WO2020052690A1 - 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 - Google Patents
一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 Download PDFInfo
- Publication number
- WO2020052690A1 WO2020052690A1 PCT/CN2019/111054 CN2019111054W WO2020052690A1 WO 2020052690 A1 WO2020052690 A1 WO 2020052690A1 CN 2019111054 W CN2019111054 W CN 2019111054W WO 2020052690 A1 WO2020052690 A1 WO 2020052690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooking
- wok
- controller
- gyroscope
- robot
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J27/00—Cooking-vessels
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J36/00—Parts, details or accessories of cooking-vessels
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J36/00—Parts, details or accessories of cooking-vessels
- A47J36/32—Time-controlled igniting mechanisms or alarm devices
Definitions
- the present invention belongs to the technical field of cooking processing, and particularly relates to a cooking robot and a method for controlling a cooking process by using a gyroscope.
- a cooking robot uses a process that mimics manual cooking, fixes the cooking pan and heats it, and then uses a set of robotic arms that mimic the manual operation process to control the spatula to process the side dishes in the cooking pan. Stir fry until the pan is cooked, and people can take out the dishes to eat and eat, thus successfully achieving the liberation of people from the kitchen labor.
- different cooking methods cannot be adopted for different dishes, and only the cooking method of stir-frying to the side dishes cannot be targeted. Use unique cooking methods to create unique and delicious dishes. Summary of invention
- the technical problem to be solved by the present invention is to provide a cooking robot and a method for controlling a cooking process by using a gyroscope, which aims to solve the problem that the cooking robot in the prior art cannot adopt an exclusive cooking method for different side dishes.
- a cooking robot adopts a gyroscope to control
- the cooking robot includes a robot casing and a wok mechanism.
- the robot casing has a containing space, and the wok mechanism is installed in the containing space.
- the wok mechanism includes a controller, a driving device, a heating device, and a wok.
- the pot and the gyroscope, the driving device, the heating device and the gyroscope are all electrically connected to the controller, the heating device is installed on the power output part of the driving device, the cooking pot is connected to the heating device, and the cooking robot uses the gyroscope to control the cooking process. It includes the following steps:
- Step S10 closing the accommodating space, starting the controller, and calling the corresponding pre-stored dishes program in the controller;
- step S20 the pre-stored dishes program called by the controller to control the heating device to heat the wok to a predetermined temperature T, And the controller controls the gyroscope to tilt the first preset tilt angle according to the pre-stored dish program called (3 and the gyroscope maintains a balance at the first preset tilt angle (3);
- Step S30 The controller controls the driving device to start, and controls the driving device to maintain a stable tilt after the wok is tilted at the same preset angle according to the first preset tilt angle at which the gyroscope is located, and the controller according to the pre-stored dishes called Program control driving device to drive the rotation mode of wok;
- Step S40 After the gyroscope maintains the balance at the first preset tilt angle (3 for a predetermined time h, the controller controls the heating device to stop heating, and the controller controls the gyroscope to tilt the second preset according to the pre-stored dish program called Set the inclination angle 0, the controller controls the driving device to incline the wok to the same angle according to the second preset inclination angle e where the gyroscope is located to pour out the dishes in the pan;
- Step S50 After the dishes are poured out, the running of the pre-stored dishes program called ends, and the gyroscope and the wok are restored to the initial state.
- the controller controls the driving device not to drive the wok to rotate; when the temperature value range of the predetermined temperature T is 150 ° C ⁇ r ⁇ When 190 ° C or 210 ° C ⁇ T ⁇ 220 ° C, the controller controls the driving device to drive the wok to rotate intermittently; when the temperature of the predetermined temperature T ranges from 190 ° C ⁇ T ⁇ 210 ° C or 220 ° C ⁇ When T ⁇ 250 ° C, the controller controls the driving device to drive the wok to rotate continuously.
- the time value range of the predetermined duration h is 10min ⁇ h ⁇ 30min; when the temperature value of the predetermined temperature T is When the range is 190 ° C ⁇ T ⁇ 250 ° C, the time range of the predetermined duration h is 3min ⁇ h ⁇ 6min.
- the first preset tilt angle (3 180 °; when the temperature value range of the predetermined temperature T is 150 ° C ⁇ T ⁇ 190 ° C or 220 ° C ⁇ T ⁇ 250 ° C
- the first preset tilt angle the angle value range of 3 is 120 ° ⁇ (3 ⁇ 180 °; when the temperature value range of the predetermined temperature T is 190 ° C ⁇ T ⁇ 210 ° C, the first preset The inclination angle (3 is in the range of 105 ° ⁇ (3 ⁇ 135 °; when the temperature of the predetermined temperature T is in the range of 210 ° C ⁇ T ⁇ 220 ° C, the first preset inclination angle (the angle of 3 Value range is 95 ° ⁇ (3 ⁇ 120
- an angle value range of the second preset tilt angle 0 is 0 ° ⁇ 0 ⁇ 60
- a cooking robot includes a robot casing and a wok mechanism.
- the robot casing has an accommodating space, the wok mechanism is installed in the accommodating space, and the robot casing is provided with a discharge channel, and the discharge channel is in communication with the accommodating space.
- the wok mechanism includes a controller, a driving device, a heating device, a wok, a channel valve, an ozone gas ejector, and a gyroscope.
- the driving device is electrically connected to the controller.
- the heating device is installed on the power output portion of the driving device.
- the controller is electrically connected, the cooking pot is connected to the heating device, the channel valve is installed in the discharge channel, the channel valve is electrically connected to the controller, the injection port of the ozone gas injector is connected to the accommodation space, and the ozone gas injector is connected to the controller
- the gyroscope is electrically connected to the controller.
- the controller controls the driving device to tilt the wok at the same angle according to the tilt angle when the gyroscope is tilted and balanced, and the wok remains stable after the wok is tilted.
- the cooking robot further includes an oil fume sensor, the oil fume sensor is installed on the top of the inner wall of the accommodation space, and the oil fume sensor is electrically connected to the controller.
- the cooking robot further includes a discharge blower, the discharge blower is installed in the discharge passage, and the discharge blower is located at a downstream position of the passage valve, and the discharge blower is electrically connected to the controller.
- the cooking robot further includes a salt adding system, the salt adding system is arranged on the robot casing, the salt adding system includes a salt supply bin, an electric heating constant temperature block and a shower spray device, and the electric heating constant temperature block is located in the salt supplying bin,
- the electric thermostatic block is electrically connected to the controller.
- the shower spray device includes a metering pump and a shower spray head.
- the metering pump is electrically connected to the controller.
- the inlet end of the metering pump is connected to the salt supply tank.
- the outlet end of the metering pump is connected to the shower.
- the spray heads are communicated with each other, the shower spray head is located in the accommodating space, and the shower spray head is opposite to the mouth of the wok.
- the cooking robot also includes a pot washing system, which is arranged on the robot casing.
- the pot washing system includes a pressure pump, a spray head and an ultrasonic device, and the pressure pump and the spray head communicate with each other through a pipeline. Both the pressure pump and the ultrasonic device are electrically connected to the controller.
- the ultrasonic device is arranged on the spray head. Ultrasonic waves are emitted in the water-holding cavity of the spray head, the spray head is located in the accommodating space, and the nozzle outlet of the spray head is opposite to the pot opening of the cooking pot.
- the present invention has the beneficial effects that, in the cooking processing method, the use of a gyroscope to tilt and return the cooking pot during the cooking operation is used as a reference for the operation of the cooking pot. Therefore, the balance and stability of the wok during tilting and returning can be better maintained, and the accident of overturning of the wok during the wok operation is avoided, and the first preset corresponding to the tilt of the wok is performed.
- the inclination angle makes the contact area between the side dishes in the wok and the wall different, so that this cooking robot is equipped with different cooking methods such as heat preservation, cooking, cooking, frying, frying, and stir-frying. Versatile application.
- FIG. 1 is a flowchart of a method for a cooking robot of the present invention using a gyroscope to control a cooking process
- FIG. 2 is a schematic diagram of a composition structure involving a salting system in a cooking robot of the present invention
- FIG. 3 is a schematic diagram of a composition structure of a wok washing system in the cooking robot of the present invention.
- [0025] 10, wok; 11, stir fry raised edge; 20, controller; 30, salting system; 31, salt supply silo; 32, electric heating constant temperature block; 33, metering pump; 34, shower spray head; 40. Pan washing system; 41. Pressure pump; 42; Nozzle; 43, Ultrasonic device; 44, Pipeline; 410, Pump inlet; 421, Flow regulating ring; 50, Driving device; 100, Saturated salt solution; 200, Cleaning solution; 300, gyroscope.
- first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of "a plurality” is two or more, unless it is specifically and specifically defined otherwise.
- the cooking robot of the present invention includes a robot casing (not shown) and a wok mechanism.
- the robot casing has a receiving space, the wok mechanism is installed in the receiving space, and the robot casing is provided with a drainage channel to discharge The passage communicates with the accommodation space, wherein the wok mechanism includes a controller 20, a driving device 50, a heating device (not shown), a wok 10, a passage valve (not shown), an ozone gas ejector (not shown) ) And gyroscope 300.
- the driving device 50 is electrically connected to the controller 20, the heating device is installed on the power output portion of the driving device 50, the heating device is electrically connected to the controller 20, and the wok 10 is connected to the heating device, that is, the driving device 50 can be independently
- the wok 10 is driven in a tilted manner by the ground (the rotation arrows shown in FIG. 2 and FIG. 3 are the direction of rotation, and of course, it can also be set to forward and reverse bidirectional rotation), or the driving device 50 can individually drive the wok 10 A rotation operation is performed, or the driving device 50 drives the wok 10 to rotate while tilting.
- the cooking program is written in the controller 20 in advance, so that the controller 20 can automatically control the operation of the heating device and the driving device 50 by using the corresponding cooking program to perform the cooking operation of the corresponding dishes.
- the passage valve is installed in the discharge passage, the passage valve is electrically connected to the controller 20, the injection port of the ozone gas injector is communicated with the accommodation space, the ozone gas injector is electrically connected to the controller 20, and the gyroscope 300 is also connected to the controller 20 Electrically connected, the controller 20 controls the driving device 50 to drive the wok to the same tilt angle according to the tilt angle when the gyroscope 300 is tilted and kept balanced, and the tilted wok must also be balanced and stable.
- the controller 20 is first started and the controller 20 calls a corresponding pre-stored dish program that has been stored in the controller 20 in advance, and the controller 20 controls to start heating according to the pre-stored dish program program.
- the device heats the cooking pot 10, and when the cooking pot 10 reaches a certain temperature (for example, the temperature of the wall of the pot reaches 100 ° C (above)), then a predetermined amount of cooking oil is added to the cooking pot 10, and then the controller 20 according to the pre-stored dish program Control the gyroscope 300 to tilt the first preset tilt angle (3 and keep the tilted gyro 300 balanced and stable, at this time the controller drives the wok 10 to tilt and rotate through the driving device 50 according to the balanced state of the gyroscope ( Figure 2
- the rotation arrow shown is the direction of rotation, and of course, it can also be set to forward rotation and reverse rotation in both directions), so that the cooking oil adheres evenly on the wall of the wok 10, when the oil temperature reaches
- the gyro 300 uses the arrow p / direction as Positive direction, and specifies that the angle between the arrow P / direction and the numerical normal of the arrow P is the tilt angle when the gyroscope 300 is tilted), and then the controller 2 0 Control the driving device 50 to drive the cooking pot 10 times according to the return of the gyroscope 300, and then put the prepared side dish into the cooking pot 10, and then the controller 20 controls the gyroscope 300 again according to the corresponding
- the cooking method is performed by tilting the first preset tilt angle (3 and maintaining balance and stability, and then the controller 20 controls the driving device 50 to drive the wok 10 to tilt and rotate according to the tilt angle of the gyroscope 300. At this time, the side dishes are Stir-fry until fully cooked.
- the controller 20 controls the ozone gas ejector to inject ozone gas into the accommodating space.
- the temperature in the accommodating space continues to rise and is maintained at a high temperature.
- the ozone gas enters the accommodating space and contacts the oil fume, it is equivalent to being in a heated state, so that the ozone gas and the oil fume produce a redox reaction.
- the spicy constituents in the oil fume are oxidized and reduced to carbon dioxide and water, thereby eliminating the spicy flavor in the oil fume.
- the hot air flow in the accommodation space is discharged through the discharge channel, the discharged hot air flow does not contain A substance that is harmful to the human body and has a pungent spicy taste, which better protects people's health.
- the cooking robot further includes an oil fume sensor (not shown), the oil fume sensor is installed on the top of the inner wall of the accommodating space, and during the cooking operation, the high-temperature oil fume always rises upward under the effect of thermal lift.
- the rising soot and soot sensor senses that the soot sensor is electrically connected to the controller 20, the soot sensor transmits the sensing signal to the controller 20 after sensing the soot, and the controller 20 controls the ozone gas ejector to emit ozone gas Spray into the accommodation space.
- the The amount is not as much as possible, but it is necessary to adaptively inject ozone gas according to the amount of oil fume.
- the selected oil fume sensor has the function of detecting whether there is oil fume, and it will also detect oil fume at the same time.
- the detected amount of oil fume is counted, and the statistical structure is fed back to the controller 20.
- the controller 20 controls the ozone gas ejector to inject a corresponding amount of ozone gas into the accommodating space according to the statistical result.
- the controller 20 will control the ozone gas ejector to stop injecting ozone gas, and the hot air flow in the accommodating space will be discharged along the exhaust passage by opening the channel valve. It is at a relatively high temperature, thereby forming an internal and external pressure difference, and the hot air flow in the accommodating space will flow along the discharge channel and be discharged under the effect of the internal and external pressure difference.
- the cooking robot further includes a discharge blower (not shown), the discharge blower is installed in the discharge channel, and the discharge blower is located at Downstream of the passage valve, the discharge blower is electrically connected to the controller 20.
- the controller 20 controls the opening of the channel valve and controls the discharge blower to be opened for extraction, thereby rapidly extracting and discharging the hot air current in the accommodating space.
- the controller 20 controls the channel valve and the exhaust blower is started to exhaust the hot air in the accommodation space, at this time the gyroscope 300 is still maintained in a tilted and balanced stable state, and the controller 20 is still driven by control
- the device drives the wok 10 to rotate.
- the controller 20 controls the heating device to stop heating the wok 10.
- the controller 20 controls the gyro 300 to return to normal and maintains balance and stability. Then the controller 20 controls the driving device to drive the wok 10 to return to normal according to the return of the gyro 300.
- the controller 20 controls the gyro 300 to tilt the second preset tilt angle 0 according to the pre-stored dish program and maintains the balance and stability.
- the controller 20 controls the driving device to drive the wok 10 to tilt the second preset according to the tilt balance state of the gyro 300 Set the inclination angle 0 to pour out the dishes in the pot; or, after the hot airflow in the accommodating space reaches a predetermined time, the controller 20 controls the gyroscope 300 at the first preset inclination angle (3 in the inclination state directly Tilt to the second preset tilt angle 0 and keep the balance stable.
- the controller 20 controls the driving device to drive the wok 10 to tilt the second preset tilt angle 0 according to the tilt balance state of the gyroscope 300 to pour out the dishes in the pot.
- the controller 20 controls the gyro 300 to return to the normal position, and then the driving device returns to the normal state according to the balance after the gyro 300 returns to the normal position. That is, the gyroscope 300 and the wok 10 are restored to the initial state, and the pre-stored dishes program called is run. End. At this time, the cooking robot is in a standby state. If cooking is to be continued, a corresponding pre-stored dish program needs to be selected in the controller 20 again.
- the cooking robot of this embodiment further includes a salt adding system 30.
- the salt adding system 30 includes a salt supply bin 31, an electric thermostatic block 32, and a shower spray device.
- the electrothermal constant temperature block 32 is located in the salt supply bin 31.
- the electrothermal constant temperature block 32 heats and holds the saturated salt solution 100 so that the solubility of the saturated salt solution 100 remains relatively constant.
- the temperature of the saturated common salt solution 100 is maintained at 60 ° C.
- the relationship between the solubility of the saturated common salt solution 100 and the solute is 37.3 g of sodium chloride (i.e., common salt) per 100 g of water. )
- the thermostatic block 32 is electrically connected to the controller 20.
- a pressure sensor (not shown) is provided on the bottom of the salt supply bin 31. After the saturated salt solution 100 is filled in the salt supply bin 31, the pressure sensor can sense the supply of salt.
- the gravity change of the salt tank 31 judges that the saturated salt solution 100 is contained in the salt tank 31 (in general, the salt tank 31 is in a closed space, and external forces cannot be applied to it), and the pressure sensor senses the pressure of the salt tank 31
- the controller 20 controls the electrothermal constant temperature block 32 to be powered on, so that the saturated common salt solution 100 is kept at a constant temperature.
- the shower spray device includes a metering pump 33 and a shower spray head 34.
- the metering pump 33 is electrically connected to the controller 20, and the controller 20 executes a corresponding cooking program to control the gyroscope 300, the driving device, and the heating device through cooking.
- the inner wall of the wok 10 is provided with a stir-frying rib 11 for frying the side dishes.
- the side dishes are turned up when passing through the stir fry rib 11.
- the side dishes are continuously fried in the wok 10 to be cooked thoroughly.
- the controller 20 controls the metering pump 33 to start.
- the inlet end of the metering pump 33 is connected to the salt supply tank 31.
- the outlet end of the metering pump 33 is connected to the shower head 34.
- the shower head 34 is connected to the wok 10
- the metering mouth is oppositely set, the metering pump 33 sprays the constant temperature saturated salt solution 100 in the salt supply chamber 31 into the dishes of the wok 10 through the spray nozzle 34, and then the controller controls the driving device to continue driving Dish pan 10 such that rotation of the mixing pot 100 and the dishes are sprayed uniformly into a saturated saline solution, can be pan dishes.
- the cooking robot further includes a pot washing system 40
- the pot washing system 40 includes a pressure pump 41, a spray head 42, and an ultrasonic device 43.
- the pump inlet 410 of the pressure pump 41 is connected to the faucet of the cleaning liquid 200, and the pump outlet of the pressure pump 41 and the spray head 42 are communicated through a pipeline 44.
- the cleaning liquid 200 is pumped into the water holding chamber of the head 42 so that the cleaning liquid 200 stored in the water holding chamber of the shower head 42 has a certain pressure, so that the cleaning liquid 200 emitted from the nozzle outlet of the shower head 42 is also injected at a certain spray pressure.
- the pressure pump 41 and the ultrasonic device 43 are electrically connected to the controller 20.
- the ultrasonic device 43 is provided on the spray head 42.
- the ultrasonic device 43 emits ultrasonic waves into the water holding chamber of the spray head 42, and the nozzle outlet of the spray head 42 is set toward the cooking pot 10. .
- the controller 20 first controls the gyro 300 to tilt a first preset tilt angle (3 and maintain balance and stability, and then the controller 20 controls the driving device according to the balanced and stable state after the gyro 300 is tilted. 50 drives the wok 10 to incline so that the pot opening of the wok 10 is opposite to the nozzle outlet of the spray head 42. Then, the controller 20 controls the pressure pump 41 and the ultrasonic device 43 to start at the same time. In this way, the cleaning liquid 200 is The water-holding cavity is provided with conditions of spray pressure and cavitation, so that the cleaning liquid 200 is sprayed from the nozzle outlet of the spray head 42 to the inner wall of the wok 10 to achieve cleaning
- the cleaning liquid 200 sprayed on the inner wall of the cooking pot 10 has a certain spray pressure, and the cleaning liquid 200 interacts with the ultrasonic wave to generate cavitation, cavitation
- the cavitation bubbles generated in the cleaning solution 200 are sprayed onto the inner wall of the wok 10 after the cleaning solution 200 is sprayed onto the inner wall of the cooking pot 10.
- the shock waves can generate shock waves that generate thousands of atmospheric pressures around them.
- the cavitation bubbles are destroyed.
- the surface adsorption capacity of the dirt remaining on the inner wall of the wok 10 is increased.
- cavitation bubbles will also cause the dirt layer to be destroyed and detach from the inner wall surface of the wok 10 to disperse the dirt into the cleaning liquid 200.
- the spray pressure of the cleaning liquid 200 causes the inner wall of the wok 10 to be cleaned.
- the controller 20 in order to be able to clean various positions on the inner wall of the wok 10, the controller 20 simultaneously controls the driving device 50 to drive The wok 10 rotates (with the first preset tilt angle being maintained (3 and maintained in a balanced and stable state). In this way, during the cleaning operation, the sprinkler 42 only needs to spray and clean the inner wall of the wok 10 Liquid 200. At this time, the cooking pot 10 cooperates with the rotation, so that the surface of each position of the inner wall of the cooking pot 10 can be effectively cleaned.
- the cleaning liquid 200 used in the technical solution is water, that is, household tap water.
- the controller 20 controls the gyro 300 to return to normal and maintains balance and stability. Then, the controller 20 controls the driving device to drive the wok 10 to return to normal according to the return of the gyro 300, and then the controller 20 The called pre-stored dishes program continues the aforementioned cooking process until the dishes in the cooking pot are poured out and the gyroscope 300 and the cooking pot 10 return to the initial state.
- the controller 20 adopts a mature CRJ, MCU, and PLC control module in the current technology, or uses a control microcomputer to implement automatic program control of the cooking robot.
- a method for using a gyro to control a cooking process by a cooking robot is provided.
- the method of the cooking process needs to be implemented during the cooking operation provided by the foregoing cooking robot.
- the method of the cooking process includes the following steps:
- Step S10 Close the accommodation space, start the controller 20, and call the corresponding pre-stored dish program in the controller 20;
- Step S20 The pre-stored dishes program called by the controller 20 controls the heating device to heat the wok 10 to a predetermined temperature T, and the controller 20 controls the gyroscope 300 to tilt the first preset tilt angle (3 And the gyroscope 300 is balanced at the first preset tilt angle (3 o'clock);
- Step S30 The controller 20 controls the driving device 50 to start, and controls the driving device 50 to maintain the tilt stability after the wok 10 is tilted to the same angle according to the first preset tilt angle at which the gyroscope 300 is located, and the controller 20 Control the driving device 50 to drive the rotation mode of the wok 10 according to the pre-stored dish program called;
- Step S40 When the gyro 300 is maintained at the first preset tilt angle (3 for a predetermined time h), the controller 20 controls the heating device to stop heating, and the controller 20 controls the gyro 300 according to the pre-stored dish program called Tilt the second preset tilt angle 0, and the controller 20 controls the driving device 50 to drive the wok 10 to tilt the same angle according to the second preset tilt angle 0 of the gyroscope 300 to pour the dishes out of the pot;
- the controller 20 controls the heating device to stop heating, and the controller 20 controls the gyro 300 according to the pre-stored dish program called Tilt the second preset tilt angle 0, and the controller 20 controls the driving device 50 to drive the wok 10 to tilt the same angle according to the second preset tilt angle 0 of the gyroscope 300 to pour the dishes out of the pot;
- Step S50 After the dishes are poured out, the operation of the pre-stored dishes program called ends, and the gyroscope 300 and the wok 10 are restored to the initial state.
- the tilting and returning of the cooking pot 10 during the cooking operation by using the gyroscope 300 is used as a reference for the operation of the cooking pot 10, so as to better maintain the cooking pot 10 at The balance is stable during the tilting and returning process, so as to avoid the accident that the wok 10 overturns during the cooking operation.
- the controller 20 controls the driving device 50 not to drive the wok 10; when the temperature value range of the predetermined temperature T is 150 ° C ⁇ r ⁇ When 190 ° C or 210 ° CST ⁇ 220 ° C, the controller 20 controls the driving device 50 to drive the wok 10 to rotate intermittently; when the temperature of the predetermined temperature T ranges from 190 ° C ⁇ T ⁇ 210 ° C or 220 ° C When ⁇ T ⁇ 250 ° C, the controller 20 controls the driving device 50 to drive the wok 10 to continuously rotate.
- the temperature range of the cooking pot is 75 ° C ⁇ T ⁇ 150 ° C, and the cooking temperature range is 150 ° C ⁇ T ⁇ 190 °. C.
- the time value range of the predetermined duration h is 3min ⁇ h ⁇ 6min.
- the cooking range of the predetermined temperature T ranges from 190 ° C ⁇ T ⁇ 210 ° C to frying, and the cooking range of the predetermined temperature T ranges from 210 ° C ⁇ T ⁇ 220 ° C to frying.
- the cooking range of the predetermined temperature T is 220 ° C ⁇ T ⁇ 250 ° C.
- the cooking method is stir-fry. Wherein, when the dishes are cooked in a frying cooking mode, the controller 20 controls the driving device 50 to drive the wok 10 to rotate intermittently.
- the first preset tilt angle (3 180 °
- the first preset tilt angle (3 180 °) when the dishes are cooked in a clay pot.
- the temperature of the predetermined temperature T ranges from 150 ° C ⁇ T ⁇ 190 ° C or 220 ° C ⁇ T ⁇ 250 °
- the first preset tilt angle (3 has an angle ranging from 120 ° ⁇ (3 ⁇ 180 °), that is, the first preset tilt angle when cooking dishes by using the method of cooking or frying.
- the first preset Set the angle of inclination angle (3 to be 95 ° ⁇ (3 ⁇ 120 °, preferably, the first preset inclination angle (3 105 ° when using the frying method).
- the wok 10 is tilted at a corresponding tilt angle, which makes the contact area of the side dishes in the wok 10 different from the pot wall.
- the smaller the tilt angle the larger the contact area of the side dishes with the pot wall, so that This cooking robot has different thermal insulation, boiling, cooking, frying, frying, stir frying, etc. Ren, to achieve a multi-functional application cooking robot.
- the angle of the second preset inclination angle 0 ranges from 0 ° ⁇ 0 ⁇ 60 °, that is, the pot opening of the wok 10 needs to face downwards in order to place the dishes in the wok 10 Pour out.
- the controller 20 tilts the second preset tilt angle 0 according to the gyroscope 300 to control the driving device to tilt the wok 10 to the same angle to pour out the dishes, in order to make the dishes in the wok 10 be able to be Pour it out completely, and under the condition that the gyro 300 is used to ensure that the wok 10 is at the second preset tilt angle 0 to maintain balance and stability, the controller 20 controls the driving device to drive the wok 10 to shake up and down several times, so that the dishes in the wok Along the wall of the cooking pot 10, the wall of the cooking pot 10 completely slides and falls into a pre-set dinner plate, and then the gyroscope 300 and the cooking pot 10 are returned to the initial state.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Cookers (AREA)
Abstract
炒菜机器人及其采用陀螺仪(300)控制烹饪工艺的方法包括以下步骤:封闭容置空间,启动控制器(20),调用预存菜品程序(步骤S10);根据调用的预存菜品程序来加热炒菜锅(10),陀螺仪(300)根据调用的预存菜品程序倾斜第一预设倾斜角度β(步骤S20);驱动装置(50)根据陀螺仪(300)所处的第一预设倾斜角度β也带动炒菜锅(10)倾斜第一预设倾斜角度β(步骤S30);驱动装置(50)根据陀螺仪(300)倾斜第二预设倾斜角度θ也带动炒菜锅(10)倾斜第二预设倾斜角度θ以倒出菜品(步骤S40);调用的预存菜品程序运行结束,陀螺仪(300)、炒菜锅(10)回复初始状态(步骤S50)。炒菜机器人及其采用陀螺仪控制烹饪的方法能够解决现有技术中炒菜机器人无法针对不同配菜采取专属的烹制方式而烹饪出独特美味的菜品的问题。
Description
一种炒菜机器人及其釆用陀螺仪控制烹饪工艺的方法 技术领域
[0001] 本发明属于烹饪加工技术领域, 尤其涉及一种炒菜机器人及其采用陀螺仪控制 烹饪工艺的方法。
背景技术
[0002] 在中国迈向现代化的进程中, 健康、 美味和高品位的生活理念越来越深入人心 , 日益成为人们追求的生活目标。 对每一个人来说, 饮食永远是最基本的需求 , 对于普通家庭而言, 一日三餐的烹调劳作更是必须的日常行为。 在日益智能 化的社会环境下, 人们也开始追求厨房中的智能化, 逐渐地从厨房劳作中解放 出来, 因而替代人工厨师进行烹饪食物的厨房机器人应运而生, 在厨房机器人 中又以炒菜机器人为重中之重, 因为对于中国人的饮食而言, 菜品的制作过程 繁复而煮米饭则相对简单。
[0003] 在现有技术中, 炒菜机器人采用模仿人工炒菜的过程中, 将炒菜锅固定并对其 加热, 然后利用一套模仿人工操作过程的机械手臂操控锅铲对炒菜锅中的配菜 进行翻炒至炒熟出锅, 人们即可取出菜品食用就餐, 从而成功地实现了将人们 从厨房劳作中解放出来。 然而, 5见有技术中炒菜机器人对于菜品的烹制过程中 , 无法针对不同的菜品采用不同的烹制方式, 仅仅是对配菜进行翻炒至炒熟的 烹制方式, 无法针对不同配菜采取专属的烹制方式而烹饪出独特美味的菜品。 发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 本发明所要解决的技术问题在于提供一种炒菜机器人及其采用陀螺仪控制烹饪 工艺的方法, 旨在解决现有技术中炒菜机器人无法针对不同配菜采取专属的烹 制方式而烹饪出独特美味的菜品的问题。
[0005] 为解决上述技术问题, 本发明是这样实现的, 一种炒菜机器人采用陀螺仪控制
烹饪工艺的方法, 炒菜机器人包括机器人机壳和炒锅机构, 机器人机壳具有容 置空间, 炒锅机构安装在容置空间内, 其中, 炒锅机构包括控制器、 驱动装置 、 加热装置、 炒菜锅及陀螺仪, 驱动装置、 加热装置和陀螺仪均与控制器电连 接, 加热装置安装在驱动装置的动力输出部上, 炒菜锅连接在加热装置上, 炒 菜机器人采用陀螺仪控制烹饪工艺的方法包括以下步骤:
[0006] 步骤 S10: 封闭容置空间, 启动控制器, 调用控制器中相应的预存菜品程序; [0007] 步骤 S20: 控制器调用的预存菜品程序控制加热装置对炒菜锅加热至预定温度 T , 且控制器控制陀螺仪根据调用的预存菜品程序倾斜第一预设倾斜角度(3且陀螺 仪于该第一预设倾斜角度(3时保持平衡;
[0008] 步骤 S30: 控制器控制驱动装置启动, 并控制驱动装置根据陀螺仪所处的第一 预设倾斜角度(3带动炒菜锅倾斜相同角度后保持倾斜稳定, 且控制器根据调用的 预存菜品程序控制驱动装置带动炒菜锅的转动方式;
[0009] 步骤 S40: 当陀螺仪于第一预设倾斜角度(3保持平衡达到预定时长 h之后, 控制 器控制加热装置停止加热, 且控制器控制陀螺仪根据调用的预存菜品程序倾斜 第二预设倾斜角度 0, 控制器控制驱动装置根据陀螺仪所处的第二预设倾斜角度 e带动炒菜锅倾斜相同角度以将锅中的菜品倒出;
[0010] 步骤 S50: 当菜品倒出之后, 调用的预存菜品程序运行结束, 陀螺仪、 炒菜锅 均回复初始状态。
[0011] 进一步地, 当预定温度 T的温度取值范围为 T < 150°C时, 控制器控制驱动装置 不带动炒菜锅转动; 当预定温度 T的温度取值范围为 150°C<r < 190°C或 210°C^T < 220°C时, 控制器控制驱动装置带动炒菜锅间歇转动; 当预定温度 T的温度取 值范围为 190°C^T < 210°C或 220°C<T < 250°C时, 控制器控制驱动装置带动炒菜 锅连续转动。
[0012] 进一步地, 当预定温度 T的温度取值范围为 75°C^T < 190°C时, 预定时长 h的时 间取值范围为 lOmin^h < 30min; 当预定温度 T的温度取值范围为 190°C<T < 250 °C时, 预定时长 h的时间取值范围为 3min^h < 6min。
[0013] 进一步地, 当预定温度 T的温度取值范围为 75°C^T < 150°C时, 第一预设倾斜 角度(3=180° ; 当预定温度 T的温度取值范围为 150°C^T < 190°C或 220°C^T < 250°C
时, 第一预设倾斜角度 (3的角度取值范围为 120° < (3 < 180° ; 当预定温度 T的温度 取值范围为 190°C^T < 210°C时, 第一预设倾斜角度 (3的角度取值范围为 105° < (3 < 135° ; 当预定温度 T的温度取值范围为 210°C<T < 220°C时, 第一预设倾斜角度 (3的角度取值范围为 95° < (3 < 120
[0014] 进一步地, 第二预设倾斜角度 0的角度取值范围为 0°^0^60
[0015] 根据本技术方案的另一方面, 提供了一种炒菜机器人。 该炒菜机器人包括机器 人机壳和炒锅机构, 机器人机壳具有容置空间, 炒锅机构安装在容置空间内, 且机器人机壳设有排放通道, 排放通道与容置空间相连通, 其中, 炒锅机构包 括控制器、 驱动装置、 加热装置、 炒菜锅、 通道阀门、 臭氧气体喷射器和陀螺 仪, 驱动装置与控制器电连接, 加热装置安装在驱动装置的动力输出部上, 加 热装置与控制器电连接, 炒菜锅连接在加热装置上, 通道阀门安装在排放通道 中, 通道阀门与控制器电连接, 臭氧气体喷射器的喷射口与容置空间相连通, 臭氧气体喷射器与控制器电连接, 陀螺仪与控制器电连接, 控制器根据陀螺仪 倾斜并平衡时的倾斜角度控制驱动装置带动炒菜锅倾斜相同角度, 且炒菜锅倾 斜后保持稳定。
[0016] 进一步地, 炒菜机器人还包括油烟感应器, 油烟感应器安装在容置空间内壁的 顶部上, 油烟感应器与控制器电连接。
[0017] 进一步地, 炒菜机器人还包括排放鼓风机, 排放鼓风机安装在排放通道内, 且 排放鼓风机位于通道阀门的下游位置, 排放鼓风机与控制器电连接。
[0018] 进一步地, 炒菜机器人还包括加盐系统, 加盐系统设置在机器人机壳上, 加盐 系统包括供盐仓、 电热恒温块和花洒喷射装置, 电热恒温块位于供盐仓内, 电 热恒温块与控制器电连接, 花洒喷射装置包括计量泵和花洒喷射头, 计量泵与 控制器电连接, 计量泵的入口端与供盐仓相连通, 计量泵的出口端与花洒喷射 头相连通, 花洒喷射头位于容置空间中, 且花洒喷射头与炒菜锅的锅口相对设 置。
[0019] 进一步地, 炒菜机器人还包洗锅系统, 洗锅系统设置在机器人机壳上, 洗锅系 统包括加压泵、 喷头和超声波装置, 加压泵与喷头之间通过管路相连通, 加压 泵、 超声波装置均与控制器电连接, 超声波装置设置在喷头上, 超声波装置向
喷头的容水腔内发射超声波, 喷头位于容置空间中, 且喷头的喷嘴出口与炒菜 锅的锅口相对设置。
[0020] 本发明与现有技术相比, 有益效果在于: 在该烹饪加工的方法中, 通过使用陀 螺仪对炒菜锅在进行炒菜操作过程中的倾斜、 回正时作为炒菜锅动作的参照基 准, 从而更好地保持炒菜锅在进行倾斜、 回正过程中的平衡稳定, 避免出现炒 菜锅在进行炒菜操作的过程中发生倾覆的意外事故, 并且, 炒菜锅进行倾斜相 对应的第一预设倾斜角度, 这就使得炒菜锅内的配菜与锅壁的接触面积产生不 同, 从而使本炒菜机器人具备了保温、 煲、 烧、 炒、 煎、 爆炒等不同烹饪方式 , 实现了炒菜机器人的多功能应用。
发明的有益效果
对附图的简要说明
附图说明
[0021] 图 1是本发明的炒菜机器人采用陀螺仪控制烹饪工艺的方法的流程框图;
[0022] 图 2是本发明的炒菜机器人中涉及加盐系统的组成结构的示意图;
[0023] 图 3是本发明的炒菜机器人中涉及洗锅系统的组成结构的示意图。
[0024] 在附图中, 各附图标记表示:
[0025] 10、 炒菜锅; 11、 翻炒凸边; 20、 控制器; 30、 加盐系统; 31、 供盐仓; 32、 电热恒温块; 33、 计量泵; 34、 花洒喷射头; 40、 洗锅系统; 41、 加压泵; 42 、 喷头; 43、 超声波装置; 44、 管路; 410、 泵入口; 421、 流量调节环; 50、 驱动装置; 100、 饱和食盐溶液; 200、 清洗液; 300、 陀螺仪。
发明实施例
本发明的实施方式
[0026] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0027] 需要说明的是, 当元件被称为“固定于”或“设置于”另一个元件, 它可以直接在 另一个元件上或者间接在该另一个元件上。 当一个元件被称为是“连接于”另一个
元件, 它可以是直接连接到另一个元件或间接连接至该另一个元件上。
[0028] 需要理解的是, 术语“长度”、 “宽度”、 “上”、 “下”、 “前”、 “后”、 “左”、 “右”、 “竖直”、 “水平”、 “顶”、 “底”、 “内”、 “外”等指示的方位或位置关系为基于附图 所示的方位或位置关系, 仅是为了便于描述本申请和简化描述, 而不是指示或 暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此 不能理解为对本申请的限制。
[0029] 此外, 术语“第一”、 “第二”仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有“第一”、 “第二”的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本申请的描述中, “多个” 的含义是两个或两个以上, 除非另有明确具体的限定。
[0030] 本发明的炒菜机器人包括机器人机壳 (未图示) 和炒锅机构, 机器人机壳具有 容置空间, 炒锅机构安装在容置空间内, 且机器人机壳设有排放通道, 排放通 道与容置空间相连通, 其中, 炒锅机构包括控制器 20、 驱动装置 50、 加热装置 (未图示) 、 炒菜锅 10、 通道阀门 (未图示) 、 臭氧气体喷射器 (未图示) 和 陀螺仪 300。 驱动装置 50与控制器 20电连接, 加热装置安装在驱动装置 50的动力 输出部上, 加热装置与控制器 20电连接, 炒菜锅 10连接在加热装置上, 也就是 说, 驱动装置 50能够单独地驱动炒菜锅 10进行倾斜动作 (图 2和图 3中所示转动 箭头即为旋转方向, 当然也可以设置为正转、 反转双向转动) , 或者驱动装置 5 0能够单独地驱动炒菜锅 10进行旋转动作, 或者驱动装置 50驱动炒菜锅 10在倾斜 的同时进行旋转。 通过预先在控制器 20中写入炒菜程序, 从而通过控制器 20调 用相应的炒菜程序而自动地控制加热装置和驱动装置 50动作, 以进行相应菜品 的烹饪操作。 通道阀门安装在排放通道中, 通道阀门与控制器 20电连接, 臭氧 气体喷射器的喷射口与容置空间相连通, 臭氧气体喷射器与控制器 20电连接, 陀螺仪 300也与控制器 20电连接, 控制器 20根据陀螺仪 300倾斜并保持平衡时的 倾斜角度来控制驱动装置 50带动炒菜锅倾斜相同的倾斜角度, 并且倾斜后的炒 菜锅也要保持平衡稳定。
[0031] 在炒菜操作过程中, 首先启动控制器 20并通过控制器 20调用相应的已经预先写 入控制器 20中储存的预存菜品程序, 根据预存菜品程序控制器 20控制启动加热
装置对炒菜锅 10进行加热, 当炒菜锅 10达到一定温度 (例如锅壁的温度达到 100 。(:以上) 之后, 然后向炒菜锅 10中加入预定量食用油, 然后控制器 20根据预存菜 品程序控制陀螺仪 300进行倾斜第一预设倾斜角度(3并保持倾斜后的陀螺仪 300平 衡稳定, 此时控制器根据陀螺仪的平衡状态通过驱动装置 50带动炒菜锅 10倾斜 并转动 (图 2中所示转动箭头即为旋转方向, 当然也可以设置为正转、 反转双向 转动) , 使得食用油在炒菜锅 10的锅壁上沾附均匀, 当油温达到一定温度 (例 如油温达到 80°C以上) 之后或者食用油在锅中加热预定时长之后 (例如加热 20s ) , 控制器根据预存菜品程序控制陀螺仪 300回复初始状态 (如图 2所示, 陀螺 仪 300以箭头 p / 方向为正方向, 并规定箭头 P / 方向与箭头 P的数值法向之间的 夹角为陀螺仪 300倾斜时的倾斜角度) , 然后控制器 20根据陀螺仪 300回正而控 制驱动装置 50带动炒菜锅 10回正, 然后将准备好的配菜放入炒菜锅 10中, 接着 控制器 20再次控制陀螺仪 300根据预存菜品程序中的相应的烹饪方式进行倾斜第 一预设倾斜角度(3并保持平衡稳定, 随后控制器 20又依据陀螺仪 300的倾斜角度 而控制驱动装置 50带动炒菜锅 10倾斜并旋转, 此时则是对配菜进行翻炒至熟透 的炒制过程。
[0032] 在加入食用油并持续加热的过程中以及在翻炒配菜的过程中, 均会持续产生油 烟, 然后控制器 20控制臭氧气体喷射器向容置空间中喷射臭氧气体, 由于炒菜 操作的过程中容置空间中的温度持续上升并保持在高温的状态下, 如此, 当臭 氧气体进入容置空间并与油烟相互接触之后相当于处于加热状态, 使得臭氧气 体与油烟产生氧化还原反应, 从而将油烟中具有辛辣味的物质成分氧化还原成 二氧化碳和水, 因而消除了油烟中的辛辣味, 当通过排放通道将容置空间中的 热气流排放出去时, 所排放的热气流中不在含有对人体有害且具有刺鼻的辛辣 味的物质, 更好地保护人们的身体健康。
[0033] 该炒菜机器人还包括油烟感应器 (未图示) , 油烟感应器安装在容置空间内壁 的顶部上, 在炒菜操作过程中, 高温的油烟在热升力的作用下始终向上飘升, 如此升起的油烟呗油烟感应器感应到, 油烟感应器与控制器 20电连接, 油烟感 应器感应到油烟之后将感应信号传递给控制器 20, 而后控制器 20控制臭氧气体 喷射器将臭氧气体喷射到容置空间中。 实际上, 喷射到容置空间中臭氧气体的
量并非越多越好, 而是要根据油烟量的多少进行适应性的喷射臭氧气体, 因此 , 所选用的油烟感应器除了具有感应是否有油烟产生的功能外, 在检测到油烟 的同时也会对所检测到的油烟量进行统计, 并将统计的结构反馈至控制器 20中 , 控制器 20根据统计结果控制臭氧气体喷射器将相应适量的臭氧气体喷射到容 置空间中。
[0034] 当炒菜操作完成之后, 控制器 20将控制臭氧气体喷射器停止喷射臭氧气体, 并 通过打开通道阀门使得容置空间中的热气流沿排放通道排放出去, 由于容置空 间相对于外部空间处于相对高温, 从而形成了内外压差, 容置空间中的热气流 在内外压差作用下会沿着排放通道流动而排放出去。 优选地, 为了让容置空间 中的热气流能够迅速地排放, 并且排放得更加彻底, 因此, 该炒菜机器人还包 括排放鼓风机 (未图示) , 排放鼓风机安装在排放通道内, 且排放鼓风机位于 通道阀门的下游位置, 排放鼓风机与控制器 20电连接。 当炒菜操作完成之后, 控制器 20控制通道阀门打开的同时控制排放鼓风机开启进行抽排, 从而迅速地 将容置空间中的热气流抽送排放出去。
[0035] 在控制器 20控制通道阀门、 排放鼓风机启动进行抽排容置空间中的热气流的过 程中, 此时陀螺仪 300仍保持在倾斜的平衡稳定状态, 并且控制器 20仍通过控制 驱动装置带动炒菜锅 10转动, 于此同时, 控制器 20控制加热装置停止了对炒菜 锅 10进行继续加热。 当抽排容置空间内的热气流达到预定时长之后, 控制器 20 控制陀螺仪 300回正并保持平衡稳定, 随后控制器 20依据陀螺仪 300的回正状态 控制驱动装置带动炒菜锅 10回正, 然后控制器 20再根据预存菜品程序控制陀螺 仪 300倾斜第二预设倾斜角度 0并保持平衡稳定后控制器 20依据陀螺仪 300的倾斜 平衡状态控制驱动装置带动炒菜锅 10也倾斜第二预设倾斜角度 0以将锅中菜品倒 出; 或者, 当抽排容置空间内的热气流达到预定时长之后, 控制器 20控制陀螺 仪 300在第一预设倾斜角度(3的倾斜状态下直接进行倾斜至第二预设倾斜角度 0并 保持平衡稳定, 然后控制器 20依据陀螺仪 300的倾斜平衡状态控制驱动装置带动 炒菜锅 10也倾斜第二预设倾斜角度 0以将锅中菜品倒出。 在将锅中菜品倒出, 控 制器 20控制陀螺仪 300回正, 随后驱动装置依据陀螺仪 300的回正后的平衡状态 回正, 即陀螺仪 300、 炒菜锅 10均回复至初始状态, 所调用的预存菜品程序运行
结束。 此时, 炒菜机器人处于待机状态, 如需继续进行烹饪, 则需重新在控制 器 20中选取相应的预存菜品程序。
[0036] 如图 2所示, 本实施例的炒菜机器人还包括加盐系统 30。 其中, 加盐系统 30包 括供盐仓 31、 电热恒温块 32和花洒喷射装置。 电热恒温块 32位于供盐仓 31内, 当供盐仓 31中盛有饱和食盐溶液 100时, 电热恒温块 32对饱和食盐溶液 100进行 加热保温, 使得饱和食盐溶液 100的溶解度保持相对恒定状态, 例如: 将饱和食 盐溶液 100的温度保持在 60°C, 此时饱和食盐溶液 100中, 饱和食盐溶液 100的溶 解度的溶剂与溶质对应比例关系为每 100g水中饱和溶解 37.3g氯化钠 (即食盐)
, 从而能够由所添加的饱和食盐溶液 100的量精准地控制所添加的食盐中钠的量 。 电热恒温块 32与控制器 20电连接, 此时, 供盐仓 31的底部上设置有压力传感 器 (未图示) , 当供盐仓 31中盛入饱和食盐溶液 100之后, 压力传感器能够感应 供盐仓 31的重力变化从而判断供盐仓 31中盛入了饱和食盐溶液 100 (—般情况下 , 供盐仓 31处于封闭空间, 外力无法施加在其上) , 压力传感器感应供盐仓 31 压力变化后控制器 20即控制电热恒温块 32通电加热, 从而使饱和食盐溶液 100保 持恒温。 具体地, 花洒喷射装置包括计量泵 33和花洒喷射头 34, 计量泵 33与控 制器 20电连接, 在控制器 20执行相应的炒菜程序而控制陀螺仪 300、 驱动装置、 加热装置通过炒菜锅 10对菜品进行炒制过程中, 为了使炒菜锅 10中的配菜被翻 炒均匀, 因而在炒菜锅 10的内壁上设有用于翻炒配菜的翻炒凸边 11, 如此, 在 炒菜锅 10转动时, 配菜在经过该翻炒凸边 11时被翻起, 配菜在炒菜锅 10中不断 翻炒而被炒制熟透, 在执行完成炒制操作程序而需要加盐时, 此时控制器 20则 控制计量泵 33启动, 计量泵 33的入口端与供盐仓 31相连通, 计量泵 33的出口端 与花洒喷射头 34相连通, 花洒喷射头 34与炒菜锅 10的锅口相对设置, 计量泵 33 将供盐仓 31中的恒温的饱和食盐溶液 100通过花洒喷射头 34以雾滴状喷洒到炒菜 锅 10的菜品中, 然后控制器控制驱动装置继续驱动炒菜锅 10旋转而使得锅中的 菜品和所喷洒进的饱和食盐溶液 100混合均匀, 即可将菜品出锅。
[0037] 具体地, 如图 3所示, 该炒菜机器人还包括洗锅系统 40, 该洗锅系统 40包括加 压泵 41、 喷头 42和超声波装置 43。 其中, 加压泵 41的泵入口 410连接清洗液 200 的水龙头, 加压泵 41的泵出口与喷头 42之间通过管路 44相连通, 加压泵 41向喷
头 42的容水腔中泵入清洗液 200, 使得喷头 42的容水腔中储放的清洗液 200具有 一定的压力, 使得喷头 42的喷嘴出口射出的清洗液 200也以一定的喷射压力射出 。 加压泵 41、 超声波装置 43均与控制器 20电连接, 超声波装置 43设置在喷头 42 上, 超声波装置 43向喷头 42的容水腔内发射超声波, 且喷头 42的喷嘴出口朝向 炒菜锅 10设置。 在对炒菜锅 10进行清洗操作时, 控制器 20首先控制陀螺仪 300进 行倾斜第一预设倾斜角度(3并保持平衡稳定, 随后控制器 20依据陀螺仪 300倾斜 后的平衡稳定状态控制驱动装置 50带动炒菜锅 10倾斜, 使得炒菜锅 10的锅口与 喷头 42的喷嘴出口相正对, 然后, 控制器 20控制加压泵 41和超声波装置 43同时 启动, 如此, 清洗液 200在喷头 42的容水腔中同时具备喷射压力和产生了空化作 用的条件, 使得清洗液 200从喷头 42的喷嘴出口射向炒菜锅 10的锅内壁实现清洗
[0038] 由于该炒菜机器人在对炒菜锅 10进行清洗操作时, 喷射向炒菜锅 10的锅内壁的 清洗液 200具备一定喷射压力, 并且清洗液 200与超声波相互作用产生了空化作 用, 空化作用在清洗液 200中产生的空化气泡随清洗液 200喷射至炒菜锅 10的内 壁上之后突然闭合或破裂能够发出冲击波, 该冲击波在其周围产生上千个大气 压力, 一方面空化气泡破坏了炒菜锅 10内壁上残留的污物的表面吸附能力, 另 一方面空化气泡也会引起污物层被破坏而脱离炒菜锅 10内壁表面而使污物分散 到清洗液 200中, 并且配合喷射时清洗液 200的喷射压力, 使得炒菜锅 10内壁被 清洗干净。
[0039] 并且, 在控制器 20启动加压泵 41和超声波装置 43进行清洗操作的过程中, 为了 能够对炒菜锅 10内壁的各个位置清理干净, 因此, 控制器 20同时控制驱动装置 5 0带动炒菜锅 10旋转 (在保持倾斜第一预设倾斜角度(3并保持平衡稳定的状态下 ) 。 这样, 在进行清洗操作的过程中, 喷头 42只需固定不动地向炒菜锅 10内壁 喷射清洗液 200, 此时炒菜锅 10配合旋转, 则能够使炒菜锅 10内壁的各个位置表 面得到有效清洗。
[0040] 如图 1所示, 由于炒菜锅 10是敞口锅, 具有喷射压力的清洗液 200喷射至炒菜锅 10内壁上之后, 清洗液 200会在反作用力的作用下飞溅, 为了降低清洗液 200的 飞溅影响, 因此, 在喷头 42的喷嘴出口处设置有用于调节出水流量的流量调节
环 421, 通过该流量调节环 421调节喷头 42喷射清洗液 200的喷射流量, 以达到降 低清洗液 200飞溅的目的。
[0041] 具体地, 本技术方案采用的清洗液 200是水, 即家庭用自来水。
[0042] 在清洗操作结束之后, 控制器 20控制陀螺仪 300回正并保持平衡稳定, 随后控 制器 20依据陀螺仪 300的回正状态控制驱动装置带动炒菜锅 10回正, 然后控制器 20根据所调用的预存菜品程序继续进行前述的炒菜操作过程, 直至将烹饪完成 的锅中菜品倒出后陀螺仪 300、 炒菜锅 10均回复至初始状态。
[0043] 在本实施例中, 控制器 20采用现用技术中技术成熟且使用普遍的 CRJ、 MCU、 PLC控制模块, 或者采用控制微机, 从而实现对炒菜机器人的自动程序控制。
[0044] 根据本技术方案的另一方面, 提供了一种炒菜机器人采用陀螺仪控制烹饪工艺 的方法, 该烹饪工艺的方法需在前述提供的炒菜机器人进行炒菜操作过程中予 以实施。 该烹饪工艺的方法包括以下步骤:
[0045] 步骤 S10: 封闭容置空间, 启动控制器 20, 调用控制器 20中相应的预存菜品程 序;
[0046] 步骤 S20: 控制器 20调用的预存菜品程序控制加热装置对炒菜锅 10加热至预定 温度 T, 且控制器 20控制陀螺仪 300根据调用的预存菜品程序倾斜第一预设倾斜 角度(3且陀螺仪 300于该第一预设倾斜角度(3时保持平衡;
[0047] 步骤 S30: 控制器 20控制驱动装置 50启动, 并控制驱动装置 50根据陀螺仪 300所 处的第一预设倾斜角度(3带动炒菜锅 10倾斜相同角度后保持倾斜稳定, 且控制器 20根据调用的预存菜品程序控制驱动装置 50带动炒菜锅 10的转动方式;
[0048] 步骤 S40: 当陀螺仪 300于第一预设倾斜角度(3保持平衡达到预定时长 h之后, 控 制器 20控制加热装置停止加热, 且控制器 20控制陀螺仪 300根据调用的预存菜品 程序倾斜第二预设倾斜角度 0, 控制器 20控制驱动装置 50根据陀螺仪 300所处的 第二预设倾斜角度 0带动炒菜锅 10倾斜相同角度以将锅中的菜品倒出;
[0049] 步骤 S50: 当菜品倒出之后, 调用的预存菜品程序运行结束, 陀螺仪 300、 炒菜 锅 10均回复初始状态。
[0050] 在该烹饪加工的方法中, 通过使用陀螺仪 300对炒菜锅 10在进行炒菜操作过程 中的倾斜、 回正时作为炒菜锅 10动作的参照基准, 从而更好地保持炒菜锅 10在
进行倾斜、 回正过程中的平衡稳定, 避免出现炒菜锅 10在进行炒菜操作的过程 中发生倾覆的意外事故。
[0051] 当预定温度 T的温度取值范围为 T < 150°C时, 控制器 20控制驱动装置 50不带动 炒菜锅 10转动; 当预定温度 T的温度取值范围为 150°C<r < 190°C或 210°CST< 220 °C时, 控制器 20控制驱动装置 50带动炒菜锅 10间歇转动; 当预定温度 T的温度取 值范围为 190°C^T < 210°C或 220°C<T < 250°C时, 控制器 20控制驱动装置 50带动 炒菜锅 10连续转动。
[0052] 当需对菜品进行保温时, 此时, 无需控制炒菜锅 10倾斜, 也无需控制炒菜锅 10 转动, 并且控制加热装置对炒菜锅 10进行加热的预定温度 T < 75°, 优选地, 保 温时 T=60°C保温效果最佳。 当预定温度 T的温度取值范围为 75°C^T< 190°C时, 预定时长 h的时间取值范围为 10min^h< 30min, 其中, 在 75°C^T< 190°C的温度 范围中, 所对应的烹饪方式可分为煲和烧两种烹饪方式, 具体地, 煲的温度范 围为 75°C^T< 150°C, 烧的温度范围为 150°C<T < 190°C。 优选地, 在对菜品进行 煲制烹调时候 75°C^T< 120°C较佳, 特别地 T=110°C, 此时, 炒菜锅 10无需产生 倾斜以及转动; 在菜品进行烧制烹调时候则需控制炒菜锅 10进行倾斜第一预设 倾斜角度(3=135°较佳, 且此时 T=160°C或 T=180°C较佳, 并且控制炒菜锅 10进行 间歇性转动, 即控制炒菜锅 10转动一圈后暂停预定时长, 依次间隙地进行转动 。 煲和烧两种烹饪方式的加热预定时长 h=20min最佳。
[0053] 当预定温度 T的温度取值范围为 190°C^T< 250°C时, 预定时长 h的时间取值范 围为 3min^h< 6min。 实际上, 预定温度 T的温度取值范围为 190°C<T < 210°C的 烹饪方式为炒, 预定温度 T的温度取值范围为 210°C<T < 220°C的烹饪方式为煎, 预定温度 T的温度取值范围为 220°C<T < 250°C的烹饪方式为爆炒。 其中, 当对菜 品以煎的烹饪方式进行烹饪时, 此时控制器 20控制驱动装置 50带动炒菜锅 10间 歇转动。
[0054] 当预定温度 T的温度取值范围为 75°C^T< 150°C时, 第一预设倾斜角度(3=180°
, 即当采用煲的方式烹饪菜品时第一预设倾斜角度(3=180°。 当预定温度 T的温度 取值范围为 150°C^T< 190°C或 220°C<T < 250°C时, 第一预设倾斜角度(3的角度取 值范围为 120° <(3 < 180°, 即当采用烧或爆炒的方式烹饪菜品时第一预设倾斜角
度(3的角度取值范围为 120° <(3 < 180°, 优选地, 采用烧的方式以及采用爆炒的方 式时第一预设倾斜角度(3=135°。 当预定温度 T的温度取值范围为 190°C^T < 210°C 时, 即当采用炒的方式烹饪菜品时, 第一预设倾斜角度(3的角度取值范围为 105° <(3 < 135° , 优选地, 采用炒的方式时第一预设倾斜角度(3=120°。 当预定温度 T 的温度取值范围为 210°CST< 220°C时, 即当采用煎的方式烹饪菜品时, 第一预 设倾斜角度(3的角度取值范围为 95° <(3 < 120°, 优选地, 采用煎的方式时第一预 设倾斜角度(3=105°。 在采用不同的烹饪方式进行烹饪菜品的时候, 炒菜锅 10进 行倾斜相对应的倾斜角度, 这就使得炒菜锅 10内的配菜与锅壁的接触面积产生 不同, 倾斜角度越小则配菜与锅壁的接触面积越大, 从而使本炒菜机器人具备 了保温、 煲、 烧、 炒、 煎、 爆炒等不同烹饪方式, 实现了炒菜机器人的多功能 应用。
[0055] 具体地, 第二预设倾斜角度 0的角度取值范围为 0°^0^60°, 也就是说, 需要将 炒菜锅 10的锅口朝下, 才能将炒菜锅 10中的菜品倒出。 优选地, 第二预设倾斜 角度 0=45°。 进一步地, 当控制器 20依据陀螺仪 300倾斜了第二预设倾斜角度 0控 制驱动装置带动炒菜锅 10倾斜同样角度以将菜品倒出的过程中, 为了使炒菜锅 1 0中的菜品能够被完全倒出, 在利用陀螺仪 300确保炒菜锅 10处于第二预设倾斜 角度 0保持平衡稳定的情况下, 通过控制器 20控制驱动装置带动炒菜锅 10上下震 动数次, 从而使锅中的菜品顺着炒菜锅 10的锅壁完全滑落而落入预先放置好的 餐盘中, 然后控制陀螺仪 300、 炒菜锅 10回复初始状态。
[0056] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。
Claims
权利要求书
[权利要求 i] 一种炒菜机器人采用陀螺仪控制烹饪工艺的方法, 其特征在于, 炒菜 机器人包括机器人机壳和炒锅机构, 所述机器人机壳具有容置空间, 所述炒锅机构安装在所述容置空间内, 其中, 炒锅机构包括控制器、 驱动装置、 加热装置、 炒菜锅及陀螺仪, 所述驱动装置、 所述加热装 置和所述陀螺仪均与所述控制器电连接, 所述加热装置安装在所述驱 动装置的动力输出部上, 所述炒菜锅连接在所述加热装置上, 所述炒 菜机器人采用陀螺仪控制烹饪工艺的方法包括以下步骤:
步骤 sio: 封闭所述容置空间, 启动所述控制器, 调用所述控制器中 相应的预存菜品程序;
步骤 S20: 所述控制器调用的预存菜品程序控制所述加热装置对所述 炒菜锅加热至预定温度 T, 且所述控制器控制所述陀螺仪根据调用的 预存菜品程序倾斜第一预设倾斜角度(3且所述陀螺仪于该第一预设倾 斜角度(3时保持平衡;
步骤 S30: 所述控制器控制所述驱动装置启动, 并控制所述驱动装置 根据所述陀螺仪所处的第一预设倾斜角度(3带动所述炒菜锅倾斜相同 角度后保持倾斜稳定, 且所述控制器根据调用的预存菜品程序控制驱 动装置带动所述炒菜锅的转动方式;
步骤 S40: 当所述陀螺仪于所述第一预设倾斜角度(3保持平衡达到预 定时长 h之后, 所述控制器控制所述加热装置停止加热, 且所述控制 器控制所述陀螺仪根据调用的预存菜品程序倾斜第二预设倾斜角度 0 , 所述控制器控制所述驱动装置根据所述陀螺仪所处的第二预设倾斜 角度 e带动所述炒菜锅倾斜相同角度以将锅中的菜品倒出; 步骤 S50: 当菜品倒出之后, 调用的预存菜品程序运行结束, 所述陀 螺仪、 所述炒菜锅均回复初始状态。
[权利要求 2] 如权利要求 1所述的炒菜机器人采用陀螺仪控制烹饪工艺的方法, 其 特征在于,
当所述预定温度 T的温度取值范围为 T< 150°C时, 所述控制器控制驱
动装置不带动所述炒菜锅转动;
当所述预定温度 T的温度取值范围为 150°C<T < 190°C或 210°C^T < 220 °C时, 所述控制器控制驱动装置带动所述炒菜锅间歇转动; 当所述预定温度 T的温度取值范围为 190°C^T < 210°C或 220°C^T < 250 °C时, 所述控制器控制驱动装置带动所述炒菜锅连续转动。
[权利要求 3] 如权利要求 2所述的炒菜机器人采用陀螺仪控制烹饪工艺的方法, 其 特征在于,
当所述预定温度 T的温度取值范围为 75°C^T < 190°C时, 所述预定时 长 h的时间取值范围为 1 Omin<h < 30min;
当所述预定温度 T的温度取值范围为 190°C<T < 250°C时, 所述预定时 长 h的时间取值范围为 3min^h < 6min。
[权利要求 4] 如权利要求 1至 3中任一项所述的炒菜机器人采用陀螺仪控制烹饪工艺 的方法, 其特征在于,
当所述预定温度 T的温度取值范围为 75°C^T < 150°C时, 所述第一预 设倾斜角度(3=180° ;
当所述预定温度 T的温度取值范围为 150°C<T < 190°C或 220°C^T < 250 °C时, 所述第一预设倾斜角度(3的角度取值范围为 120° <(3 < 180° ; 当所述预定温度 T的温度取值范围为 190°C<T < 210°C时, 所述第一预 设倾斜角度(3的角度取值范围为 105° <(3 < 135° ;
当所述预定温度 T的温度取值范围为 210°C^T < 220°C时, 所述第一预 设倾斜角度(3的角度取值范围为 95° <(3 < 120°。
[权利要求 5] 如权利要求 1所述的炒菜机器人采用陀螺仪控制烹饪工艺的方法, 其 特征在于, 所述第二预设倾斜角度 0的角度取值范围为 0%0^60°。
[权利要求 6] 一种炒菜机器人, 其特征在于, 包括机器人机壳和炒锅机构, 所述机 器人机壳具有容置空间, 所述炒锅机构安装在所述容置空间内, 且所 述机器人机壳设有排放通道, 所述排放通道与所述容置空间相连通, 其中, 所述炒锅机构包括控制器、 驱动装置、 加热装置、 炒菜锅、 通 道阀门、 臭氧气体喷射器和陀螺仪, 所述驱动装置与所述控制器电连
接, 所述加热装置安装在所述驱动装置的动力输出部上, 所述加热装 置与所述控制器电连接, 所述炒菜锅连接在所述加热装置上, 所述通 道阀门安装在所述排放通道中, 所述通道阀门与所述控制器电连接, 所述臭氧气体喷射器的喷射口与所述容置空间相连通, 所述臭氧气体 喷射器与所述控制器电连接, 所述陀螺仪与所述控制器电连接, 所述 控制器根据所述陀螺仪倾斜并平衡时的倾斜角度控制所述驱动装置带 动所述炒菜锅倾斜相同角度, 且所述炒菜锅倾斜后保持稳定。
[权利要求 7] 如权利要求 6所述的炒菜机器人, 其特征在于, 所述炒菜机器人还包 括油烟感应器, 所述油烟感应器安装在所述容置空间内壁的顶部上, 所述油烟感应器与所述控制器电连接。
[权利要求 8] 如权利要求 6所述的炒菜机器人, 其特征在于, 所述炒菜机器人还包 括排放鼓风机, 所述排放鼓风机安装在所述排放通道内, 且所述排放 鼓风机位于所述通道阀门的下游位置, 所述排放鼓风机与所述控制器 电连接。
[权利要求 9] 如权利要求 7或 8所述的炒菜机器人, 其特征在于, 所述炒菜机器人还 包括加盐系统, 所述加盐系统设置在所述机器人机壳上, 所述加盐系 统包括供盐仓、 电热恒温块和花洒喷射装置, 所述电热恒温块位于所 述供盐仓内, 所述电热恒温块与所述控制器电连接, 所述花洒喷射装 置包括计量泵和花洒喷射头, 所述计量泵与所述控制器电连接, 所述 计量泵的入口端与所述供盐仓相连通, 所述计量泵的出口端与所述花 洒喷射头相连通, 所述花洒喷射头位于所述容置空间中, 且所述花洒 喷射头与所述炒菜锅的锅口相对设置。
[权利要求 10] 如权利要求 9所述的炒菜机器人, 其特征在于, 所述炒菜机器人还包 洗锅系统, 所述洗锅系统设置在所述机器人机壳上, 所述洗锅系统包 括加压泵、 喷头和超声波装置, 所述加压泵与所述喷头之间通过管路 相连通, 所述加压泵、 所述超声波装置均与所述控制器电连接, 所述 超声波装置设置在所述喷头上, 所述超声波装置向所述喷头的容水腔 内发射超声波, 所述喷头位于所述容置空间中, 且所述喷头的喷嘴出
口与所述炒菜锅的锅口相对设置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811074661.3 | 2018-09-14 | ||
CN201811074661.3A CN109124299A (zh) | 2018-09-14 | 2018-09-14 | 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020052690A1 true WO2020052690A1 (zh) | 2020-03-19 |
Family
ID=64825506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111054 WO2020052690A1 (zh) | 2018-09-14 | 2019-10-14 | 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109124299A (zh) |
WO (1) | WO2020052690A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109124299A (zh) * | 2018-09-14 | 2019-01-04 | 深圳技术大学(筹) | 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 |
CN113558484A (zh) * | 2021-08-27 | 2021-10-29 | 深圳市微厨科技有限公司 | 一种炒菜机的控制方法、炒菜机及系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1660471A (zh) * | 2004-12-16 | 2005-08-31 | 南开大学 | 一种油烟处理方法 |
CN103126513A (zh) * | 2013-02-28 | 2013-06-05 | 许锦标 | 适用于全自动炒菜机的洗锅装置 |
CN205299674U (zh) * | 2015-12-08 | 2016-06-08 | 扶喜初 | 一种带有臭氧发生器的吸油烟机 |
US20160367073A1 (en) * | 2014-07-11 | 2016-12-22 | Dennis Carl Smith | Automatic cooker |
CN106724758A (zh) * | 2017-02-22 | 2017-05-31 | 尹澍 | 云计算炒菜机器人一体化系统 |
CN106859290A (zh) * | 2017-03-15 | 2017-06-20 | 合肥顺昌电磁智能科技有限公司 | 电磁智能炒菜机 |
JP2017196542A (ja) * | 2016-04-25 | 2017-11-02 | 株式会社カジワラ | 攪拌装置 |
CN107692807A (zh) * | 2017-11-03 | 2018-02-16 | 深圳市创新先进科技有限公司 | 一种炒菜机 |
CN107928382A (zh) * | 2017-11-03 | 2018-04-20 | 深圳市创新先进科技有限公司 | 一种智能炒菜机 |
CN109124299A (zh) * | 2018-09-14 | 2019-01-04 | 深圳技术大学(筹) | 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101675855A (zh) * | 2008-09-18 | 2010-03-24 | 刘长发 | 远程控制型烹饪机器人 |
CN108371473A (zh) * | 2017-12-30 | 2018-08-07 | 江西摩力斯科技股份有限公司 | 智能集成式厨房系统 |
-
2018
- 2018-09-14 CN CN201811074661.3A patent/CN109124299A/zh active Pending
-
2019
- 2019-10-14 WO PCT/CN2019/111054 patent/WO2020052690A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1660471A (zh) * | 2004-12-16 | 2005-08-31 | 南开大学 | 一种油烟处理方法 |
CN103126513A (zh) * | 2013-02-28 | 2013-06-05 | 许锦标 | 适用于全自动炒菜机的洗锅装置 |
US20160367073A1 (en) * | 2014-07-11 | 2016-12-22 | Dennis Carl Smith | Automatic cooker |
CN205299674U (zh) * | 2015-12-08 | 2016-06-08 | 扶喜初 | 一种带有臭氧发生器的吸油烟机 |
JP2017196542A (ja) * | 2016-04-25 | 2017-11-02 | 株式会社カジワラ | 攪拌装置 |
CN106724758A (zh) * | 2017-02-22 | 2017-05-31 | 尹澍 | 云计算炒菜机器人一体化系统 |
CN106859290A (zh) * | 2017-03-15 | 2017-06-20 | 合肥顺昌电磁智能科技有限公司 | 电磁智能炒菜机 |
CN107692807A (zh) * | 2017-11-03 | 2018-02-16 | 深圳市创新先进科技有限公司 | 一种炒菜机 |
CN107928382A (zh) * | 2017-11-03 | 2018-04-20 | 深圳市创新先进科技有限公司 | 一种智能炒菜机 |
CN109124299A (zh) * | 2018-09-14 | 2019-01-04 | 深圳技术大学(筹) | 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109124299A (zh) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105768837B (zh) | 电饭煲及其控制方法 | |
WO2020052690A1 (zh) | 一种炒菜机器人及其采用陀螺仪控制烹饪工艺的方法 | |
CN114893802A (zh) | 用于集成灶的控制方法及控制装置 | |
CN109589011A (zh) | 一种空气炸锅 | |
CA3022904A1 (en) | Fryer apparatus and method for improved heating control of a cooking chamber of the fryer apparatus | |
TW202045081A (zh) | 炒食機之自動清洗裝置 | |
CN213757753U (zh) | 烹饪装置 | |
CN209284984U (zh) | 一种自动供热水的烹饪装置和自动烹饪器具 | |
CN109124325A (zh) | 烹饪设备 | |
CN111972593A (zh) | 降糖煮饭方法 | |
CN1440238A (zh) | 用于未去壳鸡蛋的热处理的装置和方法 | |
CN109099479A (zh) | 吸油烟机及其方法、清洗装置、以及存储介质 | |
CN108968652B (zh) | 烹饪菜品过程中的烹饪加盐方法、炒菜机器人 | |
JP3814260B2 (ja) | 自動餃子焼き機 | |
JPH0614689Y2 (ja) | 食品加熱器 | |
CN109124300A (zh) | 一种炒菜机器人及其消除油烟辛辣味的方法 | |
JP2002010924A (ja) | フライヤー及びこれに使用する濾過装置 | |
CN213721462U (zh) | 炒食机的自动食用流体注入装置 | |
JP2019181139A (ja) | 自動蒸煮調理鍋及びその蒸煮方法 | |
CN218528438U (zh) | 一种电饭锅 | |
TWM585574U (zh) | 炒食機之自動清洗裝置 | |
TWM585569U (zh) | 炒食機之自動食用流體注入裝置 | |
CN112021928A (zh) | 双锅胆电饭煲及双锅煮饭方法 | |
CN114568957B (zh) | 烹饪器具的控制方法、控制装置、控制器及烹饪器具 | |
CN218899147U (zh) | 一种智能多功能沥米蒸饭机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860315 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19860315 Country of ref document: EP Kind code of ref document: A1 |