WO2020059625A1 - フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物 - Google Patents

フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2020059625A1
WO2020059625A1 PCT/JP2019/035854 JP2019035854W WO2020059625A1 WO 2020059625 A1 WO2020059625 A1 WO 2020059625A1 JP 2019035854 W JP2019035854 W JP 2019035854W WO 2020059625 A1 WO2020059625 A1 WO 2020059625A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
active ester
ester resin
phenol compound
resin composition
Prior art date
Application number
PCT/JP2019/035854
Other languages
English (en)
French (fr)
Inventor
雅樹 迫
弘司 林
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201980060865.8A priority Critical patent/CN112739677B/zh
Priority to JP2020548427A priority patent/JP7120315B2/ja
Priority to KR1020217007980A priority patent/KR102583421B1/ko
Publication of WO2020059625A1 publication Critical patent/WO2020059625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • C08G63/21Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups in the presence of unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings

Definitions

  • the present invention relates to a phenol compound, an active ester resin and a method for producing the same, and a thermosetting resin composition and a cured product thereof.
  • Curable resin compositions represented by epoxy resins have been widely used in applications for electronic components such as semiconductors and multilayer printed circuit boards because the cured products exhibit excellent heat resistance and insulating properties.
  • semiconductor package substrates are becoming thinner, and the warpage of the package substrate during mounting has become a problem.
  • high heat resistance is required.
  • thermosetting resin composition capable of obtaining a cured product exhibiting a sufficiently low dielectric loss tangent while maintaining a sufficiently low dielectric constant, even for a signal with a higher speed and a higher frequency.
  • a material capable of realizing a low dielectric constant and a low dielectric loss tangent a technique using an active ester compound as a curing agent for an epoxy resin is known (for example, see Patent Document 1).
  • an active ester compound as a curing agent for an epoxy resin
  • thermosetting resin composition having a low dielectric constant and a low dielectric tangent include a method of incorporating an epoxy resin having a low dielectric constant and a low dielectric tangent, a method of introducing a cyanate group, and a method of containing a polyphenylene ether. Has been used. However, simply combining these methods may make it difficult to satisfy various requirements such as low dielectric constant and low dielectric loss tangent, high heat resistance, reliability, and halogen-free.
  • vinylbenzyl-modified active ester resins are being studied as resin compositions capable of forming a cured product having dielectric properties and heat resistance (for example, see Patent Documents 2 and 3).
  • the present invention provides a phenol compound and an active ester resin that can obtain a cured product that exhibits a sufficiently low dielectric loss tangent while maintaining a sufficiently low dielectric constant, even for a signal with a high speed and a high frequency. And a method for producing the same, and a thermosetting resin composition containing an active ester resin and a cured product thereof.
  • the present inventors have solved the above problems by using an active ester resin containing a vinylbenzyloxy group at the terminal (a resin having an ester structure generated from a phenol group and an aromatic carboxylic acid group). They have found that they can be solved, and have completed the present invention.
  • the present invention provides a phenol compound having at least one vinylbenzyloxy structure, an active ester resin using the phenol compound as a raw material, a curable resin composition containing the active ester resin, and a cured product thereof.
  • a phenol compound capable of obtaining an active ester resin capable of forming a cured product having excellent dielectric properties, an active ester resin and a method for producing the same, a thermosetting resin composition containing the active ester resin, and The cured product can be provided.
  • FIG. 2 is a diagram showing a GPC chart of a product obtained in Example 1.
  • FIG. 4 is a diagram showing a GPC chart of a product obtained in Example 2.
  • the phenol compound according to the present embodiment is a phenol compound having one or more vinylbenzyloxy groups.
  • the vinylbenzyloxy group preferably has a vinylbenzyl group bonded to the phenol compound via an ether bond.
  • Examples of the vinylbenzyl group include an ethenylbenzyl group, an isopropenylbenzyl group, and a normal propenylbenzyl group. Among them, an ethenylbenzyl group is preferable in view of industrial availability and curability.
  • the phenol compound of the present invention may have one or more substituents such as an alkyl group and an aryl group in addition to the vinylbenzyloxy group.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • the aryl group include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • Examples of the phenol compound having one or more vinylbenzyloxy groups include one or more selected from monocyclic or polycyclic aromatic compounds having one or more phenolic hydroxyl groups.
  • Examples of the phenol compound having at least one vinylbenzyloxy group include compounds represented by the following formula.
  • R 1 is a hydrogen atom or a vinylbenzyl group, and at least one in one molecule is a vinylbenzyl group.
  • R 2 is a hydrogen atom, an alkyl group or an aryl group; n in the formulas (1-1), (1-4), (1-5), and (1-6) is an integer of 0 to 4, N in the formula (1-2) is an integer of 0 to 3, and n in the formulas (1-3) and (1-7) is an integer of 0 to 6.
  • a plurality of R 2 may be the same or different.
  • R 2 in formulas (1-3) and (1-7) indicates that R 2 may be bonded to any of the naphthalene rings.
  • Examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group, a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • the phenol compound having one or more vinylbenzyloxy groups may be a compound represented by the following formula (2).
  • m is an integer of 0 to 20]
  • Ar 1 each independently represents a phenolic hydroxyl group or a substituent containing a vinylbenzyloxy group, wherein at least one vinylbenzyloxy group and at least one phenolic hydroxyl group are present
  • Z independently represents an oxygen atom, a sulfur atom, a ketone group, a sulfonyl group, a substituted or unsubstituted alkylene having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene having 3 to 20 carbon atoms, Arylene having 6 to 20 atoms or aralkylene having 8 to 20 carbon atoms.
  • Ar 1 is not particularly limited, and examples thereof include residues of aromatic hydroxy compounds represented by the following formulas (3-1) and (3-2).
  • R 1 is a hydrogen atom or a vinylbenzyl group.
  • at least one is a vinylbenzyl group and at least one is a hydrogen atom.
  • R 2 is any of a hydroxy group, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • n is an integer of 0 to 5.
  • the substituent in the formula (3-2) indicates that the substituent may be bonded to any of the naphthalene rings.
  • Examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • Examples of the aryl group include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • the alkylene having 1 to 20 carbon atoms in Z in the formula (2) is not particularly limited, but is methylene, ethylene, propylene, 1-methylmethylene, 1,1-dimethylmethylene, 1-methylethylene, Examples thereof include 1-dimethylethylene, 1,2-dimethylethylene, propylene, butylene, 1-methylpropylene, 2-methylpropylene, pentylene, and hexylene.
  • the cycloalkylene having 3 to 20 carbon atoms is not particularly limited, but includes cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclopentylene, cycloheptylene, and the following formulas (4-1) to (4) -4) cycloalkylene and the like.
  • the arylene having 6 to 20 carbon atoms is not particularly limited, and examples thereof include an arylene represented by the following formula (5).
  • the aralkylene having 8 to 20 carbon atoms is not particularly limited, and examples thereof include aralkylenes represented by the following formulas (6-1) to (6-5).
  • Z in the formula (2) is preferably a cycloalkylene having 3 to 20 carbon atoms, an arylene having 6 to 20 carbon atoms, or an aralkylene having 8 to 20 carbon atoms.
  • Those represented by 3), (4-4), (5), and (6-1) to (6-5) are more preferable from the viewpoint of adhesion and dielectric properties.
  • M in the formula (2) is preferably 0 or an integer of 1 to 10, more preferably 0 to 8, and even more preferably 0 to 5 from the viewpoint of solvent solubility.
  • the phenol compound having a vinylbenzyloxy group may have a structure represented by the following formula (7).
  • R 1 is a vinylbenzyl group
  • 1 is an integer of 1 or more
  • R 2 is a hydrogen atom, an alkyl group, or an aryl group.
  • l is preferably an integer of 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • the aryl group include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • the compounds represented by the formulas (1-3), (1-7), (2) and (7) are used in view of the solvent solubility of the obtained active ester resin and the dielectric properties of the cured product. More preferably, in the formulas (1-3), (1-7) and (2), Ar 1 is phenol, orthocresol, dimethylphenol, phenylphenol, or a residue of ⁇ -naphthol or ⁇ -naphthol And Z is more preferably a formula (4-3), (5), (6-1) to (6-5), or a formula (7). Particularly preferred are those represented by the following structural formulas.
  • one R 1 is a hydrogen atom
  • the other R 1 is a vinylbenzyl group
  • R 2 is each independently a hydrogen atom, an alkyl group or an aryl group
  • n is an integer of 0 to 4. It is.
  • the alkyl group and the aryl group may be the same as those described above.
  • an active ester resin having an aryloxycarbonyl group having a vinylbenzyloxy group bonded to a molecular terminal can be obtained.
  • the phenol compound having one or more vinylbenzyloxy groups can be suitably used as a raw material composition for producing an active ester resin.
  • the raw material composition for producing an active ester resin can contain an aromatic carboxylic acid or an acid halide thereof, which reacts with a phenol compound to form an ester structure.
  • the aromatic carboxylic acid or its acid halide is preferably an aromatic polycarboxylic acid or its acid halide. The aromatic polycarboxylic acid or its acid halide will be described later.
  • the method for producing the phenol compound having a vinylbenzyloxy group is not particularly limited, and a conventionally known Williamson ether synthesis method or the like can be used.
  • a vinylbenzyl halide compound, a polyhydric phenol compound, and a phase transfer catalyst such as an ammonium salt are dissolved in an organic solvent such as toluene, methyl isobutyl ketone, or methyl ethyl ketone, and an aqueous sodium hydroxide solution is added thereto, and the mixture is heated. It can be manufactured by mixing.
  • a compound containing both a phenolic hydroxyl group and a vinylbenzyloxy group can be synthesized by setting the chemical equivalent ratio of the halide group of the vinylbenzyl halide compound to be used and the phenolic hydroxyl group of the phenol compound to less than 1.0. It is.
  • the active ester resin according to the present embodiment has a vinylbenzyloxy structure derived from the phenol compound having the vinylbenzyloxy group at a terminal of the main skeleton.
  • the vinylbenzyloxy structure is preferably present at both ends of the main skeleton.
  • the “active ester resin” means a compound or a resin having an ester structure derived from a phenol group and an aromatic carboxylic acid group.
  • the active ester resin examples include an active resin using a compound selected from the above-mentioned phenol compound having a vinylbenzyloxy group (a1) and an aromatic polycarboxylic acid or an acid halide thereof (a2) as a reaction raw material.
  • the reaction raw material may contain a compound (a3) having two or more phenolic hydroxyl groups, an aromatic monocarboxylic acid or an acid halide thereof (a4).
  • the phenol compound (a1) having a vinylbenzyloxy group is as described above, the description is omitted here.
  • the phenol compound (a1) having a vinylbenzyloxy group may be used alone or in combination of two or more.
  • aromatic polycarboxylic acid or its acid halide (a2) examples include aromatic dicarboxylic acids such as isophthalic acid, terephthalic acid, 1,4-, 2,3- or 2,6-naphthalenedicarboxylic acid; trimesine Aromatic tricarboxylic acids such as acid and trimellitic acid; pyromellitic acid; and acid chlorides thereof. These may be used alone or in combination. Above all, isophthalic acid or a mixture of isophthalic acid and terephthalic acid is preferred from the viewpoint that the melting point of the reactant and the solvent solubility are excellent.
  • Examples of the compound (a3) having two or more phenolic hydroxyl groups include the following.
  • R 2 each independently represents a hydrogen atom, an alkyl group, or an aryl group
  • (8-1), (8-4), (8-5) , (8-6) is an integer of 1 to 4
  • n in (8-2) is an integer of 0 to 3
  • n in (8-3) and (8-7) is It is an integer of 0 to 6.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • aryl group examples include a benzyl group, a naphthyl group, and a methoxynaphthyl group. Note that the hydroxyl group and R 2 in the formula (8-7) may be bonded to any ring on the naphthalene ring.
  • the compound having two or more phenolic hydroxyl groups may be a compound represented by the following formula (9).
  • m is an integer of 0 to 20].
  • Ar 1 each independently represents a substituent having a phenolic hydroxyl group
  • Z independently represents an oxygen atom, a sulfur atom, a ketone group, a sulfonyl group, a substituted or unsubstituted group.
  • Ar 1 is not particularly limited, and examples thereof include residues of aromatic hydroxy compounds represented by the following formulas (10-1) and (10-2).
  • R 2 is independently any one of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • N in the formula (10-1) is an integer of 0 to 5
  • n in the formula (10-2) is an integer of 0 to 7.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • aryl group examples include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • the alkylene having 1 to 20 carbon atoms in Z is not particularly limited, but includes methylene, ethylene, propylene, 1-methylmethylene, 1,1-dimethylmethylene, 1-methylethylene, 1,1-dimethylethylene, , 2-dimethylethylene, propylene, butylene, 1-methylpropylene, 2-methylpropylene, pentylene, hexylene and the like.
  • the cycloalkylene having 3 to 20 carbon atoms is not particularly limited, but includes cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclopentylene, cycloheptylene, and the following formulas (11-1) to (11-1). -4) cycloalkylene and the like.
  • the arylene having 6 to 20 carbon atoms is not particularly limited, and examples thereof include an arylene represented by the following formula (12).
  • the aralkylene having 8 to 20 carbon atoms is not particularly limited, and examples thereof include aralkylenes represented by the following formulas (13-1) to (13-5).
  • Z in the formula (9) is preferably a cycloalkylene having 3 to 20 carbon atoms, an arylene having 6 to 20 carbon atoms, or an aralkylene having 8 to 20 carbon atoms.
  • Those represented by 3), (11-4), (12), and (13-1) to (13-5) are more preferable from the viewpoint of adhesion and dielectric properties.
  • M in the formula (9) is 0 or an integer of 1 to 10, preferably 0 to 8, and preferably 0 to 5 from the viewpoint of solvent solubility.
  • the compound (a3) having two or more phenolic hydroxyl groups may have a structure represented by the following formula (14).
  • l represents an integer of 1 or more
  • R 2 represents a hydrogen atom, an alkyl group, or an aryl group.
  • l is preferably an integer of 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • the aryl group include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • the compounds represented by the formulas (8-7), (9) and (14) are preferable in view of the solvent solubility and the dielectric properties of the reaction product.
  • 1 is a residue of phenol, orthocresol, dimethylphenol, phenylphenol, or ⁇ -naphthol or ⁇ -naphthol
  • Z is a group represented by the formula (11-3)
  • (12-1), (13-1) to (13-1) 13-5) is preferable
  • a compound represented by the formula (16) is more preferable.
  • aromatic monocarboxylic acid or its acid halide (a4) examples include benzoic acid and benzoic acid chloride.
  • active ester resin examples include, for example, an active resin represented by the following formula.
  • the glass transition temperature of the active ester resin is not particularly limited, but is preferably 200 ° C or lower, more preferably 150 ° C or lower, and further preferably 120 ° C or lower from the viewpoint of solvent solubility.
  • the method for producing an active ester resin includes a step of reacting a phenol compound having a vinylbenzyloxy group with an aromatic polycarboxylic acid or an acid halide thereof.
  • the step of reacting a phenol compound having a vinylbenzyloxy group with an aromatic polycarboxylic acid or an acid halide thereof is not particularly limited, and may be performed by a known and common synthesis method such as an acetic anhydride method, an interfacial polymerization method, or a solution method. Can be manufactured. Among them, in order to prevent gelation during synthesis due to polymerization of vinylbenzyloxy group, it is preferable to use an acid halide which can be synthesized at a lower temperature.
  • thermosetting resin composition contains the above-described active ester resin and a curing agent. Since the active ester resin is as described above, the description is omitted here.
  • the curing agent may be any compound that can react with the above-mentioned active ester resin, and various compounds can be used without particular limitation.
  • the curing agent include a radical polymerization initiator and an epoxy resin.
  • Representative examples of the radical polymerization initiator include an azo compound and an organic peroxide. Among them, an organic peroxide is preferable because no gas is generated as a by-product.
  • a known epoxy resin can be used.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, biphenyl type epoxy resin, phenol biphenyl aralkyl type epoxy resin, phenol, aralkyl resin epoxy by xylylene bond
  • naphthol Epoxide of dicyclopentadiene-modified phenolic resin dihydroxynaphthalene-type epoxy resin
  • glycidyl ether-type epoxy resin such as triphenolmethane-type epoxy resin
  • glycidyl ester-type epoxy resin divalent or higher epoxy such as glycidylamine-type epoxy resin
  • An epoxy resin having a group can be used.
  • epoxy resins may be used alone or in combination of two or more.
  • a resin having a large epoxy equivalent such as an epoxidized aralkyl resin by a xylylene bond such as phenol biphenyl aralkyl type epoxy resin, phenol or naphthol, or an epoxidized dicyclopentadiene modified phenol resin.
  • the compounding amount of the active ester resin and the radical polymerization initiator is preferably adjusted to a compounding amount that gives a curing time suitable for the molding conditions of the cured product.
  • a blending amount of up to 1 part is preferable.
  • the compounding ratio of the active ester resin to the epoxy resin is preferably such that the equivalent ratio of the ester group contained in the active ester resin to the epoxy group contained in the epoxy resin is in the range of 0.5 to 1.5. It is particularly preferred to be in the range of 8 to 1.2.
  • the resin composition can contain a curing accelerator as needed.
  • the curing accelerator include a phosphorus compound, a tertiary amine, imidazole, a metal salt of an organic acid, a Lewis acid, and an amine complex salt.
  • dimethylaminopyridine or imidazole is preferred from the viewpoint of excellent heat resistance, dielectric properties, solder resistance, and the like.
  • triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines because of its excellent curability, heat resistance, electrical properties, and moisture resistance reliability.
  • -[5.4.0] -undecene (DBU) is preferred.
  • the resin composition may further contain other resin components.
  • Other resin components include, for example, vinyl group-containing compounds such as styrene, acrylic acid, methacrylic acid and their esterified products, and cyanate ester resins; bismaleimide resins; benzoxazine resins; allyls represented by triallyl isocyanurate Group-containing resin; examples include polyphosphate esters and phosphate-carbonate copolymers. These may be used alone or in combination of two or more.
  • the mixing ratio of these other resin components is not particularly limited, and can be appropriately adjusted according to the desired cured product performance and the like. As an example of the mixing ratio, it can be in the range of 1 to 50% by mass in the whole resin composition.
  • the resin composition may contain various additives such as a flame retardant, an inorganic filler, a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary.
  • the flame retardant include inorganic phosphorus compounds such as ammonium phosphate such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; phosphate amides; phosphate ester compounds, phosphonic acid Compound, phosphinic acid compound, phosphine oxide compound, phosphorane compound, organic nitrogen-containing phosphorus compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) ) Cyclic organic phosphorus such as -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphthy
  • the inorganic filler is mixed, for example, when the resin composition is used for a semiconductor sealing material.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • fused silica is preferred because it allows more inorganic filler to be blended.
  • Fused silica can be used in either crushed or spherical form.However, in order to increase the blending amount of the fused silica, and to suppress an increase in the melt viscosity of the resin composition, a spherical form is mainly used. preferable.
  • the filler in order to increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. It is preferable to mix the filler in a range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the resin component.
  • the method for producing the resin composition is not particularly limited.
  • the resin composition can be obtained by uniformly mixing the above-mentioned components at, for example, 0 ° C. to 200 ° C. using a stirrer or a three-roll mill.
  • the resin composition can be molded by heating and curing, for example, in a temperature range of about 20 to 250 ° C. by a known and commonly used thermosetting method.
  • the cured product of the resin composition according to the present embodiment has heat resistance of 160 ° C. or higher, and can exhibit a low dielectric loss tangent at 10 GHz of 3.0 ⁇ 10 ⁇ 3 or less. From the above, it can be preferably used for electronic materials such as a semiconductor package substrate.
  • the resin composition When the resin composition is used for a substrate such as a semiconductor package substrate, it is generally preferable to mix and dilute an organic solvent before use.
  • the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, and the like.
  • the type and amount of the organic solvent can be appropriately adjusted according to the usage environment of the resin composition.For example, in a semiconductor package substrate application, a polar solvent having a boiling point of 160 ° C. or less such as methyl ethyl ketone, acetone, and dimethylformamide may be used. Preferably, it is used in such a proportion that the non-volatile content is 40 to 80% by mass.
  • a method of manufacturing a semiconductor package substrate using a resin composition for example, a method of impregnating a resin composition into a reinforcing base material and curing the same to obtain a prepreg can be mentioned.
  • the reinforcing substrate include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the impregnation amount of the resin composition is not particularly limited, but usually, it is preferably prepared so that the resin content in the prepreg is 20 to 80% by mass.
  • Example 1 Synthesis of phenol resin containing vinylbenzyloxy group
  • a polycycloaddition product of dicyclopentadiene and phenol having a hydroxyl equivalent of 165 g / eq
  • CMS-P manufactured by AGC Seimikelcal Co., Ltd. 98.0 parts of a mixture of metachloromethylstyrene and parachloromethylstyrene
  • MIBK methyl isobutyl ketone
  • MIBK methyl isobutyl ketone
  • Example 2 (Synthesis of active ester resin containing vinylbenzyloxy structure) 65.0 parts of (A-1), 16.2 parts of isophthalic chloride, 322 parts of toluene, and 0.16 part of tetrabutylammonium bromide in a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer. Was charged and dissolved. The system was controlled at 60 ° C. or lower, and 33.0 parts of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. Then, stirring was continued under these conditions for 1.0 hour. After the completion of the reaction, the mixture was allowed to stand and separated, and the aqueous layer was removed.
  • Comparative Example 2 A flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer was charged with 442 g of the reaction solution (B-1) obtained in Comparative Example 1, 57.6 g of ⁇ -naphthol, and 80.8 g of isophthalic acid chloride. The system was charged and the system was replaced with nitrogen under reduced pressure and dissolved. Thereafter, while dissolving 0.27 g of tetrabutylammonium bromide and controlling the inside of the system to 60 ° C. or lower while applying a nitrogen gas purge, 164.8 g of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours.
  • Comparative Example 3 A flask equipped with a thermometer, a dropping funnel, a cooling pipe, a fractionating pipe, and a stirrer was charged with 488.7 parts of 2,6-xylenol, 281.7 parts of paraxylene glycol dimethyl ether, and 7.7 parts of paratoluenesulfonic acid. The system was purged with nitrogen under reduced pressure and dissolved. Next, the temperature inside the system was raised to 180 ° C. over 3 hours while performing a nitrogen gas purge. At this time, generated volatile components were appropriately removed. After charging 3.3 parts of 49% NaOH, the resultant was washed with water to remove a catalyst salt.
  • Comparative Example 4 130 parts of (B-3), 105 parts of CMS-P, 235 parts of methyl isobutyl ketone, 9.39 parts of tetrabutylammonium bromide, 2,2 parts in a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer. 0.11 part of 4-dinitrophenol was charged and heated to 50 ° C. while stirring. Next, 107 parts of a 49% NaOH aqueous solution was added dropwise over 60 minutes. The internal temperature rose to 70 ° C. due to heat generation. Thereafter, the temperature was maintained at 70 to 75 ° C. for 5 hours.
  • Comparative Example 5 A flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer was charged with 433 parts of ⁇ -naphthol, 315 parts of paraxylene dichloride, and 703 parts of toluene, and the system was replaced with nitrogen under reduced pressure to dissolve the system. Next, the temperature inside the system was raised to 90 ° C. while performing a nitrogen gas purge. 294 parts of a 49% aqueous NaOH solution was added dropwise over 1 hour, and the solution was kept for 8 hours. 430 parts of water was charged and the mixture was allowed to stand still to remove a lower layer.
  • Comparative Example 6 130 parts of (B-5), 96.0 parts of CMS-P, 226 parts of methyl isobutyl ketone, 9.04 parts of tetrabutylammonium bromide were placed in a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer. 0.20 parts of 2,4-dinitrophenol was charged and heated to 45 ° C. with stirring. Next, 97.8 parts of a 49% aqueous NaOH solution was added dropwise over 60 minutes. The internal temperature rose to 60 ° C. due to heat generation. Thereafter, the temperature was maintained at 55 to 65 ° C. for 8 hours.
  • Curable composition using the resin obtained in Example 2 and Comparative examples 2, 4 and 6, and curing thereof
  • the composition shown in Table 1 below was blended to obtain a curable composition. This was poured into a 1.6 mm thick mold and heated at 120 ° C. for 120 minutes and at 180 ° C. for 60 minutes to cure.
  • the cured product obtained from the resin composition using the resin obtained in Example 2 had a high heat resistance of 167 ° C. and a dielectric loss tangent at 1 GHz of 2.8 ⁇ . It showed a dielectric loss tangent as low as 10 -3 .
  • the cured product obtained from the resin composition using the resin obtained in Comparative Example 2 showed a low dielectric loss tangent at 1 GHz of 2.9 ⁇ 10 ⁇ 3 , but at 120 ° C. And low heat resistance.
  • the cured product obtained from the resin composition using the resin obtained in Comparative Example 4 had a high heat resistance of 173 ° C., but had a dielectric loss tangent at 1 GHz of 5.1 ⁇ 10 ⁇ 3. It showed a high dielectric loss tangent.
  • the cured product obtained from the resin composition using the resin obtained in Comparative Example 6 did not have such high heat resistance as 150 ° C., and had a dielectric loss tangent at 1 GHz of 7.5 ⁇ 10 ⁇ . It showed a high dielectric loss tangent of 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

高速化、高周波数化された信号に対しても、十分に低い誘電率を維持しつつ、十分に低い誘電正接を発現する硬化物を得ることが可能な熱硬化性樹脂組成物を提供する。具体的にはビニルベンジルオキシ基を有するフェノール化合物、該フェノール化合物を含有する、活性エステル樹脂製造用原料組成物、該原料組成物を用いてなる、ビニルベンジルオキシ構造含有活性エステル樹脂、両末端にビニルベンジルオキシ構造を有する活性エステル樹脂、活性エステル樹脂及び硬化剤を含有する、熱硬化性樹脂組成物を提供する。

Description

フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物
 本発明は、フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物に関する。
 エポキシ樹脂に代表される硬化性樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。電子部品用途のなかでも半導体パッケージ基板では薄型化が進んでおり、実装時のパッケージ基板の反りが問題となっている。このパッケージ基板の反りを抑制するため、高耐熱性が求められている。
 加えて、近年、半導体パッケージ基板においても、信号の高速化、高周波数化が進んでいる。そのため、高速化、高周波数化された信号に対しても、十分に低い誘電率を維持しつつ十分に低い誘電正接を発現する硬化物を得ることが可能な熱硬化性樹脂組成物の提供が望まれている。低誘電率及び低誘電正接を実現可能な材料として、活性エステル化合物をエポキシ樹脂用硬化剤として用いる技術が知られている(例えば、特許文献1参照)。しかしながら、低誘電率、低誘電正接は実現するものの、耐熱性は不十分であった。
 低誘電率及び低誘電正接の熱硬化性樹脂組成物とする他の技術として、低誘電率及び低誘電正接のエポキシ樹脂を含有させる方法、シアネート基を導入する方法、ポリフェニレンエーテルを含有させる方法等が用いられてきた。しかし、これらの方法を単純に組み合わせただけでは、低誘電率及び低誘電正接、高い耐熱性、信頼性、ハロゲンフリーといった、種々の要求を満足することが難しい場合がある。
 こうした状況において、誘電特性及び耐熱性を備える硬化物を形成可能な樹脂組成物として、ビニルベンジル変性活性エステル樹脂が検討されている(例えば、特許文献2~3参照)。
特開2004-169021号公報 特開2018-70564号公報 特開2018-44040号公報
 本発明は、高速化、高周波数化された信号に対しても、十分に低い誘電率を維持しつつ、十分に低い誘電正接を発現する硬化物を得ることが可能なフェノール化合物、活性エステル樹脂及びその製造方法、並びに活性エステル樹脂を含有する熱硬化性樹脂組成物及びその硬化物を提供することを課題とする。
 本発明者らは鋭意検討を重ねた結果、末端にビニルベンジルオキシ基を含有する活性エステル樹脂(フェノール基及び芳香族カルボン酸基から生成するエステル構造を有する樹脂)を用いることにより上記の課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、ビニルベンジルオキシ構造を1以上有するフェノール化合物、これを原料とする活性エステル樹脂、該活性エステル樹脂を含有する硬化性樹脂組成物とその硬化物を提供するものである。
 本発明によれば、誘電特性に優れた硬化物を形成可能な活性エステル樹脂を得ることができるフェノール化合物、活性エステル樹脂及びその製造方法、並びに活性エステル樹脂を含有する熱硬化性樹脂組成物及びその硬化物を提供することができる。
実施例1で得られた、生成物のGPCチャートを示す図である。 実施例2で得られた、生成物のGPCチャートを示す図である。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
[フェノール化合物]
 本実施形態に係るフェノール化合物は、ビニルベンジルオキシ基を1以上有するフェノール化合物である。ビニルベンジルオキシ基は、フェノール化合物とエーテル結合を介してビニルベンジル基が結合していることが好ましい。
 前記ビニルベンジル基としては、エテニルベンジル基、イソプロペニルベンジル基、ノルマルプロペニルベンジル基等を挙げることができる。なかでも、工業的な入手しやすさと硬化性の点でエテニルベンジル基であることが好ましい。
 本発明のフェノール化合物は、ビニルベンジルオキシ基の他に、アルキル基、アリール基等の置換基を1以上有していてもよい。アルキル基としては、例えば、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
 ビニルベンジルオキシ基を1以上有するフェノール化合物としては、フェノール性水酸基を一つ以上有する、単環又は多環の芳香族化合物から選択される1種以上を挙げることができる。ビニルベンジルオキシ基を1以上有するフェノール化合物としては、例えば、下記式のような化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは水素原子またはビニルベンジル基であり、1分子中少なくとも一つはビニルベンジル基である。Rは水素原子、アルキル基又はアリール基であり、式(1-1)、(1-4)、(1-5)、(1-6)中のnは0~4の整数であり、式(1-2)中のnは0~3の整数であり、式(1-3)、(1-7)中のnは0~6の整数である。複数あるRは同一であっても異なっていてもよい。式(1-3)、(1-7)におけるRは、ナフタレン環のいずれの環に結合していてもよいことを示す。
 前記アルキル基としては、例えば、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。前記アリール基としては、フェニル基、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
 また、ビニルベンジルオキシ基を1以上有するフェノール化合物は下記式(2)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000005
〔式(2)中、mは0~20の整数である〕
 上記式(2)において、Arはそれぞれ独立して、フェノール性水酸基もしくはビニルベンジルオキシ基を含有する置換基を表し、式中においてビニルベンジルオキシ基とフェノール性水酸基は少なくとも一つずつ存在し、Zは、それぞれ独立して、酸素原子、硫黄原子、ケトン基、スルホニル基、置換若しくは非置換の炭素原子数1~20のアルキレン、置換若しくは非置換の炭素原子数3~20のシクロアルキレン、炭素原子数6~20のアリーレン、又は炭素原子数8~20のアラルキレンである。
 Arとしては、特に制限されないが、例えば、下記式(3-1)や(3-2)に記載する芳香族ヒドロキシ化合物の残基を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 式(3-1)、(3-2)中、Rは水素原子又はビニルベンジル基であり、式(2)において少なくとも一つはビニルベンジル基であり、少なくとも一つは水素原子である。Rはヒドロキシ基、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基の何れかである。nは0~5の整数である。式(3-2)における置換基は、ナフタレン環のいずれの環に結合していてもよいことを示す。
 前記アルキル基としては、例えば、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
 前記式(2)中のZにおける炭素原子数1~20のアルキレンとしては、特に制限されないが、メチレン、エチレン、プロピレン、1-メチルメチレン、1,1-ジメチルメチレン、1-メチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、プロピレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、ペンチレン、ヘキシレン等が挙げられる。
 前記炭素原子数3~20のシクロアルキレンとしては、特に制限されないが、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロペンチレン、シクロへプチレン、および下記式(4-1)~(4-4)で表されるシクロアルキレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 なお、上記式(4-1)~(4-4)において、「*」はArと結合する部位を表す。
 前記炭素原子数6~20のアリーレンとしては、特に制限されないが、下記式(5)で表されるアリーレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 なお、上記式(5)において、「*」はArと結合する部位を表す。
 前記炭素原子数8~20のアラルキレンとしては、特に制限されないが、下記式(6-1)~(6-5)で表されるアラルキレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 なお、式(6-1)~(6-5)において、「*」はArと結合する部位を表す。
 上述のうち、式(2)中のZは、炭素原子数3~20のシクロアルキレン、炭素原子数6~20のアリーレン、炭素原子数8~20のアラルキレンであることが好ましく、式(4-3)、(4-4)、(5)、(6-1)~(6-5)で表されるものであることが、密着性と誘電特性の観点からより好ましい。式(2)におけるmは、0または1~10の整数であることが好ましく、より好ましくは0~8であり、溶剤溶解性の観点から、さらに好ましくは0~5である。
 ビニルベンジルオキシ基を有するフェノール化合物は下記式(7)記載の構造でも良い。
Figure JPOXMLDOC01-appb-C000010
 〔式(7)中、Rはビニルベンジル基であり、lは1以上の整数、Rは水素原子、アルキル基、アリール基を示す。〕
 式(7)において、lは好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12の整数である。アルキル基としては、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
 上述した中でも、得られる活性エステル樹脂の溶剤溶解性と硬化物の誘電特性の点で、式(1-3)、(1-7)、(2)、(7)で表される化合物を用いることが好ましく、更に、式(1-3)、(1-7)、(2)の内、Arがフェノール、オルソクレゾール、ジメチルフェノール、フェニルフェノール、又はα-ナフトール、β-ナフトールの残基であり、かつZが式(4-3)、(5)、(6-1)~(6-5)であるもの、及び、式(7)であるものがより好ましい。特に好ましいものとしては下記構造式で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 式中、一方のRは水素原子であり、もう一方のRはビニルベンジル基であり、Rはそれぞれ独立に、水素原子、アルキル基又はアリール基であり、nは0~4の整数である。この時、アルキル基、アリール基は前述と同様のものを挙げることができる。
 上記ビニルベンジルオキシ基を1以上有するフェノール化合物を活性エステル樹脂の製造に用いることで、分子末端にビニルベンジルオキシ基が結合したアリールオキシカルボニル基を有する活性エステル樹脂を得ることができる。
 よって、上記ビニルベンジルオキシ基を1以上有するフェノール化合物は、活性エステル樹脂製造用原料組成物として好適に用いることができる。活性エステル樹脂製造用原料組成物には、フェノール化合物と反応してエステル構造を生じる、芳香族カルボン酸又はその酸ハロゲン化物を含有することができる。芳香族カルボン酸又はその酸ハロゲン化物は、芳香族ポリカルボン酸又はその酸ハロゲン化物であることが好ましい。芳香族ポリカルボン酸又はその酸ハロゲン化物については後述する。
[ビニルベンジルオキシ基を有するフェノール化合物の製造方法]
 ビニルベンジルオキシ基を有するフェノール化合物の製造方法は、特に限定されず、従来公知のウィリアムソンエーテル合成法等を用いることができる。例えば、トルエンやメチルイソブチルケトン、メチルエチルケトンといった有機溶媒に、ビニルベンジルハライド化合物と多価フェノール化合物、及びアンモニウム塩の様な相間移動触媒を溶解させ、ここに水酸化ナトリウム水溶液を添加し、加熱しながら混合することにより製造することができる。このとき、使用するビニルベンジルハライド化合物のハライド基と、フェノール化合物のフェノール性水酸基の化学当量比を1.0未満とすることで、フェノール性水酸基とビニルベンジルオキシ基両者を含有する化合物が合成可能である。
[活性エステル樹脂]
 本実施形態に係る活性エステル樹脂は、主骨格の末端に、上記ビニルベンジルオキシ基を有するフェノール化合物由来のビニルベンジルオキシ構造を有する。ビニルベンジルオキシ構造は、主骨格の両末端に有していることが好ましい。なお上記の通り、本明細書において、「活性エステル樹脂」とは、フェノール基及び芳香族カルボン酸基に由来するエステル構造を有する化合物又は樹脂のことを意味している。
 活性エステル樹脂としては、上記したビニルベンジルオキシ基を有するフェノール化合物(a1)及び芳香族ポリカルボン酸又はその酸ハロゲン化物(a2)から選択される化合物を反応原料とする活性樹脂を挙げることができる。反応原料には、上記(a1),(a2)の他に、フェノール性水酸基を2つ以上有する化合物(a3)、芳香族モノカルボン酸又はその酸ハロゲン化物(a4)を含んでいてもよい。
 ビニルベンジルオキシ基を有するフェノール化合物(a1)は、上記のとおりであるからここでは記載を省略する。ビニルベンジルオキシ基を有するフェノール化合物(a1)は、1種のみを用いてもよいし2種以上を併用してもよい。
 芳香族ポリカルボン酸又はその酸ハロゲン化物(a2)としては、例えば、イソフタル酸、テレフタル酸、1,4-、2,3-、あるいは2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;トリメシン酸、トリメリット酸等の芳香族トリカルボン酸;ピロメリット酸;およびこれらの酸塩化物等を挙げることができる。これらは単独で使用しても、併用してもよい。中でも、反応物の融点や溶剤溶解性が優れる点で、イソフタル酸、あるいはイソフタル酸とテレフタル酸との混合物が好ましい。
 フェノール性水酸基を2つ以上有する化合物(a3)としては、下記のようなものを挙げることができる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式(8-1)~(8-7)中、Rはそれぞれ独立して水素原子、アルキル基、又はアリール基を表し、(8-1)、(8-4)、(8-5)、(8-6)中のnは1~4の整数であり、(8-2)中のnは0~3の整数であり、(8-3)、(8-7)中のnは0~6の整数である。前記アルキル基としては、例えば、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。前記アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。なお、式(8-7)における水酸基、Rはナフタレン環上のいずれの環に結合していてもよいことを示す。
 フェノール性水酸基を2つ以上有する化合物は、下記式(9)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000014
〔但し、式(9)中、mは0~20の整数である。〕
 上記式(9)において、Arはそれぞれ独立して、フェノール性水酸基を含有する置換基を表し、Zは、それぞれ独立して、酸素原子、硫黄原子、ケトン基、スルホニル基、置換若しくは非置換の炭素原子数1~20のアルキレン、置換若しくは非置換の炭素原子数3~20のシクロアルキレン、炭素原子数6~20のアリーレン、又は炭素原子数8~20のアラルキレンである。
 Arとしては、特に制限されないが、例えば、下記式(10-1)、(10-2)に記載する芳香族ヒドロキシ化合物の残基を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 式(10-1)、(10-2)中、Rはそれぞれ独立して水素原子、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基の何れかである。式(10-1)中のnは0~5の整数であり、式(10-2)中のnは0~7の整数である。前記アルキル基としては、例えば、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。前記アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
 前記Zにおける炭素原子数1~20のアルキレンとしては、特に制限されないが、メチレン、エチレン、プロピレン、1-メチルメチレン、1,1-ジメチルメチレン、1-メチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、プロピレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、ペンチレン、ヘキシレン等が挙げられる。
 前記炭素原子数3~20のシクロアルキレンとしては、特に制限されないが、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロペンチレン、シクロへプチレン、および下記式(11-1)~(11-4)で表されるシクロアルキレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 なお、上記式(11-1)~(11-4)において、「*」はArと結合する部位を表す。
 前記炭素原子数6~20のアリーレンとしては、特に制限されないが、下記式(12)で表されるアリーレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 なお、上記式(12)において、「*」はAr1と結合する部位を表す。
 前記炭素原子数8~20のアラルキレンとしては、特に制限されないが、下記式(13-1)~(13-5)で表されるアラルキレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 なお、式(13-1)~(13-5)において、「*」はArと結合する部位を表す。
 上述のうち、式(9)中のZは、炭素原子数3~20のシクロアルキレン、炭素原子数6~20のアリーレン、炭素原子数8~20のアラルキレンであることが好ましく、式(11-3)、(11-4)、(12)、(13-1)~(13-5)で表されるものであることが、密着性と誘電特性の観点からより好ましい。式(9)におけるmは、0または1~10の整数であり、好ましくは0~8であり、溶剤溶解性の観点から、好ましくは0~5である。
 また、フェノール性水酸基を2つ以上有する化合物(a3)は、下記式(14)記載の構造でも良い。
Figure JPOXMLDOC01-appb-C000019
 但し式(14)中、lは1以上の整数、Rは水素原子、アルキル基、又はアリール基を示す。)
 式(14)において、lは好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12の整数である。アルキル基としては、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
 上述した中でも、反応生成物の溶剤溶解性と誘電特性の点で、式(8-7)、(9)、(14)で表される化合物が好ましく、更に、式(9)の内、Arがフェノール、オルソクレゾール、ジメチルフェノール、フェニルフェノール、又はα-ナフトール、β-ナフトールの残基であり、かつZが式(11-3)、(12-1)、(13-1)~(13-5)であるものが好ましく、及び、式(16)で表される化合物がより好ましい。
 芳香族モノカルボン酸又はその酸ハロゲン化物(a4)としては、具体的には、安息香酸、安息香酸クロリド等を挙げることができる。
 活性エステル樹脂の具体例としては、例えば、以下の式で示される活性樹脂を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 活性エステル樹脂のガラス転移温度は、特に限定されないが、溶剤溶解性の点で、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがさらに好ましい。
[活性エステル樹脂の製造方法]
 本実施形態に係る活性エステル樹脂の製造方法は、ビニルベンジルオキシ基を有するフェノール化合物と芳香族多価カルボン酸又はその酸ハロゲン化物とを反応させる工程を有する。ビニルベンジルオキシ基を有するフェノール化合物と芳香族多価カルボン酸又はその酸ハロゲン化物とを反応させる工程は、特に限定されず、無水酢酸法、界面重合法、溶液法などの公知慣用の合成法により製造することができる。この内、ビニルベンジルオキシ基の重合による合成中のゲル化を防ぐため、より低温での合成が可能となる酸ハロゲン化物を用いて製造することが好ましい。
[熱硬化性樹脂組成物]
 本実施形態に係る熱硬化性樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、上記した活性エステル樹脂及び硬化剤を含有する。活性エステル樹脂については上記のとおりであるからここでは記載を省略する。
(硬化剤)
 硬化剤としては、上記した活性エステル樹脂と反応し得る化合物であれば良く、特に限定なく様々な化合物を利用することができる。硬化剤の一例としては、ラジカル重合開始剤、エポキシ樹脂が挙げられる。ラジカル重合開始剤としては、アゾ化合物や、有機過酸化物が代表例として挙げられるが、中でも副生物として気体が生じないことから、有機過酸化物が好ましい。エポキシ樹脂は公知のものを使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物、ジシクロペンタジエン変性フェノール樹脂のエポキシ化物、ジヒドロキシナフタレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などの2価以上のエポキシ基を有するエポキシ樹脂を挙げることができる。これらエポキシ樹脂は単独でも2種類以上を併用してもよい。これらエポキシ樹脂の中でも、フェノールビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物、ジシクロペンタジエン変性フェノール樹脂のエポキシ化物のようなエポキシ当量が大きい樹脂を使用するのが好ましい。
(配合量)
 活性エステル樹脂とラジカル重合開始剤との配合量は、硬化物の成形条件に適した硬化時間となる配合量に調整することが好ましいが、硬化物特性の観点からは樹脂100部に対して0~1部となる配合量が好ましい。上記配合量とすると活性エステル樹脂の硬化が十分に行われ、耐熱性・誘電特性に優れた硬化物を与える樹脂組成物を容易に得ることができる。また、活性エステル樹脂とエポキシ樹脂の配合比は、活性エステル樹脂に含まれるエステル基とエポキシ樹脂に含まれるエポキシ基の当量比が0.5~1.5の範囲にあることが好ましく、0.8~1.2の範囲にあることが特に好ましい。
(硬化促進剤)
 樹脂組成物は、必要に応じて、硬化促進剤を含有することができる。硬化促進剤としては、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等を挙げることができる。特にビルドアップ材料用途や回路基板用途として使用する場合には、耐熱性、誘電特性、耐ハンダ性等に優れる点から、ジメチルアミノピリジンやイミダゾールが好ましい。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。
(他の添加成分)
 樹脂組成物は、更にその他の樹脂成分を含有しても良い。その他の樹脂成分としては、例えば、スチレン、アクリル酸、メタクリル酸及びそれらのエステル化物といったビニル基含有化合物や、シアン酸エステル樹脂;ビスマレイミド樹脂;ベンゾオキサジン樹脂;トリアリルイソシアヌレートに代表されるアリル基含有樹脂;ポリリン酸エステルやリン酸エステル-カーボネート共重合体等を挙げることができる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 これらその他の樹脂成分の配合割合は特に限定されず、所望の硬化物性能等に応じて適宜調整することができる。配合割合の一例としては、全樹脂組成物中1~50質量%の範囲とすることができる。
 樹脂組成物は、必要に応じて、難燃剤、無機質充填材、シランカップリング剤、離型剤、顔料、乳化剤等の各種添加剤を含有してもよい。難燃剤としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤等を挙げることができる。これら難燃剤を用いる場合は、全樹脂組成物中0.1~20質量%の範囲であることが好ましい。
 無機質充填材は、例えば、樹脂組成物を半導体封止材料用途に用いる場合などに配合される。無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等を挙げることができる。中でも、無機質充填材をより多く配合することが可能となることから、溶融シリカが好ましい。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつ、樹脂組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は樹脂成分100質量部に対して、0.5~95質量部の範囲で配合することが好ましい。
 樹脂組成物の製法は、特に限定されず、例えば、上記した各成分を撹拌装置や3本ロール等を用いて、例えば0℃~200℃で均一に混合することにより得ることができる。
[硬化物]
 樹脂組成物は、公知慣用の熱硬化法により、例えば、20~250℃程度の温度範囲で加熱硬化させ、成型することができる。
 本実施形態に係る樹脂組成物の硬化物は、160℃以上の耐熱性を有しているとともに、10GHzにおける誘電正接が3.0×10-3以下という低い誘電正接を示すことができる。以上のことから、半導体パッケージ基板等の電子材料用途に好ましく用いることができる。
[半導体パッケージ基板等]
 樹脂組成物を半導体パッケージ基板などの基板用途に用いる場合、一般的には有機溶剤を配合して希釈して用いることが好ましい。有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等を挙げることができる。有機溶剤の種類や配合量は樹脂組成物の使用環境に応じて適宜調整できるが、例えば、半導体パッケージ基板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分が40~80質量%となる割合で使用することが好ましい。
 樹脂組成物を用いて半導体パッケージ基板を製造する方法は、例えば、樹脂組成物を補強基材に含浸し硬化させてプリプレグを得る方法を挙げることができる。補強基材としては、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布等を挙げることができる。樹脂組成物の含浸量は特に限定されないが、通常、プリプレグ中の樹脂分が20~80質量%となるように調製することが好ましい。
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。以下において「部」、「%」は特に断りがない限り質量基準である。なお、耐熱性測定及び誘電正接測定は以下の条件にて行った。
 (1)耐熱性測定
 硬化物を幅5mm、長さ54mmのサイズに切り出し、これを試験片とした。この試験片を粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、耐熱性を評価した。
 (2)誘電正接測定
 アジレント・テクノロジー株式会社製ネットワークアナライザ「E8362C」を用い空洞共振法にて、加熱真空乾燥後、23℃、湿度50%の室内に24時間保管した試験片の1GHzでの誘電正接を測定した。
 実施例1(ビニルベンジルオキシ基含有フェノール樹脂の合成)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにジシクロペンタジエンとフェノールの重付加物(水酸基当量165g/eq)200部と、CMS-P(AGCセイミケルカル株式会社製、メタクロロメチルスチレンとパラクロロメチルスチレンの混合物)98.0部、メチルイソブチルケトン(MIBK)298部、テトラブチルアンモニウムブロミド11.9部、2,4-ジニトロフェノール0.28部を仕込み、撹拌しながら60℃に加熱した。次いで49%NaOH104.9部を30分で滴下した。60℃で1時間保持したのち、80℃に昇温後、2時間保持した。MIBK275部で希釈し、リン酸を使用して下層のpHが7になるまで中和したのち、分液操作により水洗を行い、有機層から塩を除去した。反応液を加熱減圧操作により濃縮し、ビニルベンジルオキシ基含有フェノール樹脂(水酸基当量406g/eqの褐色固体A-1)を得た。この結果から下記構造体を含むことが確認できた。なお、生成物のGPCデータを図1に示す。
Figure JPOXMLDOC01-appb-C000021
 実施例2(ビニルベンジルオキシ構造含有活性エステル樹脂の合成)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに(A-1)65.0部、イソフタル酸クロリド16.2部、トルエン322部、テトラブチルアンモニウムブロミド0.16部を仕込み、溶解させた。系内を60℃以下に制御して、20%水酸化ナトリウム水溶液33.0部を3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン層に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、熱減圧下乾燥して下記構造を含む活性エステル樹脂(A-2)を合成した。なお、生成物のGPCデータを図2に示す。
Figure JPOXMLDOC01-appb-C000022
 比較例1
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに1,6-ジヒドロキシナフタレン80.1g(0.5モル)と、ハイドロタルサイト(協和化学工業社株式会社製キョーワード500SH)156g、トルエン624gを仕込み、70℃に加熱した。次いで、CMS-P76.3g(0.5モル)を滴下したのち、110℃に加熱した。5時間反応を継続したのち、冷却してろ過して不溶物を除去し、以下の式で表される化合物を含有する反応液(B-1)を得た。反応液を分析したところ、水酸基当量177g/eq、不揮発分16.0%であった。
Figure JPOXMLDOC01-appb-C000023
 比較例2
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに比較例1で得られた反応液(B-1)442g、α―ナフトール57.6g、イソフタル酸クロライド80.8gを仕込み、系内を減圧窒素置換し溶解させた。その後、テトラブチルアンモニウムブロマイド 0.27gを溶解させ、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液164.8gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン層に水を投入して約15分間撹拌混合し、静置分液したが、下層がエマルジョン化しており分液性は不良であった。エマルジョン層のpHが7になるまでこの操作を繰り返した。その後、熱減圧下乾燥して以下構造を有する化合物を含有する活性エステル樹脂(B-2)を合成した。合成後のフラスコには溶剤・水に溶解しないゲル状の不溶物が付着していた。
Figure JPOXMLDOC01-appb-C000024
 比較例3
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに2,6-キシレノール488.7部とパラキシレングリコールジメチルエーテル281.7部、パラトルエンスルホン酸7.7部を仕込み、系内を減圧窒素置換し溶解させた。次いで、窒素ガスパージを施しながら、系内を180℃まで、3時間かけて昇温した。このとき、生成する揮発分は適宜除去した。49%NaOH3.3部を仕込んだあと、水洗を行い、触媒塩を除去した。190℃に加熱減圧後、水蒸気蒸留により残留モノマーを除去し、2,6-キシレノールアラルキル樹脂(B-3)を得た。この樹脂(B-3)の水酸基当量は199g/eqであった。
 比較例4
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに(B-3)130部、CMS-P105部、メチルイソブチルケトン235部、テトラブチルアンモニウムブロミド9.39部、2,4-ジニトロフェノール0.11部を仕込み、撹拌しながら50℃に加熱した。次いで49%NaOH水溶液107部を60分で滴下した。発熱により内温が70℃まで上昇した。その後70~75℃で5時間保持した。リン酸を使用して下層のpHが7になるまで中和したのち、分液操作により水洗を行ったが下層はエマルジョン化しており分液性は不良であった。エマルジョン化した下層を抜き出すことで、有機層から触媒を除去した。反応液を加熱減圧操作により濃縮し、ビニルベンジルオキシ基を有するキシレノールアラルキル樹脂(B-4)を得た。GPC分析の結果から、原料であるクロロメチルスチレンの残留は確認されなかった。
 比較例5
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにα―ナフトール433部、パラキシレンジクロリド315部、トルエン703部を仕込み、系内を減圧窒素置換し溶解させた。次いで、窒素ガスパージを施しながら、系内を90℃まで昇温した。49%NaOH水溶液294部を1時間かけて滴下し、そのまま8時間保持した。水430部を仕込み、静置分液して下層を除去した。パラトルエンスルホン酸15.0部を仕込み、150℃まで揮発分を除去しながら昇温した。1時間保持した後、水洗にて触媒を除去した。その後180℃で減圧乾燥することで、α―ナフトールアラルキル樹脂(B-5)を得た。この樹脂(B-5)の水酸基当量は217g/eqであった。
 比較例6
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに(B-5)130部、CMS-P96.0部、メチルイソブチルケトン226部、テトラブチルアンモニウムブロミド9.04部、2,4-ジニトロフェノール0.20部を仕込み、撹拌しながら45℃に加熱した。次いで49%NaOH水溶液97.8部を60分で滴下した。発熱により内温が60℃まで上昇した。その後55~65℃で8時間保持した。リン酸を使用して下層のpHが7になるまで中和したのち、分液操作により水洗を行い、有機層から塩を除去した。反応液を加熱減圧操作により濃縮し、ビニルベンジルオキシ基を有するナフトールアラルキル樹脂(B-6)を得た。GPC分析の結果から、原料であるクロロメチルスチレンの残留は確認されなかった。
 実施例2及び比較例2、4、6で得られた樹脂を用いた硬化性組成物とその硬化
 下記表1に示す組成で配合して硬化性組成物を得た。これを1.6mm厚の型枠に流し込み、120℃120分間、180℃60分間加熱し、硬化させた。
Figure JPOXMLDOC01-appb-T000025
 表1に示す通り、実施例2で得られた樹脂を用いた樹脂組成物から得られた硬化物は、167℃と高い耐熱性を有していたと共に、1GHzにおける誘電正接が2.8×10-3という低い誘電正接を示していた。
 これに対し、比較例2で得られた樹脂を用いた樹脂組成物から得られた硬化物は、1GHzにおける誘電正接が2.9×10-3という低い誘電正接を示していたものの、120℃と低い耐熱性を有していた。
 また、比較例4で得られた樹脂を用いた樹脂組成物から得られた硬化物は、173℃と高い耐熱性を有していたものの、1GHzにおける誘電正接が5.1×10-3という高い誘電正接を示していた。
 さらに、比較例6で得られた樹脂を用いた樹脂組成物から得られた硬化物は、150℃と、それほど高い耐熱性を有してはおらず、1GHzにおける誘電正接が7.5×10-3という高い誘電正接を示していた。

Claims (13)

  1.  ビニルベンジルオキシ構造を1以上有するフェノール化合物。
  2.  式(1-1)~(1-8)の何れかで示される化合物である請求項1記載のフェノール化合物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは水素原子またはビニルベンジル基であり、1分子中少なくとも一つはビニルベンジル基である。Rは水素原子、アルキル基又はアリール基であり、式(1-1)、(1-4)、(1-5)、(1-6)、(1-8)中のnは0~4の整数であり、式(1-2)中のnは0~3の整数であり、式(1-3)、(1-7)中のnは0~6の整数である。複数あるRは同一であっても異なっていてもよい。式(1-3)、(1-7)におけるRは、ナフタレン環のいずれの環に結合していてもよいことを示す〕
  3.  請求項1又は2に記載のフェノール化合物を含有する、活性エステル樹脂製造用原料組成物。
  4.  請求項3記載の原料組成物を用いてなる、ビニルベンジルオキシ構造含有活性エステル樹脂。
  5.  両末端にビニルベンジルオキシ構造を有する請求項4記載の活性エステル樹脂。
  6.  式(I)で示される構造を有する、請求項4又は5記載の活性エステル樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、nは0~20の整数を表し、Xはビニルベンジルオキシ基を含有するフェノール化合物の反応残基を表し、Yは多官能フェノール化合物の反応残基を表す。)
  7.  下記式(I-1)で表される構造を有する樹脂である、請求項6に記載の活性エステル樹脂。
    Figure JPOXMLDOC01-appb-C000003
  8.  請求項1又は2に記載のフェノール化合物と芳香族ポリカルボン酸又はその誘導体とを必須の反応原料として反応させる、活性エステル樹脂の製造方法。
  9.  請求項4~7のいずれか1項記載の活性エステル樹脂及び硬化剤を含有する、熱硬化性樹脂組成物。
  10.  電子部品基板用である、請求項9に記載の熱硬化性樹脂組成物。
  11.  請求項9又は10に記載の熱硬化性樹脂組成物の硬化物。
  12.  請求項8又は10に記載の熱硬化性樹脂組成物を用いたパッケージ基板。
  13.  半導体パッケージ基板である、請求項12に記載のパッケージ基板。
PCT/JP2019/035854 2018-09-18 2019-09-12 フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物 WO2020059625A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980060865.8A CN112739677B (zh) 2018-09-18 2019-09-12 酚化合物、活性酯树脂及其制造方法、以及热固性树脂组合物及其固化物
JP2020548427A JP7120315B2 (ja) 2018-09-18 2019-09-12 フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物
KR1020217007980A KR102583421B1 (ko) 2018-09-18 2019-09-12 활성 에스테르 수지 제조용 원료 조성물, 활성 에스테르 수지 및 그 제조 방법, 그리고, 열경화성 수지 조성물 및 그 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-173249 2018-09-18
JP2018173249 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059625A1 true WO2020059625A1 (ja) 2020-03-26

Family

ID=69888493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035854 WO2020059625A1 (ja) 2018-09-18 2019-09-12 フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物

Country Status (5)

Country Link
JP (1) JP7120315B2 (ja)
KR (1) KR102583421B1 (ja)
CN (1) CN112739677B (ja)
TW (1) TWI813767B (ja)
WO (1) WO2020059625A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075625A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2021075624A (ja) * 2019-11-08 2021-05-20 Dic株式会社 エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
KR20220121553A (ko) * 2021-02-25 2022-09-01 주식회사 신아티앤씨 수지 조성물
WO2022182198A1 (ko) * 2021-02-25 2022-09-01 주식회사 신아티앤씨 비닐계 화합물 제조방법
JPWO2023008079A1 (ja) * 2021-07-29 2023-02-02
WO2024070773A1 (ja) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 多官能ビニル化合物、その組成物、及び硬化物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055337A (ja) * 2001-05-18 2003-02-26 Nippon Chem Ind Co Ltd ポリマー化可能な基を有するスルホン酸型液晶材料、その製造方法、プロトン輸送材料および液晶状態による分子配列を利用したプロトン輸送方法
JP2011033839A (ja) * 2009-07-31 2011-02-17 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、それを用いたパターン形成方法
JP2014062243A (ja) * 2012-08-30 2014-04-10 Nippon Steel & Sumikin Chemical Co Ltd 芳香族ビニルベンジルエーテル化合物、及びこれを含有する硬化性組成物
JP2018009129A (ja) * 2016-07-15 2018-01-18 Dic株式会社 活性エステル樹脂とその硬化物
JP2018070564A (ja) * 2016-11-04 2018-05-10 エア・ウォーター株式会社 ビニルベンジル化フェノール化合物、当該ビニルベンジル化フェノール化合物の製造方法、活性エステル樹脂、当該活性エステル樹脂の製造方法、熱硬化性樹脂組成物、当該熱硬化性樹脂組成物の硬化物、層間絶縁材料、プリプレグ、およびプリプレグの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330106B2 (ja) * 2001-05-18 2009-09-16 日本化学工業株式会社 ポリマー化可能な基を有するホスホン酸型液晶材料、その製造方法、プロトン輸送材料および液晶状態による分子配列を利用したプロトン輸送方法
JP3826322B2 (ja) 2002-10-31 2006-09-27 大日本インキ化学工業株式会社 エポキシ樹脂組成物およびその硬化物
JP4378601B2 (ja) * 2003-07-25 2009-12-09 東洋紡績株式会社 ウレタン(メタ)アクリレートオリゴマー
US7863346B2 (en) * 2006-02-07 2011-01-04 Designer Molecules, Inc. Mold compositions with high adhesion to metal substrates
EP2710431B1 (en) * 2011-05-18 2017-09-13 Canon Kabushiki Kaisha Toner
US8883946B2 (en) * 2011-05-18 2014-11-11 Orient Chemical Industries Co., Ltd. Charge control resin and manufacturing method of the same
JP6034326B2 (ja) * 2014-03-26 2016-11-30 富士フイルム株式会社 半導体素子及び絶縁層形成用組成物
SG11201610439VA (en) 2014-06-20 2017-01-27 Univ Tennessee Res Foundation Multigraft copolymer superelastomers by emulsion polymerization
JP6390438B2 (ja) * 2015-01-16 2018-09-19 Jsr株式会社 感放射線性樹脂組成物、硬化膜、その形成方法、及び表示素子
EP3262668B1 (de) * 2015-08-26 2018-12-05 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
JP2017083665A (ja) * 2015-10-28 2017-05-18 キヤノン株式会社 トナー及びトナーの製造方法
US10252965B2 (en) * 2015-11-11 2019-04-09 Air Water Inc. Vinylbenzylated phenol compound, method of manufacturing vinylbenzylated phenol compound, activated ester resin, method of manufacturing activated ester resin, thermoset resin composition, hardened material of thermoset resin composition, interlayer insulating material, prepreg, and method of manufacturing prepreg
JP6855289B2 (ja) * 2016-03-18 2021-04-07 キヤノン株式会社 トナー及びトナーの製造方法
JP6776749B2 (ja) 2016-09-12 2020-10-28 味の素株式会社 樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055337A (ja) * 2001-05-18 2003-02-26 Nippon Chem Ind Co Ltd ポリマー化可能な基を有するスルホン酸型液晶材料、その製造方法、プロトン輸送材料および液晶状態による分子配列を利用したプロトン輸送方法
JP2011033839A (ja) * 2009-07-31 2011-02-17 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、それを用いたパターン形成方法
JP2014062243A (ja) * 2012-08-30 2014-04-10 Nippon Steel & Sumikin Chemical Co Ltd 芳香族ビニルベンジルエーテル化合物、及びこれを含有する硬化性組成物
JP2018009129A (ja) * 2016-07-15 2018-01-18 Dic株式会社 活性エステル樹脂とその硬化物
JP2018070564A (ja) * 2016-11-04 2018-05-10 エア・ウォーター株式会社 ビニルベンジル化フェノール化合物、当該ビニルベンジル化フェノール化合物の製造方法、活性エステル樹脂、当該活性エステル樹脂の製造方法、熱硬化性樹脂組成物、当該熱硬化性樹脂組成物の硬化物、層間絶縁材料、プリプレグ、およびプリプレグの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BALAMI U. ET AL.: "Electrochemical responsive arrays of sulfonatocalixarene groups prepared by free radical polymerization", REACTIVE & FUNCTIONAL POLYMERS, vol. 81, 2014, pages 54 - 60, XP028854841, ISSN: 1381-5148, DOI: 10.1016/j.reactfunctpolym.2014.03.015 *
FUJII Y. ET AL.: "Template synthesis of a polymer Schiff base cobalt (III) complex and formation of a specific cavity for chiral amino acid", CHEMISTRY LETTERS, vol. 9, 1984, pages 1487 - 1490, XP055693947, ISSN: 0366-7022 *
SELLNER H. ET AL.: "Immobilization of BINOL by Cross-Linking Copolymerization of Styryl Derivatives with Styrene, and Applications in Enantioselective Ti and Al Lewis Acid Mediated Additions of Et2Zn and Me3SiCN to Aldehydes and of Diphenyl Nitrone to Enol Ethers", CHEMISTRY - A EUROPEAN JOURNAL, vol. 6, no. 20, 2000, pages 3692 - 3705, XP055693950, ISSN: 0947-6539 *
STRIEGLER S. ET AL., HYDROLYSIS OF GLYCOSIDES WITH MICROGEL CATALYSTS, INORGANIC CHEMISTRY, vol. 50, no. 18, 2011, pages 8869 - 8878, XP055693948, ISSN: 0020-1669 *
THIELBEER F. ET AL.: "Polymerizable Fluorescein Derivatives: Synthesis of Fluorescent Particles and Their Cellular Uptake", BIOMACROMOLECULES, vol. 12, no. 12, 2011, pages 4386 - 4391, XP055544257, ISSN: 1525-7797, DOI: 10.1021/bm201394k *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075625A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2021075624A (ja) * 2019-11-08 2021-05-20 Dic株式会社 エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JP7228102B2 (ja) 2019-11-08 2023-02-24 Dic株式会社 エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JP7228103B2 (ja) 2019-11-08 2023-02-24 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
KR20220121553A (ko) * 2021-02-25 2022-09-01 주식회사 신아티앤씨 수지 조성물
WO2022182198A1 (ko) * 2021-02-25 2022-09-01 주식회사 신아티앤씨 비닐계 화합물 제조방법
KR102677600B1 (ko) * 2021-02-25 2024-06-20 주식회사 신아티앤씨 수지 조성물
JPWO2023008079A1 (ja) * 2021-07-29 2023-02-02
WO2023008079A1 (ja) * 2021-07-29 2023-02-02 Dic株式会社 硬化性樹脂組成物、および、硬化物
JP7306599B2 (ja) 2021-07-29 2023-07-11 Dic株式会社 硬化性樹脂組成物、および、硬化物
WO2024070773A1 (ja) * 2022-09-29 2024-04-04 日鉄ケミカル&マテリアル株式会社 多官能ビニル化合物、その組成物、及び硬化物

Also Published As

Publication number Publication date
TW202021938A (zh) 2020-06-16
CN112739677B (zh) 2024-05-31
KR102583421B1 (ko) 2023-09-26
CN112739677A (zh) 2021-04-30
JP7120315B2 (ja) 2022-08-17
TWI813767B (zh) 2023-09-01
KR20210046039A (ko) 2021-04-27
JPWO2020059625A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020059625A1 (ja) フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物
JP6270092B1 (ja) 活性エステル樹脂組成物とその硬化物
JP6270091B1 (ja) 硬化性組成物とその硬化物
JP6304465B1 (ja) 活性エステル組成物及びその硬化物
WO2020059624A1 (ja) 単官能フェノール化合物、活性エステル樹脂及びその製造方法、並びに、熱硬化性樹脂組成物及びその硬化物
WO2020003824A1 (ja) エポキシ樹脂組成物及びその硬化物
JP6332720B1 (ja) 活性エステル樹脂とその硬化物
WO2018008409A1 (ja) 活性エステル樹脂とその硬化物
JP7104899B2 (ja) 活性エステル化合物及び硬化性組成物
TWI776008B (zh) 聚酯樹脂與其硬化物
JP7136095B2 (ja) 活性エステル化合物及び硬化性組成物
JP7228085B2 (ja) 活性エステル化合物及び硬化性組成物
TW201904929A (zh) 活性酯組成物及半導體密封材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548427

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217007980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862205

Country of ref document: EP

Kind code of ref document: A1