hydroxyethyl 2-iodoisobutyrate, diethyl 2-iodo-2-methylmalonate , ethyl 2-iodo-2-methylacetoacetate, 2-iodo-2-phenylacetic acid, ethyl 2-iodo-2-phenylacetate, ethyl 2-iodo-2-(4′-
  • YI (Y is an organic group and I is iodine) is used as the organic iodine compound
  • Y is the terminal group derived from the iodine transfer polymerization initiator.
  • Y is bonded to the polymer chain through the carbon atom in Y to which iodine was bonded.
  • Y preferably has a substituent capable of delocalizing an unpaired electron such as a carbonyl group, a cyano group, a nitro group, or a phenyl group.
  • the carbon atom to which iodine I is bound is preferably adjacent to the electron-withdrawing group.
  • Second Part has a triazole skeleton and a polymerizable group attached to the triazole skeleton.
  • a nitrogen atom contained in the ring structure of the triazole skeleton is covalently bonded to the polymer chain of the first portion.
  • the carbon atoms contained in the cyclic structure of the triazole skeleton are covalently bonded to the polymerizable group.
  • a polymerizable group is a functional group that can be polymerized by itself or copolymerized with other monomers (for example, radical polymerization, anionic polymerization, cationic polymerization, etc.).
  • the polymerizable group is, for example, a group having a carbon-carbon double bond such as a vinyl group.
  • a vinyl group is preferable as the polymerizable group from the viewpoint of ease of introduction as a polymerizable group bonded to the triazole skeleton.
  • the second portion may have a structure represented by the following general formula (2).
  • R 1 is hydrogen, chlorine, bromine, iodine, substituted or unsubstituted alkyl group, alkenyl group, aryl group, mercapto group, heterocyclyl group, substituted or unsubstituted silyl group, substituted or unsubstituted ether group, and substituted Or any one selected from the group consisting of unsubstituted amino groups.
  • R 2 , R 3 and R 4 are each independently hydrogen, chlorine, bromine, iodine, substituted or unsubstituted alkyl group, alkenyl group, aryl group, mercapto group, heterocyclyl group, substituted or unsubstituted silyl is any one selected from the group consisting of a group, a substituted or unsubstituted ether group, and a substituted or unsubstituted amino group.
  • a specific example of the second moiety is a structure represented by the following general formula (3) in which R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
  • A2 represents a bond with the first portion.
  • the number average molecular weight (Mn) of the compound according to one embodiment of the present invention is preferably 1,000 to 100,000, more preferably 2,000 to 50,000.
  • a compound according to one embodiment of the present invention for example, specifically has a structure represented by the following formula (6).
  • R 1 , R 2 , R 3 and R 4 in formula (6) above are the same as in formula (2) above.
  • W is the aforementioned polymer chain contained in the first portion.
  • Y is an organic group, and is a terminal group derived from the above atom transfer radical polymerization initiator or iodine transfer polymerization initiator.
  • Method for Producing Compound includes a polymerization step, an azide group introduction step, and a polymerizable group introduction step.
  • radically polymerizable monomers examples include styrene-based monomers, (meth)acrylic-based monomers, diene-based monomers, vinyl ether-based monomers, and unsaturated nitrile-based monomers. These can be used singly or in combination.
  • Styrenic monomers include, for example, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, and ⁇ -methyl-p-methylstyrene and the like.
  • (Meth)acrylic monomers include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, normal propyl acrylate, normal propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, normal butyl acrylate, normal butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, secondary butyl acrylate, secondary butyl methacrylate, tertiary butyl acrylate, tertiary butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, normal octyl acrylate, normal octyl methacrylate, isooctyl methacrylate, normal nonyl acrylate, Normal nonyl methacrylate, isononyl
  • diene-based monomers include conjugated diene monomers such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and chloroprene.
  • vinyl ether monomers examples include vinyl acetate, vinyl propionate, vinyl methyl ether, vinyl butyl ether and vinyl octyl ether.
  • Unsaturated nitrile-based monomers include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, and the like.
  • the polymerization reaction in the polymerization step is carried out by polymerizing radically polymerizable monomers in the presence of a polymerization initiator.
  • a polymerization initiator for example, the above ATRP initiator or ITP initiator is used.
  • a catalyst such as a transition metal complex such as copper is added.
  • a catalyst such as sodium azide or a salt containing iodine is added.
  • the first intermediate is a polymer (homopolymer or copolymer) of radically polymerizable monomers.
  • a polymer has a structure that becomes the polymer chain of Part 1 above.
  • the first intermediate preferably has a terminal structure that can be azidated.
  • Azidizable terminal structures are, for example, carbons such as methylene groups substituted by halogens such as fluorine, chlorine, bromine or iodine.
  • the first intermediate has a terminal group derived from the atom transfer radical polymerization initiator.
  • the first intermediate has a terminal group derived from the iodine transfer polymerization initiator.
  • the first intermediate is subjected to an azidation reaction to produce a second intermediate.
  • the azidation reaction can be carried out by reacting the first intermediate with an azidating agent.
  • Azidation reactions include nucleophilic substitution reactions, reactions using organometallic reagents (organolithium reagents and Grignard reagents), coupling reactions using transition metal catalysts (eg, copper catalysts), and the like.
  • azidating agents examples include sodium azide, trimethylsilyl azide, diphenyl phosphate azide, tributyltin azide, tetramethylguanidinium azide and the like. Any other azidation agent can be selected depending on the azidation reaction to be used.
  • the second intermediate has a polymer of radically polymerizable monomers and an azide group. Moreover, the second intermediate may further have a terminal group derived from the atom transfer radical polymerization initiator.
  • polymerizable Group-introducing step the second intermediate is reacted with monovinylacetylene or a monovinylacetylene derivative (monovinylacetylene-based compound) to obtain a compound containing the above first portion and second portion.
  • the azide group of the second intermediate reacts with monovinylacetylene or a monovinylacetylene derivative to form a triazole skeleton.
  • Monovinylacetylene or a monovinylacetylene derivative is, for example, a structure represented by the following general formula (4).
  • R 1 , R 2 , R 3 and R 4 in formula (4) above are the same as in formula (2) above.
  • R 1 , R 2 , R 3 and R 4 in the above formula (4) are hydrogen atoms.
  • Example 1 (Styrene polymerization step) The polymerization reaction was carried out according to reference 1 (J Polym Sci Part A: Polym Chem 2006, 44, 1667-1675.).
  • Intermediate 2-1 was also analyzed by an infrared spectrophotometer. A peak was confirmed near 2100 cm ⁇ 1 , confirming the introduction of an azide group.
  • the measurement conditions for the infrared spectrophotometer are as follows. Apparatus name: Frontier (manufactured by PerkinElmer Co., Ltd.) Start Range: 4000 cm -1 End Range: 400 cm -1 Number of times of accumulation: 16 times Resolution: 4.0 cm -1 Spacing: 1.0 cm -1 Measurement method: ATR method (Durascope)
  • the resulting compound 1 was dissolved in tetrahydrofuran, precipitated by adding methanol, and then filtered. The residue was dried under reduced pressure to obtain a sample. After dissolving the sample in deuterated chloroform, the 1H-NMR spectrum was measured. The measurement data were corrected based on the chloroform peak (7.24 ppm) in the deuterated chloroform used as the solvent.
  • the number average molecular weight of compound 1 was measured by gel permeation chromatography (GPC).
  • the number average molecular weight of compound 1 was 5,000.
  • the GPC measurement conditions are as follows.
  • Example 2 (Styrene polymerization step) Polymerization reactions were carried out according to reference 1.
  • the resulting compound 2 was dissolved in tetrahydrofuran, precipitated by adding methanol, and then filtered. The residue was dried under reduced pressure to obtain a sample. After dissolving the sample in deuterated chloroform, the 1H-NMR spectrum was measured. The measurement data were corrected based on the chloroform peak (7.24 ppm) in the deuterated chloroform used as the solvent.
  • Example 3 Metal methacrylate polymerization step
  • the polymerization reaction was carried out according to reference 2 (Macromolecules 1997, 30, 2216-2218.).
  • a 200 ml eggplant-shaped flask was charged with 50 ml of acetone, 50 g of methyl methacrylate, 2.2 g of pentamethyldiethylenetriamine, and 0.90 g of copper (I) bromide, and freeze degassing was performed three times under a nitrogen atmosphere. After heating the reaction solution to 50° C., it was stirred with a magnetic stirrer. Polymerization was initiated by adding 2.4 g of ethyl 2-bromoisobutyrate as a polymerization initiator. When the polymerization rate reached 80%, the temperature of the reaction solution was lowered to 20° C. to terminate the reaction. Toluene was added to the reaction solution to precipitate polymethyl methacrylate, and the intermediate 1-3 polymer was recovered. A portion of the polymer was sampled for analysis and the remainder was used for azidation.
  • the obtained compound 3 was dissolved in tetrahydrofuran, precipitated by adding methanol, and then filtered. The residue was dried under reduced pressure to obtain a sample. After dissolving the sample in deuterated chloroform, the 1H-NMR spectrum was measured. The measurement data were corrected based on the chloroform peak (7.24 ppm) in the deuterated chloroform used as the solvent.
  • Example 4 Metal methacrylate polymerization step, azidation step
  • Polymerization and azidation reactions were carried out according to Reference 6 (J.Am.Chem.Soc., 2017, 139, 10551-10560).
  • Example 2 the number average molecular weight of Intermediate 2-4 measured by GPC in the same manner as in Example 1 was 5,500.
  • Intermediate 2-4 was also analyzed by an infrared spectrophotometer in the same manner as in Example 1. A peak was confirmed near 2100 cm ⁇ 1 , confirming the introduction of an azide group.
  • the obtained compound 3 was dissolved in tetrahydrofuran, precipitated by adding methanol, and then filtered. The residue was dried under reduced pressure to obtain a sample. After dissolving the sample in deuterated chloroform, the 1H-NMR spectrum was measured. The measurement data were corrected based on the chloroform peak (7.24 ppm) in the deuterated chloroform used as the solvent.
  • Example 5 butadiene polymerization step
  • the polymerization reaction was carried out according to reference 3 (ACS Catal. 2020, 10, 12, 6645-6663).
  • the obtained compound 5 was dissolved in tetrahydrofuran, precipitated by adding methanol, and then filtered. The residue was dried under reduced pressure to obtain a sample. After dissolving the sample in deuterated chloroform, the 1H-NMR spectrum was measured. The measurement data were corrected based on the chloroform peak (7.24 ppm) in the deuterated chloroform used as the solvent.
  • Example 6 (Vinyl acetate polymerization step) The polymerization reaction was carried out according to reference 4 (AIChE J. 55 (2009) 737-746.).
  • Example 7 (Acrylonitrile polymerization step) Polymerization reactions were carried out according to reference 5 (Macromolecules 1997, 30, 6398-6400).
  • the resulting compound 7 was dissolved in dimethylsulfoxide, added with methanol to precipitate, and then filtered. The residue was dried under reduced pressure to obtain a sample. After dissolving the sample in deuterated dimethylsulfoxide, the 1H-NMR spectrum was measured. The measurement data were corrected based on the heavy dimethylsulfoxide peak (2.50 ppm) in the heavy dimethylsulfoxide used as the solvent.
  • the number average molecular weight of compound 7 measured by GPC in the same manner as in Example 1 was 5,000. However, dimethylformamide was used as a solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

ポリマー部分と重合性基を有する新規化合物、及びその合成方法を提供する。 本発明によれば、第1部分と、第2部分と、を含み、前記第1部分は、ポリマー鎖を有し、前記第2部分は、トリアゾール骨格及び前記トリアゾール骨格に結合した重合性基を有する、化合物が提供される。

Description

化合物及び当該化合物の製造方法
 本発明は、化合物及び当該化合物の製造方法に関する。
 ボトルブラシポリマー(Bottlebrush Polymer)等のくし型ポリマーは、温度等の刺激応答性ポリマー、ポリマーテンプレート、又はドラッグデリバリーシステム用ポリマー等として開発が期待されているグラフトポリマーである。このようなグラフトポリマーは、種々のグラフト重合により得ることができるがマクロモノマーを用いたグラフティングスルー(Grafting-through)法が新たな手法として期待されている(非特許文献1)。
"6.14 Graft Copolymers and Comb-Shaped Homopolymers", Polymer Science A Comprehensive Reference Volume 6, 2012, Pages 511-542.
 グラフティングスルー法に用いることのできるマクロモノマーは、グラフトポリマーにおいて側鎖となりうるポリマー部分と、主鎖を構成しうる重合性基を有する化合物であることが求められる。しかし、このようなマクロモノマーとして提供されている化合物の種類は未だ少なく、その合成方法も限られている。
 本発明はこのような問題に鑑みてなされたものであり、ポリマー部分と重合性基を有する新規化合物、及びその合成方法を提供するものである。
 本発明によれば、第1部分と、第2部分と、を含み、前記第1部分は、ポリマー鎖を有し、前記第2部分は、トリアゾール骨格及び前記トリアゾール骨格に結合した重合性基を有する、化合物が提供される
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
[1]第1部分と、第2部分と、を含み、前記第1部分は、ポリマー鎖を有し、前記第2部分は、トリアゾール骨格及び前記トリアゾール骨格に結合した重合性基を有する、化合物。
[2]前記ポリマー鎖は、ラジカル重合性単量体単位を有し、前記ラジカル重合性単量体単位は、スチレン系単量体単位、(メタ)アクリル系単量体単位、ジエン系単量体単位、ビニルエーテル系単量体単位、不飽和ニトリル系単量体単位からなる群から選択される1種以上の単量体単位である、[1]に記載の化合物。
[3]前記重合性基は、ビニル基である、[1]又は[2]に記載の化合物。
[4]前記第1部分は、原子移動ラジカル重合開始剤あるいはヨウ素移動重合開始剤由来の末端基を有する、[1]~[3]の何れか1項に記載の化合物。
[5]重合工程と、アジド基導入工程と、重合性基導入工程と、を備え、前記重合工程では、前記ラジカル重合性単量体の重合により第1中間体を生成し、前記アジド基導入工程では、前記第1中間体に対するアジド化反応により第2中間体を生成し、前記重合性基導入工程では、前記第2中間体と、モノビニルアセチレン又はモノビニルアセチレン誘導体とを反応させる、[1]~[4]の何れか1項に記載の化合物の製造方法。
 以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。
1.化合物
 本発明の一実施形態に係る化合物は、第1部分と、第2部分と、を含む。第1部分と第2部分は互いに共有結合により結合されている。
1-1.第1部分
 第1部分は、ポリマー鎖を有する。また、第1部分は、原子移動ラジカル重合開始剤あるいはヨウ素移動重合開始剤由来の末端基を有していてもよい。ポリマー鎖と原子移動ラジカル重合開始剤あるいはヨウ素移動重合開始剤由来の末端基は、互いに共有結合で結合されている。
1-1-1.ポリマー鎖
 ポリマー鎖は、ラジカル重合性単量体単位を有する。ラジカル重合性単量体単位は、ラジカル重合性の単量体に由来するポリマー鎖の構成単位である。ラジカル重合性単量体単位は、例えば、スチレン系単量体単位、(メタ)アクリル系単量体単位、ジエン系単量体単位、ビニルエーテル系単量体単位、不飽和ニトリル系単量体単位等である。これらは単独又は複数を組み合わせて用いることができる。
 スチレン系単量体単位は、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、及びα-メチル-p-メチルスチレン等のスチレン系単量体に由来する単位である。
 (メタ)アクリル系単量体単位は、例えば、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ノルマルプロピルアクリレート、ノルマルプロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、ノルマルブチルアクリレート、ノルマルブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、セカンダリーブチルアクリレート、セカンダリーブチルメタクリレート、ターシャリーブチルアクリレート、ターシャリーブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ノルマルオクチルアクリレート、ノルマルオクチルメタクリレート、イソオクチルアクリレート、イソオクチルメタクリレート、ノルマルノニルアクリレート、ノルマルノニルメタクリレート、イソノニルアクリレート、イソノニルメタクリレート、ラウリルアクリレート、ラウリルメタクリレート、ステアリルアクリレート、ステアリルメタクリレート、エトキシジエチレングリコールアクリレート、エトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルメタクリレート、イソボニルアクリレート、及びイソボニルメタクリレート等の(メタ)アクリル系単量体に由来する単位である。なお、(メタ)アクリル系単量体(単位)とは、アクリル系単量体(単位)及びメタクリル系単量体(単位)を意味する。
 ジエン系単量体単位は、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレン等共役ジエン単量体等に由来する単位である。
 ビニルエーテル系単量体単位は、例えば、酢酸ビニル、プロピオン酸ビニル、2-ヒドロキシエチルビニルエーテル、ジエチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル、ビニルメチルエーテル、ビニルブチルエーテル及びビニルオクチルエーテル等のビニルエーテル系単量体に由来する単位である。
 不飽和ニトリル系単量体単位は、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等の不飽和ニトリル系単量体に由来する単位である。
 ポリマー鎖は、単一の単量体に由来する単量体単位で構成された単独重合体であってもよく、複数種類の単量体に由来する単量体単位で構成された共重合体であってもよい。ポリマー鎖が共重合体の場合には、ランダム共重合体、交互共重合体、ブロック共重合体、又はグラフト共重合体等であってよい。
1-1-2.原子移動ラジカル重合開始剤由来の末端基
 原子移動ラジカル重合開始剤由来の末端基は、原子移動ラジカル重合(ATRP)に用いられる重合開始剤に由来する部位である。ATRP開始剤は、有機ハロゲン化合物である。
 ATRP開始剤としての有機ハロゲン化合物は、例えば、2-クロロプロピオン酸メチル、2,2-ジクロロアセトフェノン、2-ブロモ-2-メチルプロパン酸3-(トリメトキシシリル)プロピル、クロロアセトニトリル、クロロ酢酸メチル、2-ブロモイソ酪酸 tert-ブチル、(1-ブロモエチル)ベンゼン、2-ブロモプロピオン酸メチル、2-クロロプロピオン酸メチル、2-ブロモ-2-メチルプロパン酸3-(トリクロロシリル)プロピル、2-ブロモ-2-メチルプロパン酸3-(トリエトキシシリル)プロピル、2-ブロモ-2-メチルプロピオン酸2-[(2-ヒドロキシエチル)ジスルファニル]エチル、2-ブロモ-2-メチルプロパン酸11-メルカプトウンデシル、ブロモアセトニトリル、(1-クロロエチル)ベンゼン、2-ブロモイソ酪酸エチル、[11-[(2-ブロモ-2-メチルプロパノイル)オキシ]ウンデシル]ホスホン酸、2-ブロモ-2-メチルプロパン酸2-ヒドロキシエチル、ブロモ酢酸エチル、アリルブロミド、2-ブロモイソブチリルブロミド、ブロモ酢酸メチル、ブロモ酢酸メチル及び2-ブロモプロピオニトリル等である。これらは単独又は複数を組み合わせて用いることができる。
 有機ハロゲン化合物としてY-X(Yが有機基であり、Xがハロゲン基である)を用いた場合には、原子移動ラジカル重合開始剤由来の末端基は、Yである。Yは、ハロゲン基が結合していたY中の炭素原子等によってポリマー鎖と結合する。Yは、カルボニル基、シアノ基、又はニトロ基、フェニル基等の不対電子を非局在化することができる置換基を有することが好ましい。また、有機ハロゲン化合物Y-Xにおいて、ハロゲン基Xが結合している炭素原子は電子求引基に隣接していることが好ましい。
 例えば、2-ブロモイソ酪酸エチルをATRP開始剤として用いた場合には、原子移動ラジカル重合開始剤由来の末端基は、下記一般式(1)で表される構造である。一般式(1)中において、Aは、ポリマー鎖との結合を表す。
Figure JPOXMLDOC01-appb-C000001
1-1-3. ヨウ素移動重合開始剤由来の末端基
 ヨウ素移動重合(ITP)開始剤由来の末端基は、ヨウ素移動重合に用いられる重合開始剤に由来する部位である。ITP開始剤は、有機ヨウ素化合物である。
 ITP開始剤としての有機ヨウ素化合物は、例えば2-ヨード酢酸、2-ヨード酢酸メチル、2-ヨード酢酸エチル、2-ヨードプロピオン酸、2-ヨードプロピオン酸エチル、2-ヨード酪酸エチル、2-ヨード吉草酸エチル、2-ヨードイソ酪酸メチル、2-ヨードイソ酪酸エチル、2-ヨードイソ酪酸ベンジル、α―ヨード―γ―ブチロラクトン、2-ヨードイソ酪酸-2-ヒドロキシエチル、2-ヨード―2-メチルマロン酸ジエチル、2-ヨード―2-メチルアセト酢酸エチル、2-ヨード―2-フェニル酢酸、2-ヨード―2-フェニル酢酸エチル、2-ヨード―2-(4'-メチルフェニル)酢酸エチル、2-ヨード―(4'-ニトロフェニル)酢酸エチル、2-ヨード―2-フェニル酢酸―2-ヒドロキシエチル、2-ヨードアセトニトリル、2-ヨードプロピオニトリル、2-ヨードイソブチロニトリル、α―ヨードベンジルシアニド、2-ヨードプロピオンアミド、2-ヨードアセトフェノン、ベンジルヨージド、4-ニトロベンジルヨージド、(1-ヨードエチル)ベンゼン、ヨードジフェニルメタン、9-ヨード―9H-フルオレン、ビス(2-ヨードイソ酪酸)エチレングリコール、ビス(2-ヨード―2-フェニル酢酸)エチレングリコール、p-キシリレンヨージド、1,4-ビス(1'-ヨードエチル)ベンゼン、2,5-ジヨードアジピン酸ジエチル、トリス(2-ヨードイソ酪酸)グリセロール、1,3,5-トリス(1'-ヨードエチル)ベンゼン等である。これらは単独又は複数を組み合わせて用いることができる。
 有機ヨウ素化合物としてY-I(Yが有機基であり、Iがヨウ素である)を用いた場合には、ヨウ素移動重合開始剤由来の末端基は、Yである。Yは、ヨウ素が結合していたY中の炭素原子等によってポリマー鎖と結合する。Yは、カルボニル基、シアノ基、又はニトロ基、フェニル基等の不対電子を非局在化することができる置換基を有することが好ましい。また、有機ヨウ素化合物Y-Iにおいて、ヨウ素Iが結合している炭素原子は電子求引基に隣接していることが好ましい。
1-2.第2部分
 第2部分は、トリアゾール骨格及び当該トリアゾール骨格に結合した重合性基を有する。トリアゾール骨格の環状構造に含まれる窒素原子が第1部分のポリマー鎖と共有結合している。また、トリアゾール骨格の環状構造に含まれる炭素原子が重合性基と共有結合している。
 重合性基は、当該重合性基単独で重合、又は他のモノマーと共重合(例えば、ラジカル重合、アニオン重合、カチオン重合等)可能な官能基である。重合性基は、例えば、ビニル基等の炭素-炭素二重結合を有する基等である。トリアゾール骨格に結合した重合性基として導入が容易であるという観点からは、重合性基はビニル基が好ましい。
 第2部分は、下記一般式(2)で表される構造であってもよい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)中において、Aは第1部分との結合を表す。Rは、水素、塩素、臭素、ヨウ素、置換もしくは無置換のアルキル基、アルケニル基、アリール基、メルカプト基、ヘテロシクリル基、置換もしくは無置換のシリル基、置換もしくは無置換のエーテル基、及び置換もしくは無置換のアミノ基からなる群より選択される何れか1つである。R、R及びRは、独立して各々に、水素、塩素、臭素、ヨウ素、置換もしくは無置換のアルキル基、アルケニル基、アリール基、メルカプト基、ヘテロシクリル基、置換もしくは無置換のシリル基、置換もしくは無置換のエーテル基、及び置換もしくは無置換のアミノ基からなる群より選択される何れか1つである。
 第2部分の具体的な一例としては、R、R、R及びRが水素原子である下記一般式(3)で表される構造が挙げられる。下記一般式(3)中において、Aは第1部分との結合を表す。
Figure JPOXMLDOC01-appb-C000003
1-3.その他
 本発明の一実施形態に係る化合物の数平均分子量(Mn)は、好ましくは1000~100000であり、より好ましくは2000~50000である。
 本発明の一実施形態に係る化合物は、例えば具体的には、下記式(6)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000004
 上記式(6)中のR、R、R及びRは、上記式(2)と同様である。Wは、第1部分に含まれる上述のポリマー鎖である。Yは、有機基であって、上述の原子移動ラジカル重合開始剤あるいはヨウ素移動重合開始剤由来の末端基である。
2.化合物の製造方法
 本発明の一実施形態に係る化合物の製造方法は、重合工程と、アジド基導入工程と、重合性基導入工程と、を備える。
2-1.重合工程
 重合工程では、ラジカル重合性単量体の重合により第1中間体を生成する。
 ラジカル重合性単量体は、例えば、スチレン系単量体、(メタ)アクリル系単量体、ジエン系単量体、ビニルエーテル系単量体、不飽和ニトリル系単量体等である。これらは単独又は複数を組み合わせて用いることができる。
 スチレン系単量体は、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、及びα-メチル-p-メチルスチレン等である。
 (メタ)アクリル系単量体は、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ノルマルプロピルアクリレート、ノルマルプロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、ノルマルブチルアクリレート、ノルマルブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、セカンダリーブチルアクリレート、セカンダリーブチルメタクリレート、ターシャリーブチルアクリレート、ターシャリーブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ノルマルオクチルアクリレート、ノルマルオクチルメタクリレート、イソオクチルアクリレート、イソオクチルメタクリレート、ノルマルノニルアクリレート、ノルマルノニルメタクリレート、イソノニルアクリレート、及びイソノニルメタクリレート等である。
 ジエン系単量体は、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレン等共役ジエン単量体等である。
 ビニルエーテル系単量体は、例えば、酢酸ビニル、プロピオン酸ビニル、ビニルメチルエーテル、ビニルブチルエーテル及びビニルオクチルエーテル等である。
 不飽和ニトリル系単量体は、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等である。
 重合工程の重合反応は、重合開始剤存在下においてラジカル重合性単量体を重合させることによって行われる。重合開始剤は、例えば、上記ATRP開始剤やITP開始剤が用いられる。
 重合反応がATRP開始剤を用いる原子移動ラジカル重合である場合には、銅等の遷移金属錯体等の触媒が添加される。
 重合反応がITP開始剤を用いるヨウ素移動重合である場合には、アジ化ナトリウムやヨウ素を含む塩等の触媒が添加される。
 第1中間体は、ラジカル重合性単量体の重合体(単独重合体又は共重合体)である。このような重合体は、上記第1部のポリマー鎖となる構造である。また、第1中間体は、アジド化可能な末端構造を有することが好ましい。アジド化可能な末端構造とは、例えば、フッ素、塩素、臭素又はヨウ素等のハロゲンによって置換されたメチレン基等の炭素である。
 また、重合反応がATRP開始剤を用いる原子移動ラジカル重合である場合には、第1中間体は原子移動ラジカル重合開始剤由来の末端基を有する。
 また、重合反応がITP開始剤を用いる原子移動ラジカル重合である場合には、第1中間体はヨウ素移動重合開始剤由来の末端基を有する。
2-2.アジド基導入工程
 アジド基導入工程では、第1中間体に対するアジド化反応により第2中間体を生成する。
 アジド化反応は、第1中間体に対してアジド化剤を反応させることにより行われうる。アジド化反応は、求核置換反応、有機金属反応剤(有機リチウム反応剤やグリニャール反応剤)を用いた反応、遷移金属触媒(例えば、銅触媒)を用いたカップリング反応等である。
 アジド化剤としては、例えば、アジ化ナトリウム、トリメチルシリルアジド、ジフェニルリン酸アジド、トリブチルスズアジド、テトラメチルグアニジニウムアジド等が挙げられる。用いるアジド化反応によってその他の任意のアジド化剤を選択可能である。
 第2中間体は、ラジカル重合性単量体の重合体とアジド基を有する。また、第2中間体は、原子移動ラジカル重合開始剤由来の末端基をさらに有していてもよい。
2-3.重合性基導入工程
 重合性基導入工程では、第2中間体と、モノビニルアセチレン又はモノビニルアセチレン誘導体(モノビニルアセチレン系化合物)とを反応させ、上述の第1部分と第2部分を含む化合物を得る。
 重合性基導入工程では、第2中間体が有するアジド基とモノビニルアセチレン又はモノビニルアセチレン誘導体が反応し、トリアゾール骨格が形成される。
 モノビニルアセチレン又はモノビニルアセチレン誘導体は、例えば、下記一般式(4)で表される構造である。
Figure JPOXMLDOC01-appb-C000005
 上記式(4)中のR、R、R及びRは、上記式(2)と同様である。モノビニルアセチレンは、上記式(4)中のR、R、R及びRが水素原子である。
 以下に実施例をあげて本発明を更に詳細に説明する。また、これらはいずれも例示的なものであって、本発明の内容を限定するものではない。
(実施例1)
(スチレン重合工程)
 重合反応は参考文献1(J Polym Sci Part A: Polym Chem 2006, 44, 1667-1675.)に従って実施した。
 まず、100mlナス型フラスコにスチレン50g、ペンタメチルジエチレントリアミン2.2g、臭化銅(I)0.90gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を50℃に昇温した後、マグネチックスターラーで攪拌した。重合開始剤として2-ブロモイソ酪酸エチルを2.4g添加して重合を開始した。重合率80%となった時点で反応液を20℃に降温して反応を停止させた。反応液にメタノールを追加してポリスチレンを析出させ、中間体1-1であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはアジド化に使用した。
 また、中間体1-1の数平均分子量を、ゲル浸透クロマトグラフィー(GPC)により測定した。中間体1-1の数平均分子量は、5000であった。
 なお、GPC測定条件は以下の通り。
装置名:HLC-8320(東ソー株式会社製)
カラム:TSKgel GMHHR-Hを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
検量線:標準ポリスチレン(PS)を用いて作成
(アジド化工程)
 重合で得たポリスチレン(中間体1-1)をジメチルホルムアミド50mlに溶解し、室温でアジ化ナトリウム0.89g添加をしてポリマー末端をアジド化し、中間体2-1を得た。
 また、中間体2-1を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。赤外分光光度計の測定条件は以下の通り。
装置名:Frontier(パーキンエルマー株式会社製)
Start Range:4000cm-1
End Range:400cm-1
積算回数:16回
分解能:4.0cm-1
間隔:1.0cm-1
測定手法:ATR法(デュラスコープ)
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン(MVA)0.78g、酢酸銅(II)1.1g、アスコルビン酸ナトリウム1.5gを添加して中間体2-1のアジド末端とMVAを反応させ、1-ポリスチレン-4-ビニル-1,2,3-トリアゾール(化合物1)を得た。
 得られた化合物1をテトラヒドロフランに溶解させ、メタノールを加えて析出させた後、ろ過した。残渣物を減圧乾燥して試料を得た。試料を重クロロホルムに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。
 NMR測定の結果、5~6ppmの間に、下記式(5)中の水素原子3及び水素原子4に由来するピークを確認した。
Figure JPOXMLDOC01-appb-C000006
 また、化合物1の数平均分子量を、ゲル浸透クロマトグラフィー(GPC)により測定した。化合物1の数平均分子量は、5000であった。
 なお、GPC測定条件は以下の通りです。
装置名:HLC-8320(東ソー株式会社製)
カラム:TSKgel GMHHR-Hを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
検量線:標準ポリスチレン(PS)を用いて作成
(実施例2)
(スチレン重合工程)
 重合反応は参考文献1に従って実施した。
 まず、100mlナス型フラスコにスチレン50g、ペンタメチルジエチレントリアミン1.1g、臭化銅(I)0.45gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を50℃に昇温した後、マグネチックスターラーで攪拌した。重合開始剤として2-ブロモイソ酪酸エチルを1.2g添加して重合を開始した。重合率80%となった時点で反応液を20℃に降温して反応を停止させた。反応液にメタノールを追加してポリスチレンを析出させ、中間体1-2であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはアジド化に使用した。
 また、実施例1と同様にGPC測定した中間体1-2の数平均分子量は、10000であった。
(アジド化工程)
 重合で得たポリスチレン(中間体1-2)をジメチルホルムアミド50mlに溶解し、室温でアジ化ナトリウム0.45g添加をしてポリマー末端をアジド化し、中間体2-2を得た。
 また、実施例1と同様に中間体2-2を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン0.39g、酢酸銅(II)0.57g、アスコルビン酸ナトリウム0.74gを添加して中間体2-2のアジド末端とMVAを反応させ、1-ポリスチレン-4-ビニル-1,2,3-トリアゾール(化合物2)を得た。
 得られた化合物2をテトラヒドロフランに溶解させ、メタノールを加えて析出させた後、ろ過した。残渣物を減圧乾燥して試料を得た。試料を重クロロホルムに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。
 NMR測定の結果、5~6ppmの間に、上記式(5)中の水素原子3及び水素原子4に由来するピークを確認した。
 また、実施例1と同様にGPC測定した化合物2の数平均分子量は、10000であった。
(実施例3)
(メタクリル酸メチル重合工程)
 重合反応は参考文献2(Macromolecules 1997, 30, 2216-2218.)に従って実施した。
 まず、200mlナス型フラスコにアセトン50ml、メタクリル酸メチル50g、ペンタメチルジエチレントリアミン2.2g、臭化銅(I)0.90gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を50℃に昇温した後、マグネチックスターラーで攪拌した。重合開始剤として2-ブロモイソ酪酸エチルを2.4g添加して重合を開始した。重合率80%となった時点で反応液を20℃に降温して反応を停止させた。反応液にトルエンを追加してポリメタクリル酸メチルを析出させ、中間体1-3であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはアジド化に使用した。
 また、実施例1と同様にGPC測定した中間体1-3の数平均分子量は、5000であった。
(アジド化工程)
 重合で得たポリメタクリル酸メチル(中間体1-3)をジメチルホルムアミド50mlに溶解し、室温でアジ化ナトリウム0.89g添加をしてポリマー末端をアジド化し、中間体2-3を得た。
 また、実施例1と同様に中間体2-3を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン0.78g、酢酸銅(II)1.1g、アスコルビン酸ナトリウム1.5gを添加して中間体2-3のアジド末端とMVAを反応させ、1-ポリメタクリル酸メチル-4-ビニル-1,2,3-トリアゾール(化合物3)を得た。
 得られた化合物3をテトラヒドロフランに溶解させ、メタノールを加えて析出させた後、ろ過した。残渣物を減圧乾燥して試料を得た。試料を重クロロホルムに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。
 NMR測定の結果、7~8ppmの間に、上記式(5)中の水素原子1及び水素原子2に由来するピークを確認した。
 また、実施例1と同様にGPC測定した化合物3の数平均分子量は、5000であった。
(実施例4)
(メタクリル酸メチル重合工程、アジド化工程)
 重合反応及びアジド化反応は参考文献6(J.Am.Chem.Soc.,2017, 139, 10551-10560)に従って実施した。
 まず、200mlナス型フラスコにメタクリル酸メチル20g、トルエン6.67g、18-クラウン―6エーテル6.67g、エチル―2-ヨードプロピオネート7.80g、アジ化ナトリウム6.67gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を70℃に昇温した後、マグネチックスターラーで攪拌した。重合率80%となった時点で反応液を20℃に降温してジメチルホルムアミド95.59gを添加して18時間攪拌し、生成した中間体1-4のポリマー末端のヨウ素をアジドに変換した。反応液に水/メタノール=50/50混合液を追加してポリメタクリル酸メチルを析出させ、中間体2-4であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはHuisgen反応に使用した。
 また、実施例1と同様にGPC測定した中間体2-4の数平均分子量は、5500であった。また、実施例1と同様に中間体2-4を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン0.78g、酢酸銅(II)1.1g、アスコルビン酸ナトリウム1.5gを添加して中間体2-4のアジド末端とMVAを反応させ、1-ポリメタクリル酸メチル-4-ビニル-1,2,3-トリアゾール(化合物4)を得た。
 得られた化合物3をテトラヒドロフランに溶解させ、メタノールを加えて析出させた後、ろ過した。残渣物を減圧乾燥して試料を得た。試料を重クロロホルムに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。
 NMR測定の結果、7~8ppmの間に、上記式(5)中の水素原子1及び水素原子2に由来するピークを確認した。
 また、実施例1と同様にGPC測定した化合物4の数平均分子量は、5400であった。
(実施例5)
(ブタジエン重合工程)
 重合反応は参考文献3(ACS Catal. 2020, 10, 12, 6645-6663)に従って実施した。
 まず、200ml金属製圧力容器にトルエン50ml、ブタジエン50g、ペンタメチルジエチレントリアミン2.2g、臭化銅(I)0.90gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を50℃に昇温した後、メカニカルスターラーで攪拌した。重合開始剤として2-ブロモイソ酪酸エチルを2.4g添加して重合を開始した。重合率80%となった時点で反応液を20℃に降温して反応を停止させた。反応液にメタノールを追加してポリブタジエンを析出させ、中間体1-5であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはアジド化に使用した。
 また、実施例1と同様にGPC測定した中間体1-5の数平均分子量は、5000であった。
(アジド化工程)
 重合で得たポリブタジエン(中間体1-5)をジメチルホルムアミド50mlに溶解し、室温でアジ化ナトリウム0.89g添加をしてポリマー末端をアジド化し、中間体2-5を得た。
 また、実施例1と同様に中間体2-5を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン0.78g、酢酸銅(II)1.1g、アスコルビン酸ナトリウム1.5gを添加して中間体2-4のアジド末端とMVAを反応させ、1-ポリブタジエン-4-ビニル-1,2,3-トリアゾール(化合物5)を得た。
 得られた化合物5をテトラヒドロフランに溶解させ、メタノールを加えて析出させた後、ろ過した。残渣物を減圧乾燥して試料を得た。試料を重クロロホルムに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。
 NMR測定の結果、7~8ppmの間に、上記式(5)中の水素原子1及び水素原子2に由来するピークを確認した。
 また、実施例1と同様にGPC測定した化合物5の数平均分子量は、5000であった。
(実施例6)
(酢酸ビニル重合工程)
 重合反応は参考文献4(AIChE J. 55 (2009) 737-746.)に従って実施した。
 まず、100mlナス型フラスコに酢酸ビニル50g、ターピリジン2.9g、塩化銅(I)0.62gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を50℃に昇温した後、マグネチックスターラーで攪拌した。重合開始剤として2-ブロモイソ酪酸エチルを2.4g添加して重合を開始した。重合率80%となった時点で反応液を20℃に降温して反応を停止させた。反応液にトルエンを追加してポリ酢酸ビニルを析出させ、中間体1-6であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはアジド化に使用した。
 また、実施例1と同様にGPC測定した中間体1-6の数平均分子量は、5000であった。
(アジド化工程)
 重合で得たポリ酢酸ビニル(中間体1-6)をジメチルホルムアミド50mlに溶解し、室温でアジ化ナトリウム0.89g添加をしてポリマー末端をアジド化し、中間体2-6を得た。
 また、実施例1と同様に中間体2-6を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン0.78g、酢酸銅(II)1.1g、アスコルビン酸ナトリウム1.5gを添加して中間体2-6のアジド末端とMVAを反応させ、1-ポリ酢酸ビニル-4-ビニル-1,2,3-トリアゾール(化合物6)を得た。
 得られた化合物6をテトラヒドロフランに溶解させ、ヘキサンを加えて析出させた後、ろ過残渣物を減圧乾燥して試料を得た。試料を重クロロホルムに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。
 NMR測定の結果、7~8ppmの間に、上記式(5)中の水素原子1及び水素原子2に由来するピークを確認した。
 また、実施例1と同様にGPC測定した化合物6の数平均分子量は、5000であった。
(実施例7)
(アクリロニトリル重合工程)
 重合反応は参考文献5(Macromolecules 1997, 30, 6398-6400)に従って実施した。
 まず、200mlナス型フラスコにジメチルホルムアミド50ml、アクリロニトリル50g、ビピリジン2.0g、臭化銅(I)0.90gを仕込み、窒素雰囲気下で凍結脱気を3回実施した。反応液を50℃に昇温した後、マグネチックスターラーで攪拌した。重合開始剤として2-ブロモプロピオニトリルを1.7g添加して重合を開始した。重合率80%となった時点で反応液を20℃に降温して反応を停止させた。反応液にメタノールを追加してポリアクリロニトリルを析出させ、中間体1-7であるポリマーを回収した。ポリマーの一部を分析のためサンプリングし、残りはアジド化に使用した。
 また、実施例1と同様にGPC測定した中間体1-7の数平均分子量は、5000であった。但し、溶媒としてジメチルホルムアミドを用いた。
(アジド化工程)
 重合で得たポリアクリロニトリル(中間体1-7)のジメチルホルムアミド溶液に対し、室温でアジ化ナトリウム0.89g添加をしてポリマー末端をアジド化し、中間体2-7を得た。
 また、実施例1と同様に中間体2-7を赤外分光光度計によって分析した。2100cm-1付近にピークが確認され、アジド基の導入を確認した。
(Huisgen反応)
 アジド化工程の後、モノビニルアセチレン0.78g、アスコルビン酸ナトリウム1.5gを添加して中間体2-6のアジド末端とMVAを反応させ、1-ポリアクリロニトリル-4-ビニル-1,2,3-トリアゾール(化合物7)を得た。
 得られた化合物7をジメチルスルホキシドに溶解させ、メタノールを加えて析出させた後、ろ過した。残渣物を減圧乾燥して試料を得た。試料を重ジメチルスルホキシドに溶解させた後、1H-NMRスペクトルを測定した。測定データは、溶媒として用いた重ジメチルスルホキシド中の重ジメチルスルホキシドのピーク(2.50ppm)を基準に補正した。
 NMR測定の結果、7~8ppmの間に、上記式(5)中の水素原子1及び水素原子2に由来するピークを確認した。
 また、実施例1と同様にGPC測定した化合物7の数平均分子量は、5000であった。但し、溶媒としてジメチルホルムアミドを用いた。

Claims (5)

  1. 第1部分と、第2部分と、を含み、
     前記第1部分は、ポリマー鎖を有し、
     前記第2部分は、トリアゾール骨格及び前記トリアゾール骨格に結合した重合性基を有する、
    化合物。
  2. 前記ポリマー鎖は、ラジカル重合性単量体単位を有し、
    前記ラジカル重合性単量体単位は、スチレン系単量体単位、(メタ)アクリル系単量体単位、ジエン系単量体単位、ビニルエーテル系単量体単位、不飽和ニトリル系単量体単位からなる群から選択される1種以上の単量体単位である、請求項1に記載の化合物。
  3. 前記重合性基は、ビニル基である、請求項1に記載の化合物。
  4. 前記第1部分は、原子移動ラジカル重合開始剤あるいはヨウ素移動重合開始剤由来の末端基を有する、請求項1に記載の化合物。
  5. 重合工程と、アジド基導入工程と、重合性基導入工程と、を備え、
     前記重合工程では、前記ラジカル重合性単量体の重合により第1中間体を生成し、
     前記アジド基導入工程では、前記第1中間体に対するアジド化反応により第2中間体を生成し、
     前記重合性基導入工程では、前記第2中間体と、モノビニルアセチレン又はモノビニルアセチレン誘導体とを反応させる、
    請求項1~請求項4の何れか1項に記載の化合物の製造方法。
PCT/JP2022/030810 2021-10-15 2022-08-12 化合物及び当該化合物の製造方法 WO2023062931A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280067990.3A CN118076649A (zh) 2021-10-15 2022-08-12 化合物及该化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021169437 2021-10-15
JP2021-169437 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023062931A1 true WO2023062931A1 (ja) 2023-04-20

Family

ID=85987366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030810 WO2023062931A1 (ja) 2021-10-15 2022-08-12 化合物及び当該化合物の製造方法

Country Status (3)

Country Link
CN (1) CN118076649A (ja)
TW (1) TW202323319A (ja)
WO (1) WO2023062931A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506940A (ja) * 2006-10-17 2010-03-04 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン アジドのアルキンへの1,3−双極子付加環化
JP2013227591A (ja) * 2006-03-10 2013-11-07 Warwick Effect Polymers Ltd ポリマー
JP2014515729A (ja) * 2011-03-01 2014-07-03 ジーイー・ヘルスケア・リミテッド 新規petトレーサー
JP2019112533A (ja) * 2017-12-24 2019-07-11 国立大学法人千葉大学 貴金属分離回収可能なコポリマー及びそのコポリマーを用いた貴金属回収方法
WO2020059997A1 (ko) * 2018-09-18 2020-03-26 주식회사 아이센스 전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227591A (ja) * 2006-03-10 2013-11-07 Warwick Effect Polymers Ltd ポリマー
JP2010506940A (ja) * 2006-10-17 2010-03-04 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン アジドのアルキンへの1,3−双極子付加環化
JP2014515729A (ja) * 2011-03-01 2014-07-03 ジーイー・ヘルスケア・リミテッド 新規petトレーサー
JP2019112533A (ja) * 2017-12-24 2019-07-11 国立大学法人千葉大学 貴金属分離回収可能なコポリマー及びそのコポリマーを用いた貴金属回収方法
WO2020059997A1 (ko) * 2018-09-18 2020-03-26 주식회사 아이센스 전이금속 복합체를 포함하는 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Polymer Science A Comprehensive Reference", vol. 6, 2012, article "6.14 Graft Copolymers and Comb-Shaped Homopolymers", pages: 511 - 542
ACS CATAL, vol. 10, no. 12, 2020, pages 6645 - 6663
AICHE J, vol. 55, 2009, pages 737 - 746
J POLYM SCI PART A: POLYM CHEM, vol. 44, 2006, pages 1667 - 1675
J. AM. CHEM. SOC., vol. 139, 2017, pages 10551 - 10560
MACROMOLECULES, vol. 30, 1997, pages 6398 - 6400

Also Published As

Publication number Publication date
CN118076649A (zh) 2024-05-24
TW202323319A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
Boyer et al. Modification of RAFT‐polymers via thiol‐ene reactions: A general route to functional polymers and new architectures
Durmaz et al. Preparation of block copolymers via Diels Alder reaction of maleimide‐and anthracene‐end functionalized polymers
Zhang et al. Controlled/“living” radical polymerization of 2-(dimethylamino) ethyl methacrylate
Rizzardo et al. RAFT polymerization: Adding to the picture
US8404788B2 (en) Atom transfer radical polymerization process
Coessens et al. Functional polymers by atom transfer radical polymerization
Dag et al. Heterograft copolymers via double click reactions using one‐pot technique
Oh et al. Synthesis of poly (2‐hydroxyethyl methacrylate) in protic media through atom transfer radical polymerization using activators generated by electron transfer
EP0816385B1 (en) Process for preparing vinyl polymer
Altintas et al. One‐pot preparation of 3‐miktoarm star terpolymers via click [3+ 2] reaction
Jankova et al. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators
EP1619211B1 (en) Process for production of living-radical polymers and polymers
US20070219330A1 (en) Amide initiators
Wootthikanokkhan et al. Atom transfer radical polymerizations of (meth) acrylic monomers and isoprene
Perrier et al. Effect of water on copper mediated living radical polymerization
KR101282844B1 (ko) 공액디엔계 분절 공중합체의 제조 방법
Altintas et al. Synthesis of an ABCD 4-miktoarm star quaterpolymer through a Diels–Alder click reaction
Kowalczuk-Bleja et al. Controlled radical polymerization of p-(iodomethyl) styrene—a route to branched and star-like structures
US20070293595A1 (en) Initiation of polymerization by hydrogen atom donation
Kobatake et al. Nitroxide‐mediated styrene polymerization initiated by an oxoaminium chloride
WO2023062931A1 (ja) 化合物及び当該化合物の製造方法
KR20240073157A (ko) 화합물 및 상기 화합물의 제조 방법
Limer et al. Reverse atom transfer radical polymerisation (RATRP) of methacrylates using copper (I)/pyridinimine catalysts in conjunction with AIBN
Bernhardt et al. Synthesis and use of a new alkene-functionalized SG1-based alkoxyamine
Zhang et al. Synthesis of bis (2, 2′: 6′, 2 ″-terpyridine)-terminated telechelic polymers by RAFT polymerization and ruthenium–polymer complexation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554940

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 22880628.7

Country of ref document: EP

Ref document number: 2022880628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022880628

Country of ref document: EP

Effective date: 20240424

ENP Entry into the national phase

Ref document number: 20247015964

Country of ref document: KR

Kind code of ref document: A