WO2020057274A1 - 一种取代伯胺的制备方法 - Google Patents

一种取代伯胺的制备方法 Download PDF

Info

Publication number
WO2020057274A1
WO2020057274A1 PCT/CN2019/099185 CN2019099185W WO2020057274A1 WO 2020057274 A1 WO2020057274 A1 WO 2020057274A1 CN 2019099185 W CN2019099185 W CN 2019099185W WO 2020057274 A1 WO2020057274 A1 WO 2020057274A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
benzonitrile
derivatives
substituted primary
solvent
Prior art date
Application number
PCT/CN2019/099185
Other languages
English (en)
French (fr)
Inventor
包明
冯秀娟
卢烨
于晓强
张胜
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/981,113 priority Critical patent/US11192846B2/en
Publication of WO2020057274A1 publication Critical patent/WO2020057274A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups

Definitions

  • the invention belongs to the chemical intermediates of medicine and natural compounds and the related chemical technical field, and relates to a preparation method for replacing aliphatic primary amines.
  • the second is more heterogeneous catalysts, such catalysts include Raney nickel, Raney cobalt, etc., but It is common that the catalyst is sensitive and extremely unstable, which is very dangerous, and uses a large amount of additive base (NH 3 ) to improve the selectivity of the reaction, which limits the industrial application [DE BELLEFON C, FOUILLOUX P. Catal. Rev.
  • Nano-porous palladium material is a new type of nano-structured catalyst. It is composed of nano-scale pores and ligaments. Compared with most metals, it has a large specific surface area, excellent electrical and thermal conductivity, and non-toxic properties.
  • Nanoporous palladium catalyst has the advantages of high catalytic activity, stability, and easy recycling. 5985-5987; KANEKO T, TANAKA S, ASAO N, YAMAMOTO Y, et al. Adv. Synth. Catal., 2011, 353, 2927–2932.].
  • the present invention provides a method for preparing a substituted aliphatic primary amine.
  • the method has very mild reaction conditions, does not require any additives, and has a selectivity of 100%.
  • the selected catalyst has the advantages of high activity and good stability. No significant reduction in catalytic activity was observed after repeated use.
  • the reaction temperature is from 0 ° C to 150 ° C, and the reaction time is from 12h to 36h;
  • R is aryl or alkyl
  • the solvent is water, ether, acetonitrile, dimethyl sulfoxide, dioxane, triethylamine, tetrahydrofuran, toluene, ethanol, isopropanol, chloroform, dichloromethane, acetone, N, N- One or two or more dimethylformamides are mixed;
  • the molar concentration of benzonitrile and its derivatives in the solvent is 0.01 to 2 mmol / mL, and the molar ratio of benzonitrile and its derivatives to the catalyst is 1: 0.01 to 1: 0.5.
  • the pore skeleton size of the nano-porous palladium is 1nm-50nm.
  • the H 2 pressure is 0.1 to 20.0 MPa.
  • Separation methods include: recrystallization, column chromatography, etc.
  • the solvent used in the recrystallization method may be chloroform, cyclohexane, dioxane, benzene, toluene, ethanol, petroleum ether, acetonitrile, N, N-dimethylformamide, tetrahydrofuran, and ethyl acetate.
  • silica gel or basic alumina can be used as the stationary phase.
  • the developing solvent is generally a polar and non-polar mixed solvent, such as ethyl acetate-petroleum ether, ethyl acetate-n-hexane, and dichloromethane- Petroleum ether, methanol-petroleum ether, methanol-ethyl acetate.
  • reaction conditions of the method of the present invention are very mild, do not require any additives, have high product selectivity, simple operation and post-treatment, good catalyst reproducibility, and have no significant reduction in the catalytic effect of repeated reuse. Industrialization offers the possibility.
  • FIG. 1 is a 1 H nuclear magnetic spectrum of benzylamine in Examples 1 and 2.
  • FIG. 1 is a 1 H nuclear magnetic spectrum of benzylamine in Examples 1 and 2.
  • FIG. 2 is a 1 H NMR spectrum of 4-methylbenzylamine in Examples 3 and 4.
  • FIG. 2 is a 1 H NMR spectrum of 4-methylbenzylamine in Examples 3 and 4.
  • FIG. 3 is a 1 H nuclear magnetic spectrum of phenylethylamine in Examples 5 and 6.
  • FIG. 3 is a 1 H nuclear magnetic spectrum of phenylethylamine in Examples 5 and 6.
  • FIG. 4 is a 1 H NMR spectrum of 4-methoxyphenethylamine in Examples 7 and 8.
  • FIG. 4 is a 1 H NMR spectrum of 4-methoxyphenethylamine in Examples 7 and 8.
  • FIG. 5 is a 1 H NMR spectrum of n-hexylamine in Examples 9 and 10.
  • FIG. 5 is a 1 H NMR spectrum of n-hexylamine in Examples 9 and 10.
  • the preparation method of the substituted aliphatic primary amine according to the present invention has the highest selectivity and reaction yield of 100% and 93%, respectively, and does not require any additives for the reaction.
  • the catalyst has good reproducibility of the catalytic reaction, simple operation and post-treatment, and The catalytic effect of repeated use is not significantly reduced, which provides favorable conditions for its industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

提供一种取代伯胺的制备方法,其以苯腈及其衍生物为原料、纳米多孔钯为催化剂、氢气为氢源,选择性加氢制备取代伯胺;其中苯腈及其衍生物在溶剂中的摩尔浓度为0.01~2mmol/mL,苯腈及其衍生物与催化剂摩尔比为1:0.01~1:0.5;纳米多孔钯的孔骨架大小为1nm~50nm;氢气的压力为0.1~20.0MPa。所述方法的有益效果是得到的产物选择性高,反应条件非常温和,无需任何添加物,操作和后处理简单,催化剂重现性好,且重复利用多次催化效果没有明显降低,为其实现工业化提供可能。

Description

[根据细则26改正19.08.2019] 一种取代伯胺的制备方法 技术领域
本发明属于医药和天然化合物化工中间体及相关化学技术领域,涉及一种取代脂肪族伯胺的制备方法。
背景技术
腈类选择性还原制备脂肪族伯胺是有机合成中很重要的一个步骤,特别是在一些重要的高价值化合物合成中(例如生物活性分子、天然产物以及其他重要天然产物的工业材料),高纯脂肪族伯胺的合成是关键步骤。
传统由腈类选择性还原制备脂肪族伯胺的方法主要分为两大类,一是由Ru、Ir、Co、Fe以及其它过渡金属与配体结合的均相催化剂,该类催化剂虽然活性较高,但存在较多的缺点,例如选择性不好,有较多副产物仲胺和叔胺的形成。其次,常需要特别高的温度和压力(T>120℃ and H 2>50bar),还有催化剂价格昂贵、分离回收困难、不可重复使用等[REGUILLO R,GRELLIER M,VAUTRAVERS N,et al.J.Am.Chem.Soc.2010,132,7854–7855.;BORNSCHEIN C,WERKMEISTER S,WENDT B,JIAO H,et al.Nat.Commun.2014,5,4111.;MUKHERJEE A,SRIMANI D,CHAKRABORTY S,MILSTEIN D,et al.J.Am.Chem.Soc.2015,137,8888–8891.];二是研究较多的非均相催化剂,此类催化剂包括雷尼镍,雷尼钴等,但是普遍存在催化剂较为敏感和极其不稳定,存在很大的危险,并且使用大量的添加物碱(NH 3)去提高反应的选择性,限制了工业化应用[DE BELLEFON C,FOUILLOUX P.Catal.Rev.:Sci.Eng.1994,36,459.;NISHIMURA S,Handbook of Hetergogeneous Catalytic Hydrogenation for Organic Synthesis;John Wiley&Sons:New York,2001;p 254.;BLASER H U,MALAN C,PUGIN B,SPINDLER F,et al.Adv.Synth.Catal.2003,345,103–151.]。纳米多孔 钯材料,是一类新型纳米结构催化剂,其由纳米尺度的细孔和韧带构成,与大多数金属相比具有极大的比表面积、优良的导电导热和无毒性能,可表现出与块状金属完全不同的物理化学性质,在催化研究领域已受到广泛关注。纳米多孔钯催化剂(PdNPore)具有催化活性高、稳定、回收利用方便等优点[TANAKA S,KANEKO T,ASAO N,YAMAMOTO Y,CHEN M-W,ZHANG W,INOUE A.Chem.Commun.,2011,47,5985-5987;KANEKO T,TANAKA S,ASAO N,YAMAMOTO Y,et al.Adv.Synth.Catal.,2011,353,2927–2932.]。
发明内容
为解决上述问题,本发明提供了一种取代脂肪族伯胺的制备方法,该方法反应条件非常温和,无需任何添加剂,选择性达到100%,所选用催化剂具有活性高、稳定性好等优点,重复利用多次仍未见催化活性明显降低。
本发明的技术方案:
一种取代脂肪族伯胺的制备方法,以苯甲腈及其衍生物为原料、纳米多孔钯(PdNPore)为催化剂、H 2为氢源,选择性加氢制备取代脂肪族伯胺,合成路线如下所示:
Figure PCTCN2019099185-appb-000001
反应温度为0℃~150℃,反应时间为12h~36h;
R为芳基或烷基;
所述的溶剂为水、乙醚、乙腈、二甲基亚砜、二氧六环、三乙胺、四氢呋喃、甲苯、乙醇、异丙醇、三氯甲烷、二氯甲烷、丙酮、N,N-二甲基甲酰胺中的一种或两种以上混合;
其中,苯甲腈及其衍生物在溶剂中的摩尔浓度为0.01~2mmol/mL,苯甲腈及其衍生物与催化剂摩尔比为1:0.01~1:0.5。
所述的纳米多孔钯的孔骨架大小为1nm~50nm。
所述的H 2的压力为0.1~20.0MPa。
分离方法包括:重结晶、柱层析等。重结晶方法使用的溶剂可以为氯仿、环己烷、二氧六环、苯、甲苯、乙醇、石油醚、乙腈、N,N-二甲基甲酰胺、四氢呋喃、乙酸乙酯。柱层析方法,可以使用硅胶或碱性氧化铝作为固定相,展开剂一般为极性与非极性的混合溶剂,如乙酸乙酯-石油醚、乙酸乙酯-正己烷、二氯甲烷-石油醚、甲醇-石油醚、甲醇-乙酸乙酯。
本发明的有益效果:本发明方法的反应条件非常温和,无需任何添加剂,产物选择性高,操作和后处理简单,催化剂重现性好,且重复利用多次催化效果没有明显降低,为其实现工业化提供可能。
附图说明
图1是实施例1和2中苯甲胺的 1H核磁谱图。
图2是实施例3和4中4-甲基苯甲胺的 1H核磁谱图。
图3是实施例5和6中苯乙胺的 1H核磁谱图。
图4是实施例7和8中4-甲氧基苯乙胺的 1H核磁谱图。
图5是实施例9和10中正己胺的 1H核磁谱图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明所述的取代脂肪族伯胺的制备方法,最高选择性和反应收率分别达到100%和93%,反应无需任何添加剂,选用催化剂催化反应重现性好,操作和后处理简单,且重复利用多次催化效果没有明显降低,为其工业化生产提供了 有利条件。
实施例1:苯甲胺的合成
向加有PdNPore(1.6mg,3mol%)催化剂的乙醇(3mL)溶剂中,加入底物苯甲腈(51.6mg,0.5mmol)、氢气(5bar),置于油浴中50℃下反应24h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到苯甲胺48.8mg,产率93%,选择性97%。而相同条件下,使用Pd/C作为催化剂,苯甲胺的产率仅为65%,选择性为72%。
Figure PCTCN2019099185-appb-000002
1H NMR(400MHz,CDCl 3)δ:7.35-7.20(m,5H),3.84(s,2H),1.54(br,2H).
实施例2:苯甲胺的合成
向加有PdNPore(5.4mg,10mol%)催化剂的N,N-二甲基甲酰胺(3mL)溶剂中,加入底物苯甲腈(30.9mg,0.3mmol)、氢气(5bar),置于油浴中30℃下反应20h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到苯甲胺28.9mg,产率90%,选择性96%。
Figure PCTCN2019099185-appb-000003
1H NMR(400MHz,CDCl 3)δ:7.35-7.20(m,5H),3.84(s,2H),1.54(br,2H).
实施例3:4-甲基苯甲胺的合成
向加有PdNPore(1.6mg,3mol%)催化剂的乙醇(3mL)溶剂中,加入底物4-甲基苯甲腈(58.6mg,0.5mmol)、氢气(5bar),置于油浴中50℃下反应24h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到4-甲基苯甲胺53.9mg, 产率89%,选择性98%。而相同条件下,使用Pd/C作为催化剂,4-甲基苯甲胺的产率仅为69%,选择性为78%。
Figure PCTCN2019099185-appb-000004
1H NMR(CDCl 3,400MHz)δ:7.20(d,J=8Hz,2H),7.14(d,J=8Hz,2H),3.83(s,2H),2.34(s,3H),2.06(br,2H)。
实施例4:4-甲基苯甲胺的合成
向加有PdNPore(1.1mg,2mol%)催化剂的乙腈(5mL)溶剂中,加入底物4-甲基苯甲腈(58.6mg,0.5mmol)、氢气(5bar),置于油浴中50℃下反应24h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到4-甲基苯甲胺50.3mg,产率83%,选择性96%。
Figure PCTCN2019099185-appb-000005
1H NMR(CDCl 3,400MHz)δ:7.20(d,J=8Hz,2H),7.14(d,J=8Hz,2H),3.83(s,2H),2.34(s,3H),2.06(br,2H).
实施例5:苯乙胺的合成
向加有PdNPore(1.6mg,3mol%)催化剂的乙醇(3mL)溶剂中,加入底物苯乙腈(58.58mg,0.5mmol)、氢气(5bar),置于油浴中70℃下反应24h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到苯乙胺53.3mg,产率88%,选择性100%。而相同条件下,使用Pd/C作为催化剂,苯乙胺的产率仅为40%,选择性为45%。
Figure PCTCN2019099185-appb-000006
1H NMR(400MHz,CDCl 3)δ:7.29-7.24(m,2H),7.21-7.14(m,3H),2.89(t,J=7.2Hz,2H),2.78(t,J=7.2Hz,2H),1.59(br,2H).
实施例6:苯乙胺的合成
向加有PdNPore(2.7mg,5mol%)催化剂的乙醇(5mL)溶剂中,加入底物苯乙腈(58.58mg,0.5mmol)、氢气(5bar),置于油浴中70℃下反应19h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到苯乙胺52.71mg,产率87%,选择性100%。
Figure PCTCN2019099185-appb-000007
1H NMR(400MHz,CDCl 3)δ:7.29-7.24(m,2H),7.21-7.14(m,3H),2.89(t,J=7.2Hz,2H),2.78(t,J=7.2Hz,2H),1.59(br,2H).
实施例7:4-甲氧基苯乙胺的合成
向加有PdNPore(1.6mg,3mol%)催化剂的乙醇(3mL)溶剂中,加入底物4-甲氧基苯乙腈(73.59mg,0.5mmol)、氢气(5bar),置于油浴中70℃下反应24h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到4-甲氧基苯乙胺62.8mg,产率83%,选择性100%。
Figure PCTCN2019099185-appb-000008
1H NMR(400MHz,CDCl 3)δ:7.06(d,J=8Hz,2H),6.80(d,J=8Hz,2H),3.77(s, 3H),2.84(t,J=8Hz,2H),2.71(t,J=8Hz,2H).
实施例8:4-甲氧基苯乙胺的合成
向加有PdNPore(2.7mg,5mol%)催化剂的乙腈(5mL)溶剂中,加入底物4-甲氧基苯乙腈(73.59mg,0.5mmol)、氢气(5bar),置于油浴中50℃下反应16h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到4-甲氧基苯乙胺60.48mg,产率80%,选择性98%。
Figure PCTCN2019099185-appb-000009
1H NMR(400MHz,CDCl 3)δ:7.06(d,J=8Hz,2H),6.80(d,J=8Hz,2H),3.77(s,3H),2.84(t,J=8Hz,2H),2.71(t,J=8Hz,2H).
实施例9:正己胺的合成
向加有PdNPore(1.6mg,3mol%)催化剂的乙醇(3mL)溶剂中,加入底物己腈(48.58mg,0.5mmol)、氢气(5bar),置于油浴中50℃下反应24h,柱层析(硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到正己胺44.0mg,产率87%,选择性100%。
Figure PCTCN2019099185-appb-000010
1H NMR(400MHz,CDCl 3)δ:2.60(t,J=7.2Hz,2H),1.77(br,2H),1.52-1.46(m,2H),1.36-1.28(m,6H),0.88(t,J=6.8Hz,3H).
实施例10:正己胺的合成
向加有PdNPore(2.7mg,5mol%)催化剂的乙醇(3mL)溶剂中,加入底物己腈(48.58mg,0.5mmol)、氢气(6bar),置于油浴中80℃下反应20h,柱层析 (硅胶,200-300目;展开剂,甲醇,乙酸乙酯)得到正己胺45.54mg,产率90%,选择性100%。
Figure PCTCN2019099185-appb-000011
1H NMR(400MHz,CDCl 3)δ:2.60(t,J=7.2Hz,2H),1.77(br,2H),1.52-1.46(m,2H),1.36-1.28(m,6H),0.88(t,J=6.8Hz,3H).

Claims (3)

  1. 一种取代伯胺的制备方法,其特征在于,以苯腈及其衍生物为原料、纳米多孔钯为催化剂、H 2为氢源,选择性加氢制备取代伯胺,合成路线如下所示:
    Figure PCTCN2019099185-appb-100001
    R=Aryl,Alkyl
    反应温度为0℃~150℃,反应时间为12h~36h;
    R为芳基或烷基;
    所述的溶剂为水、乙醚、乙腈、二甲基亚砜、二氧六环、三乙胺、四氢呋喃、甲苯、乙醇、异丙醇、三氯甲烷、二氯甲烷、丙酮、N,N-二甲基甲酰胺中的一种或两种以上混合;
    其中,苯腈及其衍生物在溶剂中的摩尔浓度为0.01~2mmol/mL,苯腈及其衍生物与催化剂摩尔比为1:0.01~1:0.5。
  2. 根据权利要求1所述的一种取代伯胺的制备方法,其特征在于,所述的纳米多孔钯的孔骨架大小为1nm~50nm。
  3. 根据权利要求1或2所述的一种取代伯胺的制备方法,其特征在于,所述的H 2的压力为0.1~20.0MPa。
PCT/CN2019/099185 2018-09-20 2019-08-05 一种取代伯胺的制备方法 WO2020057274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/981,113 US11192846B2 (en) 2018-09-20 2019-08-05 Preparation method of substituted primary amine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811098513.5A CN109180498A (zh) 2018-09-20 2018-09-20 一种取代脂肪族伯胺的制备方法
CN201811098513.5 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057274A1 true WO2020057274A1 (zh) 2020-03-26

Family

ID=64908650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099185 WO2020057274A1 (zh) 2018-09-20 2019-08-05 一种取代伯胺的制备方法

Country Status (3)

Country Link
US (1) US11192846B2 (zh)
CN (1) CN109180498A (zh)
WO (1) WO2020057274A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805106A (zh) * 2022-05-30 2022-07-29 内蒙古民族大学 一种酰胺类化合物的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590563A (zh) * 2019-09-03 2019-12-20 大连理工大学 一种苯甲腈连续化加氢制备苄胺的方法
CN110724032A (zh) * 2019-11-06 2020-01-24 大连理工大学 一种酮、醛加氢还原制备醇类化合物的方法
CN112851521A (zh) * 2020-12-30 2021-05-28 大连理工大学 一种纳米多孔钯催化剂催化还原腈类化合物制备伯胺的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491863A (zh) * 2011-11-30 2012-06-13 浙江大学 一种芳香族硝基化合物选择性加氢还原方法
CN103539596A (zh) * 2013-10-25 2014-01-29 上海交通大学 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
CN105837410A (zh) * 2016-03-30 2016-08-10 大连理工大学 一种取代顺式烯烃的制备方法
WO2016143637A1 (ja) * 2015-03-10 2016-09-15 日産化学工業株式会社 ニトリル類の連続接触還元による一級アミンの製造方法
CN106432072A (zh) * 2016-09-23 2017-02-22 大连理工大学 一种取代1,2,3,4‑四氢喹啉的制备方法
CN107098786A (zh) * 2017-05-15 2017-08-29 大连理工大学 一种芳胺类化合物的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143714A2 (en) * 2006-12-21 2008-11-27 Eikos, Inc. Protective coatings for porous conductive films and coatings
US9283545B2 (en) * 2011-02-14 2016-03-15 Rutgers, The State University Of New Jersey Efficient and recyclable heterogeneous nanocatalysts
US20160279619A1 (en) * 2015-03-25 2016-09-29 Brown University Graphene-Supported NiPd Alloy Nanoparticles for Effective Catalysis of Tandem Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds
CN105367404B (zh) * 2015-10-13 2018-04-10 大连理工大学 一种二氧化碳催化加氢制备甲酸盐的方法
CN108525675A (zh) * 2018-04-08 2018-09-14 上海应用技术大学 一种用于催化还原胺化制备胺类化合物的磁性碳/钯-钴多元复合催化剂、制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491863A (zh) * 2011-11-30 2012-06-13 浙江大学 一种芳香族硝基化合物选择性加氢还原方法
CN103539596A (zh) * 2013-10-25 2014-01-29 上海交通大学 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
WO2016143637A1 (ja) * 2015-03-10 2016-09-15 日産化学工業株式会社 ニトリル類の連続接触還元による一級アミンの製造方法
CN105837410A (zh) * 2016-03-30 2016-08-10 大连理工大学 一种取代顺式烯烃的制备方法
CN106432072A (zh) * 2016-09-23 2017-02-22 大连理工大学 一种取代1,2,3,4‑四氢喹啉的制备方法
CN107098786A (zh) * 2017-05-15 2017-08-29 大连理工大学 一种芳胺类化合物的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805106A (zh) * 2022-05-30 2022-07-29 内蒙古民族大学 一种酰胺类化合物的制备方法
CN114805106B (zh) * 2022-05-30 2023-08-08 内蒙古民族大学 一种酰胺类化合物的制备方法

Also Published As

Publication number Publication date
US20210017119A1 (en) 2021-01-21
US11192846B2 (en) 2021-12-07
CN109180498A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020057274A1 (zh) 一种取代伯胺的制备方法
WO2021129082A1 (zh) 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
WO2016131371A1 (zh) 一种制备甲酰胺类化合物的方法
CN105837410A (zh) 一种取代顺式烯烃的制备方法
Bao et al. N-hydroxyphthalimide incorporated onto Cu-BTC metal organic frameworks: An novel catalyst for aerobic oxidation of toluene
Li et al. Asymmetric Hydrogenation of Bis (quinolin‐2‐yl) methanes: A Direct Access to Chiral 1, 3‐Diamines
Anbardan et al. Direct synthesis of amides and imines by dehydrogenative homo or cross-coupling of amines and alcohols catalyzed by Cu-MOF
JP2015502832A (ja) 新規なイリジウム触媒錯体およびそれから得られるc−h結合活性化生成物
JP2012504596A (ja) ホスフィノオキシドベースのルテニウム錯体を有するエステル基又はカルボニル基の水素化
CN103193567A (zh) 一种纳米金催化甲酸可控还原不饱和有机化合物的方法
Mori et al. Pd (0)–polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes
CN104926577B (zh) 一种取代顺式烯烃的制备方法
Yue et al. Mild-temperature hydrogenation of carbonyls over Co-ZIF-9 derived Co-ZIF-x nanoparticle catalyst
CN107540554B (zh) 一种间二硝基苯加氢制备间苯二胺的方法
CN112851521A (zh) 一种纳米多孔钯催化剂催化还原腈类化合物制备伯胺的方法
JP5071796B2 (ja) 芳香族化合物の芳香環の位置選択的重水素化方法
JP2021134141A (ja) 不均一系貴金属触媒を用いた芳香族化合物の製造方法
CN109776617B (zh) 一种丙酮配位双核钯化合物及其制备方法和应用
CN113861237B (zh) 有机磷配体及其制备方法和应用
JP2021502885A (ja) ホスフィン非含有コバルト系触媒ならびにその調製のための方法および使用
CN116003360B (zh) 一种二氧化碳和炔烃合成橙酮类化合物制备方法
WO2003068391A1 (fr) Catalyseur d'hydrogenation et procede de production d'alcenes
CN113321609B (zh) 一种合成4-羟基吲哚的方法
CN110002930B (zh) 一种加氢还原烯基芳香卤代衍生物的方法
JP2003137843A (ja) 脂環式テトラカルボン酸化合物及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862592

Country of ref document: EP

Kind code of ref document: A1