WO2020054407A1 - モータ制御装置及びモータ制御方法 - Google Patents

モータ制御装置及びモータ制御方法 Download PDF

Info

Publication number
WO2020054407A1
WO2020054407A1 PCT/JP2019/033614 JP2019033614W WO2020054407A1 WO 2020054407 A1 WO2020054407 A1 WO 2020054407A1 JP 2019033614 W JP2019033614 W JP 2019033614W WO 2020054407 A1 WO2020054407 A1 WO 2020054407A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
axis
current
voltage command
phase
Prior art date
Application number
PCT/JP2019/033614
Other languages
English (en)
French (fr)
Inventor
健二 福田
Original Assignee
澤藤電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澤藤電機株式会社 filed Critical 澤藤電機株式会社
Publication of WO2020054407A1 publication Critical patent/WO2020054407A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention particularly relates to a conventional motor control device and a motor control method in which a voltage phase control unit controls a weak magnetic flux control region with low loss.
  • Electric motors are used as power sources for many home appliances and machinery.
  • a permanent magnet is provided on the rotor side
  • an armature winding is provided on the stator side
  • a PM (Permanent Magnet) motor permanent magnet motor
  • As a method of controlling the PM motor it is common to change the three-phase drive signals Su, Sv, Sw for switching the inverter in accordance with the torque command value.
  • the drive signals Su, Sv, and Sw are generated by switching between sine wave control and rectangular wave control in accordance with the operation state of the PM motor.
  • operation is controlled by a sine wave control (PWM control) using a sine wave pattern with high motor efficiency in an operation region of medium / low speed rotation, and an output voltage in an operation region of high speed rotation / high torque.
  • PWM control sine wave control
  • the operation is controlled by a rectangular wave control using a rectangular wave pattern which is high and can output high power.
  • the motor control device described in [Patent Document 1] includes a configuration for performing weak magnetic flux control by sine wave control in addition to the above-described sine wave control and rectangular wave control, and indicates the magnetic pole position of a rotor (rotor). Using the commutation sensor (CS), stable operation control is possible even when the motor suddenly varies in speed.
  • CS commutation sensor
  • Patent Document 1 performs rectangular wave control, sine wave control, and magnetic flux weakening control by sine wave control. Therefore, many control methods generate torque shock at the time of switching and delay in response. This may occur. Further, a control system for performing the magnetic flux weakening control by the sine wave control is required, and the configuration of the control system is complicated, which may increase the cost of a microcomputer used for the control.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor control apparatus and a motor control method in which a voltage phase control unit (rectangular wave control unit) covers a conventional magnetic flux weakening control region and suppresses loss.
  • a voltage phase control unit rectangular wave control unit
  • the present invention (1) An inverter 20 that causes the three-phase AC drive currents Iu, Iv, and (Iw) to flow to the PM motor 10, and drive current acquisition units 12u and 12v that acquire the values of the drive currents Iu, Iv, and (Iw).
  • An angle acquisition unit 14 for acquiring the electric angle ⁇ of the PM motor 10, and a d-axis feedback of the drive currents Iu, Iv, (Iw) acquired by the drive current acquisition units 12u, 12v based on the electric angle ⁇ .
  • a three-phase / dq converter 22 for converting the current value Id into a q-axis feedback current value Iq, a voltage phase ⁇ v according to an external torque command value T * and a voltage command value
  • a voltage phase control unit 50 for generating a command value Vd and a q-axis voltage command value Vq, and a dq / for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv and Vw.
  • the voltage phase control unit 50 includes: A voltage phase setting unit 502 that sets a voltage phase ⁇ v based on the torque command value T * ; Predetermined upper limit value
  • voltage command value takes the minimum current to output the torque command value T * substantially the same torque T in the region of less than MAX
  • the difference ⁇ Id is negative, the voltage command value
  • the Id (ref) acquiring unit 644a acquires the d-axis current value Id (ref) based on the q-axis feedback current value Iq or the absolute value
  • the problem is solved by providing the motor control device 100 according to the above (2).
  • the Id (ref) acquisition unit 644b corresponds to the q-axis feedback current value Iq or the absolute value
  • the Id (ref) acquisition unit 644c acquires the target current phase ⁇ i (base) that takes the minimum current to output the torque T substantially equal to the torque command value T *, and obtains the d-axis feedback current value Id And the magnitude
  • of the q-axis feedback current value Iq, the following formula Id (ref)
  • ⁇ sin ( ⁇ i (base ) ) Alternatively, the following formula Id (ref)
  • the above object is achieved by providing the motor control device 100 according to the above (2), wherein the current value Id (ref) is obtained based on the following.
  • the Id (ref) acquisition unit 644d acquires the d-axis current value Id (ref) based on the torque command value T * or the absolute value
  • the voltage command setting unit 60a includes a current phase calculation unit 62, a ⁇ i subtraction unit 63, and a current phase control unit 64
  • the current phase calculator 62 includes an Ia absolute value calculator 622 that obtains the magnitude
  • (Id 2 + Iq 2 ) 1/2
  • a phase calculator 624 for calculating a current phase ⁇ i from the d-axis feedback current value Id and the q-axis feedback current value Iq based on the following equation: ⁇ i tan ⁇ 1 ( ⁇ Id / Iq) With A target current phase ⁇ i (base) that corresponds to the magnitude of the current vector
  • the current phase control unit 64 includes: When the q-axis feedback current value Iq is positive and the difference ⁇ i is positive, the voltage command value
  • the above object is achieved by providing the motor control device 100 according to the above (1), wherein the voltage command value
  • the voltage command setting unit 60a determines whether or not the q-axis feedback current value Iq is near zero, and the q-axis feedback current value Iq is near zero. And an input switching unit 628 that switches the input to the current phase control unit 64 from the difference ⁇ i to the d-axis feedback current value Id when it is determined that
  • the current phase control unit 64 includes: When the d-axis feedback current value Id is positive, the voltage command value
  • the above object is achieved by providing the motor control device 100 described above.
  • the voltage command setting units 60a and 60b further include a fluctuation monitoring unit 650a for monitoring the torque command value T *, and the fluctuation is detected when the torque command value T * decreases below a preset threshold.
  • the monitoring unit 650a detects and the integrated value of the integration control of the current phase control unit 64 or the d-axis current control unit 66 is larger than a preset threshold value, the integrated value is reduced and the voltage command value
  • the voltage command setting units 60a and 60b further include a fluctuation monitoring unit 650b that monitors the voltage phase ⁇ v, and the fluctuation monitoring unit 650b sets the voltage phase ⁇ v to a predetermined upper limit value or its vicinity. If any of the above cases, one or both of the control gain of the current phase control unit 64 or the d-axis current control unit 66 and / or the integral value of the integral control are increased. The above object is attained by providing the motor control device 100 described in the above.
  • the voltage command setting units 60a and 60b further include a fluctuation monitoring unit 650c that monitors the difference ⁇ Id or the difference ⁇ i, and the fluctuation monitoring unit 650c determines that the difference ⁇ Id or the difference ⁇ i exceeds a preset value.
  • the control gain of the current phase control unit 64 or the d-axis current control unit 66 is increased to provide the motor control device 100 according to any one of the above (2) to (8).
  • the voltage command setting units 60a and 60b output the voltage command value
  • the problem is solved by providing the motor control device 100 according to any one of the above (9) to (11).
  • the voltage phase control unit 50 further includes a carrier setting unit 520, and the carrier setting unit 520 generates carrier setting information Sc based on the voltage phase ⁇ v, the electrical angle ⁇ , and the electrical angular velocity ⁇ , In Sc, the center position of the fall of the carrier generated by the carrier generator 34 intersects the zero position of the rise of the three-phase voltage command values Vu, Vv, and Vw, and further sets the frequency of the carrier wave to the three-phase voltage command value Vu,
  • the above object is attained by providing the motor control device 100 according to any one of the above (1) to (12), wherein the motor control device 100 is maintained at an integral multiple of 3 which is an odd number of Vv and Vw.
  • the voltage phase control unit 50 further includes an offset correction unit 70, and the offset correction unit 70 includes a d-axis correction voltage ⁇ Vd and a q-axis correction voltage based on the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • a control signal is generated by generating a correction voltage ⁇ Vq and adding the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq to the d-axis voltage command value Vd and the q-axis voltage command value Vq generated by the voltage command value generation unit 516.
  • the problem is solved by providing the motor control device 100 according to any one of the above (1) to (13), which outputs the signal to the generation unit 30.
  • An inverter 20 for causing the three-phase AC drive currents Iu, Iv, and (Iw) to flow to the PM motor 10, and drive current acquisition units 12u and 12v for acquiring values of the drive currents Iu, Iv, and (Iw).
  • An angle acquisition unit 14 for acquiring the electric angle ⁇ of the PM motor 10, and a d-axis feedback of the drive currents Iu, Iv, (Iw) acquired by the drive current acquisition units 12u, 12v based on the electric angle ⁇ .
  • a three-phase / dq converter 22 for converting the current value Id into a q-axis feedback current value Iq, a voltage phase ⁇ v according to an external torque command value T * and a voltage command value
  • a voltage phase control unit 50 for generating a command value Vd and a q-axis voltage command value Vq, and a dq / for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv and Vw.
  • a motor control method of the motor control device 100 comprising: The voltage phase control unit 50 A voltage phase setting step of setting a voltage phase ⁇ v based on the torque command value T * ; A voltage command setting step of acquiring a voltage command value
  • the problem is solved by providing a control method.
  • the voltage command setting step includes: An Id (ref) obtaining step of obtaining a d-axis current value Id (ref) that takes a minimum current to output substantially the same torque as the torque command value T * ; A ⁇ Id obtaining step of obtaining a difference ⁇ Id between the d-axis current value Id (ref) and the d-axis feedback current value Id; A voltage command generation step of reducing the voltage command value
  • the problem is solved by providing the motor control method according to the above (15), characterized by having the following.
  • the Id (ref) acquiring step acquires the d-axis current value Id (ref) based on the q-axis feedback current value Iq or the absolute value
  • the problem is solved by providing the motor control method according to the above (16).
  • the Id (ref) obtaining step corresponds to the q-axis feedback current value Iq or the absolute value
  • the above object is achieved by providing the motor control method according to the above (16), wherein the d-axis current value Id (ref) is obtained.
  • the Id (ref) obtaining step obtains a target current phase ⁇ i (base) that takes a minimum current to output a torque T substantially equal to the torque command value T *, and obtains a d-axis feedback current value Id and From the magnitude
  • of the q-axis feedback current value Iq, the following equation Id (ref)
  • ⁇ sin ( ⁇ i (base) ) Alternatively, the following formula Id (ref)
  • the Id (ref) acquiring step acquires the d-axis current value Id (ref) based on the torque command value T * or the absolute value
  • the voltage command setting step includes a current phase calculation step, a ⁇ i subtraction step, and a current phase control step,
  • the current phase calculation step obtains the magnitude
  • (Id 2 + Iq 2 ) 1/2
  • a target current phase ⁇ i (base) that corresponds to the magnitude of the current vector
  • the current phase control step reduces the voltage command value
  • is increased, and when the q-axis feedback current value Iq is negative and the difference ⁇ i is negative, the voltage command value
  • the above object is attained by providing the motor control method according to (15), wherein the voltage command value
  • the current phase control step reduces the voltage command value
  • the voltage command setting step includes: A fluctuation monitoring step of detecting that the torque command value T * decreases below a preset threshold; When the torque command value T * decreases beyond a preset threshold value and the integral value of the integral control of the current phase control unit 64 or the d-axis current control unit 66 is larger than the preset threshold value,
  • the above object is attained by providing a motor control method according to any one of the above (16) to (22), further comprising a high-speed response step of decreasing a value.
  • the voltage command setting step includes: A fluctuation monitoring step of detecting that the voltage phase ⁇ v has become a preset upper limit value or its vicinity, When the voltage phase ⁇ v becomes equal to or near the preset upper limit value, one or both of the control gain of the current phase control unit 64 or the d-axis current control unit 66 and / or the integral value of the integral control are increased.
  • the above object is attained by providing the motor control method according to any one of the above (16) to (22), further comprising: (25)
  • the voltage command setting step includes: A fluctuation monitoring step of detecting that the difference ⁇ Id or the difference ⁇ i has exceeded a preset value; A high-speed response step of increasing the control gain of the current phase control unit 64 or the d-axis current control unit 66 when the difference ⁇ Id or the difference ⁇ i exceeds a preset value.
  • the problem is solved by providing a motor control method according to any one of (16) to (22). (26)
  • the voltage command setting step outputs the voltage command value
  • the problem is solved by providing the motor control method according to any one of (23) to (25).
  • the voltage phase control unit 50 further includes a carrier setting unit 520, and the carrier setting unit 520 generates carrier setting information Sc based on the voltage phase ⁇ v, the electric angle ⁇ , and the electric angular velocity ⁇ , In Sc, the center position of the fall of the carrier generated by the carrier generator 34 intersects the zero position of the rise of the three-phase voltage command values Vu, Vv, and Vw, and further sets the frequency of the carrier wave to the three-phase voltage command value Vu,
  • the above object is achieved by providing the motor control method according to any one of the above (15) to (26), wherein Vv and Vw are maintained at an integer multiple of an odd number of 3.
  • the offset correction step generates a d-axis correction voltage ⁇ Vd and a q-axis correction voltage ⁇ Vq based on the d-axis feedback current value Id and the q-axis feedback current value Iq, respectively, and the d-axis voltage generated by the voltage command value generation unit 516
  • the above (15) to (27) wherein the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq are added to the command value Vd and the q-axis voltage command value Vq, respectively, and output to the control signal generator 30.
  • the above object is attained by providing any one of the motor control methods.
  • the operation of the voltage phase control unit controls the conventional flux-weakening control region. Therefore, the number of control systems is small, and the occurrence of torque shock and delay of response at the time of switching can be suppressed. Further, the configuration of the control system can be simplified, and cost can be reduced.
  • is in the region of less than the upper limit value, the minimum current value to output the same torque T and the torque command value T *
  • the operation control is performed so that the target current phase ⁇ i (base) takes Ia
  • FIG. 4 is a diagram illustrating a cycle of a carrier wave of the motor control device according to the present invention.
  • FIG. 2 is a block diagram illustrating a voltage command setting unit according to a first embodiment of the motor control device according to the present invention.
  • FIG. 4 is a vector diagram illustrating a d-axis current value Id (ref) according to the present invention. It is a block diagram showing a voltage command setting part of a 2nd form of a motor control device concerning the present invention. It is a block diagram showing other examples of the voltage command set part of the 2nd form of the motor control device concerning the present invention.
  • FIG. 1 is a block diagram of a motor control device 100 according to the present invention. Note that, here, the description will be given using the motor control device 100 including the sine wave control unit 40. By optimizing a lower limit value
  • a motor control device 100 controls the operation of a PM motor (permanent magnet motor) 10, and an inverter 20 that causes the PM motor 10 to flow three-phase AC drive currents Iu, Iv, Iw.
  • the drive current acquisition units 12u and 12v for acquiring the values of the drive currents Iu, Iv and (Iw)
  • the angle acquisition unit 14 for acquiring the electrical angle ⁇ of the PM motor 10, and the drive current acquisition units 12u and 12v.
  • the three-phase / dq conversion unit 22 that converts the acquired drive currents Iu, Iv, and (Iw) into the d-axis feedback current value Id and the q-axis feedback current value Iq, and is instructed from outside (such as a higher-level control unit of the system).
  • and d-axis voltage command value Vd in the set voltage phase control mode voltage for generating a q-axis voltage command value Vq
  • It has a phase control unit 50 and a control signal generation unit 30 that generates drive signals Su, Sv, and Sw for switching the inverter 20 based on the d-axis voltage command value Vd and the q-axis voltage command value Vq. .
  • the motor control device 100 includes the sine wave control unit 40
  • the d-axis current command value Id * and the q-axis current command value Iq * are set according to the torque command value T * externally specified, and the sine wave is set.
  • a sine wave control unit 40 that generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the control mode, and a switching unit 24 that switches the control of the PM motor 10 between the sine wave control unit 40 and the voltage phase control unit 50. ,have.
  • the control signal generation unit 30 includes a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the voltage command value
  • the command value Vd and the q-axis voltage command value Vq are converted into three-phase voltage command values Vu, Vv, and Vw of the U-phase, V-phase, and W-phase, and a dq / 3-phase conversion unit 32 and carrier setting information Sc described later.
  • the carrier generation unit 34 that generates the carrier wave of the period, the three-phase voltage command values Vu, Vv, Vw output from the dq / 3-phase conversion unit 32 are compared with the carrier output from the carrier generation unit 34, and the inverter 20 is used.
  • a drive signal generation unit 36 that generates drive signals Su, Sv, and Sw for switching.
  • the inverter 20 included in the motor control device 100 performs a switching operation by the Hi-Low drive signals Su, Sv, Sw output from the drive signal generation unit 36, and performs a DC operation from a well-known DC power supply unit 18 such as a battery.
  • the power is converted into a three-phase AC voltage based on the drive signals Su, Sv, and Sw and output.
  • the three-phase drive currents Iu, Iv, and Iw whose phases are shifted by 1 / cycle (2 / 3 ⁇ (rad)) respectively flow through the armature winding of the PM motor 10.
  • the PM motor 10 is provided with the permanent magnet on the rotor side and the three-phase armature winding on the stator side as described above, and the driving current Iu, By letting Iv and Iw flow down, the magnetic pole and magnetic flux of each armature winding are continuously changed to rotate the rotor.
  • IPM Interior Permanent Magnet
  • the drive current acquisition units 12u and 12v can use well-known current sensors capable of contactlessly acquiring the drive currents Iu, Iv and Iw flowing down by the switching operation of the inverter 20.
  • the drive current acquisition unit may be configured as a current sensorless control that acquires the drive currents Iu, Iv, Iw by calculation from the total drive current and the like.
  • an example is shown in which two driving currents Iu, Iv of the driving currents Iu, Iv, Iw are acquired using a well-known current sensor and converted into d-axis and q-axis feedback current values Id, Iq. I have.
  • the angle acquisition unit 14 a well-known angle sensor that can acquire the angle of the rotor may be used, or an angle sensorless control that acquires the angle by calculation from a voltage command value or the like may be used. Among them, it is particularly preferable to obtain the electrical angle ⁇ of the PM motor 10 using a resolver rotation angle sensor.
  • the above-mentioned electrical angle ⁇ and the drive currents Iu and Iv are obtained at both the peak and valley timings of the triangular wave, particularly when the carrier wave is a triangular wave. It is preferable to use them.
  • the electrical angle ⁇ acquired by the angle acquisition unit 14 is also output to the angular velocity calculation unit 16, which calculates the electrical angular velocity ⁇ (rad / s) from the input electrical angle ⁇ , and Output to each part.
  • the PM motor 10 be provided with a well-known cooling mechanism 101.
  • the cooling mechanism 101 includes, for example, a water jacket 102 provided around the PM motor 10 to cool the PM motor 10 by flowing down the cooling water, a well-known temperature acquiring unit 108 for acquiring the water temperature Tw of the cooling water, and ,have. Further, a temperature sensor such as a thermistor is provided on the armature winding of the PM motor 10, and the winding temperature Ta is obtained. Then, the water temperature Tw and the winding temperature Ta are output to the motor parameter setting unit 110.
  • the motor parameter setting unit 110 indirectly acquires the temperature of the permanent magnet of the PM motor 10 from the water temperature Tw, and
  • the motor parameters (the induced voltage constant ⁇ a, the d-axis inductance Ld, and the q-axis inductance Lq) corresponding to the temperature and the winding temperature Ta are acquired from, for example, a data table or the like, and output to the torque calculators 404, 504 and the like.
  • the three-phase / dq conversion unit 22 drives the drive currents Iu, Iv, (Iw) obtained by the drive current acquisition units 12u, 12v based on the electrical angle ⁇ (rad) of the PM motor 10 acquired by the angle acquisition unit 14.
  • Id magnetic flux current value
  • Iq q-axis current value
  • the switching unit 24 is a switching circuit that switches the generation method of the d-axis voltage command value Vd and the q-axis voltage command value Vq according to the operation state of the PM motor 10.
  • the PM motor 10 operates in a predetermined low speed region.
  • the PM motor 10 is operated in a sine wave control mode by the sine wave control unit 40.
  • the control of the PM motor 10 is performed by voltage phase control.
  • the operation is switched to the unit 50 to operate in the voltage phase control mode.
  • the voltage phase control unit 50 also controls the operation of the conventional weak magnetic field control region (overmodulation PWM control region).
  • the switching is performed by the voltage command value
  • the switching is determined by combining the voltage command value
  • these switching thresholds may be set in combination with the power supply voltage Vdc and other thresholds. Note that a hysteresis width is given to a threshold value when switching from the sine wave control unit 40 to the voltage phase control unit 50 and a threshold value when switching from the voltage phase control unit 50 to the sine wave control unit 40. It is preferable to prevent frequent switching operations.
  • immediately before switching in the sine wave control unit 40 is output to the voltage command setting unit 60 constituting the voltage phase control unit 50. Then, it is used as an initial value in the current phase control unit 64 or the d-axis current control unit 66, which will be described later, and as an integral value of the integral control.
  • the voltage phase ⁇ v immediately before switching in the sine wave control unit 40 is output to the voltage phase setting unit 502 included in the voltage phase control unit 50, and is used as an initial value in the voltage phase setting unit 502 and an integral value of integral control. .
  • the current phase ⁇ i immediately before switching in the sine wave control unit 40 may be output to a phase calculation unit 624 described later to be used as an initial value of the current phase ⁇ i.
  • of the sine wave control unit 40 and the voltage phase ⁇ v are output to the predetermined blocks of the voltage phase control unit 50 and initialized.
  • , the voltage phase ⁇ v, and the current phase ⁇ i may take over the values immediately before switching as described above, or may use a low-pass filter or the like (for the control period by the sine wave control unit 40).
  • the (smoothed) value may be taken over to the voltage phase control unit 50. In this configuration, since the smoothed value from which the short-term fluctuation has been removed is used for takeover, a more stable takeover operation can be performed.
  • the d-axis and q-axis feedback current values Id and Iq immediately before switching generated by the voltage phase control unit 50 are output to the current command value setting unit 402. It is used as an initial value of the current command value Ia * and an integral value of the integral control.
  • the sine wave control unit 40 has the d-axis low-pass filter 490A and the q-axis low-pass filter 490B, the d-axis and q-axis feedback current values Id and Iq are used as initial values and accumulated values of these low-pass filters 490A and 490B. Is also used.
  • the d-axis and q-axis voltage command values Vd and Vq immediately before switching generated by the voltage phase control unit 50 are used as initial values of the d-axis and q-axis voltage command values Vd and Vq of the sine wave control unit 40.
  • values obtained by subtracting interference terms Vd ′ and Vq ′ calculated by a non-interference control unit 414 described later from the d-axis and q-axis voltage command values Vd and Vq are used as integration values of the current integration control unit 410a. .
  • the d-axis, q-axis feedback current values Id, Iq, and the d-axis, q-axis voltage command values Vd, Vq of the voltage phase control unit 50 are changed.
  • the signal is output to a predetermined block of the sine wave control unit 40 and is set as an initial value or an integrated value.
  • the voltage phase control unit 50 controls the current phase ⁇ i to a value equivalent to the target current phase ⁇ i (base) in a region where the voltage command value
  • the configuration and operation of the sine wave control unit 40 will be described. Note that the configuration of the sine wave control unit 40 described below is a preferred example of the present invention, and is not limited to the following configuration, and any other sine wave control mechanism may be used.
  • a torque command value T * is output from a control unit or the like of a host system (not shown).
  • This torque command value T * is a torque that is an operation target of the PM motor 10.
  • the switching unit 24 selects the sine wave control unit 40
  • the torque command value T * is input to the current command value setting unit 402 of the sine wave control unit 40 via the low-pass filter LPF.
  • the motor parameters ( ⁇ a, Ld, Lq) corresponding to the permanent magnet temperature and the winding temperature Ta are input from the motor parameter setting unit 110 to the torque calculation unit 404 of the sine wave control unit 40. Also, d-axis and q-axis current command values Id * and Iq * output from the current command value generation unit 406 are input. Then, torque calculation section 404 calculates the current torque T of PM motor 10 based on these input values, and outputs the current torque T to current command value setting section 402.
  • the current command value setting unit 402 integrates the current command value Ia * such that the difference between the torque command value T * input via the low-pass filter LPF and the torque T input from the torque calculation unit 404 becomes zero, It is calculated by well-known arithmetic processing such as proportional control, and is output to the current command value generation unit 406.
  • the current command value generation unit 406 refers to, for example, the current-phase angle data map 620 based on the magnitude
  • the corresponding target current phase ⁇ i (base) is obtained.
  • the target current phase ⁇ i (base) is a current phase angle at which the torque T is maximized for each magnitude
  • the current command value generation unit 406 calculates the d-axis current command value Id * and the q-axis current command value Iq * from the obtained
  • Id * Ia * ⁇ sin ( ⁇ i (base) )
  • Iq * Ia * ⁇ cos ( ⁇ i (base) )
  • the d-axis current command value Id * always takes a negative value
  • the q-axis current command value Iq * has the same sign as the current command value Ia * .
  • the d-axis current command value Id * and the q-axis current command value Iq * generated by the current command value generation unit 406 are respectively a d-axis low-pass filter when the d-axis low-pass filter 490A and the q-axis low-pass filter 490B exist. 490A and q-axis low-pass filter 490B.
  • of the d-axis current command value Id * increases is set to ⁇ d (up), and the time constant when the absolute value
  • the shaft current command value Iq * is quickly transmitted, and when the q absolute value
  • the PM motor 10 can be controlled so that the d-axis current Id does not become insufficient with respect to the shaft current Iq.
  • the d-axis and q-axis current command values Id * and Iq * that have passed through the d-axis and q-axis low-pass filters 490A and 490B are then input to a voltage command value generation unit 416.
  • a voltage command value generation unit 416 a preferred example of the voltage command value generation unit 416 will be described.
  • the d-axis and q-axis current command values Id * and Iq * input to the voltage command value generation unit 416 are branched into two, one of which is input to the non-interference control unit 414.
  • the d-axis and q-axis feedback current values Id and Iq are subtracted to obtain deviations ⁇ Id and ⁇ Iq, which are then input to the current control unit 410. Further, the motor parameters ( ⁇ a, Ld, Lq) and the electrical angular velocity ⁇ are input to the non-interference control unit 414, and interference terms Vd ′ and Vq ′ between the d-axis and the q-axis are calculated.
  • the current control unit 410 has, for example, a current integration control unit 410a and a current proportional control unit 410b, and the deviations ⁇ Id and ⁇ Iq input to the current control unit 410 are branched into two, and the current integration control unit 410a It is input to each of the current proportional control section 410b. Then, well-known current integration control and current proportional control are performed in the current integration control unit 410a and the current proportional control unit 410b such that the deviation ⁇ Id and the deviation ⁇ Iq become zero.
  • the output from the current proportional control unit 410b is added, so that the d-axis and q-axis A d-axis voltage command value Vd and a q-axis voltage command value Vq that take into account the influence of the interference component are generated.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq are output to the control signal generation unit 30 via the switching unit 24.
  • the d-axis and q-axis voltage command values Vd ′′ and Vq ′′ at the stage before the output of the current proportional control unit 410b are added are output to the polar coordinate conversion unit 418 of the sine wave control unit 40, and the polar coordinate conversion unit 418 is used. Is subjected to polar coordinate conversion, and a voltage phase ⁇ v and a voltage command value
  • Carrier setting section 420 generates carrier setting information Sc according to voltage phase ⁇ v, electrical angular velocity ⁇ , and electrical angle ⁇ obtained by polar coordinate conversion section 418.
  • the carrier setting information Sc is information for maintaining a carrier generated by the carrier generator 34 at an appropriate frequency and state described later.
  • the carrier setting unit 420 sets a value (fixed value) of a predetermined period set in advance as the carrier setting information Sc. Therefore, in this region, the control signal generation unit 30 performs a comparison operation between the carrier and the three-phase voltage command values Vu, Vv, Vw in the asynchronous control state to generate the drive signals Su, Sv, Sw. The comparison operation will be described later.
  • the rotation of the PM motor 10 is controlled by asynchronous control.
  • the carrier setting unit 420 When the electrical angular velocity ⁇ is equal to or higher than the preset rotation speed, the carrier setting unit 420 generates carrier setting information Sc for synchronization control and outputs the carrier setting information Sc to the carrier generation unit 34.
  • the PM motor 10 is synchronously controlled. It is preferable that a rotational speed at which the synchronous control is switched to the asynchronous control and a rotational speed at which the asynchronous control is switched to the synchronous control have a hysteresis width to prevent frequent switching at the rotational speed at the switching boundary.
  • the carrier setting information Sc is for maintaining the carrier generated by the carrier generator 34 at an appropriate frequency and state.
  • the appropriate frequency and state of the carrier are, for example, in the case where the carrier is a triangular wave as shown in FIG. 2A, as shown at point A in FIG.
  • the position intersects the zero position at the rising edge of the three-phase voltage command values Vu, Vv, Vw (Vu at point A), and the frequency of the carrier is an odd integer of three of the frequencies of the three-phase voltage command values Vu, Vv, Vw.
  • the number is a multiple of 9, 15, 21, 27 times (hereinafter, this multiple is referred to as a synchronization number).
  • the carrier wave is a waveform obtained by combining a rising sawtooth wave and a falling sawtooth wave with respect to the horizontal axis as shown in FIG. 2B
  • the waveform is indicated by a point A in FIG.
  • the center position of the falling edge of the carrier intersects with the zero position of the rising edge of the three-phase voltage command values Vu, Vv, Vw (Vu at point A), and the frequency of the carrier wave with two sawtooth waves as one cycle Is an integer multiple of an odd number of three of the three-phase voltage command values Vu, Vv, Vw, that is, 9, 15, 21, 27 times, or the like.
  • the carrier setting information Sc changes in conjunction with the change in the electrical angular velocity ⁇ , and maintains the carrier in the above state.
  • the electric angular velocity ⁇ increases or decreases beyond a predetermined value
  • the number of synchronizations is increased or decreased by one step, and the carrier is maintained in the above state.
  • the carrier generated by the carrier generator 34 is always maintained at a frequency that satisfies the above state during the synchronization control.
  • the motor control device 100 and the motor control method according to the present invention having this configuration have good continuity when the drive signals Su, Sv, and Sw change from a sine wave pattern (overmodulation pattern) to a rectangular wave pattern. And stable drive signals Su, Sv, Sw can be generated. Further, the output line voltages Vuv, Vvw, Vwu have symmetry, and stable control of the PM motor 10 is possible.
  • the voltage phase control unit 50 can also control the magnetic flux weakening region by this control configuration.
  • the switching unit 24 controls the PM motor 10 by the sine wave control unit 40.
  • immediately before switching in the sine wave control unit 40 is output to the current phase control unit 64 or the d-axis current control unit 66 as described above, and the current phase control unit 64 or the d-axis current control It is used as an initial value in the unit 66 and an integral value of the integral control.
  • the voltage phase ⁇ v immediately before switching in the sine wave control unit 40 is output to the voltage phase setting unit 502 and used as an initial value in the voltage phase setting unit 502 and an integral value of the integral control. Note that these succeeding values may use values smoothed as described above.
  • the switching from the sine wave control unit 40 to the voltage phase control unit 50 may be performed, for example, when the voltage command value
  • at this time may be a value when the voltage utilization rate of the output voltage is near the upper limit value of the sine wave control. Further, switching is performed when a torque command value T * such that the output voltage is insufficient in the control by the sine wave control unit 40 is input, or when such a torque is output, or when such an electrical angular velocity is obtained. May be performed. Further, these switching thresholds may be set in combination with the power supply voltage Vdc and other thresholds.
  • the torque command value T * is input to the voltage phase setting unit 502 of the voltage phase control unit 50 via the low-pass filter LPF.
  • the motor parameters ( ⁇ a, Ld, Lq) of the PM motor 10 are input to the torque calculation unit 504 of the voltage phase control unit 50 from the motor parameter setting unit 110, and the d-axis from the three-phase / dq conversion unit 22 is input to the torque calculation unit 504.
  • the q-axis feedback current values Id and Iq are input.
  • the torque calculation unit 504 calculates the current torque T of the PM motor 10 from the motor parameters and the d-axis and q-axis feedback current values Id and Iq, and outputs the current torque T to the voltage phase setting unit 502.
  • voltage phase setting section 502 generates a voltage phase ⁇ v such that the difference between input torque command value T * and torque T becomes zero by a well-known calculation such as integral control or proportional control (voltage phase setting step). ).
  • the voltage phase setting unit 502 sets an upper limit value of the voltage phase ⁇ v corresponding to the power supply voltage Vdc and the electrical angular velocity ⁇ , and the voltage phase setting unit 502 sets the voltage phase ⁇ v within the range of the upper limit value.
  • the generated voltage phase ⁇ v is output to voltage command value generating section 516 and carrier setting section 520 of voltage phase control section 50.
  • the carrier setting unit 520 generates the same carrier setting information Sc as the above-described carrier setting unit 420 from the voltage phase ⁇ v, the electric angular velocity ⁇ , and the electric angle ⁇ , and outputs the same to the carrier generation unit 34.
  • the voltage phase control unit 50 has a voltage command setting unit 60.
  • the voltage command setting unit 60 receives both or one of the d-axis and q-axis feedback current values Id and Iq, and the voltage command value
  • that obtains a current is obtained and output to the voltage command value generation unit 516 and the linear correction unit 38 (voltage command setting step).
  • the PM motor 10 When the voltage command value
  • MAX is changed twice, for example, as shown in FIG. 2A, between the carrier and the three-phase voltage commands Vu, Vv, Vw during one cycle of the voltage commands Vu, Vv, Vw.
  • the drive signals Su, Sv, Sw generated by comparing these carrier waves with the voltage command values Vu, Vv, Vw are rectangular waves of one pulse.
  • PM motor 10 is controlled by this rectangular wave pattern.
  • the configuration and operation of the voltage command setting unit 60 will be described later in detail.
  • voltage command value generating section 516 determines a d-axis voltage command value Vd and a q-axis voltage command from voltage phase ⁇ v input from voltage phase setting section 502 and voltage command value
  • a value Vq is generated (d-axis q-axis voltage command value generation step).
  • the voltage phase control unit 50 may include an offset correction unit 70 that corrects an offset generated in the drive currents Iu, Iv, Iw due to a shift in the electrical angle ⁇ acquired by the angle acquisition unit 14 or the like.
  • an offset correction unit 70 that corrects an offset generated in the drive currents Iu, Iv, Iw due to a shift in the electrical angle ⁇ acquired by the angle acquisition unit 14 or the like.
  • the offset correction unit 70 shown in this example includes a smoothing unit 72, a correction current generation unit 74, a correction voltage generation unit 76, and a voltage command value correction unit 78. Then, the smoothing unit 72 of the offset correction unit 70 smoothes the d-axis and q-axis feedback current values Id and Iq input via the switching unit 24 by performing, for example, a moving average process or a smoothing process.
  • the smoothing process means a process of performing smoothing on the input signal (d-axis, q-axis feedback currents Id, Iq) based on the following equation at an arbitrary cycle.
  • A is an input value (d-axis, q-axis feedback current Id, Iq)
  • B is an output value after the smoothing process of the immediately preceding cycle
  • K is a smoothing constant
  • C is an output value.
  • the pseudo estimated d-axis current command value Id * and the estimated q-axis current command value Iq * in which the fluctuation components caused by the offset and the amplitude imbalance of the drive currents Iu, Iv, Iw are smoothed are obtained.
  • the estimated d-axis and q-axis current command values Id * and Iq * are output to the correction current generation unit 74.
  • the correction current generator 74 receives the d-axis feedback current value Id and the q-axis feedback current value Iq, respectively, and the correction current generator 74 outputs the estimated d-axis current command value Id * generated by the smoothing unit 72 . , The d-axis feedback current value Id and the q-axis feedback current value Iq are respectively subtracted from the estimated q-axis current command value Iq * . As a result, a d-axis correction current ⁇ Id and a q-axis correction current ⁇ Iq are generated as fluctuation components. The d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq are output to the correction voltage generator 76.
  • the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq are calculated based on the estimated d-axis and q-axis current command values Id * and Iq * in which the components of offset and amplitude imbalance (fluctuation components) are smoothed. Since the d-axis and q-axis feedback current values Id and Iq including the balance component (fluctuation component) are subtracted from each other, the fluctuation component basically has the opposite phase.
  • the correction voltage generation unit 76 obtains a d-axis correction voltage ⁇ Vd and a q-axis correction voltage from the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq input from the correction current generation unit 74 by, for example, proportional control using a predetermined correction gain. ⁇ Vq is generated and output to the voltage command value correction unit 78.
  • the voltage command value correction unit 78 converts the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq input from the correction voltage generation unit 76 into the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the voltage command value generation unit 516. Respectively. Accordingly, the d-axis and q-axis voltage command values Vd and Vq generated thereby have the voltages (d-axis, q-axis correction voltages ⁇ Vd and ⁇ Vq) opposite to the offsets and amplitude imbalance components generated in the drive currents Iu, Iv and Iw. Will be added.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq are input to the linear correction unit 38 of the control signal generation unit 30 via the switching unit 24.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq corrected by the offset correction unit 70 include the offset and the voltage opposite to the amplitude unbalance component as described above.
  • the offset of the PM motor 10 is corrected and eliminated (offset correction step).
  • the linear correction unit 38 of the control signal generation unit 30 outputs the voltage command value
  • the shaft voltage command values Vd and Vq are input.
  • acquired by the voltage command setting unit 60 and the d-axis and q-axis voltage command values Vd and Vq generated by the voltage command value generation unit 516 are input. I do.
  • the linear correction unit 38 is preset with magnification table data using the voltage command value
  • the linear correction unit 38 reads a multiple corresponding to the input voltage command value
  • the electrical angle ⁇ from the angle acquisition unit 14 and the electrical angular velocity ⁇ from the angular velocity calculation unit 16 are input to the dq / 3-phase conversion unit 32 constituting the control signal generation unit 30, and the electrical angle ⁇ and the electrical angular velocity ⁇ are input.
  • a predicted electrical angle ⁇ ′ at a new timing at which the inverter 20 performs the switching operation is calculated based on the calculated electrical angle ⁇ ′, and the d-axis and q-axis voltage command values Vd and Vq are converted into the three-phase voltage command values based on the predicted electrical angle ⁇ ′.
  • the signals are converted into Vu, Vv, and Vw, and output to the drive signal generator 36.
  • the drive signal generator 36 has a carrier generator 34, which receives carrier setting information Sc and generates a carrier having the above-described cycle based on the carrier setting information Sc. . Then, the drive signal generation unit 36 compares the carrier with the three-phase voltage command values Vu, Vv, Vw, respectively, thereby generating Hi-Low drive signals Su, Sv, Sw.
  • the comparison operation means that the drive signal generation unit 36 compares the magnitudes of the carrier wave and the three-phase voltage commands Vu, Vv, Vw, and determines the Hi-Low of each of the drive signals Su, Sv, Sw according to the magnitude relation. This is an operation for setting, whereby drive signals Su, Sv, Sw for switching Hi-Low at respective intersections of the carrier wave and the three-phase voltage commands Vu, Vv, Vw are generated.
  • the internal switching elements of the inverter 20 are turned on / off by the drive signals Su, Sv, and Sw output from the drive signal generation unit 36, and the DC power from the DC power supply unit 18 is based on the drive signals Su, Sv, and Sw. Convert to AC voltage and output.
  • the AC drive currents Iu, Iv, and Iw whose phases are shifted by (cycle (2/3 (rad)) respectively flow through the armature winding of the PM motor 10.
  • the PM motor 10 rotates with the torque corresponding to the torque command value T * .
  • voltage command setting unit 60 the voltage command value as described above
  • to output the torque T is obtained and output to the voltage command value generation unit 516 and the linear correction unit 38.
  • takes the upper limit value
  • the voltage phase is controlled by the output voltage with the voltage phase ⁇ v.
  • the voltage command setting unit 60a includes a current phase calculation unit 62, a current phase control unit 64, a q-axis current determination unit 626, and an input switching unit 628. are doing.
  • the current phase calculator 62 includes an Ia absolute value calculator 622, a phase calculator 624, and a ⁇ i subtractor 63.
  • the d-axis feedback current value Id and the q-axis feedback current value Iq from the three-phase / dq converter 22 are input to the Ia absolute value calculator 622, and the Ia absolute value calculator 622 outputs
  • of the current vector is calculated from the axis feedback current values Id and Iq based on the following equation (1).
  • (Id 2 + Iq 2 ) 1/2 (1)
  • the d-axis and q-axis feedback current values Id and Iq input to the voltage command setting unit 60a of the first embodiment and the voltage command setting units 60b and 60c of the second and third embodiments to be described later are low-pass filters or averaging. A value previously smoothed by the processing may be used.
  • the current phase calculation unit 62 refers to the current-phase angle data map 620 using
  • the target current phase ⁇ i (base) may be obtained by calculation using a calculation formula of the target current phase ⁇ i (base) as a function of the absolute value
  • the current-phase angle data map 620 has the maximum torque T for each magnitude
  • the target current phase ⁇ i (base) is recorded in the form of table data, and can be obtained by directly reading out the target current phase ⁇ i (base) from the current-phase angle data map 620.
  • the current phase calculator 62 has a calculation formula of the target current phase ⁇ i (base) , and this calculation formula is obtained in advance by, for example, an experiment.
  • a calculation formula of the target current phase ⁇ i (base) is created by a linear function of
  • these may be selected and used in accordance with (the section of) the value of
  • and a target current phase ⁇ i (base) are plotted on a graph, and an equation of an approximate curve (generally a higher-order polynomial function) for the plot is expressed as a target current phase ⁇ i (base) . It may be a calculation formula.
  • the current phase calculation unit 62 checks the sign (positive or negative) of the q-axis feedback current value Iq, and makes the sign of the target current phase ⁇ i (base) the same as the q-axis feedback current value Iq. Note that the signs of the current phase ⁇ i and the target current phase ⁇ i (base) are positive in the counterclockwise direction and negative in the clockwise direction with reference to the q-axis current Iq in FIG.
  • the q-axis feedback current value Iq is input to the q-axis current determination unit 626, and the q-axis current determination unit 626 determines whether the input q-axis feedback current value Iq is within a preset value near zero. It is determined whether or not it is (q-axis current determination step). Then, when it is determined that the q-axis feedback current value Iq is not within the range of values near zero, the input switching unit 628 outputs the difference ⁇ i to the current phase control unit 64. Then, the current phase control unit 64 performs a process of obtaining a voltage command value
  • the input switching unit 628 switches the output to the current phase control unit 64 from the difference ⁇ i to the d-axis feedback current value Id ( Input switching step). Then, current phase control section 64 performs a process of obtaining voltage command value
  • based on the difference ⁇ i will be described.
  • Enter as a value.
  • the q-axis feedback current value Iq is input to the current phase control unit 64, and the current phase control unit 64 confirms whether the q-axis feedback current value Iq is positive or negative.
  • are set, and these upper limit value
  • MIN the specification and the required capacity of the PM motor 10 is set by the performance and the like.
  • MAX may be a rectangular wave forming voltage value
  • may be used.
  • MAX is set based on the rectangular wave forming voltage value
  • MAX may be created for each of the power supply voltage Vdc of the DC power supply unit 18 and the electrical angular velocity ⁇ , and this data map may be read and set. Further, these upper limit values
  • MIN may be a fixed value, or a data map of the lower limit value
  • is set by the table data as MIN, the voltage command value
  • the d-axis current flux-weakening current
  • the current phase control unit 64 When the difference ⁇ i is input from the current phase calculation unit 62, the current phase control unit 64 performs well-known proportional control and integral control based on the value of the difference ⁇ i, and the sign of the q-axis feedback current value Iq is positive and the sign of the difference ⁇ i Is positive, the voltage command value
  • the sign of the q-axis feedback current value Iq is positive and the sign of the difference ⁇ i is negative, a process of increasing the voltage command value
  • the current phase ⁇ i is located on the q-axis side of the target current phase ⁇ i (base) .
  • This state means that a current larger than the minimum target current phase ⁇ i (base) is flowing, and this is not a preferable state in which copper loss is large especially at a low load where the torque command value T * is small. It is considered that the reason for this state is that the output voltage of the inverter 20 is large. If the current phase ⁇ i is simply set to the target current phase ⁇ i (base) with the current
  • the current phase control unit 64 increases or decreases the voltage command value
  • the shaft current Id and the q-axis current Iq change, and the torque T changes accordingly.
  • the voltage phase setting unit 502 increases or decreases the voltage phase ⁇ v so that the torque T matches the torque command value T * .
  • the current phase ⁇ i due to the shaft current Iq changes so as to approach the target current phase ⁇ i (base) .
  • the d-axis and q-axis voltage command values Vd and Vq are equivalent to the target current phase ⁇ i (base) that takes the minimum current value
  • the phase is controlled to be ⁇ i, and as a result, the PM motor 10 operates in an efficient state with little loss.
  • the input switching unit 628 When the q-axis current determination unit 626 determines that the q-axis feedback current value Iq is within a range of values near zero, the input switching unit 628 outputs the output to the current phase control unit 64 from the difference ⁇ i to the d-axis. Switch to the feedback current value Id. It is preferable that the determination threshold value in the q-axis current determination unit 626 has a hysteresis width to prevent frequent switching at a boundary point. At the time of this switching, the control gains of the current phase control unit 64, such as proportional control and integral control, may be switched to those at the time of near-zero processing.
  • the current phase ⁇ i is calculated by the above equation (2).
  • the term ( ⁇ Id / Iq) is present in the above equation (2), when the q-axis feedback current value Iq serving as the denominator becomes zero or near zero, the value of this term increases to infinity. A malfunction occurs in the calculation.
  • the current phase ⁇ i calculated by the above equation (2) corresponding to the positive or negative is about ⁇
  • may go hunting between 90 ° and about + 90 °.
  • the q-axis current determination unit 626 and the input switching unit 628 switch the output to the current phase control unit 64 from the difference ⁇ i to the d-axis feedback current value Id, and
  • is generated without using the phase ⁇ i.
  • the term ( ⁇ Id / Iq) does not contribute to the operation of the current phase control unit 64, and it is possible to avoid a calculation problem.
  • the current phase control unit 64 performs well-known proportional control and integral control based on the value of the input d-axis feedback current value Id, and when the sign of the d-axis feedback current value Id is positive, The voltage command value
  • the current phase control unit 64 operates to reduce the voltage command value
  • the PM motor 10 can be operated with a minimum d-axis current (flux weakening current) in an efficient state with little loss.
  • the current phase control unit 64 raises the voltage command value
  • when the d-axis feedback current value Id is also within a predetermined range near zero, the voltage command value
  • changes depending on the sign of the d-axis feedback current value Id. Therefore, if the d-axis feedback current value Id switches between positive and negative in the vicinity of zero, the increase process and the decrease process for the voltage command value
  • is maintained at the original value without changing when the d-axis feedback current value Id (and the q-axis feedback current value Iq) is near zero, the voltage command value
  • the offset value ( ⁇ a) is added to the d-axis feedback current value Id input to the current phase control unit 64, and the determination threshold near zero of the d-axis feedback current value Id is set.
  • the shift may be performed in accordance with the offset value (-a). According to this configuration, by optimizing the value of the offset value ( ⁇ a), when the q-axis feedback current value Iq takes a value near zero, the d-axis feedback current value input to the current phase control unit 64 Id can always be a negative value.
  • the voltage command setting unit 60b of the second embodiment the target current instead of the phase .theta.i (base), such as taking a target current phase .theta.i (base) shown in the vector diagram of FIG. 4 d-axis current value Id (ref) Is used to change the voltage command value
  • the voltage command setting unit 60b has a minimum value for outputting a torque T substantially equal to the torque command value T *.
  • acquisition units 644a to 644d for acquiring the d-axis current value Id (ref) at the time of the target current phase ⁇ i (base) taking the current
  • An Id subtraction unit 648 that subtracts the d-axis feedback current value Id from the acquired d-axis current value Id (ref) to obtain a difference ⁇ Id, and a d-axis that changes the voltage command value
  • the d-axis current value Id (ref) basically indicates a negative value.
  • Id (ref), coefficient K (Id / Iq) , target current phase ⁇ i (base), and the like are read from the data map and acquired, but these values are acquired by calculation using a calculation formula.
  • the Id (ref) acquisition units 644a to 644d have calculation formulas such as Id (ref), coefficient K (Id / Iq) , and target current phase ⁇ i (base) , and these calculation formulas are determined in advance by experiments or the like.
  • a linear function in a plurality of sections is connected and formed, or is created and recorded by a known method such as obtaining from an equation of an approximate curve.
  • a known method such as obtaining from an equation of an approximate curve.
  • the Id (ref) acquisition unit 644a of the first embodiment has, for example, an Id (ref) data map unit 646a, and the Id (ref) data map unit 646a has a q-axis feedback current value Iq or
  • the d-axis current value Id (ref) is read and obtained using the absolute value
  • the Id (ref) data map unit 646a reads the d-axis current value Id (ref) using the absolute value
  • the Id (ref) acquisition unit of the first embodiment As shown in FIG.
  • the Id (ref) data map unit 646a has table data of the d-axis current value Id (ref) taking the target current phase ⁇ i (base) for each absolute value
  • the d-axis current value Id (ref) is read and obtained from the absolute value
  • the Id (ref) data map section 646a When the Id (ref) data map section 646a reads out the d-axis current value Id (ref) using the q-axis feedback current value Iq itself as an argument, the Id (ref) data map section 646a reads both the positive and negative q-axis feedback current values. It has table data of the d-axis current value Id (ref) corresponding to Iq. Then, the Id (ref) data map unit 646a reads and acquires the d-axis current value Id (ref) using the q-axis feedback current value Iq input to the Id (ref) acquisition unit 644a as a direct argument.
  • the d-axis current value Id (ref) is directly read using the q-axis feedback current value Iq or its absolute value
  • the Id (ref) acquisition unit 644a uses the q-axis feedback current value Iq or a formula for calculating the d-axis current value Id (ref) as a function of the absolute value
  • the current value Id (ref) may be obtained.
  • the Id (ref) obtaining unit 644b of the second embodiment corresponds to, for example, the q-axis feedback current value Iq or its absolute value
  • a coefficient data map unit 646b includes table data of a coefficient K (Id / Iq) which is a ratio between the current value Iq and the d-axis current value Id (ref).
  • the coefficient data map unit 646b obtains the q-axis current value Iq and the d-axis current value Id (ref) in the same manner as the above-described table data of Id (ref), and converts the d-axis current value Id (ref) into the q-axis current value.
  • the coefficient K (Id / Iq) is calculated by dividing the value by the value Iq, and this can be obtained by converting it to table data.
  • the coefficient data map unit 646b reads out the coefficient K (Id / Iq) using the absolute value
  • the Iq absolute value calculator 642 for calculating the absolute value
  • the coefficient data map unit 646b reads the coefficient K (Id / Iq) using the absolute value
  • the coefficient data map unit 646b When the coefficient data map unit 646b reads the coefficient K (Id / Iq) using the q-axis feedback current value Iq itself as an argument, the coefficient data map unit 646b uses the coefficient K corresponding to both the positive and negative q-axis feedback current values Iq. (Id / Iq) table data. Then, the coefficient data map unit 646b reads and acquires the coefficient K (Id / Iq) using the q-axis feedback current value Iq input to the Id (ref) acquiring unit 644b as an argument. Then, the Id (ref) acquisition unit 644b acquires the d-axis current value Id (ref) by multiplying the read coefficient K (Id / Iq) by the q-axis feedback current value Iq.
  • the d-axis current value Id (ref) must be a negative value. Therefore, from the calculation, when the d-axis current value Id (ref) is a positive value, the value is multiplied by ⁇ 1 to obtain a negative value, or the coefficient K (Id / Iq) of the positive value region is calculated. It is preferable to record as a negative value.
  • the number of arithmetic processings is larger than that of the Id (ref) acquisition unit 644a of the first embodiment, but the absolute value
  • Id (ref) acquiring unit 644b is, q-axis feedback current value Iq or absolute value
  • an Id (ref) acquisition unit 644c of the third embodiment shown in FIG. 5C includes an Ia absolute value operation unit 622 ′, an Iq absolute value operation unit 642, and an Id (ref) operation unit 646c.
  • the Ia absolute value calculation unit 622 ' is configured to calculate the current vector from the d-axis and q-axis feedback current values Id and Iq by the equation (1) in the same manner as the Ia absolute value calculation unit 622 of the voltage command setting unit 60a of the first embodiment. Is calculated.
  • the target current phase ⁇ i (base) is read using
  • the Iq absolute value calculation unit 642 calculates the absolute value
  • the Id (ref) calculation unit 646c calculates the d-axis current value Id (ref) based on the following equation.
  • Id (ref)
  • the d-axis current value Id (ref) may be calculated based on the following equation without providing the Iq absolute value calculation unit 642.
  • Id (ref)
  • the Id (ref) acquisition unit 644c of the third embodiment does not need a data map for acquiring the d-axis current value Id (ref), and the storage capacity of the entire apparatus Can be reduced.
  • the Id (ref) acquisition unit 644c ′ of the third embodiment sets the target current phase ⁇ i (base ) using the absolute value
  • the target current phase ⁇ i (base) is read using the absolute value
  • a data map of the target current phase ⁇ i (base) using the positive and negative q-axis feedback current values Iq as arguments is provided, and the target current phase ⁇ i (base) is read out using the q-axis feedback current values Iq directly as arguments.
  • the d-axis current value Id (ref) may be calculated using the equation (3).
  • the target current phase ⁇ i (base) may be obtained by the calculation as described above.
  • the Id (ref) acquiring unit 644d of the fourth embodiment reads and acquires the d-axis current value Id (ref) using, for example, the torque command value T * or its absolute value
  • a data map section 469 is provided.
  • the acquisition unit 644d includes a torque absolute value calculation unit 643 that calculates the absolute value
  • the T-Id (ref) data map unit 469 has table data of the d-axis current value Id (ref) that takes the target current phase ⁇ i (base) at each absolute value
  • the d-axis current value Id (ref) is read and obtained using the absolute value
  • the T-Id (ref) data map section 469 reads the d-axis current value Id (ref) using the torque command value T * itself as an argument, the T-Id (ref) data map section 469 performs, for example, both positive and negative operations.
  • torque command value T * torque command value table data and force action operation corresponding to T *, has a table data for each torque command value T * of the regenerative operation, the torque input to the Id (ref) acquiring unit 644d
  • the command value T * is directly used as an argument to read and acquire Id (ref).
  • the T-Id (ref) table data is obtained in advance by experiments or the like.
  • the Id (ref) acquisition unit 644d uses the calculation formula of the d-axis current value Id (ref) as a function of the torque command value T * or its absolute value
  • the current value Id (ref) may be obtained.
  • the operation of the Id (ref) acquisition units 644a to 644d corresponds to an Id (ref) acquisition step.
  • the d-axis current value Id (ref) obtained in this manner is input to the Id subtraction unit 648, and the d-axis feedback current value Id is subtracted to obtain a difference ⁇ Id ( ⁇ Id obtaining step).
  • the difference ⁇ Id calculated by the Id subtraction unit 648 is input to the d-axis current control unit 66, and the d-axis current control unit 66 performs well-known proportional control and integral control based on the value of the difference ⁇ Id to obtain the sign of the difference ⁇ Id. Is negative, it operates to decrease the voltage command value
  • is operated to increase within the range of the upper limit value
  • This operation is intended to bring the first embodiment of the voltage command setting unit 60a as well as the current phase .theta.i the target current phase ⁇ i (base), as a result, PM motor 10 is a torque command value T * equal to the torque T Is controlled at the current phase ⁇ i equivalent to the target current phase ⁇ i (base) that takes the minimum current value
  • MIN are appropriately set by the PM motor 10 as in the case of the current phase control unit 64.
  • MIN are also used as the upper limit value and the lower limit value of the integral value in the integral control of the d-axis current control unit 66.
  • the voltage command setting unit 60b of the second embodiment does not use the current phase ⁇ i unlike the configuration of the voltage command setting unit 60a of the first embodiment. Therefore, the switching operation to the special control when the q-axis feedback current value Iq takes a value near zero becomes unnecessary, and the control system can be simplified. In addition, since consistent control can be performed with the same configuration using the difference ⁇ Id, signal continuity is maintained and smooth control can be performed.
  • the voltage command setting units 60a and 60b in the first and second embodiments may have a configuration including a correction voltage calculation unit 515 as shown in FIG.
  • the voltage command setting units 60 a and 60 b including the correction voltage calculation unit 515 generate the correction voltage
  • the current phase control unit 64 and the d-axis current control unit 66 add the correction voltage
  • the upper and lower limit values of the integral value in the integral control of the current phase control unit 64 and the d-axis current control unit 66 are calculated by subtracting the correction voltage
  • MIN of the voltage command setting units 60a and 60b are different from the final voltage command value
  • by the correction voltage calculation unit 515 is, for example, the induced voltage constant ⁇ a of the permanent magnet, the d-axis current value Id (d-axis feedback current value Id), or the q-axis current value Iq (q It is preferably generated based on at least one of the shaft feedback current values Iq) and the electrical angular velocity ⁇ .
  • may be calculated based on the following equation in consideration of the induced voltage of the permanent magnet corresponding to the change in the electrical angular velocity ⁇ .
  • the calculation may be performed based on the following equation in consideration of the q-axis current value Iq.
  • the voltage may be calculated based on the following equation in consideration of the weak magnetic flux control based on the d-axis current value Id with respect to the induced voltage of the permanent magnet.
  • Vd ' - ⁇ ⁇ Lq ⁇ Iq
  • Vq ' ⁇ ⁇ ⁇ a + ⁇ ⁇ Ld ⁇ Id
  • (Vd ′ 2 + Vq ′ 2 ) 1/2
  • the d-axis current value Id and the q-axis current value Iq in these equations may be values obtained by performing a smoothing process on each of the feedback current values Id and Iq by a low-pass filter or the like.
  • is generated based on the electrical angular velocity ⁇ , and the correction voltage
  • may be calculated using Id (ref) instead of the d-axis current value Id in the above equation. .
  • Va May be used as the initial value of the current phase control unit 64 or the d-axis current control unit 66 and the integral value of the integral control.
  • the current phase control unit 64 and the d-axis current control unit 66 of the voltage command setting units 60a and 60b of the first and second embodiments are in short of the current torque value T with respect to the torque command value T * .
  • may not be performed.
  • when a larger voltage command value
  • the current phase control unit 64 and the d-axis current control unit 66 do not perform the operation of increasing the voltage command value
  • smaller than the current value is required, such as when the torque T is reduced, the operation of increasing the voltage command value
  • the current phase control unit 64 and the d-axis current control unit 66 determine the change in the voltage command value
  • the electrical angular velocity ⁇ when the electrical angular velocity ⁇ is high, the amount of change in the voltage command value
  • for example, a method of increasing or decreasing each control gain of the proportional control and the integral control according to the electrical angular velocity ⁇ is exemplified.
  • the difference ⁇ i or the difference ⁇ Id input to the current phase controller 64 or the d-axis current controller 66 is corrected by multiplying the difference ⁇ i or the difference ⁇ Id by a coefficient that increases or decreases according to the electrical angular velocity ⁇ .
  • a method is provided in which a limiter is provided for a change width of each of control cycles of the proportional control and the integral control of the current phase control unit 64 and the d-axis current control unit 66, and the limit value of the limiter is increased or decreased according to the electrical angular velocity ⁇ . And the like.
  • the current phase control unit 64 and the d-axis current control unit 66 of the voltage command setting units 60a and 60b of the first and second embodiments are used to improve the responsiveness to a sudden change in the torque command value T *.
  • the following configuration may be provided.
  • a fluctuation monitoring unit 650a provided in the voltage command setting units 60a, 60b monitors the torque command value T * , and the torque command value T * is monitored. It is detected that the value exceeds a preset threshold and decreases (a fluctuation monitoring step according to the first embodiment).
  • the threshold value of the torque command value T * at this time may be a fixed value, or may be set corresponding to either or both of the power supply voltage Vdc and the electric angular velocity ⁇ .
  • the low load of the torque command value T change monitoring unit 650a detects * is may be a torque command value T * for performing the regenerative operation.
  • it may be set a threshold value of torque command value T * to a different value in the case of the case of the torque command value T * of the power running regeneration torque command value T *, is set to a common value in both May be.
  • the current phase control unit 64 and the d-axis current control unit 66 confirm the integral value of their own integral control.
  • the integral value is reduced based on a predetermined method (high-speed response step).
  • the torque command value T * is high to some extent and current phase control unit 64, the integrated value upper limit value of d-axis current control unit 66
  • the current phase control unit 64 and the d-axis current control unit 66 integrate a predetermined small value, for example, a value of 90% of the upper limit value
  • the value is substituted as a value to calculate the voltage command value
  • the integral value to be substituted may be a fixed value or may be set based on the upper limit value
  • the torque command value T *, the power supply voltage Vdc, to all of the electrical angular velocity omega may be set correspondingly, the torque command value T * and the electrical angular velocity omega, or the torque command value T * and the power supply voltage Vdc and the like It may be set accordingly. Further, when the upper limit value
  • MAX was reduced in the same manner as the method of setting the integrated value of the above upper limit value and the reduction
  • may be limited to a small value, and the integral value and the voltage command value
  • the integral value is reduced to calculate the voltage command value
  • can be rapidly reduced, and PM motor 10 can be quickly operated in an efficient state with little loss.
  • the integral value of the current phase control unit 64 or the d-axis current control unit 66 is a value sufficiently smaller than the above-described threshold value of the integral value. It is preferable to set the threshold value of the torque command value T * such that With this configuration, when the torque command value T * is close to the threshold value and decreases beyond this threshold value (since the integrated value of the current phase control unit 64 or the d-axis current control unit 66 is smaller than the threshold value), the integration is performed. No decrement operation is performed. That is, when the torque command value T * fluctuates around the threshold value, the integral value is calculated by ordinary integral control, thereby avoiding the occurrence of frequent decreasing operation. Thereby, it is possible to prevent the control of the PM motor 10 from becoming unstable and the occurrence of torque fluctuation.
  • a fluctuation monitoring unit 650b provided in the voltage command setting units 60a and 60b monitors a voltage phase ⁇ v output from the voltage phase setting unit 502,
  • this voltage phase ⁇ v becomes close to or near the upper limit value of ⁇ v (the fluctuation monitoring step of the second embodiment)
  • the control gain (integral control) of the current phase control unit 64 and the d-axis current control unit 66 One or both of the proportional controls), the integral value of the integral control of the current phase control unit 64 and the d-axis current control unit 66, or both the control gain and the integral value are increased (high-speed response step).
  • the increment of the integral value per control cycle may be a fixed value, or the torque command value T * and the current torque T May be set on the basis of the difference. Further, when the current torque T is smaller than the torque command value T * and the difference between the two is large, the increment of the integral value may be increased. Furthermore, when increasing the integral value, the output of the proportional control of the current phase control unit 64 and the d-axis current control unit 66 and the change of the integral value due to the integral control may be ignored.
  • output by the voltage command setting units 60a and 60b is a low value. If a high-load torque command value T * is input in this state, the voltage command value
  • the gain of the current phase control unit 64 and the d-axis current control unit 66 for the integral control is increased when the voltage phase ⁇ v becomes close to or near the upper limit value.
  • the operation is performed by increasing the integral value of the integral control.
  • increases, and the response of voltage command value
  • the time during which the PM motor 10 operates due to insufficient torque can be reduced.
  • the fluctuation monitoring unit 650b detects this, and the processing for the control gain or the integral value of the current phase control unit 64 and the d-axis current control unit 66 returns to the normal processing. I do.
  • is reduced, and stable control is performed.
  • the fluctuation monitoring unit 650c provided in the voltage command setting units 60a and 60b outputs the difference ⁇ i or the difference ⁇ i output from the ⁇ i subtraction unit 63 or the Id subtraction unit 648.
  • the value of the difference ⁇ Id is monitored, and when the difference ⁇ i or the absolute value of the difference ⁇ Id indicates a value larger than a preset threshold value (a fluctuation monitoring step in the third mode), the current phase control unit 64 and the d-axis current
  • the control gain of the controller 66 is increased (high-speed response step).
  • the current phase control unit 64 and the d-axis current control unit 66 when the absolute value of the difference ⁇ i or the difference ⁇ Id indicates a value larger than a preset threshold, the current phase control unit 64 and the d-axis current control unit 66, the response of the voltage command value
  • the fluctuation monitoring unit 650c detects this, and the control gains of the current phase control unit 64 and the d-axis current control unit 66 return to normal ones. As a result, the fluctuation of voltage command value
  • a low-pass filter 652 is further provided at the outputs of the current phase control unit 64 and the d-axis current control unit 66, and the voltage command value
  • is improved by changing the integral value or the control gain when the torque command value T * or the like changes suddenly. Therefore, in this operation region, the fluctuation range of voltage command value
  • the low-pass filter 652 suppresses a rapid change in the voltage command value
  • the motor controller 100 and motor control method according to the present invention the voltage command value from the current phase controller 64, d-axis current control unit 66
  • MIN the value
  • MIN the value
  • MIN the value
  • MAX the value
  • MIN the value
  • MAX the value
  • MIN the value
  • MAX the value
  • MIN is within the range
  • control is performed so as to take a current phase ⁇ i equivalent to the target current phase ⁇ i (base) . Therefore, the PM motor 10 can be operated in an efficient state with little loss.
  • the output voltage becomes an overmodulation pattern (or a sine wave pattern) the distortion of the current waveform is improved as compared with the conventional rectangular wave control, and the occurrence of torque vibration and noise is suppressed, especially at a low load. be able to.
  • the voltage phase control unit 50 covers the area of the magnetic flux weakening control, the number of switching of the control method can be reduced, and the configuration of the control system can be simplified, thereby reducing the cost of the control unit such as the microcomputer. Can be planned. Furthermore, the upper limit value
  • the same control method can cover the area and the overmodulation control area using the overmodulation pattern, and even the sine wave control area using the low load sine wave pattern. As a result, the number of switching of the control method is reduced, and the occurrence of torque shock and response delay at the time of switching can be reduced.
  • the current phase ⁇ i is controlled to be equal to the target current phase ⁇ i (base) , the current phase ⁇ i becomes equal before and after switching from the voltage phase control unit 50 to the sine wave control unit 40, and the torque shock is reduced. A small and smooth switching operation becomes possible.
  • the motor control device 100 and the motor control method shown in this example are merely examples, and the configuration and operation of each unit such as the control signal generation unit 30, the sine wave control unit 40, the voltage phase control unit 50, the voltage command setting unit 60, and the like. , And the configuration of each step can be changed and implemented without departing from the gist of the present invention.

Abstract

【課題】従来の弱め磁束制御領域を電圧位相制御部(矩形波制御部)がカバーするとともに損失を抑制したモータ制御装置及びモータ制御方法を提供する。 【解決手段】このモータ制御装置100及びモータ制御方法は、電流位相制御部64、d軸電流制御部66からの電圧指令値|Va|が上限リミット値|Va|MAXと下限リミット値|Va|MINの範囲内にあるときは、目標電流位相θi(base)と同等な電流位相θiをとるように制御される。このため、PMモータ10を損失の少ない効率の良い状態で動作させることができる。また、電圧位相制御部50が弱め磁束制御の領域をカバーすることで制御方式の切替数が減少するとともに、制御系の構成を簡易化でき、その分、マイコン等の制御部のコストの削減を図ることができる。

Description

モータ制御装置及びモータ制御方法
 本発明は、特に従来の弱め磁束制御領域を電圧位相制御部が低損失で制御するモータ制御装置及びモータ制御方法に関する。
 多くの家電や機械設備の動力源として電動モータが使用されている。このうち、回転子側に永久磁石を設け、固定子側に電機子巻線を設け、この電機子巻線の磁界を制御することで回転子を回転させるPM(Permanent Magnet)モータ(永久磁石モータ)は、界磁損失が存在しないため低損失、高効率であり、近年の省エネルギー化の流れから大型の機械機器にも多く採用されている。そして、このPMモータの制御方法としては、インバータをスイッチング動作する3相の駆動信号Su、Sv、Swをトルク指令値に応じて変化させて行う事が一般的である。そして、この駆動信号Su、Sv、Swの生成は、PMモータの運転状況に応じて正弦波制御と矩形波制御とを切り替えて行うものが多い。この制御方法では、一般的に中・低速回転の動作領域ではモータ効率の高い正弦波パターンを用いた正弦波制御(PWM制御)によって動作制御を行い、高速回転・高トルクの動作領域では出力電圧が高く高出力が可能な矩形波パターンを用いた矩形波制御にて動作制御を行う。
 そして、このようなモータ制御装置の一つとして、例えば下記[特許文献1]に記載の発明があげられる。この[特許文献1]に記載のモータ制御装置は、前述の正弦波制御と矩形波制御に加え、正弦波制御による弱め磁束制御を行う構成を備えるとともに、ロータ(回転子)の磁極位置を示すコミュテーションセンサ(CS)を用いてモータが急可変速した場合でも安定的な動作制御を可能としている。
特開2001-268973号公報
 しかしながら、[特許文献1]に記載の発明は、矩形波制御、正弦波制御及び、正弦波制御による弱め磁束制御を行うため、制御方式が多く切替時のトルクショックの発生や、応答に遅延が生じる虞がある。また、正弦波制御により弱め磁束制御を行うための制御系が必要となり、制御系の構成が複雑化して制御に使用するマイコン等のコストアップを招く虞がある。
 本発明は上記事情に鑑みてなされたものであり、従来の弱め磁束制御領域を電圧位相制御部(矩形波制御部)がカバーするとともに損失を抑制したモータ制御装置及びモータ制御方法の提供を目的とする。
 本発明は、
(1)PMモータ10に3相交流の駆動電流Iu、Iv、(Iw)を流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流取得部12u、12vと、前記PMモータ10の電気角θを取得する角度取得部14と、前記電気角θに基づいて前記駆動電流取得部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、外部からのトルク指令値Tに応じた電圧位相θvと電圧指令値|Va|とを設定しd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧位相制御部50と、前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、搬送波生成部34とを備え、前記搬送波生成部34で生成された搬送波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する制御信号生成部30と、を有するモータ制御装置100において、
前記電圧位相制御部50は、
前記トルク指令値Tに基づいて電圧位相θvを設定する電圧位相設定部502と、
所定の上限リミット値|Va|MAX未満の領域で前記トルク指令値Tと略同一のトルクTを出力するのに最小の電流をとる電圧指令値|Va|を取得する電圧指令設定部60と、前記電圧位相θvと電圧指令値|Va|とに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧指令値生成部516と、を有することを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(2)電圧指令設定部60bが、
トルク指令値Tと略同一のトルクTを出力するのに最小の電流をとるd軸電流値Id(ref)を取得するId(ref)取得部644a~644dと、
前記d軸電流値Id(ref)とd軸フィードバック電流値Idとの差分ΔIdを取得するId減算部648と、
前記差分ΔIdが負のときは電圧指令値|Va|を小さくし、前記差分ΔIdが正のときは電圧指令値|Va|を大きくして電圧指令値生成部516に出力するd軸電流制御部66と、を有することを特徴とする上記(1)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(3)Id(ref)取得部644aが、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|に基づいてd軸電流値Id(ref)を取得することを特徴とする上記(2)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(4)Id(ref)取得部644bが、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|と対応しd軸電流値Id(ref)とq軸フィードバック電流値Iqとの比である係数K(Id/Iq)を取得し、さらに前記係数K(Id/Iq)に前記q軸フィードバック電流値Iq、もしくは、前記絶対値|Iq|を掛けて負の値とすることでd軸電流値Id(ref)を取得することを特徴とする上記(2)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(5)Id(ref)取得部644cが、トルク指令値Tと略同一のトルクTを出力するのに最小の電流をとる目標電流位相θi(base)を取得し、d軸フィードバック電流値Id及びq軸フィードバック電流値Iqから求められる電流ベクトルの大きさ|Ia|もしくはq軸フィードバック電流値Iqの絶対値|Iq|とから下記式
Id(ref)=-|Ia|・sin(θi(base)
もしくは下記式
Id(ref)=-|Iq|・tan(θi(base)
に基づいて電流値Id(ref)を取得することを特徴とする上記(2)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(6)Id(ref)取得部644dが、トルク指令値T、もしくは、トルク指令値Tの絶対値|T|に基づいてd軸電流値Id(ref)を取得することを特徴とする上記(2)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(7)電圧指令設定部60aが、電流位相演算部62と、θi減算部63と、電流位相制御部64と、を有し、
前記電流位相演算部62は、d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流ベクトルの大きさ|Ia|を取得するIa絶対値演算部622と、
|Ia|=(Id+Iq1/2
前記d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流位相θiを算出する位相演算部624と、
θi=tan-1(-Id/Iq)
を備え、
前記電流ベクトルの大きさ|Ia|と対応しトルク指令値Tと略同一のトルクTを出力するのに最小の電流をとる目標電流位相θi(base)を取得するとともに、
前記θi減算部63は、前記目標電流位相θi(base)から前記電流位相θiを引いて差分Δθiを取得し前記電流位相制御部64に出力し、
前記電流位相制御部64は、
q軸フィードバック電流値Iqが正で且つ前記差分Δθiが正の場合に電圧指令値|Va|を小さくし、q軸フィードバック電流値Iqが正で且つ前記差分Δθiが負の場合に電圧指令値|Va|を大きくし、q軸フィードバック電流値Iqが負で且つ前記差分Δθiが負の場合に電圧指令値|Va|を小さくし、q軸フィードバック電流値Iqが負で且つ前記差分Δθiが正の場合に電圧指令値|Va|を大きくすることを特徴とする上記(1)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(8)電圧指令設定部60aが、q軸フィードバック電流値Iqがゼロ近傍の値であるか否かを判定するq軸電流判定部626と、q軸フィードバック電流値Iqがゼロ近傍の値であると判定された場合に電流位相制御部64への入力を差分Δθiからd軸フィードバック電流値Idに切り替える入力切替部628と、をさらに備え、
前記電流位相制御部64は、
前記d軸フィードバック電流値Idが正の場合に電圧指令値|Va|を小さくし、前記d軸フィードバック電流値Idが負の場合に電圧指令値|Va|を大きくすることを特徴とする上記(7)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(9)電圧指令設定部60a、60bが、トルク指令値Tを監視する変動監視部650aをさらに有し、前記トルク指令値Tが予め設定された閾値を超えて減少したことを前記変動監視部650aが検知し、且つ電流位相制御部64またはd軸電流制御部66の積分制御の積分値が予め設定された閾値よりも大きい場合に、前記積分値を減少させて電圧指令値|Va|を生成することを特徴とする上記(2)乃至(8)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(10)電圧指令設定部60a、60bが、電圧位相θvを監視する変動監視部650bをさらに有し、前記変動監視部650bは、前記電圧位相θvが予め設定された上限リミット値もしくはその近傍となった場合に、電流位相制御部64またはd軸電流制御部66の制御ゲインもしくは積分制御の積分値のいずれか一方もしくは双方を増加させることを特徴とする上記(2)乃至(8)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(11)電圧指令設定部60a、60bが、差分ΔIdもしくは差分Δθiを監視する変動監視部650cをさらに有し、前記変動監視部650cは、前記差分ΔIdもしくは差分Δθiが予め設定された値を超えた場合に、電流位相制御部64またはd軸電流制御部66の制御ゲインを増加させることを特徴とする上記(2)乃至(8)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(12)電圧指令設定部60a、60bが、電流位相制御部64またはd軸電流制御部66の出力する電圧指令値|Va|をローパスフィルタ652を通して電圧指令値生成部516に出力することを特徴とする上記(9)乃至(11)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(13)電圧位相制御部50がキャリア設定部520をさらに有し、前記キャリア設定部520は電圧位相θvと電気角θと電気角速度ωに基づいてキャリア設定情報Scを生成し、前記キャリア設定情報Scは搬送波生成部34の生成する搬送波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vwの立ち上がりのゼロ位置と交差し、さらに前記搬送波の周波数を前記三相電圧指令値Vu、Vv、Vwの奇数の3の整数倍に維持することを特徴とする上記(1)乃至(12)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(14)電圧位相制御部50が、オフセット補正部70をさらに有し、前記オフセット補正部70は、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいてd軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ生成し、電圧指令値生成部516が生成したd軸電圧指令値Vd、q軸電圧指令値Vqに前記d軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ加算して制御信号生成部30に出力することを特徴とする上記(1)乃至(13)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(15)PMモータ10に3相交流の駆動電流Iu、Iv、(Iw)を流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流取得部12u、12vと、前記PMモータ10の電気角θを取得する角度取得部14と、前記電気角θに基づいて前記駆動電流取得部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、外部からのトルク指令値Tに応じた電圧位相θvと電圧指令値|Va|とを設定しd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧位相制御部50と、前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、搬送波生成部34とを備え、前記搬送波生成部34で生成された搬送波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する制御信号生成部30と、を有するモータ制御装置100のモータ制御方法であって、
前記電圧位相制御部50が、
前記トルク指令値Tに基づいて電圧位相θvを設定する電圧位相設定ステップと、
所定の上限リミット値|Va|MAX未満の領域で前記トルク指令値Tと略同一のトルクTを出力するのに最小の電流をとる電圧指令値|Va|を取得する電圧指令設定ステップと、
前記電圧位相θvと電圧指令値|Va|とに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成するd軸q軸電圧指令値生成ステップと、を有することを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
(16)電圧指令設定ステップが、
トルク指令値Tと略同一のトルクを出力するのに最小の電流をとるd軸電流値Id(ref)を取得するId(ref)取得ステップと、
前記d軸電流値Id(ref)とd軸フィードバック電流値Idとの差分ΔIdを取得するΔId取得ステップと、
前記差分ΔIdが負のときは電圧指令値|Va|を小さくし、前記差分ΔIdが正のときは電圧指令値|Va|を大きくして電圧指令値|Va|を生成する電圧指令生成ステップと、を有することを特徴とする上記(15)記載のモータ制御方法を提供することにより、上記課題を解決する。
(17)Id(ref)取得ステップが、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|に基づいてd軸電流値Id(ref)を取得することを特徴とする上記(16)記載のモータ制御方法を提供することにより、上記課題を解決する。
(18)Id(ref)取得ステップが、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|と対応しd軸電流値Id(ref)とq軸フィードバック電流値Iqとの比である係数K(Id/Iq)を取得し、さらに前記係数K(Id/Iq)に前記q軸フィードバック電流値Iq、もしくは、前記絶対値|Iq|を掛けて負の値とすることでd軸電流値Id(ref)を取得することを特徴とする上記(16)記載のモータ制御方法を提供することにより、上記課題を解決する。
(19)Id(ref)取得ステップが、トルク指令値Tと略同一のトルクTを出力するのに最小の電流をとる目標電流位相θi(base)を取得し、d軸フィードバック電流値Id及びq軸フィードバック電流値Iqから求められる電流ベクトルの大きさ|Ia|もしくはq軸フィードバック電流値Iqの絶対値|Iq|とから下記式
Id(ref)=-|Ia|・sin(θi(base)
もしくは下記式
Id(ref)=-|Iq|・tan(θi(base)
に基づいて電流値Id(ref)を取得することを特徴とする上記(16)記載のモータ制御方法を提供することにより、上記課題を解決する。
(20)Id(ref)取得ステップが、トルク指令値T、もしくは、トルク指令値Tの絶対値|T|に基づいてd軸電流値Id(ref)を取得することを特徴とする上記(16)記載のモータ制御方法を提供することにより、上記課題を解決する。
(21)電圧指令設定ステップが、電流位相演算ステップと、θi減算ステップと、電流位相制御ステップと、を有し、
前記電流位相演算ステップは、d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流ベクトルの大きさ|Ia|を取得するとともに、
|Ia|=(Id+Iq1/2
前記d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流位相θiを算出し、
θi=tan-1(-Id/Iq)
前記電流ベクトルの大きさ|Ia|と対応しトルク指令値Tと略同一のトルクTを出力するのに最小の電流をとる目標電流位相θi(base)を取得するとともに、
前記θi減算ステップは、前記目標電流位相θi(base)から前記電流位相θiを引いて差分Δθiを取得し、
前記電流位相制御ステップは、q軸フィードバック電流値Iqが正で且つ前記差分Δθiが正の場合に電圧指令値|Va|を小さくし、q軸フィードバック電流値Iqが正で且つ前記差分Δθiが負の場合に電圧指令値|Va|を大きくし、q軸フィードバック電流値Iqが負で且つ前記差分Δθiが負の場合に電圧指令値|Va|を小さくし、q軸フィードバック電流値Iqが負で且つ前記差分Δθiが正の場合に電圧指令値|Va|を大きくすることを特徴とする上記(15)記載のモータ制御方法を提供することにより、上記課題を解決する。
(22)電圧指令設定ステップが、q軸フィードバック電流値Iqがゼロ近傍の値であるか否かを判定するq軸電流判定ステップと、q軸フィードバック電流値Iqがゼロ近傍の値であると判定された場合に電流位相制御部64への入力を差分Δθiからd軸フィードバック電流値Idに切り替える入力切替ステップと、をさらに備え、
電流位相制御ステップが、前記d軸フィードバック電流値Idが正の場合に電圧指令値|Va|を小さくし、前記d軸フィードバック電流値Idが負の場合に電圧指令値|Va|を大きくすることを特徴とする上記(21)記載のモータ制御方法を提供することにより、上記課題を解決する。
(23)電圧指令設定ステップが、
トルク指令値Tが予め設定された閾値を超えて減少することを検知する変動監視ステップと、
前記トルク指令値Tが予め設定された閾値を超えて減少し且つ電流位相制御部64またはd軸電流制御部66の積分制御の積分値が予め設定された閾値よりも大きい場合に、前記積分値を減少させる高速応答ステップと、をさらに有することを特徴とする上記(16)乃至(22)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(24)電圧指令設定ステップが、
電圧位相θvが予め設定された上限リミット値もしくはその近傍となったことを検知する変動監視ステップと、
前記電圧位相θvが予め設定された上限リミット値もしくはその近傍となった場合に、電流位相制御部64またはd軸電流制御部66の制御ゲインもしくは積分制御の積分値のいずれか一方もしくは双方を増加させる高速応答ステップと、をさらに有することを特徴とする上記(16)乃至(22)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(25)電圧指令設定ステップが、
差分ΔIdもしくは差分Δθiが予め設定された値を超えたことを検知する変動監視ステップと、
前記差分ΔIdもしくは差分Δθiが予め設定された値を超えた場合に、電流位相制御部64またはd軸電流制御部66の制御ゲインを増加させる高速応答ステップと、をさらに有することを特徴とする上記(16)乃至(22)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(26)電圧指令設定ステップが、電流位相制御部64またはd軸電流制御部66の出力する電圧指令値|Va|をローパスフィルタ652を通して電圧指令値生成部516に出力することを特徴とする上記(23)乃至(25)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(27)電圧位相制御部50がキャリア設定部520をさらに有し、前記キャリア設定部520は電圧位相θvと電気角θと電気角速度ωに基づいてキャリア設定情報Scを生成し、前記キャリア設定情報Scは搬送波生成部34の生成する搬送波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vwの立ち上がりのゼロ位置と交差し、さらに前記搬送波の周波数を前記三相電圧指令値Vu、Vv、Vwの奇数の3の整数倍に維持することを特徴とする上記(15)乃至(26)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(28)オフセット補正ステップをさらに有し、
前記オフセット補正ステップは、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいてd軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ生成し、電圧指令値生成部516が生成したd軸電圧指令値Vd、q軸電圧指令値Vqに前記d軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ加算して制御信号生成部30に出力することを特徴とする上記(15)乃至(27)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
 本発明に係るモータ制御装置及びモータ制御方法は、従来の弱め磁束制御領域を電圧位相制御部が動作制御する。このため、制御系が少なく切替時のトルクショックの発生や応答の遅延を抑制することができる。また、制御系の構成が簡略化しコスト削減を図ることができる。
また、本発明に係るモータ制御装置及びモータ制御方法は、電圧指令値|Va|が上限リミット値未満の領域において、トルク指令値Tと同一のトルクTを出力するのに最小の電流値|Ia|をとる目標電流位相θi(base)となるように動作制御を行う。このため、PMモータを損失の少ない効率の良い状態で動作させることができる。また、正弦波制御部を有する場合、目標電流位相θi(base)と同等な電流位相θiで電圧位相制御部から正弦波制御部への切り替えが行われるため、トルクショックの少ないスムーズな切替動作が可能となる。
本発明に係るモータ制御装置のブロック図である。 本発明に係るモータ制御装置の搬送波の周期を説明する図である。 本発明に係るモータ制御装置の第1の形態の電圧指令設定部を示すブロック図である。 本発明に係るd軸電流値Id(ref)を説明するベクトル図である。 本発明に係るモータ制御装置の第2の形態の電圧指令設定部を示すブロック図である。 本発明に係るモータ制御装置の第2の形態の電圧指令設定部の他の例を示すブロック図である。 補正電圧演算部を備えた本発明に係るモータ制御装置の電圧指令設定部の例を示すブロック図である。 変動監視部を備えた本発明に係るモータ制御装置の電圧指令設定部を示すブロック図である。
 本発明に係るモータ制御装置100及びモータ制御方法の実施の形態について図面に基づいて説明する。ここで、図1は本発明に係るモータ制御装置100のブロック図である。尚、ここでは正弦波制御部40を備えたモータ制御装置100を用いて説明を行うが、本発明に係るモータ制御装置100及びモータ制御方法は、PMモータ10の仕様や能力、用途によっては、後述の電圧指令値|Va|の下限リミット値|Va|MINを最適化することで正弦波制御部40を有さない構成とすることもできる。
 先ず、本発明に係るモータ制御装置100は、PMモータ(永久磁石モータ)10の動作を制御するものであり、このPMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、この駆動電流Iu、Iv、(Iw)の値を取得する駆動電流取得部12u、12vと、PMモータ10の電気角θを取得する角度取得部14と、駆動電流取得部12u、12vが取得した駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、外部(システムの上位の制御部等)から指示されるトルク指令値Tに応じて電圧位相θvと電圧指令値|Va|とを設定し電圧位相制御モードにおけるd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧位相制御部50と、このd軸電圧指令値Vd、q軸電圧指令値Vqに基づいてインバータ20をスイッチングする駆動信号Su、Sv、Swを生成する制御信号生成部30と、を有している。また、モータ制御装置100が正弦波制御部40を有する構成では、外部から指示されるトルク指令値Tに応じてd軸電流指令値Id、q軸電流指令値Iqを設定し正弦波制御モードにおけるd軸電圧指令値Vd、q軸電圧指令値Vqを生成する正弦波制御部40と、PMモータ10の制御を正弦波制御部40と電圧位相制御部50とで切り替える切替部24と、を有している。また、上記の制御信号生成部30は、電圧指令値|Va|に基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを線形補正する線形補正部38と、線形補正されたd軸電圧指令値Vd、q軸電圧指令値VqをU相、V相、W相の三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、後述のキャリア設定情報Scに基づく周期の搬送波を生成する搬送波生成部34と、dq/3相変換部32から出力された三相電圧指令値Vu、Vv、Vwと搬送波生成部34から出力された搬送波とを比較してインバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有している。
 また、モータ制御装置100を構成するインバータ20は駆動信号生成部36から出力されるHi-Lowの駆動信号Su、Sv、Swによってスイッチング動作して、バッテリ等の周知の直流電源部18からの直流電力を駆動信号Su、Sv、Swに基づく3相の交流電圧に変換して出力する。これにより、PMモータ10の電機子巻線には位相が1/3周期(2/3π(rad))づつずれた3相の駆動電流Iu、Iv、Iwがそれぞれ流下する。
 また、PMモータ10は、前述のように回転子側に永久磁石を設けるとともに、固定子側に3相の電機子巻線を設け、この3相の電機子巻線に前述の駆動電流Iu、Iv、Iwをそれぞれ流下させることで各電機子巻線の磁極及び磁束を連続的に変化させ、回転子を回転させるものである。尚、PMモータ10としては永久磁石を回転子に埋め込んだIPM(Interior Permanent Magnet)モータを用いることが好ましい。
 また、駆動電流取得部12u、12vはインバータ20のスイッチング動作によって流下する駆動電流Iu、Iv、Iwを非接触で取得可能な周知の電流センサを用いることができる。また、駆動電流取得部は総駆動電流等から演算によって駆動電流Iu、Iv、Iwを取得する電流センサレス制御の構成としても良い。尚、本例では周知の電流センサを用い駆動電流Iu、Iv、Iwのうちの2つの駆動電流Iu、Ivを取得し、d軸、q軸フィードバック電流値Id、Iqに変換する例を示している。
 また、角度取得部14としては、回転子の角度を取得可能な周知の角度センサを用いても良いし、電圧指令値等から演算により角度を取得する角度センサレス制御の構成としても良い。中でも特にレゾルバ回転角センサを用いて、PMモータ10の電気角θを取得することが好ましい。尚、上記の電気角θと駆動電流Iu、Ivの取得は、特に搬送波が三角波の場合には、三角波の頂点と谷の両方のタイミングで行い、三角波の半周期毎にモータ制御装置100の各部にて使用することが好ましい。そして、角度取得部14が取得した電気角θは角速度演算部16にも出力され、この角速度演算部16は入力した電気角θから電気角速度ω(rad/s)を算出し、モータ制御装置100の各部に出力する。
 また、PMモータ10には周知の冷却機構101を設けることが好ましい。ここで、冷却機構101は、例えばPMモータ10の周囲に設けられ冷却水を流下することでPMモータ10を冷却するウォータージャケット102と、冷却水の水温Twを取得する周知の温度取得手段108と、を有している。また、PMモータ10の電機子巻線には例えばサーミスタ等の温度センサが設けられ巻線温度Taが取得される。そして、水温Twと巻線温度Taとはモータパラメータ設定部110に出力され、このモータパラメータ設定部110は、水温TwからPMモータ10の永久磁石の温度を間接的に取得するとともに、この永久磁石温度と巻線温度Taとに対応したモータパラメータ(誘起電圧定数φa、d軸インダクタンスLd、q軸インダクタンスLq)を例えばデータテーブル等から取得してトルク計算部404、504などに出力する。
 また、3相/dq変換部22は、角度取得部14が取得したPMモータ10の電気角θ(rad)に基づいて駆動電流取得部12u、12vが取得した駆動電流Iu、Iv、(Iw)の値に対する3相2相変換及び回転座標変換を行い、駆動電流Iu、Iv、(Iw)をd軸電流値Id(磁束分電流値)とq軸電流値Iq(トルク分電流値)とに変換する。そして、これらをd軸フィードバック電流値Id、q軸フィードバック電流値Iqとして切替部24に出力する。
 切替部24はPMモータ10の運転状況に応じてd軸電圧指令値Vd、q軸電圧指令値Vqの生成方法を切り替える切り替え回路であり、例えば、PMモータ10が所定の低速度領域で動作する場合には正弦波制御部40による正弦波制御モードによってPMモータ10を動作させ、また、PMモータ10が所定の高回転速度、高トルクで動作する場合にはPMモータ10の制御を電圧位相制御部50に切り替えて電圧位相制御モードによって動作させる。尚、本発明に係るモータ制御装置100は、従来の弱め磁界制御領域(過変調PWM制御領域)も電圧位相制御部50が動作制御する。よって、切替の判断を電圧指令値|Va|で行う場合には、従来の弱め磁界制御領域を含む電圧指令値|Va|で切替を行う。また、切替の判断を電圧指令値|Va|と電気角速度ωとを組み合わせて行い、電圧指令値|Va|と電気角速度ωとが共に所定の閾値を上回った場合に電圧位相制御部50へ切り替えを行うことが更に好ましい。また、これらの切り替えの閾値は、電源電圧Vdc及び他の閾値と組み合わせて設定するようにしても良い。尚、正弦波制御部40から電圧位相制御部50への切り替え時の閾値と、電圧位相制御部50から正弦波制御部40への切り替え時の閾値とにはヒステリシス幅を付与し、閾値境界での頻繁な切り替え動作を防止することが好ましい。
 また、正弦波制御部40から電圧位相制御部50への切り替え時には、正弦波制御部40での切替直前の電圧指令値|Va|を電圧位相制御部50を構成する電圧指令設定部60に出力し、後述の電流位相制御部64もしくはd軸電流制御部66における初期値及び積分制御の積分値として使用する。また、正弦波制御部40での切替直前の電圧位相θvは電圧位相制御部50を構成する電圧位相設定部502に出力し、電圧位相設定部502における初期値と積分制御の積分値として使用する。さらに、正弦波制御部40での切替直前の電流位相θiを後述の位相演算部624に出力して電流位相θiの初期値としても良い。このように、正弦波制御部40から電圧位相制御部50への切り替え時に正弦波制御部40の電圧指令値|Va|と電圧位相θvとを電圧位相制御部50の所定のブロックに出力し初期値や積分値とすることで切り替え前後での数値が引き継がれ、トルクショックの小さい切替動作を行うことができる。さらに、これらの電圧指令値|Va|、電圧位相θv、電流位相θiは、上記のように切替直前の値をそのまま引継いでも良いし、ローパスフィルタ等を用いて(正弦波制御部40による制御期間中に)平滑化した値を電圧位相制御部50に引き継ぐようにしても良い。この構成では、短期的な変動が除去された平滑化した値を引き継ぎに用いるため、さらに安定した引き継ぎ動作を行うことができる。
 また、電圧位相制御部50から正弦波制御部40への切り替え時には、電圧位相制御部50で生成された切替直前のd軸、q軸フィードバック電流値Id、Iqが電流指令値設定部402に出力され電流指令値Iaの初期値及び積分制御の積分値として使用される。また、正弦波制御部40がd軸ローパスフィルタ490A、q軸ローパスフィルタ490Bを有する場合には、d軸、q軸フィードバック電流値Id、Iqはこれらローパスフィルタ490A、490Bの初期値及び蓄積値としても使用される。また、電圧位相制御部50で生成された切替直前のd軸、q軸電圧指令値Vd、Vqは、正弦波制御部40のd軸、q軸電圧指令値Vd、Vqの初期値として使用されるとともに、このd軸、q軸電圧指令値Vd、Vqから後述の非干渉制御部414が算出する干渉項Vd’、Vq’をそれぞれ引いた値を電流積分制御部410aの積分値として使用する。このように、電圧位相制御部50から正弦波制御部40への切り替え時には電圧位相制御部50のd軸、q軸フィードバック電流値Id、Iq、及びd軸、q軸電圧指令値Vd、Vqが正弦波制御部40の所定のブロックに出力し初期値や積分値とされる。また、後述するように電圧位相制御部50は電圧指令値|Va|が上限リミット値未満の領域において電流位相θiを目標電流位相θi(base)と同等の値になるように制御し、正弦波制御部40への切り替えはこの状態で行われる。このため、切り替え前後のd軸、q軸電流値Id、Iqはほぼ同等の値となり、トルクショックの小さい切替動作を行うことができる。
 次に、正弦波制御部40の構成及び動作を説明する。尚、以下で説明する正弦波制御部40の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではなく、他の如何なる正弦波制御機構を用いても良い。
 先ず、図示しない上位システムの制御部等からトルク指令値Tが出力される。このトルク指令値TはPMモータ10の動作目標となるトルクである。そして、このトルク指令値Tは切替部24が正弦波制御部40を選択している場合、ローパスフィルタLPFを介して正弦波制御部40の電流指令値設定部402に入力する。
 また、正弦波制御部40のトルク計算部404にはモータパラメータ設定部110から永久磁石温度と巻線温度Taに応じたモータパラメータ(φa、Ld、Lq)が入力する。また、電流指令値生成部406から出力されるd軸、q軸電流指令値Id、Iqが入力する。そして、トルク計算部404はこれらの入力値に基づいてPMモータ10の現在のトルクTを算出し、電流指令値設定部402に出力する。
 そして、電流指令値設定部402はローパスフィルタLPFを介して入力したトルク指令値Tとトルク計算部404から入力したトルクTとの差分がゼロとなるような電流指令値Iaを積分制御、比例制御等の周知の演算処理により算出し、電流指令値生成部406に出力する。
 電流指令値生成部406は、電流指令値設定部402から入力した電流指令値Iaの大きさ|Ia|に基づいて例えば電流-位相角データマップ620を参照し、この|Ia|と対応する目標電流位相θi(base)を取得する。尚、目標電流位相θi(base)は、入力された電流指令値Iaの大きさ|Ia|毎にトルクTが最大となる電流位相角度であり、予め実験等により求められ、例えばテーブルデータ化されて電流-位相角データマップ620に記録されている。
 次に、電流指令値生成部406は取得された|Ia|と目標電流位相θi(base)とから、下記式に基づいてd軸電流指令値Id、q軸電流指令値Iqを算出する。
Id=Ia・sin(θi(base)
Iq=Ia・cos(θi(base)
尚、d軸電流指令値Idは常に負の値をとり、またq軸電流指令値Iqは電流指令値Iaと同符号の値をとる。
 電流指令値生成部406によって生成されたd軸電流指令値Id、q軸電流指令値Iqは、d軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bが存在する場合には、それぞれd軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bに入力する。このとき、d軸電流指令値Idの絶対値|Id|が増加する際のd軸ローパスフィルタ490Aの時定数をτd(up)とし、減少する際の時定数をτd(down)とし、q軸電流指令値Iqの絶対値|Iq|が増加する際のq軸ローパスフィルタ490Bの時定数をτq(up)とし、減少する際の時定数をτq(down)としたときに、
τd(down)>τq(up)>(τq(down)、τd(up))
とすることが好ましい。
この構成によれば、絶対値|Id|が増加する際もしくは絶対値|Iq|が減少する際にはPMモータ10の制御に大きな遅延が生じないようd軸電流指令値Idもしくはq軸電流指令値Iqを迅速に伝達するとともに、q絶対値|Iq|が増加する際にはトルクTの応答性が満足できる範囲内で遅らせて出力し、また絶対値|Id|が減少する際にはその減少速度をq軸電流指令値Iqの増加速度よりも遅らせて出力する。これにより、弱め磁束電流となるd軸電流指令値Idをq軸電流指令値Iqよりも優先して生成することが可能となり、電流指令値Iaが変化するトルク応答などの際にq軸電流Iqに対してd軸電流Idが不足しないようにPMモータ10を制御することができる。
 また、d軸、q軸ローパスフィルタ490A、490Bを通過したd軸、q軸電流指令値Id、Iqは、次に電圧指令値生成部416に入力する。ここで、電圧指令値生成部416の好適な一例を説明する。先ず、電圧指令値生成部416に入力したd軸、q軸電流指令値Id、Iqは2分岐して、一方は非干渉制御部414に入力する。また、他方はd軸、q軸フィードバック電流値Id、Iqが減算されて偏差ΔId、ΔIqとされた後、電流制御部410に入力する。また、非干渉制御部414にはモータパラメータ(φa、Ld、Lq)と、電気角速度ωが入力し、d軸、q軸間での干渉項Vd’、Vq’が算出される。
 また、電流制御部410は、例えば電流積分制御部410aと電流比例制御部410bとを有しており、電流制御部410に入力した偏差ΔId、ΔIqは2分岐して、電流積分制御部410aと電流比例制御部410bとのそれぞれに入力する。そして、電流積分制御部410a、電流比例制御部410bにおいて偏差ΔId及び偏差ΔIqがそれぞれゼロとなるように周知の電流積分制御、電流比例制御が施される。そして、電流積分制御部410aの出力に非干渉制御部414からの干渉項Vd’、Vq’が加算された後、電流比例制御部410bからの出力が加算されることで、d軸q軸間の干渉成分の影響が考慮されたd軸電圧指令値Vd、q軸電圧指令値Vqが生成される。このd軸電圧指令値Vd、q軸電圧指令値Vqは切替部24を介して制御信号生成部30に出力される。
 また、電流比例制御部410bの出力が加算される前段のd軸、q軸電圧指令値Vd’’、Vq’’は正弦波制御部40の極座標変換部418に出力され、この極座標変換部418において極座標変換が施され電圧位相θvと、電圧指令値|Va|とが取得される。そして、電圧位相θvはキャリア設定部420に出力される。また、電圧指令値|Va|は切替部24を介して制御信号生成部30の線形補正部38に出力される。
 また、キャリア設定部420は、極座標変換部418で得られた電圧位相θvと電気角速度ωと電気角θとに応じてキャリア設定情報Scを生成する。尚、キャリア設定情報Scとは搬送波生成部34にて生成される搬送波を後述の適切な周波数及び状態に維持するための情報である。ただし、PMモータ10が停止状態や低速で回転する低速度領域では、キャリア設定部420は予め設定された一定周期の値(固定値)をキャリア設定情報Scとする。よって、この領域では制御信号生成部30は非同期制御状態で搬送波と三相電圧指令値Vu、Vv、Vwとの比較動作を行い駆動信号Su、Sv、Swを生成する。尚、比較動作に関しては後述する。これにより、PMモータ10は非同期制御で回転制御される。また、電気角速度ωが予め設定された回転速度以上となった場合、キャリア設定部420は同期制御のためのキャリア設定情報Scを生成して搬送波生成部34に出力する。これにより、PMモータ10は同期制御される。尚、同期制御から非同期制御に切り替わる回転速度と、非同期制御から同期制御に切り替わる回転速度とにはヒステリシス幅を持たせ、切り替え境界の回転速度における頻繁な切り替わりを防止することが好ましい。
 ここで、キャリア設定情報Scに関して説明を行う。先ず、このキャリア設定情報Scは搬送波生成部34で生成される搬送波を適切な周波数及び状態に維持するものである。尚、搬送波の適切な周波数及び状態とは、例えば搬送波が図2(a)に示すような三角波の場合には、図2(a)中の点Aに示すように、搬送波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vw(点AではVu)の立ち上がりのゼロ位置と交差し、さらに搬送波の周波数が三相電圧指令値Vu、Vv、Vwの周波数の奇数の3の整数倍、即ち、9、15、21、27倍等(以後、この倍数を同期数とする)となるものである。また、例えば搬送波が図2(b)に示すような、横軸に対して立ち上りのノコギリ波と立ち下りのノコギリ波とを組み合わせた波形の場合には、図2(b)の点Aに示すように、搬送波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vw(点AではVu)の立ち上がりのゼロ位置と交差し、さらにノコギリ波2個分を1周期とした搬送波の周波数が三相電圧指令値Vu、Vv、Vwの周波数の奇数の3の整数倍、即ち、9、15、21、27倍等となるものである。そして、キャリア設定情報Scは電気角速度ωの変化に連動して変化し、搬送波を上記の状態に維持する。また、電気角速度ωが予め設定された所定の値を超えて増加もしくは減少した場合、同期数を1段階上下して搬送波を上記の状態に維持する。これにより、搬送波生成部34で生成される搬送波は同期制御時において常に上記の状態を満たした周波数に維持される。そして、この構成を有する本発明に係るモータ制御装置100及びモータ制御方法は、駆動信号Su、Sv、Swが正弦波パターン(過変調パターン)から矩形波パターンへと変化する際の連続性が良好に維持され安定した駆動信号Su、Sv、Swを生成することができる。また、出力線間電圧Vuv、Vvw、Vwuは対称性を備え、PMモータ10の安定した制御が可能となる。
 次に、電圧位相制御部50の構成及び動作を説明する。尚、本発明に係る電圧位相制御部50はこの制御構成によって弱め磁束領域の制御をも可能とするものである。
 先ず、正弦波制御部40における電圧指令値|Va|もしくは電気角速度ωが上昇して予め設定されている上限の閾値を越えた場合、切替部24はPMモータ10の制御を正弦波制御部40から電圧位相制御部50に切り替える。このとき、正弦波制御部40での切替直前の電圧指令値|Va|は前述のように電流位相制御部64もしくはd軸電流制御部66に出力され、電流位相制御部64もしくはd軸電流制御部66における初期値及び積分制御の積分値として使用される。また、正弦波制御部40での切替直前の電圧位相θvは電圧位相設定部502に出力され、電圧位相設定部502における初期値と積分制御の積分値として使用される。尚、これらの引き継ぎ値は前述のように平滑化した値を用いても良い。
 尚、正弦波制御部40から電圧位相制御部50への切り替えは、例えば正弦波制御部40による電圧指令値|Va|が予め設定された閾値以上となったときに行うようにしても良い。また、このときの電圧指令値|Va|の閾値は、出力電圧の電圧利用率が正弦波制御の上限値近傍となるときの値としても良い。また、正弦波制御部40による制御では出力電圧が不足するようなトルク指令値Tが入力されるか、または、そのようなトルクを出力する場合や、そのような電気角速度となる場合に切り替えを行うようにしても良い。さらに、これらの切り替えの閾値は電源電圧Vdc及び他の閾値と組み合わせて設定するようにしても良い。
 そして、切替部24の切り替え動作により、トルク指令値TはローパスフィルタLPFを介して電圧位相制御部50の電圧位相設定部502に入力する。また、電圧位相制御部50のトルク計算部504にはモータパラメータ設定部110からPMモータ10のモータパラメータ(φa、Ld、Lq)が入力するとともに、3相/dq変換部22からのd軸、q軸フィードバック電流値Id、Iqが入力する。そして、トルク計算部504はこれらモータパラメータとd軸、q軸フィードバック電流値Id、IqとからPMモータ10の現在のトルクTを算出して、電圧位相設定部502に出力する。
 そして、電圧位相設定部502は、入力したトルク指令値TとトルクTとの差がゼロとなるような電圧位相θvを積分制御、比例制御などの周知の演算により生成する(電圧位相設定ステップ)。尚、電圧位相設定部502には電源電圧Vdc及び電気角速度ωと対応した電圧位相θvの上限リミット値が設定されており、電圧位相設定部502はこの上限リミット値の範囲内で電圧位相θvを生成する。そして、生成した電圧位相θvを電圧位相制御部50の電圧指令値生成部516とキャリア設定部520に出力する。そして、キャリア設定部520は電圧位相θvと電気角速度ωと電気角θとから前述のキャリア設定部420と同様のキャリア設定情報Scを生成し、搬送波生成部34に出力する。
 また、電圧位相制御部50は電圧指令設定部60を有しており、この電圧指令設定部60にはd軸、q軸フィードバック電流値Id、Iqの双方もしくは一方が入力し、電圧指令値|Va|が上限リミット値|Va|MAXと下限リミット値|Va|MINの範囲内にあるときは、後述の手法に基づいてトルク指令値Tと略同一のトルクTを出力するのに最小の電流をとるような電圧指令値|Va|を取得して電圧指令値生成部516及び線形補正部38に出力する(電圧指令設定ステップ)。また、電圧指令値|Va|が上限リミット値|Va|MAXの場合には、PMモータ10は最大の出力電圧で電圧位相θvによる電圧位相制御が行われる。このとき、トルク指令値Tと略同一のトルクTを出力するために電圧位相θvが大きくなると、これに伴ってd軸電流Idは負方向に大きくなり、これにより弱め磁束領域の制御が可能となる。特に、上限リミット値|Va|MAXを、例えば図2(a)に示すように搬送波と三相電圧指令Vu、Vv、Vwとが、電圧指令Vu、Vv、Vwの1周期の間で2回交差する矩形波形成電圧値|Va’|とした場合には、これら搬送波と電圧指令値Vu、Vv、Vwとの比較動作により生成される駆動信号Su、Sv、Swは1パルスの矩形波となり、PMモータ10はこの矩形波パターンによって制御される。尚、電圧指令設定部60の構成及び動作に関しては後に詳しく説明する。
 また、電圧指令値生成部516は、電圧位相設定部502から入力した電圧位相θvと、電圧指令設定部60から入力した電圧指令値|Va|とからd軸電圧指令値Vd、q軸電圧指令値Vqを生成する(d軸q軸電圧指令値生成ステップ)。
 尚、電圧位相制御部50は角度取得部14の取得した電気角θのずれ等によって駆動電流Iu、Iv、Iwに生ずるオフセットを補正するオフセット補正部70を有していても良い。ここで、オフセット補正部70の一例を以下に示す。
 本例に示すオフセット補正部70は、平滑部72と、補正電流生成部74と、補正電圧生成部76と、電圧指令値補正部78と、を有している。そして、オフセット補正部70の平滑部72は、切替部24を介して入力したd軸、q軸フィードバック電流値Id、Iqを例えば移動平均処理もしくはなまし処理を行ってそれぞれ平滑化する。尚、ここでのなまし処理とは、入力信号(d軸、q軸フィードバック電流Id、Iq)に対し、任意の周期ごとに下記式に基づいて演算を行い平滑化する処理を意味する。
C=B(1-K)+K×A
ここで、Aは入力値(d軸、q軸フィードバック電流Id、Iq)であり、Bは直前の周期のなまし処理後の出力値であり、Kはなまし定数であり、Cが出力値(後述の推定d軸、q軸電流指令Id、Iq)である。
 この平滑化処理により、駆動電流Iu、Iv、Iwのオフセットや振幅アンバランスに起因する変動成分が平滑化された疑似的な推定d軸電流指令値Id、推定q軸電流指令値Iqが生成される。そして、これら推定d軸、q軸電流指令値Id、Iqは補正電流生成部74に出力される。
 また、補正電流生成部74にはd軸フィードバック電流値Id、q軸フィードバック電流値Iqがそれぞれ入力しており、補正電流生成部74は平滑部72で生成された推定d軸電流指令値Id、推定q軸電流指令値Iqからd軸フィードバック電流値Id、q軸フィードバック電流値Iqをそれぞれ減算する。これにより、変動成分としてのd軸補正電流ΔId、q軸補正電流ΔIqが生成される。そして、これらd軸補正電流ΔId、q軸補正電流ΔIqを補正電圧生成部76に出力する。尚、このd軸補正電流ΔId、q軸補正電流ΔIqは、オフセットや振幅アンバランスの成分(変動成分)が平滑化した推定d軸、q軸電流指令値Id、Iqからオフセットや振幅アンバランスの成分(変動成分)を含むd軸、q軸フィードバック電流値Id、Iqをそれぞれ減算したものであるから、基本的に変動成分の逆相をとる。
 また、補正電圧生成部76は、補正電流生成部74から入力したd軸補正電流ΔId、q軸補正電流ΔIqから、例えば所定の補正ゲインによる比例制御等によりd軸補正電圧ΔVd、q軸補正電圧ΔVqを生成し、電圧指令値補正部78に出力する。
 電圧指令値補正部78は、補正電圧生成部76から入力したd軸補正電圧ΔVd、q軸補正電圧ΔVqを電圧指令値生成部516から出力したd軸電圧指令値Vd、q軸電圧指令値Vqにそれぞれ加算する。よってこれにより生成されたd軸、q軸電圧指令値Vd、Vqには駆動電流Iu、Iv、Iwに生じるオフセットや振幅アンバランス成分の逆の電圧(d軸、q軸補正電圧ΔVd、ΔVq)が加味されたものとなる。そして、これらd軸電圧指令値Vd、q軸電圧指令値Vqは切替部24を介して制御信号生成部30の線形補正部38に入力する。尚、上記のオフセット補正部70により補正されたd軸電圧指令値Vd、q軸電圧指令値Vqは上記のようにオフセットや振幅アンバランス成分の逆の電圧が加味されているから、これにより駆動するPMモータ10のオフセット等は補正され解消される(オフセット補正ステップ)。
 次に、制御信号生成部30の構成と動作とを説明する。先ず、正弦波制御部40による制御時では、制御信号生成部30の線形補正部38に極座標変換部418からの電圧指令値|Va|と電圧指令値生成部416で生成されたd軸、q軸電圧指令値Vd、Vqとが入力する。また、電圧位相制御部50による制御時には電圧指令設定部60で取得された電圧指令値|Va|と電圧指令値生成部516で生成されたd軸、q軸電圧指令値Vd、Vqとが入力する。また、線形補正部38には電圧指令値|Va|を引数とした倍率のテーブルデータが予め設定されており、線形補正部38は入力した電圧指令値|Va|に応じた倍数を読み出しd軸電圧指令値Vd、q軸電圧指令値Vqに掛けることで線形補正を行う。この線形補正により、電圧指令値|Va|の変化とインバータ20が出力する電圧との非線形性が補正され線形化する。
 また、制御信号生成部30を構成するdq/3相変換部32には角度取得部14からの電気角θと角速度演算部16からの電気角速度ωが入力し、この電気角θと電気角速度ωとに基づいてインバータ20がスイッチング動作を行う新たなタイミングの予測電気角θ’を算出し、この予測電気角θ’に基づいてd軸、q軸電圧指令値Vd、Vqを三相電圧指令値Vu、Vv、Vwに変換し、駆動信号生成部36に出力する。
 また、駆動信号生成部36は搬送波生成部34を有しており、この搬送波生成部34にはキャリア設定情報Scが入力して、このキャリア設定情報Scに基づいて前述した周期の搬送波を生成する。そして、駆動信号生成部36はこの搬送波と三相電圧指令値Vu、Vv、Vwとをそれぞれ比較動作し、これによりHi-Lowの駆動信号Su、Sv、Swを生成する。尚、比較動作とは、駆動信号生成部36において搬送波と三相電圧指令Vu、Vv、Vwのそれぞれの大きさを比較し、その大小関係により各駆動信号Su、Sv、SwのHi-Lowを設定する動作であり、これにより搬送波と三相電圧指令Vu、Vv、Vwとのそれぞれの交点でHi-Lowが切り替わる駆動信号Su、Sv、Swが生成される。
 そして、インバータ20は駆動信号生成部36から出力される駆動信号Su、Sv、Swにより内部のスイッチング素子がオン・オフし、直流電源部18からの直流電力を駆動信号Su、Sv、Swに基づく交流電圧に変換して出力する。これにより、PMモータ10の電機子巻線には位相が1/3周期(2/3π(rad))づつずれた交流の駆動電流Iu、Iv、Iwがそれぞれ流下する。これにより、PMモータ10がトルク指令値Tに応じたトルクで回転動作する。
 次に、本発明に係るモータ制御装置100及びモータ制御方法の特徴的な構成である電圧指令設定部60及び電圧指令設定ステップに関して説明を行う。先ず、電圧指令設定部60は、前述のように電圧指令値|Va|が上限リミット値|Va|MAXと下限リミット値|Va|MINの範囲内にあるときは、トルク指令値Tと同一のトルクTを出力するのに最小の電流値|Ia|をとる電圧指令値|Va|を取得して電圧指令値生成部516及び線形補正部38に出力する。また、電圧指令値|Va|が上限リミット値|Va|MAXをとる場合(上限リミット値|Va|MAXで制限されている場合)には、一般的な電圧位相制御部50と同様に最大の出力電圧で電圧位相θvによる電圧位相制御を行う。
 次に、本願の請求項7、8及び請求項21、22に対応する第1の形態の電圧指令設定部60aの構成を図3を用いて説明する。図3に示す本発明に係る第1の形態の電圧指令設定部60aは、電流位相演算部62と、電流位相制御部64と、q軸電流判定部626と、入力切替部628と、を有している。また、電流位相演算部62は、Ia絶対値演算部622と、位相演算部624と、θi減算部63と、を有している。そして、Ia絶対値演算部622には3相/dq変換部22からのd軸フィードバック電流値Id、q軸フィードバック電流値Iqが入力し、Ia絶対値演算部622はこの入力したd軸、q軸フィードバック電流値Id、Iqから下記式(1)に基づいて電流ベクトルの大きさ|Ia|を算出する。
|Ia|=(Id+Iq1/2・・・(1)
 また、位相演算部624にもd軸フィードバック電流値Id、q軸フィードバック電流値Iqが入力し、位相演算部624はこの入力したd軸、q軸フィードバック電流値Id、Iqに基づいて下記(2)式により電流位相θiを算出する。
θi=tan-1(-Id/Iq)・・・(2)
尚、第1の形態の電圧指令設定部60a及び後述の第2、第3の形態の電圧指令設定部60b、60cに入力するd軸、q軸フィードバック電流値Id、Iqはローパスフィルタや平均化処理により予め平滑化された値を用いても良い。
 次に、電流位相演算部62は、Ia絶対値演算部622で取得された|Ia|を引数として電流-位相角データマップ620を参照し、この|Ia|と対応する目標電流位相θi(base)を読み出して取得する。また、この目標電流位相θi(base)は絶対値|Ia|の関数とした目標電流位相θi(base)の算出式を用い演算により取得しても良い(以上が電流位相演算ステップに相当する)。尚、目標電流位相θi(base)をデータマップから読み出して取得する場合、前述のように電流-位相角データマップ620には電流指令値Iaの大きさ|Ia|毎にトルクTが最大となる目標電流位相θi(base)がテーブルデータ化されて記録されており、電流-位相角データマップ620から直接目標電流位相θi(base)を読み出して取得することができる。また、目標電流位相θi(base)を演算により取得する場合には、電流位相演算部62は目標電流位相θi(base)の算出式を有し、この算出式は例えば予め実験等により取得された|Ia|と目標電流位相θi(base)とのデータに基づいて|Ia|の関数とした目標電流位相θi(base)の算出式を周知の手法により予め作成して電流位相演算部62等に記録しておき、この算出式にIa絶対値演算部622で取得された|Ia|の値を代入することで目標電流位相θi(base)を取得する。尚、算出式の作成方法としては、例えば|Ia|を複数の区間に分割した上で、これらの各区間ごとに|Ia|の1次関数で目標電流位相θi(base)の算出式を作成し、これらをIa絶対値演算部622で取得された|Ia|の値(の区間)に応じて選択して使用するようにしても良い。また、例えば|Ia|と目標電流位相θi(base)とをグラフ上にプロットし、このプロットに対する近似曲線の式(一般的に高次の多項式関数となる)を目標電流位相θi(base)の算出式としても良い。
 次に、電流位相演算部62はq軸フィードバック電流値Iqの符号(正負)を確認し、目標電流位相θi(base)の符号をq軸フィードバック電流値Iqと同じとする。尚、電流位相θiおよび目標電流位相θi(base)の符号は、後述の図4においてq軸電流Iqを基準にして反時計回りの方向を正、時計回りの方向を負とする。
 次に、目標電流位相θi(base)と電流位相θiとはθi減算部63に入力し、下記式に示すように、目標電流位相θi(base)から電流位相θiが差し引かれ、その差分Δθiが算出される(θi減算ステップ)。
Δθi=θi(base)-θi
そして、この差分Δθiは入力切替部628に出力される。
 また、q軸電流判定部626にはq軸フィードバック電流値Iqが入力し、q軸電流判定部626は入力したq軸フィードバック電流値Iqが予め設定されたゼロ近傍の値の範囲内にあるか否かを判定する(q軸電流判定ステップ)。そして、q軸フィードバック電流値Iqがゼロ近傍の値の範囲内にないと判定された場合、入力切替部628は差分Δθiを電流位相制御部64に出力する。そして、電流位相制御部64は後述の差分Δθiに基づく電圧指令値|Va|の取得処理を行う。また、q軸フィードバック電流値Iqがゼロ近傍の値の範囲内にあると判定された場合、入力切替部628は電流位相制御部64への出力を差分Δθiからd軸フィードバック電流値Idに切り替える(入力切替ステップ)。そして、電流位相制御部64は後述のゼロ近傍処理に基づく電圧指令値|Va|の取得処理を行う。
 次に、差分Δθiに基づく電圧指令値|Va|の取得処理に関して説明する。先ず、PMモータ10の制御が正弦波制御部40から電圧位相制御部50へ切り替わると、正弦波制御部40の切替直前もしくは平滑化された電圧指令値|Va|が電流位相制御部64に初期値として入力する。また、電流位相制御部64には、q軸フィードバック電流値Iqが入力し、電流位相制御部64はこのq軸フィードバック電流値Iqの正負を確認する。
 また、電流位相制御部64には電圧指令値|Va|の上限リミット値|Va|MAX、下限リミット値|Va|MINが設定されており、これら上限リミット値|Va|MAX、下限リミット値|Va|MINは電流位相制御部64の積分制御における積分値の上限リミット値、下限リミット値としても用いられる。尚、これら上限リミット値|Va|MAX、下限リミット値|Va|MINは、PMモータ10の仕様や要求される能力、性能等により設定される。例えば、上限リミット値|Va|MAXは駆動信号Su、Sv、Swが1パルスの矩形波パターンとなるような矩形波形成電圧値|Va’|としても良いし、PMモータ10を矩形波パターンで制御しない場合には矩形波形成電圧値|Va’|よりも低い値としても良い。尚、上限リミット値|Va|MAXを矩形波形成電圧値|Va’|に基づいて設定する場合、上限リミット値|Va|MAXは同期数に応じて変化する。また、直流電源部18の電源電圧Vdc、電気角速度ω毎に上限リミット値|Va|MAXのデータマップを作成し、このデータマップを読み出して設定しても良い。さらに、これらの上限リミット値|Va|MAXの設定方法を適宜組み合わせ用いても良い。また、下限リミット値|Va|MINは、固定値としても良いし、電源電圧Vdc、電気角速度ω毎に下限リミット値|Va|MINのデータマップを作成し、このデータマップを読み出して設定しても良い。尚、回転子による誘起電圧とインバータ20の出力電圧とが等しくなる値を下限リミット値|Va|MINとしてテーブルデータ化して設定すれば、電圧指令値|Va|が下限リミット値|Va|MINに減少した状態においてd軸電流(弱め磁束電流)を最小とすることが可能となる。これにより、この動作領域における損失を抑制することができる。
 そして、電流位相演算部62から差分Δθiが入力すると、電流位相制御部64は差分Δθiの値に基づく周知の比例制御及び積分制御を行いq軸フィードバック電流値Iqの符号が正で差分Δθiの符号が正の場合、電圧指令値|Va|を下限リミット値|Va|MINの範囲内で減少させる処理を行う。また、q軸フィードバック電流値Iqの符号が正で差分Δθiの符号が負の場合、電圧指令値|Va|を上限リミット値|Va|MAXの範囲内で増加させる処理を行う。また、q軸フィードバック電流値Iqの符号が負で差分Δθiの符号が負の場合、電圧指令値|Va|を下限リミット値|Va|MINの範囲内で減少させる処理を行う。また、q軸フィードバック電流値Iqの符号が負で差分Δθiの符号が正の場合、電圧指令値|Va|を上限リミット値|Va|MAXの範囲内で増加させる処理を行う(電流位相制御ステップ・差分Δθi入力時)。そして、この電圧指令値|Va|を電圧指令値生成部516及び線形補正部38に出力する。
 ここで、例えば、q軸フィードバック電流値Iqの符号が正で差分Δθiの符号が正の場合、電流位相θiが目標電流位相θi(base)よりもq軸側に位置する状態にある。この状態は最小の目標電流位相θi(base)よりも大きな電流が流下していることを意味し、特にトルク指令値Tが小さい低負荷時において銅損が大きく好ましい状態ではない。このような状態となる理由はインバータ20の出力電圧が大きいことが原因と考えられ、単純に電流位相θiを現状の|Ia|のまま目標電流位相θi(base)とするとトルクTがトルク指令値Tより大きくなることが想定される。このため、電圧指令値|Va|を減少することで|Ia|を小さくし電圧位相θvをd軸側に移動させることで、電流位相θiを目標電流位相θi(base)と同等とする。
 このように、電流位相制御部64は、q軸フィードバック電流値Iqの正負、差分Δθiの正負に応じて電圧指令値|Va|を増減し、この電圧指令値|Va|の増減に応じてd軸電流Idとq軸電流Iqとが変化し、これに応じてトルクTが変化する。そして、電圧位相設定部502はこのトルクTがトルク指令値Tと一致するように電圧位相θvを増減し、この電圧指令値|Va|と電圧位相θvとに対応したd軸電流Idとq軸電流Iqとによる電流位相θiは目標電流位相θi(base)に近づくよう変化する。これにより、d軸、q軸電圧指令値Vd、Vqはトルク指令値Tと同一のトルクTを出力するのに最小の電流値|Ia|をとる目標電流位相θi(base)と同等な電流位相θiとなるように制御され、その結果、PMモータ10は損失の少ない効率の良い状態で動作する。
 また、q軸電流判定部626においてq軸フィードバック電流値Iqがゼロ近傍の値の範囲内にあると判定された場合、入力切替部628は電流位相制御部64への出力を差分Δθiからd軸フィードバック電流値Idに切り替える。尚、q軸電流判定部626における判定閾値はヒステリシス幅を持たせ、境界点における頻繁な切り替わりを防止することが好ましい。また、この切り替えの際、電流位相制御部64における比例制御、積分制御等の制御ゲインをゼロ近傍処理時のものに切り替えても良い。
 ここで、差分Δθiに基づく電圧指令値|Va|の取得処理では上記(2)式によって電流位相θiを算出する。しかしながら、上記(2)式では(-Id/Iq)の項が存在するため、分母となるq軸フィードバック電流値Iqがゼロもしくはゼロ近傍となる場合、この項の数値が無限大にまで増大し演算上の不具合が生じる。また、q軸フィードバック電流値Iqがゼロ近傍の場合にd軸フィードバック電流値Idもゼロ近傍で正負を行き来する場合、その正負に対応して上記(2)式によって算出した電流位相θiが約-90°と約+90°との間で行き来し電圧指令値|Va|がハンチングする虞がある。よってq軸フィードバック電流値Iqがゼロ近傍の場合にはq軸電流判定部626と入力切替部628とが電流位相制御部64への出力を差分Δθiからd軸フィードバック電流値Idに切り替えて、電流位相θiを用いずに電圧指令値|Va|の生成を行う。これにより、(-Id/Iq)の項は電流位相制御部64の動作に関与せず、演算上の不具合を回避することができる。
 そして、ゼロ近傍処理の場合、電流位相制御部64は入力したd軸フィードバック電流値Idの値に基づく周知の比例制御及び積分制御を行って、d軸フィードバック電流値Idの符号が正の場合、電圧指令値|Va|を下限リミット値|Va|MINの範囲内で減少させる。また、d軸フィードバック電流値Idの符号が負の場合、電圧指令値|Va|を上限リミット値|Va|MAXの範囲内で増加させる(電流位相制御ステップ・ゼロ近傍処理)。そして、電圧指令値生成部516及び線形補正部38に出力する。
 ここで、q軸フィードバック電流値Iqがゼロ近傍の場合、弱め磁束電流としてのd軸電流を流す必要がある。しかしながら、d軸フィードバック電流値Idの符号が正の場合、ロータ磁石(回転子の永久磁石)による誘起電圧よりもインバータ20の出力電圧が大きい状態であり、d軸電流は磁束を強めてモータ電圧を大きくする電流となる。このとき電流位相制御部64は電圧指令値|Va|を減少させるよう動作する。これにより、d軸電流が下がり特に下限リミット値|Va|MINとなった際にはPMモータ10を最小のd軸電流(弱め磁束電流)で損失の少ない効率の良い状態で動作させることができる。また、d軸フィードバック電流値Idの符号が負の場合、電流位相制御部64は電圧指令値|Va|を上げることでインバータ20の出力電圧を上げ、過剰なd軸電流(弱め磁束電流)を抑制する。これにより、PMモータ10を損失の少ない効率の良い状態で動作させることができる。尚、ここで示した構成ではq軸フィードバック電流値Iq、d軸フィードバック電流値Idがともにゼロ近傍の値をとる場合でも正弦波制御部40に切り替わらず、電圧位相制御部50に継続して動作制御を行わせることができる。これにより、連続的かつスムーズな動作制御を行うことができる。
 さらに、ゼロ近傍処理ではd軸フィードバック電流値Idもゼロ近傍の所定の範囲内の値にあるときは電圧指令値|Va|を変化させずそのまま維持するようにしても良い。ここで、ゼロ近傍処理ではd軸フィードバック電流値Idの正負によって電圧指令値|Va|の増減方向が変化する。よって、d軸フィードバック電流値Idがゼロ近傍で正負を行き来すると、これに応じて電圧指令値|Va|に対する増加処理と減少処理とが頻繁に切り替わることとなる。この点、d軸フィードバック電流値Id(及びq軸フィードバック電流値Iq)がゼロ近傍にあるときに電圧指令値|Va|を変化させず元の値で維持する構成では、電圧指令値|Va|の無用な変動を抑制でき、PMモータ10のトルク変化を防止することが可能となる。
 また、図3(b)に示すように、電流位相制御部64に入力するd軸フィードバック電流値Idにオフセット値(-a)を加算し、d軸フィードバック電流値Idのゼロ近傍の判定閾値をこのオフセット値(-a)に対応してシフトさせても良い。この構成によれば、オフセット値(-a)の値を最適化することで、q軸フィードバック電流値Iqがゼロ近傍の値をとるときに、電流位相制御部64に入力するd軸フィードバック電流値Idを常に負の値とすることができる。そして、この構成では電流位相制御部64への入力がd軸フィードバック電流値Idと差分Δθiとで切り替わる際に、切り替え直後の電流位相θiがオフセット値(-a)の分、目標電流位相θi(base)に近い状態にあり比較的スムーズな切り替えを行うことができる。
 次に、本願の請求項1~6及び請求項15~20に対応する本発明に係る第2の形態の電圧指令設定部60bの構成を説明する。尚、第2の形態の電圧指令設定部60bは、目標電流位相θi(base)の替わりに図4のベクトル図に示す目標電流位相θi(base)をとるようなd軸電流値Id(ref)を用いて電圧指令値|Va|を変化させる構成である。
 本発明に係る第2の形態の電圧指令設定部60bは、図5(a)~(d)、図6に示すように、トルク指令値Tと略同一のトルクTを出力するのに最小の電流|Ia|をとる目標電流位相θi(base)の時のd軸電流値Id(ref)を取得するId(ref)取得部644a~644dと、このId(ref)取得部644a~644dが取得したd軸電流値Id(ref)からd軸フィードバック電流値Idを減算し差分ΔIdを取得するId減算部648と、この差分ΔIdの値に基づいて電圧指令値|Va|を変化させるd軸電流制御部66と、を有している。尚、d軸電流値Id(ref)は基本的に負の値を示す。
 尚、ここではId(ref)、係数K(Id/Iq)、目標電流位相θi(base)等をデータマップから読み出して取得する例を説明するが、これらの値は算出式を用い演算により取得しても良い。この場合、Id(ref)取得部644a~644dはId(ref)、係数K(Id/Iq)、目標電流位相θi(base)等の算出式を有し、これらの算出式は予め実験等により取得されたデータに基づいて、電流位相演算部62の時と同様、複数の区間における1次関数を連結して構成したり、近似曲線の式から求めるなどの周知の手法により作成し記録しておくことが好ましい。
 ここで、第1の形態のId(ref)取得部644aは、例えばId(ref)データマップ部646aを有しており、このId(ref)データマップ部646aはq軸フィードバック電流値Iq、もしくは、その絶対値|Iq|を引数にしてd軸電流値Id(ref)を読み出して取得する。尚、Id(ref)データマップ部646aがq軸フィードバック電流値Iqの絶対値|Iq|を引数にしてd軸電流値Id(ref)を読み出す場合、第1の形態のId(ref)取得部644aは図5(a)に示すように、q軸フィードバック電流値Iqの絶対値|Iq|を算出するIq絶対値演算部642を有する。この場合、Id(ref)データマップ部646aは、各絶対値|Iq|毎に目標電流位相θi(base)をとるd軸電流値Id(ref)のテーブルデータを有しており、Iq絶対値演算部642から入力した絶対値|Iq|からd軸電流値Id(ref)を読み出して取得する。また、Id(ref)データマップ部646aがq軸フィードバック電流値Iqそのものを引数としてd軸電流値Id(ref)を読み出す場合、Id(ref)データマップ部646aは正負双方のq軸フィードバック電流値Iqに対応したd軸電流値Id(ref)のテーブルデータを有する。そして、Id(ref)データマップ部646aはId(ref)取得部644aに入力したq軸フィードバック電流値Iqを直接引数にしてd軸電流値Id(ref)を読み出して取得する。
 尚、これらのId(ref)データマップ部646aのテーブルデータは、|Ia|と目標電流位相θi(base)とのデータを実験等により取得し、これらの値と下記式を用いてq軸フィードバック電流値Iqもしくは絶対値|Iq|とd軸電流値Id(ref)との関係を求めテーブルデータ化することで取得が可能である。
Iq=|Ia|・cos(θi(base)
Id(ref)=-|Ia|・sin(θi(base)
そして、この第1の形態のId(ref)取得部644aの構成によれば、q軸フィードバック電流値Iqもしくはその絶対値|Iq|を引数にして直接d軸電流値Id(ref)を読み出すためd軸電流値Id(ref)の取得に係る演算処理の負荷を軽減することができる。尚、Id(ref)取得部644aは、q軸フィードバック電流値Iqもしくはその絶対値|Iq|の関数としたd軸電流値Id(ref)の算出式を用い、前述したように演算によってd軸電流値Id(ref)を取得するようにしても良い。
 また、第2の形態のId(ref)取得部644bは、例えば、q軸フィードバック電流値Iq、もしくは、その絶対値|Iq|と対応し、目標電流位相θi(base)をとるときのq軸電流値Iqとd軸電流値Id(ref)の比である係数K(Id/Iq)のテーブルデータを備えた係数データマップ部646bを有している。尚、係数データマップ部646bは前述のId(ref)のテーブルデータと同様にしてq軸電流値Iqとd軸電流値Id(ref)とを求めd軸電流値Id(ref)をq軸電流値Iqで割って係数K(Id/Iq)を算出し、これをテーブルデータ化することで取得が可能である。そして、係数データマップ部646bがq軸フィードバック電流値Iqの絶対値|Iq|を引数にして係数K(Id/Iq)を読み出す場合、第2の形態のId(ref)取得部644bは図5(b)に示すように、q軸フィードバック電流値Iqの絶対値|Iq|を算出するIq絶対値演算部642を有し、このIq絶対値演算部642はq軸フィードバック電流値Iqの絶対値|Iq|を算出して出力するとともに、係数データマップ部646bはIq絶対値演算部642から入力した絶対値|Iq|を引数にして係数K(Id/Iq)を読み出す。そして、Id(ref)取得部644bは読み出された係数K(Id/Iq)にIq絶対値演算部642で算出された絶対値|Iq|を掛けることでd軸電流値Id(ref)を取得する。
 また、係数データマップ部646bがq軸フィードバック電流値Iqそのものを引数にして係数K(Id/Iq)を読み出す場合、係数データマップ部646bは正負双方のq軸フィードバック電流値Iqに対応した係数K(Id/Iq)のテーブルデータを有する。そして、係数データマップ部646bはId(ref)取得部644bに入力したq軸フィードバック電流値Iqを直接引数にして係数K(Id/Iq)を読み出して取得する。そして、Id(ref)取得部644bは読み出された係数K(Id/Iq)にq軸フィードバック電流値Iqを掛けることでd軸電流値Id(ref)を取得する。
 尚、引数がいずれの場合においてもd軸電流値Id(ref)は負の値とする必要がある。よって、演算上、d軸電流値Id(ref)が正の値となるときは、-1を掛けて負の値とするか、もしくは正の値となる領域の係数K(Id/Iq)を負の値で記録しておくことが好ましい。そして、この第2の形態のId(ref)取得部644bの構成では第1の形態のId(ref)取得部644aよりも演算処理の数が増えるものの、絶対値|Iq|の値が小さい領域では係数K(Id/Iq)が概ね比例関係をとるため、この領域で係数K(Id/Iq)のデータを間引く事が可能となり、係数データマップ部646bのテーブルデータの容量を削減することが可能となる。尚、Id(ref)取得部644bは、q軸フィードバック電流値Iqもしくはその絶対値|Iq|の関数とした係数K(Id/Iq)の算出式を用い、前述したように演算によって係数K(Id/Iq)を取得するようにしても良い。
 また、図5(c)に示す第3の形態のId(ref)取得部644cは、Ia絶対値演算部622’と、Iq絶対値演算部642と、Id(ref)演算部646cと、を有している。そして、Ia絶対値演算部622’は第1の形態の電圧指令設定部60aのIa絶対値演算部622と同様にしてd軸、q軸フィードバック電流値Id、Iqから式(1)により電流ベクトルの大きさ|Ia|を算出する。そして、例えば電流-位相角データマップ620を用い、|Ia|を引数にして目標電流位相θi(base)を読み出しId(ref)演算部646cに出力する。また、Iq絶対値演算部642はq軸フィードバック電流値Iqの絶対値|Iq|を算出してId(ref)演算部646cに出力する。そして、Id(ref)演算部646cは下記式に基づいてd軸電流値Id(ref)を算出する。
Id(ref)=-|Iq|・tan(θi(base))・・・(3)
もしくは、Iq絶対値演算部642を設けずに下記式に基づいてd軸電流値Id(ref)を算出しても良い。
Id(ref)=-|Ia|・sin(θi(base)
この第3の形態のId(ref)取得部644cでは、電流-位相角データマップ620を用いることでd軸電流値Id(ref)の取得のためのデータマップが不要となり装置全体としての記憶容量の低減を図ることができる。
 さらに、第3の形態のId(ref)取得部644c’は、例えば図5(d)に示すように、q軸フィードバック電流値Iqの絶対値|Iq|を引数とした目標電流位相θi(base)のデータマップ621を設け、Iq絶対値演算部642が算出した絶対値|Iq|を引数にして目標電流位相θi(base)を読み出し、上記(3)式を用いてd軸電流値Id(ref)を算出するようにしても良い。また、正負のq軸フィードバック電流値Iqを引数とした目標電流位相θi(base)のデータマップを設け、q軸フィードバック電流値Iqを直接引数にして目標電流位相θi(base)を読み出すとともに、上記(3)式を用いてd軸電流値Id(ref)を算出するようにしても良い。尚、Id(ref)取得部644c、644c’は、電流ベクトルの大きさ|Ia|もしくはq軸フィードバック電流値Iqもしくはその絶対値|Iq|の関数とした目標電流位相θi(base)の算出式を用い、前述したように演算によって目標電流位相θi(base)を取得するようにしても良い。
 また、第4の形態のId(ref)取得部644dは、例えばトルク指令値Tもしくはその絶対値|T|を引数としてd軸電流値Id(ref)を読み出して取得するT-Id(ref)データマップ部469を有している。そして、T-Id(ref)データマップ部469がトルク指令値Tの絶対値|T|を引数にしてd軸電流値Id(ref)を読み出す場合、第4の形態のId(ref)取得部644dは図6に示すように、トルク指令値Tの絶対値|T|を算出するトルク絶対値演算部643を有する。この場合、T-Id(ref)データマップ部469は、各絶対値|T|のときに目標電流位相θi(base)をとるd軸電流値Id(ref)のテーブルデータを有しており、トルク絶対値演算部643から入力した絶対値|T|を引数にしてd軸電流値Id(ref)を読み出して取得し、Id減算部648に出力する。また、T-Id(ref)データマップ部469がトルク指令値Tそのものを引数にしてd軸電流値Id(ref)を読み出す場合、T-Id(ref)データマップ部469は例えば正負双方のトルク指令値Tに対応したテーブルデータや力行動作のトルク指令値T、回生動作のトルク指令値T毎のテーブルデータを有しており、Id(ref)取得部644dに入力した各トルク指令値Tを直接引数にしてId(ref)を読み出して取得する。尚、T-Id(ref)のテーブルデータは予め実験等により取得しておく。尚、Id(ref)取得部644dは、トルク指令値Tもしくはその絶対値|T|の関数としたd軸電流値Id(ref)の算出式を用い、前述したように演算によってd軸電流値Id(ref)を取得するようにしても良い。そして、これらのId(ref)取得部644a~644dの動作がId(ref)取得ステップに相当する。
 このようにして取得されたd軸電流値Id(ref)は、Id減算部648に入力しd軸フィードバック電流値Idが減算され差分ΔIdとなる(ΔId取得ステップ)。Id減算部648で算出された差分ΔIdはd軸電流制御部66に入力し、このd軸電流制御部66は差分ΔIdの値に基づく周知の比例制御及び積分制御を行って、差分ΔIdの符号が負の場合、電圧指令値|Va|を下限リミット値|Va|MINの範囲内で減少させるように動作する。また、差分ΔIdの符号が正の場合、電圧指令値|Va|を上限リミット値|Va|MAXの範囲内で増加させるように動作する(電圧指令生成ステップ)。この動作は第1の形態の電圧指令設定部60aと同様に電流位相θiを目標電流位相θi(base)に近づけるものであり、この結果、PMモータ10はトルク指令値Tと同一のトルクTを出力するのに最小の電流値|Ia|をとる目標電流位相θi(base)と同等な電流位相θiで動作制御され、損失の少ない効率の良い状態で動作制御される。尚、上限リミット値|Va|MAX、下限リミット値|Va|MINは電流位相制御部64と同様にPMモータ10によって適宜設定される。また、これら上限リミット値|Va|MAX、下限リミット値|Va|MINはd軸電流制御部66の積分制御における積分値の上限リミット値、下限リミット値としても用いられる。
 ここで、第2の形態の電圧指令設定部60bは第1の形態の電圧指令設定部60aの構成とは異なり電流位相θiを用いない。よって、q軸フィードバック電流値Iqがゼロ近傍の値をとる際の特別な制御への切替動作が不要となり制御系を簡略化することができる。また、差分ΔIdを用いた同一の構成で一貫した制御を行うことができるため、信号の連続性が維持され円滑な制御を行うことができる。
 また、第1、第2の形態の電圧指令設定部60a、60bは、図7に示すように補正電圧演算部515を備えた構成としても良い。ここで、補正電圧演算部515を備えた電圧指令設定部60a、60bは、補正電圧演算部515が補正電圧|Va’’|を生成し電流位相制御部64、d軸電流制御部66に出力する。そして、電流位相制御部64、d軸電流制御部66は自身が生成した電圧指令値に補正電圧|Va’’|を合算して最終的な電圧指令値|Va|とし、電圧指令値生成部516に出力する。この際、電流位相制御部64、d軸電流制御部66の積分制御における積分値の上下限のリミット値は、本来の上下限リミット値から補正電圧|Va’’|を差し引いた値により積分値の制限を行う。また、電圧指令設定部60a、60bの上限リミット値|Va|MAX、下限リミット値|Va|MINは、補正電圧|Va’’|が合算された最終的な電圧指令値|Va|に対して制限を行う。
 また、補正電圧演算部515による補正電圧|Va’’|の生成方法は、例えば永久磁石の誘起電圧定数φaもしくはd軸電流値Id(d軸フィードバック電流値Id)もしくはq軸電流値Iq(q軸フィードバック電流値Iq)のうちの少なくとも一つと電気角速度ωとに基づいて生成することが好ましい。ここで、補正電圧|Va’’|の具体的な生成方法としては、例えば電気角速度ωの変化に対応した永久磁石の誘起電圧を考慮した下記式に基づいて算出しても良いし、
|Va’’|=|ω・φa|
q軸電流値Iqを考慮した下記式に基づいて算出しても良い。
|Va’’|=|ω・Lq・Iq|    (Lq:q軸インダクタンス)
また、永久磁石による誘起電圧に対してd軸電流値Idによる弱め磁束制御を考慮した下記式に基づいて算出しても良い。
|Va’’|=|ω・φa+ω・Ld・Id|    (Ld:d軸インダクタンス)
またさらに、上記の式を総合し正弦波制御部40の非干渉制御部414における干渉項Vd’、Vq’の算出式と同様の下記式に基づいて補正電圧|Va’’|を算出するようにしても良い。
Vd’=-ω・Lq・Iq
Vq’=ω・φa+ω・Ld・Id
|Va’’|=(Vd’+Vq’1/2
尚、これらの式におけるd軸電流値Idとq軸電流値Iqは、各フィードバック電流値Id、Iqにそれぞれローパスフィルタ等による平滑化処理を行った値を用いても良い。
 そして、これらの補正電圧演算部515を備えた図7の構成では、電気角速度ωに基づいて補正電圧|Va’’|が生成され、この補正電圧|Va’’|を合算して電圧指令値|Va|を生成するため、比例制御と積分制御のみで生成される電圧指令値と比較して電気角速度ωの変化に対応したより適切な電圧指令値|Va|の生成を行うことができる。さらに、d軸電流値Id(ref)を取得可能な構成では、上記の式のうちd軸電流値Idに替えてId(ref)を用いて補正電圧|Va’’|を算出しても良い。この構成では、目標値であるd軸電流値Id(ref)の値に対応した補正電圧|Va’’|を生成することが可能となり、d軸電流値IdをId(ref)に制御するためのさらに適切な電圧指令値|Va|を生成することができる。特に、図6に示す第2の形態の電圧指令設定部60bを用いた構成では、トルク指令値Tに基づいて生成される安定したd軸電流値Id(ref)を用いて補正電圧|Va’’|を生成することができるため、さらに適切な電圧指令値|Va|の生成が可能となる。尚、補正電圧演算部515を備えた構成では、正弦波制御部40から電圧位相制御部50への切り替え時に、正弦波制御部40での電圧指令値|Va|から補正電圧|Va’’|を差し引いた値を電流位相制御部64もしくはd軸電流制御部66の初期値及び積分制御の積分値として使用するようにしても良い。
 またさらに、第1、第2の形態の電圧指令設定部60a、60bの電流位相制御部64、d軸電流制御部66は、トルク指令値Tに対して現在のトルク値Tが不足している場合には、電圧指令値|Va|を低減する動作を行わないようにしても良い。この構成ではトルクTを増やす際など、現状よりも大きい電圧指令値|Va|が必要となる場合には電圧指令値|Va|の低減動作を行わない。このため、特にPMモータ10のトルクTが不足している場合に、電流位相制御部64、d軸電流制御部66の処理によるトルクTの応答の遅延を防止することが可能となる。また、電流位相制御部64、d軸電流制御部66は、トルク指令値Tに対して現在のトルク値Tが過剰な場合に、電圧指令値|Va|を増加する動作を行わないようにしても良い。この構成ではトルクTを減らす際など、現状よりも小さい電圧指令値|Va|が必要となる場合には電圧指令値|Va|の増加動作を行わない。これにより、特にPMモータ10のトルクTが過剰な場合に、電流位相制御部64、d軸電流制御部66の処理によるトルクTの応答の遅延を防止することが可能となる。
 さらに、電流位相制御部64、d軸電流制御部66は、入力した値が同等の値の場合でも、出力となる電圧指令値|Va|の1制御周期あたりの変化幅をそのときの電気角速度ωの値に応じて変化させるようにしても良い。即ち、電気角速度ωが低い場合には電圧指令値|Va|の変化幅を小さくし、電気角速度ωが高い場合には電圧指令値|Va|の変化幅を大きくする。この構成では、低い電気角速度ωにおいては電圧指令値|Va|の変化量が小さくなるため、低速回転時における動作制御を安定的に行うことができる。また、高い電気角速度ωの場合には電圧指令値|Va|の変化量が大きくなるため、高速回転時における電圧指令値|Va|の応答速度の向上を図ることができる。これにより、低い電気角速度ωから高い電気角速度ωまで安定した制御を行うことができる。尚、電圧指令値|Va|の変化幅を変更する手法としては、例えば、電気角速度ωに応じて比例制御、積分制御の各制御ゲインを増減させる手法が挙げられる。また、例えば電流位相制御部64、d軸電流制御部66に入力する差分Δθiもしくは差分ΔIdに電気角速度ωに応じて増減する係数を乗じて補正し、この補正された差分Δθiもしくは差分ΔIdに基づいて電圧指令値|Va|を算出する手法が挙げられる。また、例えば電流位相制御部64、d軸電流制御部66の比例制御、積分制御の1制御周期毎の変化幅にリミッタを設けて、このリミッタの制限値を電気角速度ωに応じて増減する手法などが挙げられる。
 またさらに、第1、第2の形態の電圧指令設定部60a、60bの電流位相制御部64、d軸電流制御部66は、トルク指令値Tの急激な変化に対する応答性を向上するために、以下の構成を備えていても良い。先ず、第1の構成としては、図8(a)に示すように、電圧指令設定部60a、60bに設けられた変動監視部650aがトルク指令値Tをモニタし、トルク指令値Tが予め設定した閾値を超えて減少することを検知する(第1の形態の変動監視ステップ)。尚、このときのトルク指令値Tの閾値は固定値としても良いし、電源電圧Vdcと電気角速度ωのいずれか、もしくは双方に対応して設定しても良い。また、変動監視部650aが検知する低負荷のトルク指令値Tは回生動作を行うトルク指令値Tであっても構わない。この際、トルク指令値Tの閾値を力行のトルク指令値Tの場合と回生のトルク指令値Tの場合とで異なる値に設定しても良いし、双方で共通の値に設定しても良い。
 そして、変動監視部650aがトルク指令値Tの閾値を超えた減少を検知すると、電流位相制御部64、d軸電流制御部66は自身の積分制御の積分値を確認し、この積分値が所定の閾値よりも大きいときに所定の手法に基づいてこの積分値を減少させる(高速応答ステップ)。例えば、トルク指令値Tがある程度高く且つ電流位相制御部64、d軸電流制御部66の積分値が上限リミット値|Va|MAXの90%よりも大きな値の状態で予め設定された閾値を超える低負荷のトルク指令値Tが入力したときに、電流位相制御部64、d軸電流制御部66は予め設定された小さな値、例えば上限リミット値|Va|MAXの90%の値を積分値として代入し電圧指令値|Va|の演算を行う。尚、代入する積分値は固定値でも良いし、上限リミット値|Va|MAXに基づいて設定しても良い。また、トルク指令値T、電源電圧Vdc、電気角速度ωの全てに対応して設定しても良いし、トルク指令値Tと電気角速度ω、またはトルク指令値Tと電源電圧Vdc等に応じて設定しても良い。さらに、上限リミット値|Va|MAXが同期数で変化する場合には、これらのパラメータに同期数を考慮した上で積分値を設定しても良い。またさらに、積分値を変化させる替わりに上限リミット値|Va|MAXを上記の積分値の設定方法と同様にして低下させ、この低下した上限リミット値|Va|MAXにより積分値及び電圧指令値|Va|を小さな値に制限して、積分値及び電圧指令値|Va|を減少させるようにしても良い。そして、変動監視部650aを有する上記の構成によれば、トルク指令値Tが閾値を超えて減少し且つ積分値が大きな場合に、積分値を減少して電圧指令値|Va|を算出する。これにより、電圧指令値|Va|の値を迅速に減少させることができ、PMモータ10を速やかに損失の少ない効率の良い状態で運転させることができる。
 尚、トルク指令値Tが変動監視部650aの閾値近傍の値をとった時の電流位相制御部64もしくはd軸電流制御部66の積分値は上記の積分値の閾値よりも十分に小さい値となるようにトルク指令値Tの閾値を設定することが好ましい。この構成では、トルク指令値Tが閾値の近傍にあった時にこの閾値を超えて減少した場合は(電流位相制御部64もしくはd軸電流制御部66の積分値が閾値よりも小さいため)積分値の減少動作は行われない。即ち、トルク指令値Tが閾値前後を行き来する場合には積分値は通常の積分制御により算出され、頻繁な減少動作の発生を回避する。これにより、PMモータ10の制御の不安定化やトルク変動の発生を防止することができる。
 また、第2の構成としては、図8(b)に示すように、電圧指令設定部60a、60bに設けられた変動監視部650bが電圧位相設定部502から出力する電圧位相θvをモニタし、この電圧位相θvがθvの上限リミット値もしくは上限リミット値の近傍となったときに(第2の形態の変動監視ステップ)、電流位相制御部64、d軸電流制御部66の制御ゲイン(積分制御、比例制御の一方もしくは両方)もしくは、電流位相制御部64、d軸電流制御部66の積分制御の積分値、もしくは、これら制御ゲインと積分値の双方を増加させる(高速応答ステップ)。尚、電流位相制御部64、d軸電流制御部66の積分値を増加させる場合、積分値の1制御周期あたりの増加幅は固定値としても良いし、トルク指令値Tと現在のトルクTとの差に基づいて設定しても良い。また、トルク指令値Tに対して現在のトルクTが小さく両者の差が大きいときには積分値の増加幅を大きくするようにしても良い。さらに、積分値を増加させる際には、電流位相制御部64、d軸電流制御部66の比例制御の出力と積分制御による積分値の変化は無視するようにしても良い。
 ここで、例えばトルク指令値Tが低負荷の指令値にあるとき、電圧指令設定部60a、60bが出力する電圧指令値|Va|は低い値となっている。この状態で高負荷のトルク指令値Tが入力した場合、電圧指令値|Va|は即応できず電圧位相θvが急増し上限リミット値で制限される。この場合、電圧指令値|Va|がトルク指令値Tに追従するまでPMモータ10はトルク不足の状態で動作する。しかしながら、変動監視部650bを有する構成では、電圧位相θvが上限リミット値もしくは上限リミット値の近傍となったときに電流位相制御部64、d軸電流制御部66の例えば積分制御のゲインを大きくする、もしくは積分制御の積分値を増加させて動作する。これにより、電圧指令値|Va|の増加速度は大きくなり、電圧指令値|Va|の応答性が向上する。これにより、PMモータ10がトルク不足で動作する時間を短縮することができる。そして、電圧位相θvが上限リミット値からある程度低下すると、変動監視部650bはこれを検知し、電流位相制御部64、d軸電流制御部66の制御ゲインもしくは積分値に対する処理は通常のものに復帰する。これにより、電圧指令値|Va|の変動は小さくなり安定的な制御が行われる。
 また、第3の構成としては、図8(c)に示すように、電圧指令設定部60a、60bに設けられた変動監視部650cがθi減算部63もしくはId減算部648が出力する差分Δθiもしくは差分ΔIdの値を監視し、この差分Δθiもしくは差分ΔIdの絶対値が予め設定した閾値よりも大きな値を示した時に(第3の形態の変動監視ステップ)、電流位相制御部64、d軸電流制御部66の制御ゲインを増加させる(高速応答ステップ)。ここで、トルク指令値Tが大きく変化したり電源電圧Vdcや電気角速度ωが急変した場合、差分Δθiもしくは差分ΔIdの増減幅が大きくなる。ここで、電流位相制御部64、d軸電流制御部66の応答速度が遅い場合、電圧指令値|Va|が追従するまでの間、トルク不足が生じたり、損失の大きな状態が生じる。しかしながら、変動監視部650cを有する電圧指令設定部60a、60bでは、差分Δθiもしくは差分ΔIdの絶対値が予め設定した閾値よりも大きな値を示した時に、電流位相制御部64、d軸電流制御部66の制御ゲインを大きくするため、電圧指令値|Va|の応答性が速くなり、上記の好ましくない動作状態を速やかに解消してPMモータ10を損失の少ない効率の良い状態で動作させることができる。そして、差分Δθiもしくは差分ΔIdの増減幅がある程度低下すると、変動監視部650cはこれを検知し、電流位相制御部64、d軸電流制御部66の制御ゲインは通常のものに復帰する。これにより、電圧指令値|Va|の変動は小さくなり安定的な制御が行われる。
 尚、変動監視部650a~650cを備えた構成では、電流位相制御部64、d軸電流制御部66の出力にローパスフィルタ652をさらに設け、このローパスフィルタ652を通して電圧指令値|Va|を電圧指令値生成部516に出力することが好ましい。ここで、変動監視部650a~650cを備えた構成では、トルク指令値T等が急変した場合に積分値や制御ゲインを変化させて電圧指令値|Va|の応答性を向上する。このため、この動作領域では電圧指令値|Va|の変動幅が大きくなり、その結果、PMモータ10の駆動電流Iu、Iv、Iwやトルクの変動が大きくなる。この点、上記のローパスフィルタ652を設けた構成では、このローパスフィルタ652が電圧指令値|Va|の急激な変化を抑制するため、変動監視部650a~650cによる優れた応答性を確保しながら、電圧指令値|Va|の急変動を抑制することができる。これにより、変動監視部650a~650cをより効果的に機能させることができる。
 以上のように、本発明に係るモータ制御装置100及びモータ制御方法は、電流位相制御部64、d軸電流制御部66からの電圧指令値|Va|が上限リミット値|Va|MAXと下限リミット値|Va|MINの範囲内にあるときは、目標電流位相θi(base)と同等な電流位相θiをとるように制御される。このため、PMモータ10を損失の少ない効率の良い状態で動作させることができる。また、このときは過変調パターン(または正弦波パターン)の出力電圧となるため、特に低負荷時において従来の矩形波制御よりも電流波形の歪みが改善しトルクの振動や騒音の発生を抑制することができる。さらに、電圧位相制御部50が弱め磁束制御の領域をカバーすることで制御方式の切替数が減少するとともに、制御系の構成を簡易化でき、その分、マイコン等の制御部のコストの削減を図ることができる。またさらに、電圧位相制御部50(電流位相制御部64、d軸電流制御部66)の電圧指令値|Va|の上限リミット値|Va|MAXを矩形波形成電圧値|Va’|とし、下限リミット値|Va|MINを低負荷や回生動作のトルク指令値Tに対応した値に設定することで、高回転速度、高トルクの矩形波パターンを用いる矩形波制御の領域から、弱め磁束制御領域及び過変調パターンを用いる過変調制御領域、さらには低負荷の正弦波パターンを用いる正弦波制御領域までを同一の制御方式でカバーすることが可能となる。これにより、制御方式の切替数が減少し、切替時のトルクショックや応答遅延の発生を減少することができる。
 また、電流位相θiは目標電流位相θi(base)と同等となるように制御されるため、電圧位相制御部50から正弦波制御部40への切り替え前後で電流位相θiは同等となり、トルクショックの少ないスムーズな切替動作が可能となる。
 尚、本例で示したモータ制御装置100及びモータ制御方法は一例であり、制御信号生成部30、正弦波制御部40、電圧位相制御部50、電圧指令設定部60等の各部の構成、動作、及び各ステップの構成等は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。
      10  PMモータ
      12u、12v 駆動電流取得部
      14  角度取得部
      20  インバータ
      22  3相/dq変換部
      30  制御信号生成部
      32  dq/3相変換部
      34  搬送波生成部
      50  電圧位相制御部
      502 電圧位相設定部
      516 電圧指令値生成部
      520 キャリア設定部
      60、60a、60b 電圧指令設定部
      62  電流位相演算部
      63  θi減算部
      64  電流位相制御部
      66  d軸電流制御部
      624 位相演算部
      626 q軸電流判定部
      628 入力切替部
      644a~644d Id(ref)取得部
      648 Id減算部
      650a~650c 変動監視部
      652 ローパスフィルタ
      70  オフセット補正部
      100 モータ制御装置
      Id  d軸フィードバック電流値
      Iq  q軸フィードバック電流値
      Sc  キャリア設定情報
      T  トルク指令値
      |Va| 電圧指令値
      Vd  d軸電圧指令値
      Vq  q軸電圧指令値
      θi  電流位相
      θi(base) 目標電流位相
      θv  電圧位相
      Δθi 差分
      ΔId 差分

Claims (28)

  1. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流取得部と、
    前記PMモータの電気角を取得する角度取得部と、
    前記電気角に基づいて前記駆動電流取得部が取得した前記駆動電流をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部と、
    外部からのトルク指令値に応じた電圧位相θvと電圧指令値|Va|とを設定しd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧位相制御部と、
    前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値に変換するdq/3相変換部と、搬送波生成部とを備え、前記搬送波生成部で生成された搬送波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する制御信号生成部と、を有するモータ制御装置において、
    前記電圧位相制御部は、
    前記トルク指令値に基づいて電圧位相θvを設定する電圧位相設定部と、
    所定の上限リミット値未満の領域で前記トルク指令値と略同一のトルクを出力するのに最小の電流をとる電圧指令値|Va|を取得する電圧指令設定部と、前記電圧位相θvと電圧指令値|Va|とに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧指令値生成部と、を有することを特徴とするモータ制御装置。
  2. 電圧指令設定部が、
    トルク指令値と略同一のトルクを出力するのに最小の電流をとるd軸電流値Id(ref)を取得するId(ref)取得部と、
    前記d軸電流値Id(ref)とd軸フィードバック電流値Idとの差分ΔIdを取得するId減算部と、
    前記差分ΔIdが負のときは電圧指令値|Va|を小さくし、前記差分ΔIdが正のときは電圧指令値|Va|を大きくして電圧指令値生成部に出力するd軸電流制御部と、を有することを特徴とする請求項1記載のモータ制御装置。
  3. Id(ref)取得部が、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|に基づいてd軸電流値Id(ref)を取得することを特徴とする請求項2記載のモータ制御装置。
  4. Id(ref)取得部が、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|と対応しd軸電流値Id(ref)とq軸フィードバック電流値Iqとの比である係数K(Id/Iq)を取得し、さらに前記係数K(Id/Iq)に前記q軸フィードバック電流値Iq、もしくは、前記絶対値|Iq|を掛けて負の値とすることでd軸電流値Id(ref)を取得することを特徴とする請求項2記載のモータ制御装置。
  5. Id(ref)取得部が、トルク指令値と略同一のトルクを出力するのに最小の電流をとる目標電流位相θi(base)を取得し、d軸フィードバック電流値Id及びq軸フィードバック電流値Iqから求められる電流ベクトルの大きさ|Ia|もしくはq軸フィードバック電流値の絶対値|Iq|とから下記式
    Id(ref)=-|Ia|・sin(θi(base)
    もしくは下記式
    Id(ref)=-|Iq|・tan(θi(base)
    に基づいて電流値Id(ref)を取得することを特徴とする請求項2記載のモータ制御装置。
  6. Id(ref)取得部が、トルク指令値、もしくは、トルク指令値の絶対値に基づいてd軸電流値Id(ref)を取得することを特徴とする請求項2記載のモータ制御装置。
  7. 電圧指令設定部が、電流位相演算部と、θi減算部と、電流位相制御部と、を有し、
    前記電流位相演算部は、d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流ベクトルの大きさ|Ia|を取得するIa絶対値演算部と、
    |Ia|=(Id+Iq1/2
    前記d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流位相θiを算出する位相演算部と、
    θi=tan-1(-Id/Iq)
    を備え、
    前記電流ベクトルの大きさ|Ia|と対応しトルク指令値と略同一のトルクを出力するのに最小の電流をとる目標電流位相θi(base)を取得するとともに、
    前記θi減算部は、前記目標電流位相θi(base)から前記電流位相θiを引いて差分Δθiを取得し前記電流位相制御部に出力し、
    前記電流位相制御部は、
    q軸フィードバック電流値Iqが正で且つ前記差分Δθiが正の場合に電圧指令値|Va|を小さくし、
    q軸フィードバック電流値Iqが正で且つ前記差分Δθiが負の場合に電圧指令値|Va|を大きくし、
    q軸フィードバック電流値Iqが負で且つ前記差分Δθiが負の場合に電圧指令値|Va|を小さくし、
    q軸フィードバック電流値Iqが負で且つ前記差分Δθiが正の場合に電圧指令値|Va|を大きくすることを特徴とする請求項1記載のモータ制御装置。
  8. 電圧指令設定部が、q軸フィードバック電流値Iqがゼロ近傍の値であるか否かを判定するq軸電流判定部と、q軸フィードバック電流値Iqがゼロ近傍の値であると判定された場合に電流位相制御部への入力を差分Δθiからd軸フィードバック電流値Idに切り替える入力切替部と、をさらに備え、
    前記電流位相制御部は、
    前記d軸フィードバック電流値Idが正の場合に電圧指令値|Va|を小さくし、
    前記d軸フィードバック電流値Idが負の場合に電圧指令値|Va|を大きくすることを特徴とする請求項7記載のモータ制御装置。
  9. 電圧指令設定部が、トルク指令値を監視する変動監視部をさらに有し、
    前記トルク指令値が予め設定された閾値を超えて減少したことを前記変動監視部が検知し、且つ電流位相制御部またはd軸電流制御部の積分制御の積分値が予め設定された閾値よりも大きい場合に、前記積分値を減少させて電圧指令値|Va|を生成することを特徴とする請求項2乃至請求項8のいずれかに記載のモータ制御装置。
  10. 電圧指令設定部が、電圧位相θvを監視する変動監視部をさらに有し、
    前記変動監視部は、前記電圧位相θvが予め設定された上限リミット値もしくはその近傍となった場合に、電流位相制御部またはd軸電流制御部の制御ゲインもしくは積分制御の積分値のいずれか一方もしくは双方を増加させることを特徴とする請求項2乃至請求項8のいずれかに記載のモータ制御装置。
  11. 電圧指令設定部が、差分ΔIdもしくは差分Δθiを監視する変動監視部をさらに有し、
    前記変動監視部は、前記差分ΔIdもしくは差分Δθiが予め設定された値を超えた場合に、電流位相制御部またはd軸電流制御部の制御ゲインを増加させることを特徴とする請求項2乃至請求項8のいずれかに記載のモータ制御装置。
  12. 電圧指令設定部が、電流位相制御部またはd軸電流制御部の出力する電圧指令値|Va|をローパスフィルタを通して電圧指令値生成部に出力することを特徴とする請求項9乃至請求項11のいずれかに記載のモータ制御装置。
  13. 電圧位相制御部がキャリア設定部をさらに有し、前記キャリア設定部は電圧位相θvと電気角と電気角速度に基づいてキャリア設定情報を生成し、前記キャリア設定情報は搬送波生成部の生成する搬送波の立ち下がりの中央位置が三相電圧指令値の立ち上がりのゼロ位置と交差し、さらに前記搬送波の周波数を前記三相電圧指令値の奇数の3の整数倍に維持することを特徴とする請求項1乃至請求項12のいずれかに記載のモータ制御装置。
  14. 電圧位相制御部が、オフセット補正部をさらに有し、
    前記オフセット補正部は、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいてd軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ生成し、電圧指令値生成部が生成したd軸電圧指令値Vd、q軸電圧指令値Vqに前記d軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ加算して制御信号生成部に出力することを特徴とする請求項1乃至請求項13のいずれかに記載のモータ制御装置。
  15. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流取得部と、
    前記PMモータの電気角を取得する角度取得部と、
    前記電気角に基づいて前記駆動電流取得部が取得した前記駆動電流をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部と、
    外部からのトルク指令値に応じた電圧位相θvと電圧指令値|Va|とを設定しd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧位相制御部と、
    前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値に変換するdq/3相変換部と、搬送波生成部とを備え、前記搬送波生成部で生成された搬送波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する制御信号生成部と、を有するモータ制御装置のモータ制御方法であって、
    前記電圧位相制御部が、
    前記トルク指令値に基づいて電圧位相θvを設定する電圧位相設定ステップと、
    所定の上限リミット値未満の領域で前記トルク指令値と略同一のトルクを出力するのに最小の電流をとる電圧指令値|Va|を取得する電圧指令設定ステップと、
    前記電圧位相θvと電圧指令値|Va|とに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成するd軸q軸電圧指令値生成ステップと、を有することを特徴とするモータ制御方法。
  16. 電圧指令設定ステップが、
    トルク指令値と略同一のトルクを出力するのに最小の電流をとるd軸電流値Id(ref)を取得するId(ref)取得ステップと、
    前記d軸電流値Id(ref)とd軸フィードバック電流値Idとの差分ΔIdを取得するΔId取得ステップと、
    前記差分ΔIdが負のときは電圧指令値|Va|を小さくし、前記差分ΔIdが正のときは電圧指令値|Va|を大きくして電圧指令値|Va|を生成する電圧指令生成ステップと、を有することを特徴とする請求項15記載のモータ制御方法。
  17. Id(ref)取得ステップが、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|に基づいてd軸電流値Id(ref)を取得することを特徴とする請求項16記載のモータ制御方法。
  18. Id(ref)取得ステップが、q軸フィードバック電流値Iq、もしくは、q軸フィードバック電流値Iqの絶対値|Iq|と対応しd軸電流値Id(ref)とq軸フィードバック電流値Iqとの比である係数K(Id/Iq)を取得し、さらに前記係数K(Id/Iq)に前記q軸フィードバック電流値Iq、もしくは、前記絶対値|Iq|を掛けて負の値とすることでd軸電流値Id(ref)を取得することを特徴とする請求項16記載のモータ制御方法。
  19. Id(ref)取得ステップが、トルク指令値と略同一のトルクを出力するのに最小の電流をとる目標電流位相θi(base)を取得し、d軸フィードバック電流値Id及びq軸フィードバック電流値Iqから求められる電流ベクトルの大きさ|Ia|もしくはq軸フィードバック電流値の絶対値|Iq|とから下記式
    Id(ref)=-|Ia|・sin(θi(base)
    もしくは下記式
    Id(ref)=-|Iq|・tan(θi(base)
    に基づいて電流値Id(ref)を取得することを特徴とする請求項16記載のモータ制御方法。
  20. Id(ref)取得ステップが、トルク指令値、もしくは、トルク指令値の絶対値に基づいてd軸電流値Id(ref)を取得することを特徴とする請求項16記載のモータ制御方法。
  21. 電圧指令設定ステップが、電流位相演算ステップと、θi減算ステップと、電流位相制御ステップと、を有し、
    前記電流位相演算ステップは、d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流ベクトルの大きさ|Ia|を取得するとともに、
    |Ia|=(Id+Iq1/2
    前記d軸フィードバック電流値Idとq軸フィードバック電流値Iqとから下記式に基づいて電流位相θiを算出し、
    θi=tan-1(-Id/Iq)
    前記電流ベクトルの大きさ|Ia|と対応しトルク指令値と略同一のトルクを出力するのに最小の電流をとる目標電流位相θi(base)を取得するとともに、
    前記θi減算ステップは、前記目標電流位相θi(base)から前記電流位相θiを引いて差分Δθiを取得し、
    前記電流位相制御ステップは、
    q軸フィードバック電流値Iqが正で且つ前記差分Δθiが正の場合に電圧指令値|Va|を小さくし、
    q軸フィードバック電流値Iqが正で且つ前記差分Δθiが負の場合に電圧指令値|Va|を大きくし、
    q軸フィードバック電流値Iqが負で且つ前記差分Δθiが負の場合に電圧指令値|Va|を小さくし、
    q軸フィードバック電流値Iqが負で且つ前記差分Δθiが正の場合に電圧指令値|Va|を大きくすることを特徴とする請求項15記載のモータ制御方法。
  22. 電圧指令設定ステップが、q軸フィードバック電流値Iqがゼロ近傍の値であるか否かを判定するq軸電流判定ステップと、q軸フィードバック電流値Iqがゼロ近傍の値であると判定された場合に電流位相制御部への入力を差分Δθiからd軸フィードバック電流値Idに切り替える入力切替ステップと、をさらに備え、
    電流位相制御ステップが、
    前記d軸フィードバック電流値Idが正の場合に電圧指令値|Va|を小さくし、
    前記d軸フィードバック電流値Idが負の場合に電圧指令値|Va|を大きくすることを特徴とする請求項21記載のモータ制御方法。
  23. 電圧指令設定ステップが、
    トルク指令値が予め設定された閾値を超えて減少することを検知する変動監視ステップと、
    前記トルク指令値が予め設定された閾値を超えて減少し且つ電流位相制御部またはd軸電流制御部の積分制御の積分値が予め設定された閾値よりも大きい場合に、前記積分値を減少させる高速応答ステップと、をさらに有することを特徴とする請求項16乃至請求項22のいずれかに記載のモータ制御方法。
  24. 電圧指令設定ステップが、
    電圧位相θvが予め設定された上限リミット値もしくはその近傍となったことを検知する変動監視ステップと、
    前記電圧位相θvが予め設定された上限リミット値もしくはその近傍となった場合に、電流位相制御部またはd軸電流制御部の制御ゲインもしくは積分制御の積分値のいずれか一方もしくは双方を増加させる高速応答ステップと、をさらに有することを特徴とする請求項16乃至請求項22のいずれかに記載のモータ制御方法。
  25. 電圧指令設定ステップが、
    差分ΔIdもしくは差分Δθiが予め設定された値を超えたことを検知する変動監視ステップと、
    前記差分ΔIdもしくは差分Δθiが予め設定された値を超えた場合に、電流位相制御部またはd軸電流制御部の制御ゲインを増加させる高速応答ステップと、をさらに有することを特徴とする請求項16乃至請求項22のいずれかに記載のモータ制御方法。
  26. 電圧指令設定ステップが、電流位相制御部またはd軸電流制御部の出力する電圧指令値|Va|をローパスフィルタを通して電圧指令値生成部に出力することを特徴とする請求項23乃至請求項25のいずれかに記載のモータ制御方法。
  27. 電圧位相制御部がキャリア設定部をさらに有し、前記キャリア設定部は電圧位相θvと電気角と電気角速度に基づいてキャリア設定情報を生成し、前記キャリア設定情報は搬送波生成部の生成する搬送波の立ち下がりの中央位置が三相電圧指令値の立ち上がりのゼロ位置と交差し、さらに前記搬送波の周波数を前記三相電圧指令値の奇数の3の整数倍に維持することを特徴とする請求項15乃至請求項26のいずれかに記載のモータ制御方法。
  28. オフセット補正ステップをさらに有し、
    前記オフセット補正ステップは、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいてd軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ生成し、電圧指令値生成部が生成したd軸電圧指令値Vd、q軸電圧指令値Vqに前記d軸補正電圧ΔVd、q軸補正電圧ΔVqをそれぞれ加算して制御信号生成部に出力することを特徴とする請求項15乃至請求項27のいずれかに記載のモータ制御方法。
PCT/JP2019/033614 2018-09-13 2019-08-28 モータ制御装置及びモータ制御方法 WO2020054407A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171090A JP7126910B2 (ja) 2018-09-13 2018-09-13 モータ制御装置及びモータ制御方法
JP2018-171090 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054407A1 true WO2020054407A1 (ja) 2020-03-19

Family

ID=69777569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033614 WO2020054407A1 (ja) 2018-09-13 2019-08-28 モータ制御装置及びモータ制御方法

Country Status (2)

Country Link
JP (1) JP7126910B2 (ja)
WO (1) WO2020054407A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542978A (zh) * 2020-12-07 2021-03-23 北京理工大学 基于双向交错并联dc-dc逆变器的电机驱动系统
WO2022044230A1 (ja) * 2020-08-27 2022-03-03 日産自動車株式会社 電動機の制御方法及び制御装置
WO2022102099A1 (ja) * 2020-11-13 2022-05-19 東芝三菱電機産業システム株式会社 電力変換器の制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514690B (zh) * 2020-08-27 2024-04-19 日产自动车株式会社 电机的控制方法及电机控制装置
CN117561452A (zh) * 2021-06-24 2024-02-13 特克特朗尼克公司 用于使用转子位置计算直交零合成驱动向量的系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239790A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 回転電機制御装置
JP2013013260A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 駆動装置および車両
JP2013027160A (ja) * 2011-07-21 2013-02-04 Toyota Motor Corp 駆動装置および電動車両
JP2014233188A (ja) * 2013-05-30 2014-12-11 カルソニックカンセイ株式会社 車両用ブラシレスモータの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239790A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 回転電機制御装置
JP2013013260A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 駆動装置および車両
JP2013027160A (ja) * 2011-07-21 2013-02-04 Toyota Motor Corp 駆動装置および電動車両
JP2014233188A (ja) * 2013-05-30 2014-12-11 カルソニックカンセイ株式会社 車両用ブラシレスモータの制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044230A1 (ja) * 2020-08-27 2022-03-03 日産自動車株式会社 電動機の制御方法及び制御装置
EP4207585A4 (en) * 2020-08-27 2023-10-11 Nissan Motor Co., Ltd. MOTOR CONTROL METHOD AND DEVICE
JP7468669B2 (ja) 2020-08-27 2024-04-16 日産自動車株式会社 電動機の制御方法及び制御装置
WO2022102099A1 (ja) * 2020-11-13 2022-05-19 東芝三菱電機産業システム株式会社 電力変換器の制御装置
JP7323066B2 (ja) 2020-11-13 2023-08-08 東芝三菱電機産業システム株式会社 電力変換器の制御装置
CN112542978A (zh) * 2020-12-07 2021-03-23 北京理工大学 基于双向交错并联dc-dc逆变器的电机驱动系统

Also Published As

Publication number Publication date
JP2020043719A (ja) 2020-03-19
JP7126910B2 (ja) 2022-08-29

Similar Documents

Publication Publication Date Title
WO2020054407A1 (ja) モータ制御装置及びモータ制御方法
KR101157732B1 (ko) 전동기의 제어 장치
JP3627683B2 (ja) モーター制御装置
KR101110515B1 (ko) 전동기의 제어 장치
JP4715576B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP5549751B1 (ja) インバータ装置、インバータ装置の制御方法、及び電動機ドライブシステム
US9543868B2 (en) Apparatus for controlling rotary electric machine
JP2000228892A (ja) 同期電動機の制御装置
US9935568B2 (en) Control apparatus of rotary electric machine
JP7094859B2 (ja) モータ制御装置及びモータ制御方法
JP5230682B2 (ja) 同期電動機の制御装置
JP2009189146A (ja) 電動モータの制御装置
US9231514B2 (en) Motor control apparatus and motor control method
JP2006254618A (ja) モータ制御装置
JP2010130844A (ja) 圧縮機モータの駆動装置及びインバータの制御方法
JP2018042315A (ja) インバータ制御装置
JP3939481B2 (ja) 交流モータの制御装置
JP2005168140A (ja) モータ制御装置及びその制御方法
JP6590602B2 (ja) モータ駆動装置、空気調和機およびプログラム
JP7211242B2 (ja) 変調方式切替装置
JP6951945B2 (ja) モータ制御装置及びモータ制御方法
JP7042568B2 (ja) モータ制御装置及びモータ制御方法
JP4526628B2 (ja) 交流モータの制御装置
JP7033973B2 (ja) モータ制御装置及びモータ制御方法
KR102263027B1 (ko) 싱글 분권 센서리스 pmsm의 임계구간 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858749

Country of ref document: EP

Kind code of ref document: A1