WO2018008409A1 - 活性エステル樹脂とその硬化物 - Google Patents

活性エステル樹脂とその硬化物 Download PDF

Info

Publication number
WO2018008409A1
WO2018008409A1 PCT/JP2017/022995 JP2017022995W WO2018008409A1 WO 2018008409 A1 WO2018008409 A1 WO 2018008409A1 JP 2017022995 W JP2017022995 W JP 2017022995W WO 2018008409 A1 WO2018008409 A1 WO 2018008409A1
Authority
WO
WIPO (PCT)
Prior art keywords
active ester
compound
resin
ester resin
mass
Prior art date
Application number
PCT/JP2017/022995
Other languages
English (en)
French (fr)
Inventor
泰 佐藤
竜也 岡本
顕人 河崎
和久 矢本
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201780041857.XA priority Critical patent/CN109415485B/zh
Priority to KR1020187037832A priority patent/KR102278300B1/ko
Priority to JP2017561021A priority patent/JP6332719B1/ja
Publication of WO2018008409A1 publication Critical patent/WO2018008409A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/133Hydroxy compounds containing aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention provides an active ester resin having a low cure shrinkage ratio, excellent dielectric properties in a cured product, and high solvent solubility, a curable resin composition containing the same, a cured product thereof, a printed wiring board, and a semiconductor sealing material About.
  • Patent Document 1 As a resin material having a relatively low dielectric constant and dielectric loss tangent in a cured product, there is a technique in which an active ester resin obtained by esterifying dicyclopentadiene phenol resin and ⁇ -naphthol with phthalic acid chloride is used as a curing agent for an epoxy resin. It is known (see Patent Document 1 below).
  • the active ester resin described in Patent Document 1 has a low dielectric constant and dielectric loss tangent in a cured product as compared with the case where a conventional curing agent such as a phenol novolac resin is used.
  • the value of the dielectric loss tangent has been required to be further reduced. Further, there has been a demand for further reduction in curing shrinkage.
  • the problem to be solved by the present invention is an active ester resin having a low cure shrinkage ratio, excellent dielectric properties in a cured product, and high solvent solubility, a curable resin composition containing the same, a cured product thereof,
  • An object of the present invention is to provide a printed wiring board and a semiconductor sealing material.
  • an active ester resin using a naphthol compound as a reaction raw material and a novolac resin containing a component having 3 or more nuclei as an essential reaction raw material has a cure shrinkage rate.
  • the present invention has been completed by finding that it is low, has excellent dielectric properties in a cured product, and has high solvent solubility.
  • the present invention relates to a novolak type resin (A) using a naphthol compound (a) as a reaction raw material, which contains a component having 3 or more nuclei as an essential component, and a phenolic hydroxyl group in the molecule.
  • the present invention relates to an active ester resin characterized by using a compound (B) having one of the above and an aromatic polycarboxylic acid or an acid halide (C) thereof as essential reaction materials.
  • the present invention further relates to a curable resin composition containing the active ester resin and a curing agent.
  • the present invention further relates to a cured product of the curable resin composition.
  • the present invention further relates to a printed wiring board using the curable resin composition.
  • the present invention further relates to a semiconductor sealing material using the curable resin composition.
  • an active ester resin having a low cure shrinkage ratio, excellent dielectric properties and the like in a cured product and high solvent solubility, a curable resin composition containing the same, a cured product thereof, a printed wiring board, and a semiconductor encapsulation A stop material can be provided.
  • FIG. 1 is a GPC chart of the active ester resin (1) obtained in Example 1.
  • FIG. FIG. 2 is a 13C-NMR chart of the active ester resin (1) obtained in Example 1.
  • FIG. 3 is an MS spectrum of the active ester resin (1) obtained in Example 1.
  • FIG. 4 is a GPC chart of the active ester resin (2) obtained in Example 2.
  • FIG. 5 is a GPC chart of the active ester resin (3) obtained in Example 3.
  • the active ester resin of the present invention is a novolak type resin using a naphthol compound (a) as a reaction raw material, a novolak type resin (A) containing a component having 3 or more nuclei as an essential component, and phenol in the molecule.
  • a compound (B) having one ionic hydroxyl group and an aromatic polycarboxylic acid or its acid halide (C) are used as essential reaction raw materials.
  • the naphthol compound (a) may be any compound as long as it has one hydroxyl group on the naphthalene ring, and its specific structure, presence or absence of other substituents, etc. are particularly limited. Not. In the present invention, one type of naphthol compound (a) may be used alone, or two or more types may be used in combination. Specific examples of the naphthol compound (a) include 1-naphthol, 2-naphthol, and compounds having one or more substituents on the aromatic nucleus.
  • Substituents on the aromatic nucleus are, for example, methyl, ethyl, vinyl, propyl, butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl Group, aliphatic hydrocarbon group such as dodecyl group; alkoxy group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group An aryl group such as phenylmethyl group, phenylethyl group, naphthylmethyl group, naphthylethyl group, and the like.
  • 1-naphthol or 2-naphthol is preferable because it becomes an active ester resin having a low cure shrinkage and excellent dielectric properties in a
  • the novolak type resin (A) uses the naphthol compound (a) as a reaction raw material, but other phenolic hydroxyl group-containing compounds (a ′) may be used in combination depending on the desired resin performance. good.
  • the other phenolic hydroxyl group-containing compound (a ′) include phenol, anthracenol, and compounds having one or more substituents on the aromatic nucleus thereof.
  • Substituents on the aromatic nucleus are, for example, methyl, ethyl, vinyl, propyl, butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl Group, aliphatic hydrocarbon group such as dodecyl group; alkoxy group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group An aryl group such as phenylmethyl group, phenylethyl group, naphthylmethyl group, naphthylethyl group, and the like.
  • the present invention has a low curing shrinkage ratio, excellent dielectric properties in the cured product, and high solvent solubility. Therefore, the ratio of the naphthol compound (a) is preferably 50 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more. It is particularly preferred.
  • the novolac resin (A) contains a component having 3 or more nuclei as an essential component.
  • the number of nuclei is the number of structural sites derived from the naphthol compound (a) or the other phenolic hydroxyl group-containing compound (a ′) contained in one molecule.
  • the component can be represented by the following general formula (1), and the component having 4 nuclei can be represented by the following general formula (2-1) or (2-2).
  • Ar is a structural site derived from the naphthol compound (a) or the other phenolic hydroxyl group-containing compound (a ′).
  • Ar is a structural site derived from the naphthol compound (a) or the other phenolic hydroxyl group-containing compound (a ′).
  • Ar in the general formulas (1), (2-1), and (2-2) represents a structural site derived from the naphthol compound (a) or the other phenol. Any of the structural sites derived from the functional hydroxyl group-containing compound (a ′) may be used, but since the curing shrinkage rate is low and the effect of excellent dielectric properties in the cured product becomes more remarkable, the general formula (1), More preferably, Ar in (2-1) and (2-2) are all structural sites derived from the naphthol compound (a).
  • the novolac resin (A) contains a component having a core number of 3 or 4 in the range of 1 to 50% because the cure shrinkage is low and the effect of excellent dielectric properties in the cured product becomes more remarkable. Preferably, it is contained in the range of 5 to 30%. Further, the content of the component having 3 nuclei is preferably in the range of 1 to 30%, more preferably in the range of 5 to 20%. The content of the component having 4 nuclei is preferably in the range of 1 to 15%, more preferably in the range of 1 to 10%.
  • the novolac resin (A) more preferably contains a component having 2 nuclei since the curing shrinkage of the resulting active ester resin can be further reduced.
  • the content of the component having 2 nuclei is the ratio of the content (N2) of the component having 2 nuclei to the content (N3) of the component having 3 nuclei [(N3) / (N2)] is preferably in the range of 0.10 to 2.00, and more preferably in the range of 0.20 to 1.00.
  • the content of each component in the novolac resin (A) is a value calculated from the area ratio of the GPC chart measured under the following conditions.
  • Measuring device “HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8320”.
  • the method for producing the novolac resin (A) is not particularly limited.
  • the naphthol compound (a) and the other phenolic hydroxyl group-containing compound (a) a And a method in which formaldehyde is reacted with no catalyst or in the presence of an acid catalyst or an alkali catalyst at a temperature of 40 to 200 ° C. After completion of the reaction, an excessive amount of the compound (a) or the compound (a ′) may be distilled off as desired. Further, the unreacted compound (a) or compound (a ′) in the reaction mixture may be used as it is as the compound (B) having one phenolic hydroxyl group in the molecule described later.
  • the formaldehyde may be used as a formalin solution or as paraformaldehyde. Since the amount of formaldehyde charged is easy to control the reaction, the amount of formaldehyde is in the range of 0.01 to 0.9 mol with respect to a total of 1 mol of the compound (a) and the compound (a ′). Is preferred.
  • the acid catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Is mentioned. These may be used alone or in combination of two or more. The amount of these acid catalysts used is preferably in the range of 0.1 to 5% by mass relative to the total mass of the reaction raw materials.
  • the alkali catalyst examples include sodium hydroxide, potassium hydroxide, triethylamine, pyridine and the like. These may be used alone or in combination of two or more. Further, it may be used as an aqueous solution of about 3.0 to 50%. Among these, sodium hydroxide or potassium hydroxide having high catalytic ability is preferable.
  • the amount of these alkali catalysts used is preferably in the range of 0.1 to 20% by mass relative to the total mass of the reaction raw materials.
  • the synthesis reaction of the novolac resin (A) may be performed in an organic solvent as necessary.
  • the organic solvent used here is not particularly limited as long as it is an organic solvent that can be used under the above temperature conditions. Specific examples include methyl cellosolve, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone. . When these organic solvents are used, they are preferably used in the range of 10 to 500% by mass relative to the total mass of the reaction raw materials.
  • antioxidants and reducing agents may be used for the purpose of suppressing the coloring of the resulting novolac resin (A).
  • antioxidants include hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent sulfur compounds, and phosphite compounds containing a trivalent phosphorus atom.
  • reducing agent include hypophosphorous acid, phosphorous acid, thiosulfuric acid, sulfurous acid, hydrosulfite, salts thereof, and zinc.
  • the target novolac resin (A) can be obtained by neutralizing the reaction mixture or washing it with water, and then distilling off unreacted reaction raw materials and by-products.
  • the hydroxyl equivalent of the novolak resin (A) is preferably in the range of 110 to 250 g / equivalent because it is an active ester resin that has high solvent solubility and can be easily used in various applications.
  • the softening point of the novolac resin (A) is preferably in the range of 40 to 130 ° C.
  • the compound (B) having one phenolic hydroxyl group in the molecule may be any compound as long as it is an aromatic compound having one hydroxyl group on the aromatic ring, and other specific structures are not particularly limited.
  • the compound (B) which has one phenolic hydroxyl group in molecular structure may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the compound (B) having one phenolic hydroxyl group in the molecular structure is specifically a phenol compound having one or more substituents on the aromatic nucleus of phenol or phenol, naphthol or naphthol aromatic nucleus.
  • naphthol compounds having one or more substituents, anthracenol, or naphthol compounds having one or more substituents on the aromatic nucleus of anthracenol include, for example, aliphatic carbonization such as methyl, ethyl, vinyl, propyl, butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, and nonyl groups.
  • a hydrogen group such as a methoxy group, an ethoxy group, a propyloxy group, or a butoxy group; a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom; a phenyl group, a naphthyl group, an anthryl group, and an aromatic nucleus thereof.
  • 1-naphthol or 2-naphthol is preferable because it becomes an active ester resin having a low cure shrinkage and excellent dielectric properties in a cured product.
  • the aromatic polycarboxylic acid or its acid halide (C) reacts with the phenolic hydroxyl group of the novolak resin (A) and the compound (B) having one phenolic hydroxyl group in the molecule to form an ester bond.
  • the specific structure is not particularly limited as long as it is an aromatic compound capable of forming, and any compound may be used.
  • Specific examples include benzenedicarboxylic acids such as isophthalic acid and terephthalic acid, benzenetricarboxylic acids such as trimellitic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, and naphthalene-2,6.
  • -Naphthalene dicarboxylic acids such as dicarboxylic acids and naphthalene-2,7-dicarboxylic acids, acid halides thereof, and compounds in which the aliphatic hydrocarbon group, alkoxy group, halogen atom, etc. are substituted on the aromatic nucleus, etc.
  • the acid halide include acid chloride, acid bromide, acid fluoride, and acid iodide. These may be used alone or in combination of two or more.
  • benzenedicarboxylic acids such as isophthalic acid and terephthalic acid or acid halides thereof are preferable because they are active ester resins having high reaction activity and excellent curability.
  • the reaction of the novolac resin (A), the compound (B) having one phenolic hydroxyl group in the molecule, and the aromatic polycarboxylic acid or acid halide (C) thereof is carried out, for example, in the presence of an alkali catalyst.
  • an alkali catalyst Can be carried out by heating and stirring under a temperature condition of about 40 to 65 ° C. You may perform reaction in an organic solvent as needed. Further, after completion of the reaction, the reaction product may be purified by washing, reprecipitation or the like, if desired.
  • alkali catalyst examples include sodium hydroxide, potassium hydroxide, triethylamine, pyridine and the like. These may be used alone or in combination of two or more. Further, it may be used as an aqueous solution of about 3.0 to 30%. Among these, sodium hydroxide or potassium hydroxide having high catalytic ability is preferable.
  • organic solvent examples include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; and carbitols such as cellosolve and butyl carbitol.
  • ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone
  • acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate
  • carbitols such as cellosolve and butyl carbitol.
  • solvents aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methyl
  • the reaction ratio of the novolac resin (A), the compound (B) having one phenolic hydroxyl group in the molecule, and the aromatic polycarboxylic acid or its acid halide (C) depends on the desired molecular design. Can be changed as appropriate. Among them, since it becomes an active ester resin having high solvent solubility and easy to use for various applications, the number of moles of hydroxyl group (A OH ) of the novolak resin (A) and the phenolic hydroxyl group in the molecule are one.
  • the ratio [(A OH ) / (B OH )] to the number of moles of hydroxyl groups (B OH ) possessed by the compound (B) having a ratio of 10/90 to 75/25 is 20/80 The ratio is more preferably 50/50.
  • the total number of carboxyl groups or acid halide groups of the aromatic polycarboxylic acid or acid halide (C) thereof is 1 mol in total and the number of moles of hydroxyl groups of the novolak resin (A) and phenolic in the molecule. It is preferable that the total of the compound (B) having one hydroxyl group and the number of moles of the hydroxyl group is 0.9 to 1.1 mol.
  • the active ester resin of the present invention contains an ester compound (BC) of the compound (B) having one phenolic hydroxyl group in the molecule and the aromatic polycarboxylic acid or its acid halide (C). May be.
  • the ester compound (BC) includes, for example, the novolac resin (A), the compound (B) having one phenolic hydroxyl group in the molecule, and the aromatic polycarboxylic acid or acid halide (C) thereof. By preparing the reaction ratio, it can be produced as one component of an active ester resin.
  • ester compound (BC) for example, a naphthol compound is used as the compound (B) having one phenolic hydroxyl group, and a benzenedicarboxylic acid is used as the aromatic polycarboxylic acid or acid halide (C) thereof.
  • a structural example in the case of using an acid or an acid halide thereof is shown in the following structural formula (3).
  • the following structural formula (3) is merely an example of the specific structure of the ester compound (BC) and does not exclude diester compounds having other molecular structures.
  • each R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, and may be bonded to any carbon atom forming a naphthalene ring. Is 0 or an integer from 1 to 3.
  • the content is preferably less than 40% of the active ester resin, and more preferably in the range of 0.5 to 35%.
  • the content of the ester compound (BC) in the active ester resin is a value calculated from the area ratio of the GPC chart measured under the same conditions as the component analysis of the novolac resin (A).
  • the functional group equivalent of the active ester resin of the present invention is preferably in the range of 150 to 350 g / equivalent because it becomes an active ester resin having a low cure shrinkage and excellent curability.
  • the functional group in the active ester resin means an ester bond site and a phenolic hydroxyl group in the active ester resin.
  • the functional group equivalent of the active ester resin is a value calculated from the charged amount of the reaction raw material.
  • the softening point of the active ester resin of the present invention is preferably in the range of 85 to 160 ° C., more preferably in the range of 100 to 150 ° C., as measured based on JIS K7234.
  • the weight average molecular weight (Mw) of the active ester resin of the present invention is preferably in the range of 600 to 5,000, particularly preferably in the range of 800 to 3,000, from the viewpoint of becoming an active ester resin having a low cure shrinkage rate. .
  • the weight average molecular weight (Mw) of the active ester resin is a value calculated from the area ratio of the GPC chart measured under the same conditions as the component analysis of the novolac resin (A).
  • the curable resin composition of the present invention contains the aforementioned active ester resin and a curing agent.
  • the curing agent may be a compound that can react with the active ester resin of the present invention, and various compounds can be used without any particular limitation.
  • An example of the curing agent is an epoxy resin.
  • epoxy resin examples include phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, bisphenol novolac type epoxy resin, biphenol novolac type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin, and triphenolmethane.
  • Type epoxy resin tetraphenolethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin and the like.
  • epoxy resin curing agents used here include, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complexes, guanidine derivatives and other amine compounds; dicyandiamide, linolene Amide compounds such as polyamide resin synthesized from acid dimer and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl anhydride Acid anhydrides such as nadic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride; phenol novol
  • the active ester resin, the epoxy resin, and the curing agent composition for other epoxy resins of the present invention are blended in a proportion of 1 mol in total for the epoxy groups in the epoxy resin.
  • the ratio is preferably such that the total of functional groups in the agent is 0.7 to 1.5 mol.
  • the curable resin composition of the present invention includes cyanate ester resins, bismaleimide resins, benzoxazine resins, styrene-maleic anhydride resins, allyl group-containing resins represented by diallyl bisphenol and triallyl isocyanurate, polyphosphorus An acid ester or a phosphate ester-carbonate copolymer may be contained. These may be used alone or in combination of two or more.
  • the curable resin composition of the present invention may contain various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary.
  • the curing accelerator examples include phosphorus compounds, tertiary amines, imidazole compounds, pyridine compounds, organic acid metal salts, Lewis acids, amine complex salts, and the like.
  • triphenylphosphine is used for phosphorus compounds
  • 1,8-diazabicyclo- [5.4.0] -undecene (DBU is used for tertiary amines because of its excellent curability, heat resistance, electrical properties, moisture resistance reliability, and the like.
  • 2-ethyl-4-methylimidazole is preferred for imidazole compounds
  • 4-dimethylaminopyridine is preferred for pyridine compounds.
  • the flame retardant is, for example, red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphate such as ammonium polyphosphate, inorganic phosphorus compounds such as phosphate amide; phosphate ester compound, phosphonic acid Compound, phosphinic acid compound, phosphine oxide compound, phosphorane compound, organic nitrogen-containing phosphorus compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) ) Cyclic organic phosphorus such as -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide Compound and its compound such as epoxy resin and phenol resin Organophosphorus compounds such as derivatives reacted with nitrogen; nitrogen
  • the inorganic filler is blended, for example, when the curable resin composition of the present invention is used for semiconductor sealing materials.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • the said fused silica is preferable.
  • the fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the curable composition, a spherical one is mainly used. It is preferable.
  • the filling rate is preferably in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable resin composition.
  • a conductive filler such as silver powder or copper powder can be used.
  • the active ester resin of the present invention is characterized by high heat resistance and moisture absorption resistance in a cured product and excellent dielectric properties.
  • the general required performance required for resin materials such as solubility in general-purpose organic solvents and curability with epoxy resins, is sufficiently high, such as printed wiring boards, semiconductor encapsulation materials, resist materials, etc.
  • it can be widely used for applications such as paints, adhesives and molded products.
  • the curable resin composition of the present invention When the curable resin composition of the present invention is used for printed wiring board applications or build-up adhesive film applications, it is generally preferable to mix and dilute with an organic solvent.
  • the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like.
  • the type and blending amount of the organic solvent can be adjusted as appropriate according to the use environment of the curable resin composition.
  • methyl ethyl ketone, acetone, dimethylformamide and the like are polar solvents having a boiling point of 160 ° C. or lower.
  • the non-volatile content is preferably 40 to 80% by mass.
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc.
  • acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, carbitols such as cellosolve, butyl carbitol, etc.
  • a solvent an aromatic hydrocarbon solvent such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like, and it is preferable to use them in a proportion that the nonvolatile content is 30 to 60% by mass.
  • the method of manufacturing a printed wiring board using the curable resin composition of the present invention includes, for example, impregnating a curable composition into a reinforcing base material and curing it to obtain a prepreg, and stacking this with a copper foil.
  • the method of carrying out thermocompression bonding is mentioned.
  • the reinforcing substrate include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the amount of impregnation of the curable resin composition is not particularly limited, but it is usually preferable to prepare so that the resin content in the prepreg is 20 to 60% by mass.
  • the curable resin composition of the present invention when used for a semiconductor sealing material, it is preferable to blend an inorganic filler.
  • the semiconductor encapsulating material containing the active ester resin of the present invention, a curing agent, an inorganic filler, and other optional components may be prepared by mixing the compound using, for example, an extruder, a kneader, or a roll. it can.
  • a method for molding a semiconductor package using the obtained semiconductor sealing material includes, for example, molding the semiconductor sealing material using a casting or transfer molding machine, injection molding machine, etc., and further a temperature of 50 to 200 ° C. Examples of the method include heating for 2 to 10 hours under conditions, and by such a method, a semiconductor device which is a molded product can be obtained.
  • GPC measurement conditions Measuring device: “HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8320”.
  • 13C-NMR measurement condition apparatus ECA-500 manufactured by JEOL Ltd. Measurement mode: SINGLE-PULSE-DEC (1H complete decoupling method for NOE elimination) Solvent: Deuterated chloroform pulse angle: 30 ° Pulse sample concentration: 30 wt% Integration count: 4000 times
  • Measurement condition equipment for MALDI-TOF-MS Shimazu / AXIMA-TOF2 manufactured by KRSTOS Ionization method: Matrix-assisted laser desorption ionization method
  • Example 1 Production of Active Ester Resin (1)
  • a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer 288 parts by mass of 1-naphthol, 288 parts by mass of 2-naphthol, 576 parts by mass of toluene
  • a 37% formalin aqueous solution (81 parts by mass) and a 49% sodium hydroxide aqueous solution (10 parts by mass) were charged. While stirring the contents of the flask, the temperature was raised to 75 ° C., and the mixture was stirred at 75 ° C. for 1 hour for reaction.
  • the mixture was neutralized by adding 13 parts by mass of 35% hydrochloric acid, and then washed three times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure to obtain 568 parts by mass of a mixture (1) containing unreacted naphthol and novolac resin (A-1).
  • the obtained mixture (1) had a hydroxyl equivalent of 147 g / equivalent.
  • the content of the component having 2 nuclei calculated from the area ratio of the GPC chart of the mixture (1) is 32.6%
  • the content of the component having 3 nuclei is 12.2%
  • the content of the component having the number of 4 is 3.1%
  • the ratio of the content of the component having the number of nuclei of 2 (N2) and the content of the component having the number of nuclei of 3 (N3) [(N3 ) / (N2)] was 0.37.
  • a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 141 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure.
  • 206 parts by mass of the mixture (1) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure.
  • the inside of the reaction system was controlled to 60 ° C. or lower, and 280 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours.
  • an active ester resin (1) The functional group equivalent of the active ester resin (1) was 212 g / equivalent, and the softening point measured based on JIS K7234 was 124 ° C.
  • the GPC chart of the obtained active ester resin (1) is shown in FIG. 1, the 13C-NMR is shown in FIG. 2, and the MS is shown in FIG.
  • the content of the ester compound (BC) in the active ester resin (1) calculated from the area ratio of the GPC chart was 28.7%, and the weight average molecular weight (Mw) was 1219.
  • Example 2 Production of Active Ester Resin (2)
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 432 parts by mass of 1-naphthol, 144 parts by mass of 2-naphthol, and 576 parts by mass of toluene.
  • a 37% formalin aqueous solution (81 parts by mass) and a 49% sodium hydroxide aqueous solution (10 parts by mass) were charged. While stirring the contents of the flask, the temperature was raised to 75 ° C., and the mixture was stirred at 75 ° C. for 1 hour for reaction.
  • the content of the component having 2 nuclei calculated from the area ratio of the GPC chart of the mixture (2) is 19.7%, the content of the component having 3 nuclei is 14.1%, The content of the component having the number 4 is 6.5%, the ratio of the content (N2) of the component having the number of nuclei 2 to the content (N3) of the component having the number of nuclei 3 [(N3 ) / (N2)] was 0.72.
  • a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 141 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure.
  • 206 parts by mass of the previously obtained mixture (2) was charged, and the system was dissolved while substituting with nitrogen under reduced pressure.
  • the inside of the reaction system was controlled to 60 ° C. or lower, and 280 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours.
  • the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer became 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain 287 parts by mass of an active ester resin (2).
  • the functional group equivalent of the active ester resin (2) was 212 g / equivalent, and the softening point measured based on JIS K7234 was 131 ° C.
  • the GPC chart of the obtained active ester resin (2) is shown in FIG.
  • the content of the ester compound (BC) in the active ester resin (2) calculated from the area ratio of the GPC chart was 32.7%, and the weight average molecular weight (Mw) was 1621.
  • Example 3 Production of Active Ester Resin (3)
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer 576 parts by mass of 1-naphthol, 81 parts by mass of water, 81 parts by mass of 37% formalin aqueous solution Prepared the department. While stirring the contents of the flask, the temperature was raised to 95 ° C., and the reaction was carried out by stirring at 95 ° C. for 2 hours. After completion of the reaction, water and the like were distilled off under heating and reduced pressure to obtain 570 parts by mass of a mixture (3) containing unreacted naphthol and novolac resin (A-3). The obtained mixture (3) had a hydroxyl equivalent of 147 g / equivalent.
  • the content of the component having 2 nuclei calculated from the area ratio of the GPC chart of the mixture (3) is 33.4%, the content of the component having 3 nuclei is 11.1%, The content of the component having the number of 4 is 3.6%, the ratio of the content of the component having the number of nuclei of 2 (N2) and the content of the component having the number of nuclei of 3 (N3) [(N3 ) / (N2)] was 0.33.
  • a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 141 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure.
  • 206 parts by mass of the mixture (3) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure.
  • the inside of the reaction system was controlled to 60 ° C. or lower, and 280 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours.
  • FIG. 5 shows a GPC chart of the obtained active ester resin (3).
  • the content of the ester compound (BC) in the active ester resin (3) calculated from the area ratio of the GPC chart was 27.5%, and the weight average molecular weight (Mw) was 1285.
  • Toluene and the like were distilled off under heating and reduced pressure to obtain 520 parts by mass of a mixture (1 ′) containing unreacted naphthol and a novolac resin (A′-1).
  • the hydroxyl group equivalent of the mixture (1 ′) was 147 g / equivalent.
  • the content of the component having 2 nuclei calculated from the area ratio of the GPC chart of the mixture (1 ′) is 40.9%, the content of the component having 3 nuclei is 0%, the number of nuclei Is the ratio of the content of the component having the number of nuclei (N2) and the content of the component having the number of nuclei of 3 (N3) [(N3) / ( N2)] was 0.00.
  • a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 141 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure.
  • 206 parts by mass of the mixture (1 ′) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure.
  • the inside of the reaction system was controlled to 60 ° C. or lower, and 280 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours.
  • the conductive resin composition (1) was injection molded to obtain a molded product having a length of 110 mm, a width of 12.7 mm, and a thickness of 1.6 mm.
  • the obtained molded product was cured at 175 ° C. for 5 hours, and then allowed to stand at room temperature (25 ° C.) for 24 hours or more to obtain a test piece.
  • Curing shrinkage rate (%) ⁇ (internal dimension at 154 ° C. of mold) ⁇ (longitudinal dimension of test piece at room temperature) ⁇ / (internal dimension of mold at 154 ° C.) ⁇ 100 (%)
  • the curable resin composition (2) was poured into a mold using a press machine and molded at a temperature of 175 ° C. for 10 minutes. The molded product was taken out from the mold and cured at a temperature of 175 ° C. for 5 hours. The molded product after curing was cut into a size of 1 mm ⁇ 100 mm ⁇ 1.6 mm and used as a test piece. Using a network analyzer “E8362C” manufactured by Agilent Technologies, the dielectric loss tangent at 1 GHz of a test piece stored in a room at 23 ° C. and a humidity of 50% for 24 hours was measured by a cavity resonance method after heating and vacuum drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

硬化収縮率が低く、硬化物における誘電特性等に優れ、溶剤溶解性も高い活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料を提供すること。ナフトール化合物(a)を反応原料とするノボラック型樹脂であって、核体数3以上の成分を必須の成分として含有するノボラック型樹脂(A)、分子中にフェノール性水酸基を一つ有する化合物(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする活性エステル樹脂。

Description

活性エステル樹脂とその硬化物
 本発明は、硬化収縮率が低く、硬化物における誘電特性等に優れ、溶剤溶解性も高い活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料に関する。
 半導体や多層プリント基板等に用いられる絶縁材料の技術分野では、各種電子部材の薄型化や信号の高速化及び高周波数化に伴い、これらの市場動向に合わせた新たな樹脂材料の開発が求められている。例えば、電子部材の薄型化に伴い熱による部材の「反り」が顕著化するが、これを抑えるために、硬化収縮率が低く寸法安定性の高い樹脂材料の開発が進められている。また、信号の高速化及び高周波数化に対しては、発熱等によるエネルギー損失を低減させるため、硬化物における誘電率と誘電正接との両値が共に低い樹脂材料の開発が進められている。この他、工業的な利用価値として、各種汎用溶剤への溶解性に優れる等のハンドリング性も重要な性能である。
 硬化物における誘電率と誘電正接とが比較的低い樹脂材料として、ジシクロペンタジエンフェノール樹脂とα-ナフトールとをフタル酸クロライドでエステル化して得られる活性エステル樹脂をエポキシ樹脂の硬化剤として用いる技術が知られている(下記特許文献1参照)。特許文献1記載の活性エステル樹脂は、フェノールノボラック樹脂のような従来型の硬化剤を用いた場合と比較すると、硬化物における誘電率や誘電正接が低い特徴を有するが、昨今の市場要求レベルを満たすものではなく、特に誘電正接の値については一層の低減が求められていた。また、硬化収縮率について更なる低減が求められていた。
特開2004-169021号公報
 従って、本発明が解決しようとする課題は、硬化収縮率が低く、硬化物における誘電特性等に優れ、溶剤溶解性も高い活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料を提供することにある。
 本発明者らは前記課題を解決すべく鋭意検討した結果、ナフトール化合物を反応原料とし、核体数3以上の成分を含むノボラック型樹脂を必須の反応原料とする活性エステル樹脂は、硬化収縮率が低く、硬化物における誘電特性等に優れ、溶剤溶解性も高いことを見出し、本発明を完成するに至った。
 即ち、本発明は、ナフトール化合物(a)を反応原料とするノボラック型樹脂であって、核体数3以上の成分を必須の成分として含有するノボラック型樹脂(A)、分子中にフェノール性水酸基を一つ有する化合物(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする活性エステル樹脂に関する。
 本発明は更に、前記活性エステル樹脂と、硬化剤とを含有する硬化性樹脂組成物に関する。
 本発明は更に、前記硬化性樹脂組成物の硬化物に関する。
 本発明は更に、前記硬化性樹脂組成物を用いてなるプリント配線基板に関する。
 本発明は更に、前記硬化性樹脂組成物を用いてなる半導体封止材料に関する。
 本発明によれば、硬化収縮率が低く、硬化物における誘電特性等に優れ、溶剤溶解性も高い活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料を提供することができる。
図1は、実施例1で得られた活性エステル樹脂(1)のGPCチャート図である。 図2は、実施例1で得られた活性エステル樹脂(1)の13C-NMRチャート図である。 図3は、実施例1で得られた活性エステル樹脂(1)のMSスペクトルである。 図4は、実施例2で得られた活性エステル樹脂(2)のGPCチャート図である。 図5は、実施例3で得られた活性エステル樹脂(3)のGPCチャート図である。
 以下、本発明を詳細に説明する。
 本発明の活性エステル樹脂は、ナフトール化合物(a)を反応原料とするノボラック型樹脂であって、核体数3以上の成分を必須の成分として含有するノボラック型樹脂(A)、分子中にフェノール性水酸基を一つ有する化合物(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする。
 前記ノボラック型樹脂(A)について、前記ナフトール化合物(a)はナフタレン環上に水酸基を一つ有する化合物であれば何れの化合物でもよく、その具体構造や、他の置換基の有無等は特に限定されない。本発明では、ナフトール化合物(a)は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。前記ナフトール化合物(a)は、具体的には、1-ナフトール、2-ナフトール、これらの芳香核上に一つ乃至複数の置換基を有する化合物が挙げられる。芳香核上の置換基は、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基等のアリール基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基等のアラルキル基等が挙げられる。これらの中でも、硬化収縮率が低く、硬化物における誘電特性に優れる活性エステル樹脂となることから1-ナフトール又は2-ナフトールが好ましい。
 前記ノボラック型樹脂(A)は、その反応原料として前記ナフトール化合物(a)を用いるものであるが、所望の樹脂性能等に応じてその他のフェノール性水酸基含有化合物(a’)を併用しても良い。前記その他のフェノール性水酸基含有化合物(a’)は、例えば、フェノール、アントラセノール、これらの芳香核上に一つ乃至複数の置換基を有する化合物が挙げられる。芳香核上の置換基は、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基等のアリール基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基等のアラルキル基等が挙げられる。
 前記ナフトール化合物(a)と併用して前記その他のフェノール性水酸基含有化合物(a’)を用いる場合には、硬化収縮率が低く、硬化物における誘電特性に優れ、溶剤溶解性も高いという本発明の効果が十分に発現することから、両者の合計に対し前記ナフトール化合物(a)の割合が50モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが特に好ましい。
 前記ノボラック型樹脂(A)は、核体数3以上の成分を必須の成分として含有する。前記核体数とは、一分子中に含まれる前記ナフトール化合物(a)或いは前記その他のフェノール性水酸基含有化合物(a’)由来の構造部位の数のことであり、例えば、核体数3の成分は下記一般式(1)で表すことができ、核体数4の成分は下記一般式(2-1)又は(2-2)で表すことができる。
Figure JPOXMLDOC01-appb-C000001
[式中Arは前記ナフトール化合物(a)或いは前記その他のフェノール性水酸基含有化合物(a’)由来の構造部位である。]
Figure JPOXMLDOC01-appb-C000002
[式中Arは前記ナフトール化合物(a)或いは前記その他のフェノール性水酸基含有化合物(a’)由来の構造部位である。]
 核体数が3又は4である成分について、前記一般式(1)、(2-1)、(2-2)中のArは、前記ナフトール化合物(a)由来の構造部位或いは前記その他のフェノール性水酸基含有化合物(a’)由来の構造部位のどちらであっても良いが、硬化収縮率が低く、硬化物における誘電特性に優れる効果が一層顕著となることから、前記一般式(1)、(2-1)、(2-2)中のArが全て前記ナフトール化合物(a)由来の構造部位であることがより好ましい。
 前記ノボラック型樹脂(A)は、硬化収縮率が低く、硬化物における誘電特性に優れる効果が一層顕著となることから、核体数が3又は4である成分を1~50%の範囲で含有することが好ましく、5~30%の範囲で含有することがより好ましい。また、核体数が3である成分の含有量は1~30%の範囲であることが好ましく、5~20%の範囲であることがより好ましい。核体数が4である成分の含有量は1~15%の範囲であることが好ましく、1~10%の範囲であることがより好ましい。
 更に前記ノボラック型樹脂(A)は、得られる活性エステル樹脂の硬化収縮率を一層低減できることから、核体数が2である成分を含有することがより好ましい。核体数が2である成分の含有量は、核体数が2である成分の含有量(N2)と、核体数が3である成分の含有量(N3)との比率[(N3)/(N2)]が0.10~2.00の範囲となる割合であることが好ましく、0.20~1.00の範囲となる割合であることがより好ましい。
 なお、本発明においてノボラック型樹脂(A)中の各成分の含有量は、下記条件で測定されるGPCチャート図の面積比から算出される値である。
 測定装置 :東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G4000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8320」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
 前記ノボラック型樹脂(A)を製造する方法は特に限定されないが、例えば、通常のフェノールノボラック型樹脂同様、前記ナフトール化合物(a)と、所望に応じて用いる前記その他のフェノール性水酸基含有化合物(a’)と、ホルムアルデヒドとを、無触媒又は酸触媒もしくはアルカリ触媒の存在下、40~200℃の温度条件下で反応させる方法が挙げられる。反応終了後は所望に応じて、過剰量の前記化合物(a)や化合物(a’)を留去するなどしても良い。また、反応混合中の未反応の前記化合物(a)や化合物(a’)をそのまま、後述する分子中にフェノール性水酸基を一つ有する化合物(B)として用いても良い。
 前記ホルムアルデヒドは、ホルマリン溶液として用いても、パラホルムアルデヒドとして用いてもよい。ホルムアルデヒドの仕込み量は、反応を制御しやすいことから、前記化合物(a)と化合物(a’)との合計1モルに対しホルムアルデヒドが0.01~0.9モルの範囲となる割合であることが好ましい。
 前記酸触媒は、例えば、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸などの有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。これら酸触媒の使用量は、反応原料の総質量に対して0.1~5質量%の範囲であることが好ましい。
 前記アルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。また、3.0~50%程度の水溶液として用いても良い。中でも、触媒能の高い水酸化ナトリウム又は水酸化カリウムが好ましい。これらアルカリ触媒の使用量は、反応原料の総質量に対して0.1~20質量%の範囲であることが好ましい。
 前記ノボラック型樹脂(A)の合成反応は必要に応じて有機溶剤中で行っても良い。ここで用いる有機溶剤は、前記温度条件下で使用可能な有機溶剤であれば特に限定されるものではなく、具体的には、メチルセロソルブ、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトン等が挙げられる。これら有機溶剤を用いる場合には反応原料の総質量に対し10~500質量%の範囲で用いることが好ましい。
 前記ノボラック型樹脂(A)の合成反応では、得られるノボラック型樹脂(A)の着色を抑制する目的で、各種の酸化防止剤や還元剤を用いても良い。前記酸化防止剤は、例えば、2,6-ジアルキルフェノール誘導体などのヒンダードフェノール化合物、2価の硫黄化合物、3価のリン原子を含む亜リン酸エステル化合物等が挙げられる。前記還元剤は、例えば、次亜リン酸、亜リン酸、チオ硫酸、亜硫酸、ハイドロサルファイト、これらの塩や亜鉛等が挙げられる。
 反応終了後は、反応混合物を中和処理或いは水洗した後、未反応の反応原料や副生成物等を留去するなどして、目的のノボラック型樹脂(A)を得ることができる。
 前記ノボラック型樹脂(A)の水酸基当量は、溶剤溶解性が高く、様々な用途に利用しやすい活性エステル樹脂となることから、110~250g/当量の範囲であることが好ましい。また、前記ノボラック型樹脂(A)の軟化点は、40~130℃の範囲であることが好ましい。
 前記分子中にフェノール性水酸基を一つ有する化合物(B)は、芳香環上に水酸基を一つ有する芳香族化合物であれば何れの化合物でもよく、その他の具体構造は特に限定されない。本発明では、分子構造中にフェノール性水酸基を一つ有する化合物(B)は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。前記分子構造中にフェノール性水酸基を一つ有する化合物(B)は、具体的には、フェノール或いはフェノールの芳香核上に一つ乃至複数の置換基を有するフェノール化合物、ナフトール或いはナフトールの芳香核上に一つ乃至複数の置換基を有するナフトール化合物、アントラセノール或いはアントラセノールの芳香核上に一つ乃至複数の置換基を有するナフトール化合物等が挙げられる。芳香核上の置換基は、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアリール基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアラルキル基等が挙げられる。
 これらの中でも、硬化収縮率が低く、硬化物における誘電特性に優れる活性エステル樹脂となることから1-ナフトール又は2-ナフトールが好ましい。
 前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)は、前記ノボラック型樹脂(A)及び前記分子中にフェノール性水酸基を一つ有する化合物(B)が有するフェノール性水酸基と反応してエステル結合を形成し得る芳香族化合物であれば、具体構造は特に限定されず、何れの化合物であっても良い。具体例としては、例えば、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸、トリメリット酸等のベンゼントリカルボン酸、ナフタレン-1,4-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸等のナフタレンジカルボン酸、これらの酸ハロゲン化物、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した化合物等が挙げられる。酸ハロゲン化物は、例えば、酸塩化物、酸臭化物、酸フッ化物、酸ヨウ化物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、反応活性が高く硬化性に優れる活性エステル樹脂となることから、イソフタル酸やテレフタル酸等のベンゼンジカルボン酸又はその酸ハロゲン化物が好ましい。
 前記ノボラック型樹脂(A)、前記分子中にフェノール性水酸基を一つ有する化合物(B)、及び前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)の反応は、例えば、アルカリ触媒の存在下、40~65℃程度の温度条件下で加熱撹拌する方法により行うことができる。反応は必要に応じて有機溶媒中で行っても良い。また、反応終了後は所望に応じて、水洗や再沈殿等により反応生成物を精製しても良い。
 前記アルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。また、3.0~30%程度の水溶液として用いても良い。中でも、触媒能の高い水酸化ナトリウム又は水酸化カリウムが好ましい。
 前記有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。
 前記ノボラック型樹脂(A)、前記分子中にフェノール性水酸基を一つ有する化合物(B)、及び前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)の反応割合は、所望の分子設計に応じて適宜変更することができる。中でも、溶剤溶解性が高く、様々な用途に利用しやすい活性エステル樹脂となることから、前記ノボラック型樹脂(A)が有する水酸基のモル数(AOH)と前記分子中にフェノール性水酸基を一つ有する化合物(B)が有する水酸基のモル数(BOH)との割合[(AOH)/(BOH)]が10/90~75/25となる割合であることが好ましく、20/80~50/50となる割合であることがより好ましい。また、芳香族ポリカルボン酸又はその酸ハロゲン化物(C)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記ノボラック型樹脂(A)が有する水酸基のモル数と前記分子中にフェノール性水酸基を一つ有する化合物(B)が有する水酸基のモル数との合計が0.9~1.1モルとなる割合であることが好ましい。
 本発明の活性エステル樹脂は、前記分子中にフェノール性水酸基を一つ有する化合物(B)と、前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)とのエステル化合物(BC)を含有していても良い。前記エステル化合物(BC)は、例えば、前記ノボラック型樹脂(A)、前記分子中にフェノール性水酸基を一つ有する化合物(B)、及び前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)の反応割合を調製することにより、活性エステル樹脂の一成分として製造することができる。
 前記エステル化合物(BC)の具体構造の一例として、例えば、前記フェノール性水酸基を一つ有する化合物(B)としてナフトール化合物を用い、前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)としてベンゼンジカルボン酸又はその酸ハロゲン化物を用いた場合の構造例を下記構造式(3)に示す。なお、下記構造式(3)は前記エステル化合物(BC)の具体構造の一例に過ぎず、その他の分子構造を有するジエステル化合物を排除するものではない。
Figure JPOXMLDOC01-appb-C000003
(式中Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、ナフタレン環を形成するどの炭素原子に結合していても良い。pは0又は1~3の整数である。)
 活性エステル樹脂が前記エステル化合物(BC)を含有する場合、その含有量は活性エステル樹脂の40%未満であることが好ましく、0.5~35%の範囲であることがより好ましい。
 活性エステル樹脂中の前記エステル化合物(BC)の含有量は、前記ノボラック型樹脂(A)の成分分析と同様の条件で測定したGPCチャート図の面積比から算出される値である。
 本発明の活性エステル樹脂の官能基当量は、硬化収縮率が低く、かつ、硬化性にも優れる活性エステル樹脂となることから、150~350g/当量の範囲であることが好ましい。なお、本発明において活性エステル樹脂中の官能基とは、活性エステル樹脂中のエステル結合部位とフェノール性水酸基とのことを言う。また、活性エステル樹脂の官能基当量は、反応原料の仕込み量から算出される値である。
 本発明の活性エステル樹脂の軟化点は、JIS K7234に基づいて測定される値で85~160℃の範囲であることが好ましく、100~150℃の範囲であることがより好ましい。
 本発明の活性エステル樹脂の重量平均分子量(Mw)は、硬化収縮率の低い活性エステル樹脂となる点で600~5,000の範囲で好ましく、800~3,000の範囲であることが特に好ましい。なお、活性エステル樹脂の重量平均分子量(Mw)は、前記ノボラック型樹脂(A)の成分分析と同様の条件で測定したGPCチャート図の面積比から算出される値である。
 本発明の硬化性樹脂組成物は、前述の活性エステル樹脂と硬化剤とを含有する。前記硬化剤は本発明の活性エステル樹脂と反応し得る化合物であれば良く、特に限定なく様々な化合物が利用できる。硬化剤の一例としては、例えば、エポキシ樹脂が挙げられる。
 前記エポキシ樹脂は、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、テトラフェノールエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等が挙げられる。
 前記硬化剤としてエポキシ樹脂を用いる場合、本発明の活性エステル樹脂以外に、その他のエポキシ樹脂用硬化剤を併用してもよい。ここで用いるその他のエポキシ樹脂用硬化剤は、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等のアミン化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、ビスフェノールノボラック樹脂、ビフェニルノボラック樹脂、ジシクロペンタジエン-フェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型樹脂、テトラフェノールエタン型樹脂、アミノトリアジン変性フェノール樹脂等のフェノール樹脂等が挙げられる。
 本発明の活性エステル樹脂、エポキシ樹脂、及びその他のエポキシ樹脂用硬化剤組成物の配合割合は、エポキシ樹脂中のエポキシ基の合計1モルに対して、前記活性エステル樹脂及びその他のエポキシ樹脂用硬化剤中の官能基の合計が0.7~1.5モルとなる割合であることが好ましい。
 本発明の硬化性樹脂組成物は、この他、シアン酸エステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、スチレン-無水マレイン酸樹脂、ジアリルビスフェノールやトリアリルイソシアヌレートに代表されるアリル基含有樹脂、ポリリン酸エステルやリン酸エステル-カーボネート共重合体等を含有しても良い。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 本発明の硬化性樹脂組成物は必要に応じて硬化促進剤、難燃剤、無機質充填材、シランカップリング剤、離型剤、顔料、乳化剤等の各種添加剤を含有しても良い。
 前記硬化促進剤は、例えば、リン系化合物、第3級アミン、イミダゾール化合物、ピリジン化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。中でも、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)、イミダゾール化合物では2-エチル-4-メチルイミダゾール、ピリジン化合物では4-ジメチルアミノピリジンが好ましい。
 前記難燃剤は、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤等が挙げられる。これら難燃剤を用いる場合は、硬化性樹脂組成物中0.1~20質量%の範囲であることが好ましい。
 前記無機質充填材は、例えば、本発明の硬化性樹脂組成物を半導体封止材料用途に用いる場合などに配合される。前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。中でも、無機質充填材をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は硬化性樹脂組成物100質量部中、0.5~95質量部の範囲で配合することが好ましい。
 この他、本発明の硬化性樹脂組成物を導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 以上詳述した通り、本発明の活性エステル樹脂は、硬化物における耐熱性や耐吸湿性が高く、誘電特性にも優れる特徴を有する。この他、汎用有機溶剤への溶解性や、エポキシ樹脂との硬化性等、樹脂材料に求められる一般的な要求性能も十分に高いものであり、プリント配線基板や半導体封止材料、レジスト材料等の電子材料用途の他、塗料や接着剤、成型品等の用途にも広く利用することができる。
 本発明の硬化性樹脂組成物をプリント配線基板用途やビルドアップ接着フィルム用途に用いる場合、一般には有機溶剤を配合して希釈して用いることが好ましい。前記有機溶剤は、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。有機溶剤の種類や配合量は硬化性樹脂組成物の使用環境に応じて適宜調整できるが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分が40~80質量%となる割合で使用することが好ましい。ビルドアップ接着フィルム用途では、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、不揮発分が30~60質量%となる割合で使用することが好ましい。
 また、本発明の硬化性樹脂組成物を用いてプリント配線基板を製造する方法は、例えば、硬化性組成物を補強基材に含浸し硬化させてプリプレグを得、これと銅箔とを重ねて加熱圧着させる方法が挙げられる。前記補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。硬化性樹脂組成物の含浸量は特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
 本発明の硬化性樹脂組成物を半導体封止材料用途に用いる場合、一般には無機質充填材を配合することが好ましい。本発明の活性エステル樹脂と硬化剤、無機質充填剤、及びその他の任意成分を含有する半導体封止材料は、例えば、押出機、ニーダー、ロール等を用いて配合物を混合して調製することができる。得られた半導体封止材料を用いて半導体パッケージを成型する方法は、例えば、該半導体封止材料を注型或いはトランスファー成形機、射出成型機などを用いて成形し、更に50~200℃の温度条件下で2~10時間加熱する方法が挙げられ、このような方法により、成形物である半導体装置を得ることが出来る。
 次に本発明を実施例、比較例により具体的に説明する。実施例中の「部」及び「%」の記載は、特に断わりのない限り質量基準である。なお、本実施例におけるGPC、13C-NMR、MALDI-TOF-MSの測定条件は以下の通りである。
GPCの測定条件
 測定装置 :東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G4000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8320」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
13C-NMRの測定条件
装置:日本電子(株)製 ECA-500
測定モード:SINGLE-PULSE-DEC(NOE消去の1H完全デカップリング法)
溶媒 :重クロロホルム
パルス角度:30°パルス
試料濃度 :30wt%
積算回数 :4000回
MALDI-TOF-MSの測定条件
装置:島津/KRSTOS社製 AXIMA-TOF2
イオン化法:マトリックス支援レーザー脱離イオン化法
実施例1 活性エステル樹脂(1)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1-ナフトール288質量部、2-ナフトール288質量部、トルエン576質量部、37%ホルマリン水溶液81質量部、49%水酸化ナトリウム水溶液10質量部を仕込んだ。フラスコの内容物を撹拌しながら75℃まで昇温し、75℃で1時間撹拌して反応させた。反応終了後、35%塩酸13質量部を加え中和した後、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のナフトール、及びノボラック型樹脂(A-1)を含む混合物(1)568質量部を得た。得られた混合物(1)の水酸基当量は147g/当量であった。混合物(1)のGPCチャート図の面積比から算出した核体数が2である成分の含有量は32.6%、核体数が3である成分の含有量は12.2%、核体数が4である成分の含有量は3.1%、核体数が2である成分の含有量(N2)と核体数が3である成分の含有量(N3)との比率[(N3)/(N2)]は0.37であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド141質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(1)206質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液280質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(1)285質量部を得た。活性エステル樹脂(1)の官能基当量は212g/当量、JIS K7234に基づいて測定した軟化点は124℃であった。得られた活性エステル樹脂(1)のGPCチャートを図1、13C-NMRを図2、MSを図3に示す。GPCチャート図の面積比から算出した活性エステル樹脂(1)中のエステル化合物(BC)の含有量は28.7%、重量平均分子量(Mw)は1219であった。
実施例2 活性エステル樹脂(2)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1-ナフトール432質量部、2-ナフトール144質量部、トルエン576質量部、37%ホルマリン水溶液81質量部、49%水酸化ナトリウム水溶液10質量部を仕込んだ。フラスコの内容物を撹拌しながら75℃まで昇温し、75℃で1時間撹拌して反応させた。反応終了後、35%塩酸13質量部を加え中和した後、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のナフトール、及びノボラック型樹脂(A-2)を含む混合物(2)565質量部を得た。得られた混合物(2)の水酸基当量は147g/当量であった。混合物(2)のGPCチャート図の面積比から算出した核体数が2である成分の含有量は19.7%、核体数が3である成分の含有量は14.1%、核体数が4である成分の含有量は6.5%、核体数が2である成分の含有量(N2)と核体数が3である成分の含有量(N3)との比率[(N3)/(N2)]は0.72であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド141質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(2)206質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液280質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(2)287質量部を得た。活性エステル樹脂(2)の官能基当量は212g/当量、JIS K7234に基づいて測定した軟化点は131℃であった。得られた活性エステル樹脂(2)のGPCチャートを図4に示す。GPCチャート図の面積比から算出した活性エステル樹脂(2)中のエステル化合物(BC)の含有量は32.7%、重量平均分子量(Mw)は1621であった。
実施例3 活性エステル樹脂(3)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1-ナフトール576質量部、水81質量部、37%ホルマリン水溶液81質量部を仕込んだ。フラスコの内容物を撹拌しながら95℃まで昇温し、95℃で2時間撹拌して反応させた。反応終了後、加熱減圧条件下で水等を留去し、未反応のナフトール、及びノボラック型樹脂(A-3)を含む混合物(3)570質量部を得た。得られた混合物(3)の水酸基当量は147g/当量であった。混合物(3)のGPCチャート図の面積比から算出した核体数が2である成分の含有量は33.4%、核体数が3である成分の含有量は11.1%、核体数が4である成分の含有量は3.6%、核体数が2である成分の含有量(N2)と核体数が3である成分の含有量(N3)との比率[(N3)/(N2)]は0.33であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド141質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(3)206質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液280質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(3)282質量部を得た。活性エステル樹脂(3)の官能基当量は212g/当量、JIS K7234に基づいて測定した軟化点は131℃であった。得られた活性エステル樹脂(3)のGPCチャートを図5に示す。GPCチャート図の面積比から算出した活性エステル樹脂(3)中のエステル化合物(BC)の含有量は27.5%、重量平均分子量(Mw)は1285であった。
比較製造例1 活性エステル樹脂(1’)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ジシクロペンタジエンとフェノールとの付加反応物(水酸基当量165g/当量、軟化点85℃)165質量部、1-ナフトール72質量部、及びトルエン630質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、イソフタル酸クロライド152質量部を仕込み、系内を減圧窒素置換しながら溶解させた。窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液210gを3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(1’)を得た。活性エステル樹脂(1’)の官能基当量は223g/当量、JIS K7234に基づいて測定した軟化点は150℃であった。
比較製造例2 活性エステル樹脂(2’)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2-ナフトール576質量部、トルエン576質量部、37%ホルマリン水溶液81質量部、49%水酸化ナトリウム水溶液10質量部を仕込んだ。フラスコの内容物を撹拌しながら75℃まで昇温し、75℃で1時間撹拌して反応させた。反応終了後、35%塩酸13質量部を加え中和した後、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のナフトール、及びノボラック型樹脂(A’-1)を含む混合物(1’)520質量部を得た。混合物(1’)の水酸基当量は147g/当量であった。混合物(1’)のGPCチャート図の面積比から算出した核体数が2である成分の含有量は40.9%、核体数が3である成分の含有量は0%、核体数が4である成分の含有量は0%、核体数が2である成分の含有量(N2)と核体数が3である成分の含有量(N3)との比率[(N3)/(N2)]は0.00であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド141質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(1’)206質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液280質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(2’)を得た。この活性エステル樹脂(2’)の官能基当量は仕込み比より212g/当量であった。
溶剤溶解性の評価
 実施例1~3及び比較製造例1、2で得た活性エステル樹脂10質量部と、トルエン6.7質量部とをサンプル瓶中に入れて密閉し、80℃に加温して溶解させた。その後、25℃まで冷却し、結晶が析出するか評価した。結晶が析出しない場合はA、結晶が析出した場合はBとして判定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
実施例4~6及び比較例1、2
 下記表2に示す割合で各成分を配合し、硬化性樹脂組成物(1)を得た。得られた硬化性樹脂組成物(1)について、下記要領で硬化収縮率を測定した。結果を表2に示す。なお、前記活性エステル樹脂(2’)を用いた比較例2は、結晶性が高い為、試験片が作成できず評価試験を行うことができなかった。
硬化収縮率の測定
 トランスファー成形機(コータキ精機株式会社製「KTS-15-1.5C」)を用いて、金型温度154℃、成形圧力9.8MPa、硬化時間600秒の条件下で、硬化性樹脂組成物(1)を注入成形して、縦110mm、横12.7mm、厚さ1.6mmの成形物を得た。次いで、得られた成形物を175℃で5時間硬化させた後、室温(25℃)で24時間以上放置し、これを試験片とした。試験片の室温での縦方向寸法、金型の154℃での縦方向内寸法をそれぞれ測定し、下記式にて硬化収縮率を算出した。
 硬化収縮率(%)={(金型の154℃での縦方向内寸法)-(試験片の室温での縦方向寸法)}/(金型の154℃での縦方向内寸法)×100(%)
Figure JPOXMLDOC01-appb-T000005
エポキシ樹脂(*):ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量188g/当量)
実施例7~9及び比較例3、4
 下記表3に示す割合で各成分を配合し、硬化性樹脂組成物(2)を得た。得られた硬化性樹脂組成物(2)について、下記要領で硬化物における誘電正接値を測定した。結果を表3に示す。なお、前記活性エステル樹脂(2’)を用いた比較例2は、結晶性が高い為、試験片が作成できず評価試験を行うことができなかった。
誘電正接の測定
 プレス機を用いて硬化性樹脂組成物(2)を型枠へ流し込み175℃の温度で10分間成型した。型枠から成型物を取り出し、175℃の温度で5時間硬化させた。硬化後の成形物を1mm×100mm×1.6mmのサイズに切り出し、これを試験片とした。アジレント・テクノロジー株式会社製ネットワークアナライザ「E8362C」を用い空洞共振法にて、加熱真空乾燥後、23℃、湿度50%の室内に24時間保管した試験片の1GHzでの誘電正接を測定した。
Figure JPOXMLDOC01-appb-T000006
エポキシ樹脂(*):ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量188g/当量)

Claims (7)

  1. ナフトール化合物(a)を反応原料とするノボラック型樹脂であって、核体数3以上の成分を必須の成分として含有するノボラック型樹脂(A)、分子中にフェノール性水酸基を一つ有する化合物(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする活性エステル樹脂。
  2. 前記ノボラック型樹脂(A)が、核体数が3又は4である成分を1~50%の範囲で含有する請求項1記載の活性エステル樹脂。
  3. 前記ナフトール化合物(a)と前記分子中にフェノール性水酸基を一つ有する化合物(B)とが同一化合物である請求項1記載の活性エステル樹脂。
  4. 請求項1~3の何れか一つに記載の活性エステル樹脂と、硬化剤とを含有する硬化性樹脂組成物。
  5. 請求項4記載の硬化性樹脂組成物の硬化物。
  6. 請求項4記載の硬化性樹脂組成物を用いてなるプリント配線基板。
  7. 請求項4記載の硬化性樹脂組成物を用いてなる半導体封止材料。
PCT/JP2017/022995 2016-07-06 2017-06-22 活性エステル樹脂とその硬化物 WO2018008409A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780041857.XA CN109415485B (zh) 2016-07-06 2017-06-22 活性酯树脂和其固化物
KR1020187037832A KR102278300B1 (ko) 2016-07-06 2017-06-22 활성 에스테르 수지와 그 경화물
JP2017561021A JP6332719B1 (ja) 2016-07-06 2017-06-22 活性エステル樹脂とその硬化物

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2016134227 2016-07-06
JP2016-134227 2016-07-06
JP2016140422 2016-07-15
JP2016-140422 2016-07-15
JP2016140420 2016-07-15
JP2016-140421 2016-07-15
JP2016140419 2016-07-15
JP2016140421 2016-07-15
JP2016-140419 2016-07-15
JP2016-140420 2016-07-15
JP2016-156536 2016-08-09
JP2016156536 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018008409A1 true WO2018008409A1 (ja) 2018-01-11

Family

ID=60912685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022995 WO2018008409A1 (ja) 2016-07-06 2017-06-22 活性エステル樹脂とその硬化物

Country Status (5)

Country Link
JP (1) JP6332719B1 (ja)
KR (1) KR102278300B1 (ja)
CN (1) CN109415485B (ja)
TW (1) TWI740969B (ja)
WO (1) WO2018008409A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188330A1 (ja) * 2018-03-29 2019-10-03 Dic株式会社 硬化性組成物及びその硬化物
WO2021166669A1 (ja) * 2020-02-17 2021-08-26 日鉄ケミカル&マテリアル株式会社 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146511A (ja) * 1999-09-06 2001-05-29 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2002121356A (ja) * 2000-10-11 2002-04-23 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2009242560A (ja) * 2008-03-31 2009-10-22 Dic Corp エポキシ樹脂組成物、及びその硬化物
WO2012165317A1 (ja) * 2011-05-27 2012-12-06 Dic株式会社 活性エステル樹脂、その製造方法、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608406A (en) * 1985-04-18 1986-08-26 Celanese Corporation Stable aqueous epoxy resin dispersions
EP1137708A1 (en) * 1999-09-06 2001-10-04 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device
JP2001254000A (ja) * 2000-03-09 2001-09-18 Sumitomo Bakelite Co Ltd 難燃性樹脂組成物およびこれを用いた半導体封止材料
JP4815725B2 (ja) * 2001-09-12 2011-11-16 Dic株式会社 電子材料用エポキシ樹脂組成物および低誘電性電子材料
JP3826322B2 (ja) 2002-10-31 2006-09-27 大日本インキ化学工業株式会社 エポキシ樹脂組成物およびその硬化物
EP2589625B1 (en) * 2010-07-02 2016-10-26 DIC Corporation Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
CN102504201A (zh) * 2011-10-18 2012-06-20 广东生益科技股份有限公司 环氧树脂组合物及使用其制作的高频电路基板
WO2013118680A1 (ja) * 2012-02-07 2013-08-15 日立化成株式会社 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146511A (ja) * 1999-09-06 2001-05-29 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2002121356A (ja) * 2000-10-11 2002-04-23 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2009242560A (ja) * 2008-03-31 2009-10-22 Dic Corp エポキシ樹脂組成物、及びその硬化物
WO2012165317A1 (ja) * 2011-05-27 2012-12-06 Dic株式会社 活性エステル樹脂、その製造方法、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188330A1 (ja) * 2018-03-29 2019-10-03 Dic株式会社 硬化性組成物及びその硬化物
WO2021166669A1 (ja) * 2020-02-17 2021-08-26 日鉄ケミカル&マテリアル株式会社 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム
JPWO2021166669A1 (ja) * 2020-02-17 2021-08-26
JP7357139B2 (ja) 2020-02-17 2023-10-05 日鉄ケミカル&マテリアル株式会社 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム

Also Published As

Publication number Publication date
CN109415485B (zh) 2021-02-02
KR102278300B1 (ko) 2021-07-19
CN109415485A (zh) 2019-03-01
TW201833165A (zh) 2018-09-16
KR20190025852A (ko) 2019-03-12
TWI740969B (zh) 2021-10-01
JP6332719B1 (ja) 2018-05-30
JPWO2018008409A1 (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6270092B1 (ja) 活性エステル樹脂組成物とその硬化物
JP6304465B1 (ja) 活性エステル組成物及びその硬化物
JP6270091B1 (ja) 硬化性組成物とその硬化物
JP6332720B1 (ja) 活性エステル樹脂とその硬化物
JP6432808B2 (ja) エポキシ樹脂とその硬化物
JP6862701B2 (ja) 活性エステル樹脂とその硬化物
JP6332719B1 (ja) 活性エステル樹脂とその硬化物
TWI766025B (zh) 活性酯化合物及硬化性組成物
JP6332721B1 (ja) 活性エステル樹脂とその硬化物
TWI820025B (zh) 硬化性組成物、硬化物、半導體密封材料及印刷配線基板
JP7276665B2 (ja) 活性エステル組成物及び半導体封止材料
JP2018193470A (ja) δ−バレロラクトン骨格含有樹脂
TW201904931A (zh) 活性酯化合物及硬化性組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017561021

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037832

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824016

Country of ref document: EP

Kind code of ref document: A1