WO2020054269A1 - 自動変速機のロックアップ制御装置 - Google Patents

自動変速機のロックアップ制御装置 Download PDF

Info

Publication number
WO2020054269A1
WO2020054269A1 PCT/JP2019/031026 JP2019031026W WO2020054269A1 WO 2020054269 A1 WO2020054269 A1 WO 2020054269A1 JP 2019031026 W JP2019031026 W JP 2019031026W WO 2020054269 A1 WO2020054269 A1 WO 2020054269A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
lock
target
control
rotation speed
Prior art date
Application number
PCT/JP2019/031026
Other languages
English (en)
French (fr)
Inventor
旭明 王
直泰 池田
武 金田
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020546762A priority Critical patent/JP7044896B2/ja
Publication of WO2020054269A1 publication Critical patent/WO2020054269A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches

Definitions

  • FIG. 3 illustrates a lockup control device according to the first embodiment.
  • lockup is abbreviated as “LU”
  • feedforward is abbreviated as “F / F”
  • feedback is abbreviated as “F / B”.
  • the fifth differentiator 84k is provided outside the engine torque calculation area 841 and the converter torque calculation area 842.
  • the fifth differentiator 84k calculates the target LU torque Tlu * by subtracting the input torque Tin from the second differentiator 84d and the converter torque Tcnv from the second adder 84j.
  • step S3 following the determination in step S2 that the target difference rotation speed ⁇ N * ⁇ the engagement difference rotation speed target, it is determined whether or not the actual difference rotation speed ⁇ N is equal to or less than the dead zone threshold. If YES (actual rotation speed ⁇ N ⁇ dead zone threshold), the process proceeds to step S4, and if NO (actual rotation speed ⁇ N> dead zone threshold), the process proceeds to step S5.
  • the lock-up control unit 80 sets the start condition of the complete engagement control such that the target difference rotation speed ⁇ N * is equal to or less than the engagement difference rotation speed target, the actual difference rotation speed ⁇ N is equal to or less than the dead zone threshold, and the vehicle is not coasting. Give by condition. For this reason, it is possible to prevent unintentional slipping of the lock-up clutch 20 in a scene where the input torque suddenly increases, such as when the accelerator pedal is stepped up when the lock-up clutch 20 is completely engaged.
  • the lock-up clutch 20 After the lock-up clutch 20 is completely engaged, it is possible to prevent the lock-up clutch 20 from slipping when there is an input torque Tin at which the actual difference rotation speed ⁇ N exceeds the dead zone threshold. After the lock-up clutch 20 is completely engaged, even if the driving state shifts to the coasting state, it is possible to prevent the lock-up clutch 20 from slipping due to a torque change in which the input torque Tin crosses zero torque. .
  • the condition that the actual difference rotational speed ⁇ N exceeds the dead zone threshold value and the condition that the vehicle shifts to coast running are not included in the release condition.
  • the lock-up control device for an automatic transmission has been described based on the first embodiment.
  • the specific configuration is not limited to the first embodiment, and changes and additions of the design are allowed without departing from the gist of the invention according to each claim of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本発明に係るベルト式無段変速機CVTのロックアップ制御装置は、トルクコンバータ(2)と、ロックアップクラッチ(20)と、CVTコントロールユニット(8)と、を備える。CVTコントロールユニット(8)は、ロックアップクラッチ(20)の完全締結要求時、実差回転数(ΔN)と目標差回転数(ΔN*)の差回転数偏差(δ)に基づくフィードバック制御により得られる目標ロックアップトルク(Tlu*)を得る指示電流(Alu)を出力するロックアップ制御部(80)を有する。ロックアップ制御部(80)は、実差回転数(ΔN)が不感帯閾値以下になると、入力トルク(Tin)に、トルクコンバータ(2)の環境要因バラツキに応じたトルク分を上乗せする完全締結制御を行う。

Description

自動変速機のロックアップ制御装置
 本発明は、車両に搭載される自動変速機のロックアップ制御装置に関する。
 従来、ロックアップクラッチの実差回転数が目標差回転数になるようロックアップ差圧をフィードバック制御し、実差回転数が設定値以下になるとフィードフォワード制御に切り替えるロックアップ制御装置が知られている(例えば、特許文献1参照)。
 上記従来装置において、精度向上のため、ロックアップクラッチを完全締結させるまでフィードバック制御を継続することを検討する。その場合、完全締結させる際には目標差回転数を0rpmとすることになる。しかし、0rpm付近では回転センサのバラツキや通信遅れの影響を無視できないため、実差回転数を0rpmにしようとしても完全に0rpmにならず、ロックアップクラッチがスリップしてしまう。このスリップで生じる発熱により、作動油が劣化してしまう、という問題があった。
 本発明は、上記問題に着目してなされたもので、ロックアップクラッチを完全締結させる際、フィードバック制御を継続しながらも完全締結付近でロックアップクラッチがスリップしてしまうことを抑制することを目的とする。
国際公開番号WO 2017/068717 A1
 上記目的を達成するため、本発明の自動変速機のロックアップ制御装置は、トルクコンバータと、ロックアップクラッチと、変速機コントローラと、を備える。
変速機コントローラに、ロックアップクラッチの完全締結要求時、実差回転数と目標差回転数の差回転数偏差に基づくフィードバック制御により得られる目標ロックアップトルクを得る指示差圧を出力するロックアップ制御部を設ける。
ロックアップ制御部は、実差回転数が不感帯閾値以下になると、指示差圧にトルクコンバータの環境要因バラツキに応じた差圧分を上乗せする完全締結制御を行う。
 このように、実差回転数が不感帯閾値以下の領域になると、指示差圧にトルクコンバータの環境要因バラツキに応じた差圧分を上乗せするようにしている。この結果、ロックアップクラッチを完全締結させる際、フィードバック制御を継続しながらも完全締結付近でロックアップクラッチがスリップしてしまうことを抑制することができる。
実施例1の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す全体システム図である。 自動変速モードでの無段変速制御をバリエータにより実行する際に用いられるDレンジ無段変速スケジュールの一例を示す変速スケジュール図である。 実施例1のロックアップ制御装置を示す概要構成図である。 CVTコントロールユニットのロックアップ制御部を構成する各ブロックを示すブロック構成図である。 ロックアップ制御部を構成する目標算出ブロックとトルク容量演算ブロックと実現ブロックを示す詳細構成図である。 実施例1のCVTコントロールユニットのロックアップ制御部にて実行されるロックアップ制御処理の流れを示すフローチャートである。 全体のトルクバラツキの内訳と環境要因バラツキの内訳を示すバラツキ内訳図である。 エンジン回転数に対する入力トルクの関係特性において(ノミナルエンジントルク特性)と(ノミナルエンジントルク+オフセットトルク特性)と(ノミナルエンジントルク×安全率+オフセットトルク特性)の比較を示す比較特性図である。 完全締結ロックアップ制御が行われる登坂路走行シーンにおける各特性を示すタイムチャートである。
 以下、本発明の自動変速機のロックアップ制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 実施例1におけるロックアップ制御装置は、トルクコンバータと前後進切替機構とバリエータと終減速機構により構成されるベルト式無段変速機(自動変速機の一例)を搭載したエンジン車に適用したものである。以下、実施例1の構成を、「全体システム構成」、「ロックアップ制御装置の構成」、「各ブロックの詳細構成」、「ロックアップ制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す。以下、図1に基づいて、全体システム構成を説明する。
 エンジン車の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6,6と、を備えている。ここで、ベルト式無段変速機CVTは、トルクコンバータ2と前後進切替機構3とバリエータ4と終減速機構5を図外の変速機ケースに内蔵することにより構成される。
 エンジン1は、ドライバーによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクを制御可能である。このエンジン1には、スロットルバルブ開閉動作や燃料カット動作等によりトルク制御を行う出力トルク制御アクチュエータ10を有する。例えば、アクセル足離し操作によるコースト走行時、燃料カット制御が実行される。
 トルクコンバータ2は、トルク増幅機能やトルク変動吸収機能を有する流体継手による発進要素である。トルク増幅機能やトルク変動吸収機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、ポンプインペラ23と、タービンランナ24と、ステータ26と、を構成要素とする。ポンプインペラ23は、エンジン出力軸11にコンバータハウジング22を介して連結される。タービンランナ24は、トルクコンバータ出力軸21に連結される。ステータ26は、変速機ケースにワンウェイクラッチ25を介して設けられる。
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数枚のクラッチプレートによる前進クラッチ31と、複数枚のブレーキプレートによる後退ブレーキ32と、を有する。前進クラッチ31は、Dレンジ等の前進走行レンジ選択時に前進クラッチ圧Pfcにより油圧締結される。後退ブレーキ32は、Rレンジ等の後退走行レンジ選択時に後退ブレーキ圧Prbにより油圧締結される。なお、前進クラッチ31と後退ブレーキ32は、Nレンジ(ニュートラルレンジ)の選択時には、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることでいずれも解放される。
 バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、プーリベルト44と、を有し、ベルト接触径の変化により変速比(バリエータ入力回転とバリエータ出力回転の比)を無段階に変化させる無段変速機能を備える。プライマリプーリ42は、バリエータ入力軸40の同軸上に配された固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bはプライマリ圧室45に導かれるプライマリ圧Ppriによりスライド動作する。セカンダリプーリ43は、バリエータ出力軸41の同軸上に配された固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bはセカンダリ圧室46に導かれるセカンダリ圧Psecによりスライド動作する。プーリベルト44は、プライマリプーリ42のV字形状をなすシーブ面と、セカンダリプーリ43のV字形状をなすシーブ面とに掛け渡されている。このプーリベルト44は、環状リングを内から外へ多数重ね合わせた2組の積層リングと、打ち抜き板材により形成され、2組の積層リングに沿って挟み込みにより環状に積層して取り付けられた多数のエレメントにより構成されている。なお、プーリベルト44としては、プーリ進行方向に多数配列したチェーンエレメントを、プーリ軸方向に貫通するピンにより結合したチェーンタイプのベルトであっても良い。
 終減速機構5は、バリエータ出力軸41からのバリエータ出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、減速ギヤ機構として、バリエータ出力軸41に設けられたアウトプットギヤ52と、アイドラ軸50に設けられたアイドラギヤ53及びリダクションギヤ54と、デフケースの外周位置に設けられたファイナルギヤ55と、を有する。そして、差動ギヤ機構として、左右のドライブ軸51,51に介装されたディファレンシャルギヤ56を有する。
 エンジン車の制御系は、図1に示すように、油圧制御ユニット7と、CVTコントロールユニット8と、エンジンコントロールユニット9と、を備えている。電子制御系であるCVTコントロールユニット8とエンジンコントロールユニット9は、互いの情報を交換可能なCAN通信線13により接続されている。
 油圧制御ユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppri、セカンダリ圧室46に導かれるセカンダリ圧Psec、前進クラッチ31への前進クラッチ圧Pfc、後退ブレーキ32への後退ブレーキ圧Prb、等を調圧するユニットである。この油圧制御ユニット7は、走行用駆動源であるエンジン1により回転駆動されるオイルポンプ70と、オイルポンプ70からの吐出圧に基づいて各種の制御圧を調圧する油圧制御回路71と、を備える。油圧制御回路71には、ライン圧ソレノイド弁72と、プライマリ圧ソレノイド弁73と、セカンダリ圧ソレノイド弁74と、セレクトソレノイド弁75と、ロックアップ圧ソレノイド弁76と、を有する。なお、各ソレノイド弁72,73,74,75,76は、CVTコントロールユニット8から出力される制御指令値(指示電流)によって調圧動作を行う。
 ライン圧ソレノイド弁72は、CVTコントロールユニット8から出力されるライン圧指令値に応じ、オイルポンプ70からの吐出圧を、指令されたライン圧PLに調圧する。このライン圧PLは、各種の制御圧を調圧する際の元圧であり、駆動系を伝達するトルクに対してベルト滑りやクラッチ滑りを抑える油圧とされる。
 プライマリ圧ソレノイド弁73は、CVTコントロールユニット8から出力されるプライマリ圧指令値に応じ、ライン圧PLを元圧として指令されたプライマリ圧Ppriに減圧調整する。セカンダリ圧ソレノイド弁74は、CVTコントロールユニット8から出力されるセカンダリ圧指令値に応じ、ライン圧PLを元圧として指令されたセカンダリ圧Psecに減圧調整する。
 セレクトソレノイド弁75は、CVTコントロールユニット8から出力される前進クラッチ圧指令値又は後退ブレーキ圧指令値に応じ、ライン圧PLを元圧として指令された前進クラッチ圧Pfc又は後退ブレーキ圧Prbに減圧調整する。
 ロックアップ圧ソレノイド弁76は、CVTコントロールユニット8から出力される指示電流Aluに応じ、ロックアップクラッチ20を締結/スリップ締結/解放するロックアップ油圧Pluに調圧する。
 CVTコントロールユニット8は、ライン圧制御や変速制御や前後進切替制御やロックアップ制御、等を行う。ライン圧制御では、アクセル開度等に応じた目標ライン圧を得る指令値をライン圧ソレノイド弁72に出力する。変速制御では、目標変速比(目標プライマリ回転数Npri*)を決めると、決めた目標変速比(目標プライマリ回転数Npri*)を得る指令値をプライマリ圧ソレノイド弁73及びセカンダリ圧ソレノイド弁74に出力する。前後進切替制御では、選択されているレンジ位置に応じて前進クラッチ31と後退ブレーキ32の締結/解放を制御する指令値をセレクトソレノイド弁75に出力する。ロックアップ制御では、ロックアップクラッチ20を締結/スリップ締結/解放するロックアップ油圧Pluを制御する指示電流Aluをロックアップ圧ソレノイド弁76に出力する。
 CVTコントロールユニット8には、プライマリ回転センサ90、車速センサ91、セカンダリ圧センサ92、油温センサ93、インヒビタスイッチ94、ブレーキスイッチ95、タービン回転センサ96、セカンダリ回転センサ97、プライマリ圧センサ98、等からのセンサ情報やスイッチ情報が入力される。
 エンジンコントロールユニット9には、エンジン回転センサ12、アクセル開度センサ14、等からのセンサ情報が入力される。CVTコントロールユニット8は、エンジン回転情報やアクセル開度情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジン回転数Neやアクセル開度APOの情報を受け取る。さらに、エンジントルク情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジンコントロールユニット9において推定演算される実エンジントルクTeの情報を受け取る。
 図2は、Dレンジ選択時に自動変速モードでの無段変速制御をバリエータ4により実行する際に用いられるDレンジ無段変速スケジュールの一例を示す。
 「Dレンジ変速モード」は、車両運転状態に応じて変速比を自動的に無段階に変更する自動変速モードである。「Dレンジ変速モード」での変速制御は、車速VSP(車速センサ91)とアクセル開度APO(アクセル開度センサ14)により特定される図2のDレンジ無段変速スケジュール上での運転点(VSP,APO)により、目標プライマリ回転数Npri*を決める。そして、プライマリ回転センサ90からの実プライマリ回転数Npriを、目標プライマリ回転数Npri*に一致させるプーリ油圧制御により行われる。
 即ち、「Dレンジ変速モード」で用いられるDレンジ無段変速スケジュールは、図2に示すように、運転点(VSP,APO)に応じて最Low変速比と最High変速比による変速比幅の範囲内で変速比を無段階に変更するように設定されている。例えば、車速VSPが一定のときは、アクセル踏み込み操作を行うと目標プライマリ回転数Npri*が上昇してダウンシフト方向に変速し、アクセル戻し操作を行うと目標プライマリ回転数Npri*が低下してアップシフト方向に変速する。アクセル開度APOが一定のときは、車速VSPが上昇するとアップシフト方向に変速し、車速VSPが低下するとダウンシフト方向に変速する。
 [ロックアップ制御装置の構成]
 図3は、実施例1のロックアップ制御装置を示す。以下、図3に基づいてロックアップ制御装置の概要構成を説明する。なお、ロックアップを“LU”と略称し、フィードフォワードを“F/F”と略称し、フィードバックを“F/B”と略称する。
 ロックアップ制御装置が適用される駆動系は、図3に示すように、エンジン1(走行用駆動源)と、ロックアップクラッチ20を有するトルクコンバータ2と、前後進切替機構3と、バリエータ4(変速機構)と、終減速機構5と、駆動輪6と、を備えている。
 ロックアップ制御装置が適用される制御系は、図3に示すように、CVTコントロールユニット8と、エンジンコントロールユニット9と、ロックアップ圧ソレノイド弁76と、を備えている。CVTコントロールユニット8には、ロックアップクラッチ20のクラッチ状態を、様々な要求に応じて締結状態/スリップ締結状態/解放状態とするロックアップ制御部80が設けられている。
 ロックアップ制御部80でのロックアップ制御は、運転者の意図する目標駆動力Fd*を推定し、駆動輪6へ出力される実駆動力Fdが目標駆動力Fd*になるようにロックアップクラッチ20のスリップ制御を行う点を特徴とする。その際、スリップ制御におけるコントロール性を高めるために、目標駆動力Fd*を目標エンジン回転数Ne*に変換する。この目標エンジン回転数Ne*に実エンジン回転数Neを収束させる制御(F/F制御+F/B制御)を実行することでコンバータトルクTcnvを演算する。そして、図3に示すように、エンジン1からトルクコンバータ2へ入力される入力トルクTinは、Tin=Tcnv+Tluという関係式が成り立つ。よって、入力トルクTinとコンバータトルクTcnvを演算することによりロックアップクラッチ20の目標LUトルクTlu*を算出し、目標LUトルクTlu*を得る指示電流Aluをロックアップ圧ソレノイド弁76に出力する。このように、目標エンジン回転数Ne*を得るようにスリップ制御(トルクコンバータ2のトルク比制御)を行うことで、ロックアップクラッチ20のスリップ制御中において、運転者の意図する目標駆動力Fd*を実現することができる。
 図4は、CVTコントロールユニット8のロックアップ制御部80を構成する各ブロックを示す。以下、図4に基づいてロックアップ制御部80のブロック構成を説明する。
 ロックアップ制御部80は、図4に示すように、駆動力デマンドブロック81と、要求調停ブロック82と、目標算出ブロック83と、トルク容量演算ブロック84と、実現ブロック85と、を有する。
 駆動力デマンドブロック81は、アクセル開度APOや車速VSPに基づいて目標駆動力Fd*を演算し、エンジン全性能特性を用いて目標駆動力Fd*を目標エンジン回転数Ne*に変換することで、目標エンジン回転数Ne*のプロファイルを演算する。そして、ロックアップクラッチ20の完全解放中、クラッチスリップ制御により目標エンジン回転数Ne*のプロファイルを実現するときに締結要求フラグを出力する。一方、ロックアップクラッチ20の完全締結中、クラッチスリップ制御により目標エンジン回転数Ne*のプロファイルを実現するときに解放要求フラグを出力する。
 要求調停ブロック82は、駆動力デマンドブロック81からの締結要求フラグと解放要求フラグを入力し、各種要求からロックアップ要求を演算し、要求を調停して優先順位を決める。各種要求としては、基本要求、DP要求(DPはDriving pleasureの略)、運転性要求、保護要求、FS要求(FSは「Fail Safe」の略)、技術限界要求、ほかのシステム要求、コーストスリップ要求、等がある。
 目標算出ブロック83は、要求調停ブロック82からの即解放要求フラグ・解放要求フラグ・スリップ要求フラグ・締結要求フラグを入力し、これらのLU要求から差回転数目標ΔN*を演算する。ここで、差回転数目標ΔN*には、即解放差回転数目標、解放差回転数目標、スリップ差回転数目標、締結差回転数目標がある。なお、目標算出ブロック83は、駆動力デマンドブロック81により演算された目標エンジン回転数Ne*を入力する。
 トルク容量演算ブロック84は、目標算出ブロック83から目標差回転数ΔN*と先読みタービン回転数Ntpreと実エンジン回転数Neを入力する。そして、エンジントルク演算(入力トルクTinの演算)とコンバータトルクTcnvの演算(F/F制御+F/B制御)によって目標差回転数ΔN*を実現する指示トルク(目標LUトルクTlu*)を演算する。
 実現ブロック85は、トルク容量演算ブロック84から目標LUトルクTlu*を入力し、目標ロックアップトルクTlu*をロックアップ油圧Pluに変換し、さらに、ロックアップ油圧Pluを指示電流Aluに変換する。
 [各ブロックの詳細構成]
 図5は、ロックアップ制御部80を構成する目標算出ブロック83とトルク容量演算ブロック84と実現ブロック85を示す。以下、図5に基づいて各ブロック83,84,85の詳細構成を説明する。
 目標算出ブロック83は、先読みタービン回転数算出器83aと、第1差分器83bを有する。
 先読みタービン回転数算出器83aは、バリエータ4の先読み変速比とセカンダリ回転センサ97からのセカンダリ回転数Nsecを入力し、ロックアップ油圧制御での油圧応答遅れ分を補償する先読みタービン回転数Ntpreを算出する。なお、バリエータ4の先読み変速比は、そのときの変速比と変速比進行速度と油圧応答遅れ時間を用い、油圧応答遅れ時間を経過したときに到達するであろうと推定される変速比とする。
 第1差分器83bは、駆動力デマンドブロック81により算出された目標エンジン回転数Ne*と先読みタービン回転数算出器83aにより算出された先読みタービン回転数Ntpreの差により目標差回転数ΔN*を算出する。
 トルク容量演算ブロック84は、エンジントルク演算エリア841と、コンバータトルク演算エリア842と、第5差分器84kと、を備える。
 エンジントルク演算エリア841は、エンジントルク乗算器84aと、第1加算器84bと、選択器84cと、第2差分器84dとを有する。
 エンジントルク乗算器84aは、エンジントルクTeとトルク安全率を掛け合わせることで完全締結制御時においてエンジントルクTeのバラツキ分を吸収するエンジントルクTe1を算出する。なお、現時点のエンジントルクTeの情報は、エンジンコントロールユニット9から取得する。
 第1加算器84bは、エンジントルク乗算器84aからのエンジントルクTe1とオフセットトルク(固定値)を加算することで、油圧バラツキ分や回転センサのバラツキ分等によるその他のバラツキ分を吸収するエンジントルクTe2を算出する。
 選択器84cは、完全締結制御許可フラグを入力し、完全締結制御許可フラグ=0のときは演算用エンジントルクTecとしてエンジントルクTeを選択し、完全締結制御許可フラグ=1のときは演算用エンジントルクTecとしてエンジントルクTe2を選択する。
 第2差分器84dは、選択器84cにより選択された演算用エンジントルクTecからイナーシャトルクTiとオイルポンプロストルクToを差し引くことにより入力トルクTin(=Tec-Ti-To)を算出する。
 コンバータトルク演算エリア842は、F/F補償器84eと、第3差分器84fと、第4差分器84gと、F/B補償器84hと、最小値選択器84iと、第2加算器84jとを有する。
 F/F補償器84eは、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)を入力し、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出する。例えば、完全締結制御時においては、目標差回転数ΔN*を締結差回転数目標に収束させるコンバータトルクF/F補償分Tcnv_ffを算出する。
 第3差分器84fは、エンジン回転センサ12からの実エンジン回転数Neと、先読みタービン回転数算出器83aにより算出された先読みタービン回転数Ntpreを入力する。そして、実エンジン回転数Neと先読みタービン回転数Ntpreの差により実差回転数ΔNを算出する。
 第4差分器84gは、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)と、第3差分器84fからの実差回転数ΔN(=実スリップ回転数)を入力する。そして、目標差回転数ΔN*と実差回転数ΔNの差により差回転数偏差δを算出する。
 F/B補償器84hは、第4差分器84gからの差回転数偏差δを入力し、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を、PIフィードバック制御(P:比例、I:積分)により算出する。なお、F/B補償器84hは、要求調停ブロック82にてコーストスリップ制御の開始条件の成立によりコーストスリップ要求があると、それまでのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。
 最小値選択器84iは、F/B補償器84hからのコンバータトルクF/B補償分計算値Tcnv_fb(c)と、コンバータトルクF/B補償分の上限トルク値Tcnv_maxを入力する。そして、最小値選択によりコンバータトルクF/B補償分Tcnv_fbを出力する。
 ここで、コンバータトルクF/B補償分の上限トルク値Tcnv_maxは、
Tcnv_max=Tin-Tcnv_ff-K(K:固定値)  …(1)
であらわされる式(1)、つまり、入力トルクTinとコンバータトルクF/F補償分Tcnv_ffに応じた可変トルク値で与える。なお、固定値Kは、ロックアップクラッチ20のスリップ締結シーンのときに目標LUトルクTlu*の上昇を促す上限トルク値Tcnv_maxになるように設定する。
 第2加算器84jは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算し、コンバータトルクTcnvを算出する。
 第5差分器84kは、エンジントルク演算エリア841とコンバータトルク演算エリア842の外部に有する。この第5差分器84kは、第2差分器84dからの入力トルクTinと、第2加算器84jからのコンバータトルクTcnvを差し引いて目標LUトルクTlu*を算出する。
 実現ブロック85は、トルク→油圧変換器85aと油圧→電流変換器85bを有する。トルク→油圧変換器85aは、トルク容量演算ブロック84から入力される目標LUトルクTlu*をLU油圧Pluに変換する。油圧→電流変換器85bは、トルク→油圧変換器85aから入力されたLU油圧Pluを指示電流Aluに変換する。
 [ロックアップ制御処理構成]
 図6は、実施例1のCVTコントロールユニット8のロックアップ制御部80にて実行されるロックアップ制御処理の流れを示す。以下、図6の各ステップについて説明する。なお、初期設定において完全締結制御許可フラグ=0である。
 ステップS1では、スタート、或いは、S5でのタイマー値クリア、或いは、S7でのタイマー値<所定値であるとの判断に続き、通常ロックアップ制御を実行し、ステップS2へ進む。
 ここで、通常ロックアップ制御とは、完全締結制御許可フラグ=0であり、エンジントルクTeからイナーシャトルクTiとオイルポンプロストルクToを差し引くことにより入力トルクTinを算出するロックアップ制御のことをいう。
 ステップS2では、S1での通常ロックアップ制御の実行に続き、目標差回転数ΔN*が締結差回転数目標以下であるか否かを判断する。YES(目標差回転数ΔN*≦締結差回転数目標)の場合はステップS3へ進み、NO(目標差回転数ΔN*>締結差回転数目標)の場合はステップS5へ進む。
 ここで、「締結差回転数目標」とは、ロックアップクラッチ20の完全締結要求があるとき、フィードフォワード補償における目標差回転数ΔN*の到達目標であり、0<締結差回転数目標<不感帯閾値に設定される。
 ステップS3では、S2での目標差回転数ΔN*≦締結差回転数目標であるとの判断に続き、実差回転数ΔNが不感帯閾値以下であるか否かを判断する。YES(実差回転数ΔN≦不感帯閾値)の場合はステップS4へ進み、NO(実差回転数ΔN>不感帯閾値)の場合はステップS5へ進む。
 ここで、「不感帯閾値」とは、回転センサ情報に基づいて算出される実差回転数ΔNの低回転数域であって、回転センサによる検出精度を確保できる下限域の差回転数値に設定される。なお、実差回転数ΔNは、エンジン回転センサ12からのエンジン回転数Neやセカンダリ回転センサ97からのセカンダリ回転数Nsecを用いて算出される。
 ステップS4では、S3での実差回転数ΔN≦不感帯閾値であるとの判断に続き、コースト状態ではないか否かを判断する。YES(コースト状態ではない)の場合はステップS6へ進み、NO(コースト状態である)の場合はステップS5へ進む。
 例えば、アイドルフラグ=0である場合にはコースト状態ではないと判断し、アイドルフラグ=1である場合にはコースト状態であると判断する。なお、コースト状態ではないとは、アクセル踏み込み操作によるドライブ走行状態をいい、コースト状態であるとは、アクセル足離し操作による惰性走行状態をいう。
 ステップS5では、S2での目標差回転数ΔN*>締結差回転数目標であるとの判断、或いは、S3での実差回転数ΔN>不感帯閾値であるとの判断、或いは、S4でのコースト状態であるとの判断に続き、タイマー値をクリアし、ステップS1へ戻る。
 ステップS6では、S4でのコースト状態ではないとの判断に続き、タイマー値をカウントし、ステップS7へ進む。
 ステップS7では、S6でのタイマー値のカウントに続き、タイマー値が所定値以上であるか否かを判断する。YES(タイマー値≧所定値)の場合はステップS8へ進み、NO(タイマー値<所定値)の場合はステップS1へ戻る。
 ここで、「所定値」は、ロックアップクラッチ20をガチ掴みする完全締結制御を許可するにあたり、S2とS3とS4による制御開始条件の成立が継続する判定時間として設定される。
 ステップS8では、S7でのタイマー値≧所定値であるとの判断に続き、完全締結制御許可フラグを、完全締結制御許可フラグ=1にセットし、ステップS9へ進む。
 ステップS9では、S8での完全締結制御許可フラグ=1、S10での解除条件不成立であるとの判断に続き、完全締結ロックアップ制御を実行し、ステップS10へ進む。
 ここで、完全締結ロックアップ制御とは、完全締結制御許可フラグ=1であり、エンジントルクTe2(>Te)からイナーシャトルクTiとオイルポンプロストルクToを差し引くことにより入力トルクTinを算出するロックアップ制御のことをいう。
 ステップS10では、S9での完全締結ロックアップ制御の実行に続き、完全締結ロックアップ制御の解除条件が成立したか否かを判断する。YES(解除条件成立)の場合はステップS11へ進み、NO(解除条件不成立)の場合はステップS9へ戻る。
 ここで、「完全締結ロックアップ制御の解除条件」は、完全締結ロックアップ制御の開始条件が3つの条件で与えられたのに対し、目標差回転数ΔN*>締結差回転数目標という1つの条件のみで与えられる。
 ステップS11では、S10での解除条件成立であるとの判断に続き、完全締結制御許可フラグを、完全締結制御許可フラグ=1から完全締結制御許可フラグ=0にリセットし、リターンへ進む。
 次に、実施例1の作用を、「現状におけるロックアップ制御の課題」、「課題解決方策」、「入力トルクの補正量設定作用」、「完全締結ロックアップ制御作用」に分けて説明する。
 [現状におけるロックアップ制御の課題]
 現状におけるロックアップ制御は、目標差回転数をベースとし、実差回転数と見比べて差回転数F/B制御をして目標LUトルクを演算し、目標LUトルクをLU差圧指示に変換することで行っている。ロックアップクラッチの完全締結は、目標差回転数を“0”に設定しており、入力トルクに対して、LU容量をぎりぎりにしている。しかし、現状のロックアップ制御では、下記の問題を有する。
 (a) 完全LU締結時の差回転数0rpmとするF/B制御の場合、差回転数=0rpmが担保されない。即ち、定常時目標差回転数0rpmで制御するが、回転センサのバラツキ、通信遅れにより実差回転数が完全に0rpmにならない。そして、ある差回転数以下になるとF/B制御を停止する。このため、よって、F/B制御を停止する差回転数の不感帯領域では、ロックアップクラッチが微小スリップする可能性が大になる。
 (b) ドライブ側(エンジントルクのバラツキ、イナーシャ等)の入力トルク変動に対して、安全率を設けていない。よって、エンジントルクのバラツキにより入力トルクが変動すると、油圧F/B制御の応答遅れにより、ロックアップクラッチに微小スリップが発生する懸念ある。
 このように、現状における差回転数F/B制御は、ロックアップクラッチの完全締結要求時、完全締結領域においてスリップの頻繁な発生を許容することになる。この結果、スリップ発熱で摩擦材周辺温度が上昇することによる変速機作動油(ATF)の酸化が進む。変速機作動油が酸化すると不純物が発生する。不純物が発生すると、摩擦材が目詰まりを生じ、摩擦材のμ-V特性が変化してジャダーが発生しやすくなる。
 [課題解決方策]
 上記現状におけるロックアップ制御の課題に対し、本発明者等は、ロックアップユニットの“バラツキ”に着目し、トルクバラツキの内訳を分析した。
 全体のトルクバラツキは、図7に示すように、ユニット個体バラツキと環境要因バラツキとの和であらわされる。このうち、「ユニット個体バラツキ」は、差回転数F/B制御より吸収されるため、ユニット個体バラツキに対して補正する必要はない。しかし、「環境要因バラツキ」は、差回転数F/B制御より吸収されないため、バラツキを定量化して補正する必要がある。
 そこで、課題解決方策として、CVTコントロールユニット8に、ロックアップクラッチ20の完全締結要求時、実差回転数ΔNと目標差回転数ΔN*の差回転数偏差δに基づくF/B制御により得られる目標ロックアップトルクTlu*を得る指示差圧(LU油圧Plu)を出力するロックアップ制御部80を設ける。ロックアップ制御部80は、実差回転数ΔNが不感帯閾値以下になると、指示差圧(LU油圧Plu)にトルクコンバータ2の環境要因バラツキに応じた差圧分を上乗せする完全締結制御を行う方策を採用した。
 即ち、完全締結要求がある通常ロックアップ制御中、目標差回転数条件と実差回転数条件とドライブ状態条件による3つの開始条件が成立すると、図6のフローチャートにおいて、S1→S2→S3→S4→S6→S7へと進む。そして、S7でタイマー値<所定値と判断されている間は、S1→S2→S3→S4→S6→S7へと進む流れが繰り返される。
 そして、3つの開始条件成立している状態が継続し、S7でタイマー値≧所定値と判断されると、S7からS8→S9→S10へ進み、S8では完全締結制御許可フラグがセットされる。そして、S10で解除条件不成立と判断されている間は、S9→S10へ進む流れが繰り返され、S9では、目標ロックアップトルクTlu*にトルクコンバータ2の環境要因バラツキに応じたトルク分を上乗せする完全締結ロックアップ制御が実行される。
 このように、実差回転数ΔNが不感帯閾値以下の領域になると、目標ロックアップトルクTlu*にトルクコンバータ2の環境要因バラツキに応じたトルク分を上乗せするようにしている。このため、ロックアップクラッチ20を完全締結させる際、F/B制御を継続しながらも完全締結付近でロックアップクラッチ20がスリップしてしまうことを抑制することができる。
 よって、ロックアップクラッチ20のスリップ発熱で摩擦材周辺温度が上昇することによる変速機作動油(ATF)の酸化が進むことがなく、不純物の発生により摩擦材が目詰まりを生じることもない。この結果、摩擦材のμ-V特性が変化してジャダーが発生しやすくなることも防止することができる。
 [入力トルクの補正量設定作用]
 「環境要因バラツキ」について、その内訳をさらに分析すると、図7に示すように、エンジンのトルクバラツキと、その他のバラツキ(LU油圧、O/Pロストルク、SSG、イナーシャ、回転センサ等)と、の和であらわされる。
 「環境要因バラツキ」への対策を検討すると、単純な対策としては、「環境要因バラツキ」を1つのバラツキとして捉え、バラツキ分をオフセット補正する対策となる。この場合、エンジントルクの大きさとの比例関係があるエンジンのトルクバラツキが反映されないオフセット補正量になってしまう。
 例えば、「環境要因バラツキ」を油圧バラツキ最大値(エンジントルクバラツキ含む)とすると、図8の入力トルク特性Tin(B)に示すように、エンジントルク(ノミナル値)による入力トルク特性Tin(A)よりオフセット補正量だけ高いロックアップトルクにすることになる。この場合、オフセット補正量が固定値で与えられるため、エンジントルクの変動が大きいと、油圧バラツキ最大値を超えることになり、完全締結領域において、ロックアップクラッチにスリップが発生する懸念が残る。
 これに対し、環境要因バラツキの内訳分析による2つのバラツキは、下記のようにバラツキ内容が異なる。
(a) エンジン1のトルクバラツキは、エンジントルクTeとの比例関係があるため、トルク安全率によりゲイン補正すべきである。
(b) その他のバラツキ(LU油圧、O/Pロストルク、SSG、イナーシャ、回転センサ等)のバラツキはゲイン関係が小さいため、オフセット補正すべきである。
 よって、「環境要因バラツキ」については、エンジントルクバラツキに対してゲイン補正とする分と、エンジントルクバラツキ以外のバラツキに対してオフセット補正とする分と、を加算する対策とした。
 このように、「環境要因バラツキ」をゲイン補正によるエンジントルクバラツキ分と、オフセット補正によるその他のバラツキ分との和により与えると、図8の入力トルク特性Tin(C)に示すようになる。つまり、入力トルク特性Tin(C)は、入力トルク特性Tin(B)より少し上回るようなロックアップトルクになるし、エンジントルクバラツキを反映し、エンジントルクの大きさに応じた可変の補正量になる。このため、完全締結領域において、アクセル踏み増し操作等によりエンジントルクが増大するような場合であっても、「環境要因バラツキ」に対する上乗せ補正量が適切なものとなり、ロックアップクラッチ20にスリップが発生することが有効に抑えられる。
 [完全締結ロックアップ制御作用]
 図9は、完全締結ロックアップ制御が行われる登坂路走行シーンにおける各特性を示す。以下、図9に基づいて完全締結ロックアップ制御作用を説明する。
 登坂路走行の開始時、時刻t1にてブレーキOFF操作をし、その直後の時刻t2にてアクセルON操作をすると時刻t2にて完全締結要求が出される。
 よって、時刻t2からそれまで解放されていたロックアップクラッチ20の締結制御が開始される。LU油圧LUPRS(=Plu)の初期立ち上げを開始し、エンジントルクENGTRQ(=Te)の上昇にしたがって目標LUトルクLUTRQTGT(=目標LUトルクTlu*)が上昇するのに応じてLU油圧LUPRSを上昇させる制御が実行される。
 時刻t3になって目標差回転数ΔN*≦締結差回転数目標、かつ、実差回転数ΔN≦不感帯閾値、かつ、非コースト状態であるという完全締結制御の開始条件が成立し、時刻t3から所定時間が経過した時刻t4になると、完全締結制御が開始される。
 つまり、時刻t4から完全締結制御の解除条件が成立する時刻t5までは、実スリップ回転数SlipREV(=実差回転数)の変動にかかわらず、目標LUトルクLUTRQTGTに補正LUトルク分が上乗せされ、LU油圧LUPRSに補正LU油圧分が上乗せされる。
 時刻t5の直前にて目標差回転数ΔN*が、締結差回転数目標からスリップ差回転数目標に切り替えられると、時刻t5において、目標差回転数ΔN*>締結差回転数目標になり、完全締結制御の解除条件が成立する。完全締結制御の解除条件が成立すると、上乗せされ補正LUトルク分と補正LU油圧分がゼロとされ、実スリップ回転数SlipREVを目標スリップ回転数に一致させるフィードフォワード補償とフィードバック補償により、目標LUトルクLUTRQTGTとLU油圧LUPRSが制御される。
 時刻t6にて実スリップ回転数SlipREVが目標スリップ回転数に近づき、さらに、時刻t7にて実スリップ回転数SlipREVが目標スリップ回転数に近づき、時刻t7にて実スリップ回転数SlipREVが目標スリップ回転数に一致する。よって、時刻t7以降は、ロックアップクラッチ20のスリップ制御を維持し、登坂路での走行駆動力を出すようにする。
 このように、ロックアップクラッチ20が完全締結域に達するまでの実差回転数>不感帯閾値の間は、F/B制御より、入力トルクTinに追従するロックアップクラッチ20の締結制御が実行される。このように、実差回転数F/B制御とすることで、ユニット個体バラツキを吸収できると共に、LUトルクバラツキや油圧バラツキが取れる。
 ロックアップクラッチ20が完全締結域に達して実差回転数>不感帯閾値となり、完全締結制御が開始されると、入力トルクTinに環境要因バラツキのトルク分を上乗せする入力トルク盛りが実行される。このため、図9の矢印Aの枠内特性に示すように、エンジン回転数Neとタービン回転数Ntが一致し、ロックアップクラッチ20の微小すべりがなくなる。このため、図9に示すようなアクセル踏み込み操作による登坂路走行シーンやアクセル踏み増し等のトルク急増シーンにおいて、意図しないロックアップクラッチ20のスリップを無くすことができる。
 以上説明したように、実施例1のベルト式無段変速機CVTのロックアップ制御装置にあっては、下記に列挙する効果が得られる。
 (1) 走行用駆動源(エンジン1)と変速機構(バリエータ4)との間に介装されるトルクコンバータ2と、
トルクコンバータ2に有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチ20と、
ロックアップクラッチ20の締結/スリップ/解放の制御を行う変速機コントローラ(CVTコントロールユニット8)と、を備え、
変速機コントローラ(CVTコントロールユニット8)に、ロックアップクラッチ20の完全締結要求時、実差回転数ΔNと目標差回転数ΔN*の差回転数偏差δに基づくフィードバック制御により得られる目標ロックアップトルクTlu*を得る指示差圧(LU油圧Plu)を出力するロックアップ制御部80を設け、
ロックアップ制御部80は、実差回転数ΔNが不感帯閾値以下になると、指示差圧(入力トルクTin)に、トルクコンバータ2の環境要因バラツキに応じた差圧分(トルク分)を上乗せする完全締結制御を行う。
 このため、ロックアップクラッチ20を完全締結させる際、フィードバック制御を継続しながらも完全締結付近でロックアップクラッチ20がスリップしてしまうことを抑制することができる。
即ち、実差回転数Δnが不感帯閾値以下の領域になると、指示差圧(入力トルクTin)にトルクコンバータ2の環境要因バラツキに応じた差圧分(トルク分)を上乗せするようにしている。
 (2) ロックアップ制御部80は、環境要因バラツキを、走行用駆動源(エンジン1)の走行用駆動源トルク(エンジントルク)に比例する走行用駆動源トルクバラツキ(エンジントルクバラツキ)と、その他のバラツキとに分け、
環境要因バラツキに応じた差圧分を、走行用駆動源トルク(エンジントルク)に安全率を掛けて得られる走行用駆動源トルクバラツキ分(エンジントルクバラツキ分)と、オフセット値として与えるその他のバラツキ分との和とする。
 このため、完全締結制御において、環境要因バラツキに応じて上乗せする差圧分(トルク分)を、走行用駆動源トルク(エンジントルク)に比例する走行用駆動源トルクバラツキ(エンジントルクバラツキ)に応じて適切に与えることができる。
即ち、環境要因バラツキに応じて上乗せする差圧分を、全てオフセット値で与える場合、走行用駆動源トルク(エンジントルク)が増大する場合に上乗せ差圧分が不足する懸念がある。これに対し、走行用駆動源トルク(エンジントルク)のゲイン補正分により上乗せ差圧分の不足が解消される。
 (3) ロックアップ制御部80は、トルクコンバータ2への入力トルクTinを演算し、目標差回転数ΔN*に基づくフィードフォワード補償と差回転数偏差δに基づくフィードバック補償によりコンバータトルクTcnvを演算し、入力トルクTinからコンバータトルクTcnvを差し引いて演算される目標ロックアップトルクTlu*を得る指示差圧(LU油圧Plu)を出力し、
トルクコンバータ2の環境要因バラツキに応じた差圧分を、トルクコンバータ2への入力トルクTinを演算するときに環境要因バラツキに応じたトルク分として上乗せする。
 このため、完全締結制御において、環境要因バラツキに応じた上乗せ分として、精度の良い上乗せトルク分を、目標ロックアップトルクTlu*や指示差圧(LU油圧Plu)や指示電流Aluに反映させることができる。
即ち、環境要因バラツキに応じた上乗せ分は、結果系の目標ロックアップトルクTlu*や指示差圧(LU油圧Plu)や指示電流Aluに加算することもできる。しかし、環境要因バラツキに応じた上乗せ分そのものが、走行用駆動源トルク(エンジントルク)に安全率を掛けて得られる走行用駆動源トルクバラツキ分(エンジントルクバラツキ分)を含む。よって、走行用駆動源トルク(エンジントルク)を扱うトルクコンバータ2への入力トルクTinの演算において、環境要因バラツキに応じたトルク分として上乗せする方が、精度の良いトルク分を上乗せすることができる。
 (4) ロックアップ制御部80は、ドライバーが要求する目標駆動力Fd*を走行用駆動源(エンジン1)の目標駆動源回転数(目標エンジン回転数Ne*)に変換し、
フィードフォワード補償の入力情報である目標差回転数ΔN*を、目標駆動源回転数(目標エンジン回転数Ne*)とタービン回転数Ntの差分により演算し、
完全締結制御でのフィードフォワード補償は、ロックアップクラッチ20の完全締結要求時、目標差回転数ΔN*が締結差回転数目標に収束する制御を行う。
 このため、ロックアップクラッチ20の解放からの完全締結要求時、締結開始後から完全締結領域までのスリップ制御中において、運転者の意図する目標駆動力Fd*を実現することができる。
即ち、ロックアップクラッチ20の解放からの完全締結要求時、締結開始後から完全締結領域までのスリップ制御中、駆動力デマンドによるロックアップ制御が実行される。
 (5) ロックアップ制御部80は、完全締結制御の開始条件を、目標差回転数ΔN*が締結差回転数目標以下、かつ、実差回転数ΔNが不感帯閾値以下、かつ、非コースト走行という条件により与える。
 このため、ロックアップクラッチ20が完全締結状態でアクセル踏み増し等の入力トルク急増シーンにおいて、意図しないロックアップクラッチ20のスリップを防止することができる。
 (6) ロックアップ制御部80は、完全締結制御の解除条件を、目標差回転数ΔN*が締結差回転数目標を超えたという条件のみにより与える。
 このため、ロックアップクラッチ20が完全締結状態となった後、実差回転数ΔNが不感帯閾値を超える入力トルクTinがあったときにロックアップクラッチ20がスリップするのを防止することができる。ロックアップクラッチ20が完全締結状態となった後、ドライブ走行状態からコースト走行状態に移行しても、入力トルクTinがゼロトルクを跨ぐトルク変化によりロックアップクラッチ20がスリップするのを防止することができる。このように、開始条件のうち、実差回転数ΔNが不感帯閾値を超えるという条件と、コースト走行への移行という条件を解除条件に含めていない。即ち、ロックアップクラッチ20が完全締結状態となった後、キックダウン操作が介入してもスパイクトルクが入力してもコースト走行状態に移行しても、完全締結状態を維持してスリップさせたくないという要求があることによる。
 以上、本発明の自動変速機のロックアップ制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、ロックアップ制御部80として、実差回転数ΔNが不感帯閾値以下になると、「入力トルクTin」に、トルクコンバータ2の環境要因バラツキに応じたトルク分を上乗せする完全締結制御を行う例を示した。しかし、ロックアップ制御部としては、「目標ロックアップトルクTlu*」に、トルクコンバータ2の環境要因バラツキに応じたトルク分を上乗せする完全締結制御を行う例としても良い。また、「LU油圧Plu」に、トルクコンバータ2の環境要因バラツキに応じた差圧分を上乗せする完全締結制御を行う例としても良い。また、「指示電流Alu」に、トルクコンバータ2の環境要因バラツキに応じた指示電流分を上乗せする完全締結制御を行う例としても良い。
 実施例1では、ロックアップクラッチ20のスリップ制御として、運転者の意図する目標駆動力Fd*を実現する制御を行う例を示した。しかし、ロックアップクラッチのスリップ制御としては、先行技術の公報に記載されているように、目標スリップ回転数を決めてフィードバック制御を行うような例であっても良い。
 実施例1では、本発明のロックアップ制御装置を、自動変速機としてベルト式無段変速機CVTを搭載したエンジン車に適用する例を示した。しかし、本発明のロックアップ制御装置は、自動変速機として、ステップATと呼ばれる有段変速機を搭載した車両や副変速機付き無段変速機を搭載した車両等に適用しても良い。また、適用される車両としても、エンジン車に限らず、走行用駆動源にエンジンとモータを搭載したハイブリッド車、走行用駆動源にモータを搭載した電気自動車等に対しても適用できる。

Claims (6)

  1.  走行用駆動源と変速機構との間に介装されるトルクコンバータと、
     前記トルクコンバータに有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチと、
     前記ロックアップクラッチの締結/スリップ/解放の制御を行う変速機コントローラと、を備え、
     前記変速機コントローラに、前記ロックアップクラッチの完全締結要求時、実差回転数と目標差回転数の差回転数偏差に基づくフィードバック制御により得られる目標ロックアップトルクを得る指示差圧を出力するロックアップ制御部を設け、
     前記ロックアップ制御部は、前記実差回転数が不感帯閾値以下になると、前記指示差圧に、前記トルクコンバータの環境要因バラツキに応じた差圧分を上乗せする完全締結制御を行う、
     自動変速機のロックアップ制御装置。
  2.  請求項1に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、前記環境要因バラツキを、前記走行用駆動源の走行用駆動源トルクに比例する走行用駆動源トルクバラツキと、その他のバラツキとに分け、
     前記環境要因バラツキに応じた差圧分を、前記走行用駆動源トルクに安全率を掛けて得られる走行用駆動源トルクバラツキ分と、オフセット値として与えるその他のバラツキ分との和とする、
     自動変速機のロックアップ制御装置。
  3.  請求項2に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、前記トルクコンバータへの入力トルクを演算し、前記目標差回転数に基づくフィードフォワード補償と前記差回転数偏差に基づくフィードバック補償によりコンバータトルクを演算し、前記入力トルクから前記コンバータトルクを差し引いて演算される目標ロックアップトルクを得る指示差圧を出力し、
     前記トルクコンバータの環境要因バラツキに応じた差圧分を、前記トルクコンバータへの入力トルクを演算するときに前記環境要因バラツキに応じたトルク分として上乗せする、
     自動変速機のロックアップ制御装置。
  4.  請求項3に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、ドライバーが要求する目標駆動力を前記走行用駆動源の目標駆動源回転数に変換し、
     前記フィードフォワード補償の入力情報である前記目標差回転数を、前記目標駆動源回転数とタービン回転数の差分により演算し、
     前記完全締結制御での前記フィードフォワード補償は、前記ロックアップクラッチの完全締結要求時、前記目標差回転数が締結差回転数目標に収束する制御を行う、
     自動変速機のロックアップ制御装置。
  5.  請求項4に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、前記完全締結制御の開始条件を、前記目標差回転数が前記締結差回転数目標以下、かつ、前記実差回転数が不感帯閾値以下、かつ、非コースト走行という条件により与える、
     自動変速機のロックアップ制御装置。
  6.  請求項5に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、前記完全締結制御の解除条件を、前記目標差回転数が前記締結差回転数目標を超えたという条件のみにより与える、
     自動変速機のロックアップ制御装置。
PCT/JP2019/031026 2018-09-10 2019-08-07 自動変速機のロックアップ制御装置 WO2020054269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546762A JP7044896B2 (ja) 2018-09-10 2019-08-07 自動変速機のロックアップ制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168567 2018-09-10
JP2018-168567 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054269A1 true WO2020054269A1 (ja) 2020-03-19

Family

ID=69777261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031026 WO2020054269A1 (ja) 2018-09-10 2019-08-07 自動変速機のロックアップ制御装置

Country Status (2)

Country Link
JP (1) JP7044896B2 (ja)
WO (1) WO2020054269A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115811061A (zh) * 2023-02-08 2023-03-17 华电湖北发电有限公司武昌热电分公司 燃机一次调频调节方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396758A (ja) * 1989-09-08 1991-04-22 Jatco Corp ロックアップクラッチの油圧制御装置
WO2016158076A1 (ja) * 2015-03-30 2016-10-06 ジヤトコ株式会社 自動変速機の制御装置および制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396758A (ja) * 1989-09-08 1991-04-22 Jatco Corp ロックアップクラッチの油圧制御装置
WO2016158076A1 (ja) * 2015-03-30 2016-10-06 ジヤトコ株式会社 自動変速機の制御装置および制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115811061A (zh) * 2023-02-08 2023-03-17 华电湖北发电有限公司武昌热电分公司 燃机一次调频调节方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JPWO2020054269A1 (ja) 2021-08-30
JP7044896B2 (ja) 2022-03-30

Similar Documents

Publication Publication Date Title
US8062156B2 (en) Control device for continuously variable transmission
US9523400B2 (en) Lockup clutch control device
CN110388433B (zh) 车辆用动力传递装置的控制装置
CN109973607B (zh) 车辆用动力传递装置的控制装置
JP5376054B2 (ja) 車両用変速制御装置
CN110118249B (zh) 车辆用动力传递装置的控制装置
JP6942238B2 (ja) 自動変速機のロックアップ制御装置および制御方法
WO2019167507A1 (ja) 自動変速機のロックアップ制御装置および制御方法
WO2020054269A1 (ja) 自動変速機のロックアップ制御装置
US10190681B2 (en) Control system for power transmission device for vehicle
JP6971396B2 (ja) 自動変速機のロックアップ制御装置
JP6865888B2 (ja) 自動変速機のロックアップ制御装置および制御方法
CN109973644B (zh) 车辆用动力传递装置的控制装置
US11077852B2 (en) Shift control device and shift control method for vehicle
JP7057825B2 (ja) 自動変速機のロックアップ制御装置
JP2012072801A (ja) 車両用無段変速機の変速制御装置
JP2014152895A (ja) 車両用無段変速機の制御装置
JP2019183856A (ja) 無段変速機の制御装置
JP6921999B2 (ja) 自動変速機のロックアップ締結制御装置
JP6859941B2 (ja) 変速機の制御装置
JP2901680B2 (ja) 無段変速機の制御装置
JP6958447B2 (ja) 無段変速機の制御装置
WO2020054263A1 (ja) 自動変速機の油圧制御装置および油圧制御方法
WO2020121749A1 (ja) 車両の制御装置及び車両の制御方法
JP2020026811A (ja) 無段変速機の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858819

Country of ref document: EP

Kind code of ref document: A1