WO2020052469A1 - 发送和接收侧行链路控制信息的方法以及装置 - Google Patents

发送和接收侧行链路控制信息的方法以及装置 Download PDF

Info

Publication number
WO2020052469A1
WO2020052469A1 PCT/CN2019/104148 CN2019104148W WO2020052469A1 WO 2020052469 A1 WO2020052469 A1 WO 2020052469A1 CN 2019104148 W CN2019104148 W CN 2019104148W WO 2020052469 A1 WO2020052469 A1 WO 2020052469A1
Authority
WO
WIPO (PCT)
Prior art keywords
sci
sequence
format
time
modulation mode
Prior art date
Application number
PCT/CN2019/104148
Other languages
English (en)
French (fr)
Inventor
郭文婷
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020052469A1 publication Critical patent/WO2020052469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of wireless communications, and more specifically, to a method and apparatus for transmitting and receiving side link control information.
  • D2D device-to- device
  • V2X vehicle-to-everything
  • Been proposed.
  • 5G NR V2X 5th generation NR V2X
  • 5G NR V2X can support lower transmission delay, more reliable communication transmission, higher throughput, and better user experience to meet the requirements of a wider range of application scenarios.
  • the present application provides a method and a device for transmitting and receiving side link control information, which enable flexible communication between terminal devices, thereby improving communication efficiency.
  • a method for transmitting side link control information includes determining transmission parameters of the side link control information SCI.
  • the transmission parameters include at least one of the following: the number of SCI transmissions, the SCI Format or transmission resource parameters of the SCI; and sending the SCI to a receiving device based on the transmission parameters of the SCI.
  • the method provided in the first aspect may be executed by a transmitting device, such as a network device or a terminal device, or may be executed by a chip configured in the transmitting device, which is not limited in this application.
  • a transmitting device such as a network device or a terminal device
  • a chip configured in the transmitting device which is not limited in this application.
  • the sending device can determine the transmission parameters of the side link control information to be sent, such as the number of times the side link control information is transmitted, the side line
  • the format of the link control information, the transmission resources of the side link control information, and the side link control information is transmitted based on the transmission parameters, so that the sending end device and the receiving end device can flexibly communicate and improve communication efficiency.
  • the sending end device may determine the number of transmissions of the lateral link control information. For example, when the channel quality is poor, the transmitting device can send the side link control information multiple times to ensure transmission reliability.
  • the sending-end device may also determine the format of the lateral link control information.
  • the sending device can determine the format of the side link control information to be sent. Specifically, the transmitting end device may also determine transmission resource parameters of the lateral link control information. If there can be multiple time-frequency resources of different sizes, the transmitting device can determine the time-frequency resources occupied by the side link control information to be transmitted. By considering factors related to the side link control information, not only can communication be flexibly performed, and communication efficiency can be improved, but also the receiving end device can ensure that the side link control information is correctly received.
  • the transmission parameter includes the number of transmissions of the SCI
  • determining the transmission parameter of the SCI includes: determining the number of transmissions of the SCI as T, where T is greater than 1 or an integer equal to 1; the sending the SCI based on the transmission parameter of the SCI includes: sending the SCI T times.
  • the sending-end device may send the side-link control information based on the number of transmission times of the side-link control information to be transmitted, so as to ensure transmission reliability and improve communication efficiency. For example, when the channel quality is poor, the transmitting device may send the side link control information multiple times to ensure transmission reliability. As another example, when the channel quality is good, the sending end device may send the side link control information once. For another example, the sending end device may also determine the format and / or length of the side link control information to determine the number of times the side link control information is sent.
  • the T is greater than 1, and before sending each of the first T-1 times in the SCI T times, the method further includes: A first demodulation reference signal (demodulation reference signal, DMRS) sequence, where the first DMRS sequence is used to indicate that the current SCI is not the last transmission.
  • DMRS demodulation reference signal
  • the sending end device can use the DMRS sequence to implicitly indicate whether the side link control information sent this time is the last one sent. If it can be T-1 times before, the receiving end device sends the first A DMRS sequence, according to the first DMRS sequence, determines that the side link control information transmitted at the current time is not the last transmission, thereby facilitating the receiving end device to correctly receive all the information, and then correctly decode it to ensure transmission reliability.
  • the method before sending the T times in the SCI T times, the method further includes: sending a second DMRS sequence, and the second DMRS sequence is used It is indicated that the T-th transmitted SCI is the last transmitted.
  • the sending-end device when it sends side-link control information for the last time, it can send a second DMRS sequence to the receiving-end device. Based on the second DMRS sequence, the receiving-end device can determine the The downlink control information is sent for the last time.
  • the first DMRS sequence and the second DMRS sequence both belong to the demodulation reference signal, but the sequence values are different. Through different DMRS sequences, not only can the side link control information be sent for the last time, but notification signaling can also be saved.
  • the method before the T is greater than 1, and before sending each of the first T-1 times in the SCI T times, the method further includes: A first modulation mode is selected from a first modulation mode set, a second modulation mode is selected from a second modulation mode set, and the SCI is modulated using the first modulation mode and the second modulation mode, and the first modulation mode And the second modulation mode indicates that the SCI currently transmitted is not the last transmission.
  • the transmitting-end device may use the modulation mode of the side link control information to conceally indicate whether the current side link control information is currently sent or not. If it is not the last time that the side link control information is transmitted, the resource particles of the side link control information may be modulated by using different modulation modes.
  • the method before sending the T times in the SCI T times, the method further includes: selecting a third modulation mode from a third modulation mode set, The third modulation mode is used to modulate the SCI, and the third modulation mode indicates that the T-th sent SCI is the last sent.
  • the transmitting end device may use the modulation mode of the side link control information to implicitly indicate whether the current or current side link control information is sent last time. If it is the last time that the side link control information is transmitted, the side link control information is modulated using a modulation mode.
  • the transmission parameters include a format of the SCI and transmission resource parameters of the SCI
  • determining the transmission parameters of the SCI includes: determining the format of the SCI and the SCI
  • the transmission resource parameter of the SCI includes the size of the time-frequency resource occupied by the SCI; and sending the SCI based on the transmission parameter of the SCI includes: using the time-frequency resource occupied by the SCI And send the SCI in the format of the SCI.
  • the time-frequency resources used when sending the side link control information and the format of the side link control information may be determined first, and then the side link control information is sent.
  • the size of the time-frequency resources occupied by the SCI indicates the size of the time-frequency resources to be used for sending the SCI.
  • the format of the SCI corresponds to the size of the time-frequency resource occupied by the SCI; and determining the transmission resource parameter of the SCI includes: according to the SCI The format determines the size of the time-frequency resources occupied by the SCI.
  • time-frequency resources that is, transmission resources
  • the corresponding lateral link control information can be transmitted on appropriate time-frequency resources, so that resources can be used reasonably.
  • the sending end device may also determine the time-frequency resource used to send the side link control information according to the format of the side link control information.
  • the method before the SCI is transmitted based on the transmission parameters of the SCI, the method further includes: selecting a first sequence from a first sequence set, and sending all The first sequence, wherein the first sequence is used to indicate transmission resource parameters of the SCI, and / or the first sequence is used to indicate a format of the SCI.
  • the transmission resource parameters of the SCI and / or the format of the SCI are instructed by a sequence concealment, so that the receiving end device receives correct information, reduces the number of blind inspections, and saves resources.
  • the first sequence set may include one or more sequences, and each sequence may correspond to one or more time-frequency resources of different sizes, and / or, each sequence may also correspond to one or more side lines.
  • the format of the link control information may include one or more sequences, and each sequence may correspond to one or more time-frequency resources of different sizes, and / or, each sequence may also correspond to one or more side lines.
  • the method further includes: before the SCI is transmitted based on the transmission parameter of the SCI, the method further includes: sending instruction information, the instruction The information includes at least one of the following: a correspondence between the first sequence set and a set of time-frequency resources, where the set of time-frequency resources includes at least two types of time-frequency resources, and the first sequence A sequence in the set corresponds to a size of a time-frequency resource in the set of sizes of the time-frequency resource; or a correspondence between the first sequence set and a set in the SCI format, where the set in the SCI format includes At least two SCI formats, one sequence in the first sequence set corresponds to one SCI format in the SCI format set; or, the first sequence set corresponds to a set and size of the time-frequency resources.
  • the correspondence relationship of the set of SCI format wherein a sequence in the first sequence set and a size of a time-frequency resource in the set of size of the time-frequency resource and the SCI format Corresponding to engagement of a SCI format; wherein when one kind of collection, the SCI frequency resources occupied size of the time-frequency resource of size, the SCI format is set in a format of the SCI.
  • the foregoing correspondence may be predefined in a communication network.
  • the sequence has a correspondence relationship with the size of the time-frequency resource and / or the format of the side link control information.
  • the sending device can indicate the size and / or the time-frequency resource of the receiving device through the sequence.
  • the format of the side link control information is convenient for the receiving end device to better receive the information and improve the user experience.
  • the method before the SCI is transmitted based on the transmission parameters of the SCI, the method further includes: using a scrambling code ID corresponding to a format of the SCI Performing scrambling processing on the cyclic redundancy check CRC in the SCI.
  • the cyclic redundancy check CRC in the side link control information can be scrambled, and the format of the corresponding side link control information can be determined according to the scrambling code ID.
  • Blind detection can achieve the purpose of blind detection, which greatly reduces the complexity of the receiving device.
  • a method for receiving side link control information includes: receiving side link control information SCI sent by a sending device, the SCI being sent based on the transmission parameters of the SCI,
  • the transmission parameters include at least one of the following: the number of transmissions of the SCI, the format of the SCI, or the transmission resource parameters of the SCI; and decoding the SCI.
  • the method provided in the second aspect may be executed by a receiving end device, such as a terminal device, or may be executed by a chip configured in the receiving end device, which is not limited in this application.
  • the receiving-end device receives the side link control information and is sent by the sending-end device based on the transmission parameters.
  • the transmission parameters include the number of transmissions of the side link control information.
  • the sending end device may determine the number of transmissions of the lateral link control information. For example, when the channel quality is poor, the sending end device can send the side link control information multiple times, and the receiving end device receives the side link control information multiple times, and then can correctly receive the side link control information to ensure that Transmission reliability and communication efficiency.
  • the transmission parameters include the format of the lateral link control information.
  • the sending-end device may also determine the format of the side-link control information, and the receiving-end device may receive the side-link control information in multiple formats.
  • the transmission parameters include transmission resource parameters of the lateral link control information. Specifically, there may be multiple time-frequency resources of different sizes, and the receiving end device may perform decoding on time-frequency resources of different sizes.
  • the transmission parameter includes the number of transmissions of the SCI; and receiving the SCI includes: receiving T SCIs, where T is an integer greater than 1 or equal to 1;
  • the decoding the SCI includes: if the T is equal to 1, decoding the SCI; and if the T is greater than 1, combining and decoding the T SCIs .
  • the receiving end device can perform decoding based on the number of transmissions of the side link control information. For example, when it is determined that the number of transmissions of the side link control information is one time, the received side link control information may be directly decoded. For another example, when it is determined that the number of transmission times of the side link control information is multiple times, the received side link control information may be combined and decoded.
  • the T is greater than 1, and before receiving each of the first T-1 times in the SCI T times, the method further includes: A demodulation reference signal DMRS sequence, and according to the first DMRS sequence, it is determined that the current received SCI is not the last received.
  • the receiving end device can receive a sequence each time it receives the side link control information, and determine whether the secondary side link control information transmission is the last time to be sent based on the sequence. For example, when the first DMRS sequence is received, it is determined that the current (or current) received side link control information is not the last received.
  • the method before receiving the Tth time in the SCI of T times, the method further includes: receiving a second DMRS sequence, and determining all the DMRS sequences according to the second DMRS sequence.
  • the T-th received SCI is the last received.
  • the second DMRS sequence when the second DMRS sequence is received, it is determined that the side link control information received at the current time (that is, the T-th time) is the last time received.
  • the T is greater than 1, and before receiving each of the first T-1 times in the SCI T times, the method further includes: determining the current time The modulation mode of the received SCI includes a first modulation mode and a second modulation mode. According to the first modulation mode and the second modulation mode, it is determined that the current received SCI is not the last reception, and the first modulation The mode is a modulation mode in a first modulation mode set, and the second modulation mode is a modulation mode in a second modulation mode set.
  • the receiving end device can determine whether the side link control information is the last received through the modulation mode of the side link control information, thereby saving notification signaling. For example, when using different modulation modes to modulate the resource particles of the side link control information, it can be quickly and simply determined that the side link control information was not received for the last time.
  • the method further includes: before the receiving the Tth time in the T times of SCI, the method further includes: determining the Tth time of receiving the SCI
  • the modulation mode of is the third modulation mode
  • the T-th received SCI is determined to be the last reception according to the third modulation mode, wherein the third modulation mode is a modulation mode in a third modulation mode set.
  • the sending end device may use the modulation mode of the side link control information to implicitly indicate whether the side link control information is sent for the last time.
  • the receiving end device determines that the modulation mode of the side link control information is one, it can be considered that the side link control information currently received (that is, the Tth time) is the last received.
  • the transmission parameters include a format of the SCI and transmission resource parameters of the SCI
  • the transmission resource parameters of the SCI include a size of a time-frequency resource occupied by the SCI
  • the time-frequency resources used when sending the side link control information and the format of the side link control information may be determined first, and then the side link control information is decoded.
  • the method before receiving the SCI, further includes: receiving a first sequence, determining a transmission resource parameter of the SCI according to the first sequence, and / Or, determining the format of the SCI according to the first sequence, wherein the first sequence is a sequence in a first sequence set; and the decoding the SCI includes: based on the transmission resource of the SCI Parameters and / or the format of the SCI to decode the SCI.
  • the transmission resource parameters of the SCI and / or the format of the SCI are indicated by a sequence concealment, so that the receiving end device receives correct side link control information and reduces the number of blind detections. save resources.
  • the first sequence set may include one or more sequences, and each sequence may correspond to one or more time-frequency resources of different sizes, and / or, each sequence may also correspond to one or more side lines.
  • the format of the link control information may include one or more sequences, and each sequence may correspond to one or more time-frequency resources of different sizes, and / or, each sequence may also correspond to one or more side lines.
  • a format of the SCI corresponds to a size of a time-frequency resource occupied by the SCI.
  • time-frequency resources that is, transmission resources
  • the time-frequency resources correspond to the format of the side link control information.
  • the corresponding side link control information is transmitted on the network, so that resources can be used reasonably.
  • the method before receiving the SCI, the method further includes: receiving instruction information, the instruction information including at least one of the following: the first sequence set and time Correspondence between the set of sizes of frequency resources, where the set of sizes of time-frequency resources includes the sizes of at least two kinds of time-frequency resources, and a sequence in the first set of sequences and the set of sizes of time-frequency resources
  • One of the time-frequency resources corresponds to a size; or, a correspondence between the first sequence set and a set of SCI format, wherein the set of SCI format includes at least two SCI formats, one of the first sequence set
  • the sequence corresponds to one of the SCI format sets; or, the first sequence set corresponds to a set of the size of the time-frequency resource and a set of the SCI format, wherein the first sequence A sequence in the set corresponds to a size of a time-frequency resource in the set of the size of the time-frequency resource and a SCI format in the SCI format set; wherein the
  • the foregoing correspondence may be predefined in a communication network.
  • the sequence has a correspondence relationship with the transmission resource parameters and / or the format of the side link control information. According to the correspondence relationship, the receiving end device can better receive the information and improve the user experience.
  • the method before the decoding of the SCI, further includes: descrambling the received SCI to obtain the scrambling code identifier ID; the method further comprises: determining a format of the SCI according to the scrambling code ID and a correspondence between the scrambling code ID and the format of the SCI.
  • the cyclic redundancy check CRC in the side link control information can be scrambled, and the format of the corresponding side link control information can be determined according to the scrambling code ID.
  • Blind detection can achieve the purpose of blind detection, which greatly reduces the complexity of the receiving device.
  • a method for transmitting waveform information including: determining waveform information of a control channel and a data channel; and transmitting instruction information, where the instruction information is used to indicate: the control channel and / or the data channel Waveform information, and / or whether the waveforms of the control channel and the data channel are the same.
  • the transmission waveforms of the control channel and the data channel may have various forms, and the transmission waveforms of the control channel and the data channel may be the same or different. Different transmission waveforms can correspond to side link control information in different formats.
  • the instruction information may indicate the waveform information of the control channel and / or the data channel, or the instruction information may indicate whether the waveforms of the control channel and the data channel are the same, thereby facilitating the receiving device to determine the waveform information of the control channel and the data channel. With this method, the receiving end device can better receive information, and improve communication efficiency and user experience.
  • the indication information is carried in side-link control information SCI, and the indication information is used to indicate whether the waveforms of the control channel and the data channel are The same, including: indicating whether the waveforms of the control channel and the data channel are the same through one or more reserved bits in the SCI.
  • the reserved bits in the side link control information can be used reasonably, and the reserved bits can be used to indicate whether the waveforms of the control channel and the data channel are the same, thereby reducing the signaling overhead.
  • a field of one or more bits may be added to indicate whether the waveforms of the control channel and the data channel are the same.
  • the indication information is a second sequence
  • the second sequence has a correspondence relationship with whether the waveforms of the control channel and the data channel are the same; Or, there is a correspondence relationship between the second sequence and the waveform information of the data channel and / or the waveform information of the control channel.
  • the sequence (that is, the second sequence) may indicate the waveform information of the control channel and / or the data channel, or the sequence may indicate whether the waveforms of the control channel and the data channel are the same.
  • the receiving end device can determine the waveform information of the control channel and / or the data channel according to the correspondence between the sequence and the waveform information of the control channel and / or the data channel.
  • a method for receiving waveform information including: receiving instruction information, where the instruction information is used to indicate: waveform information of a control channel and / or a data channel, and / or waveforms of a control channel and a data channel Whether they are the same; and determining waveform information of the control channel and / or the data channel according to the indication information.
  • the transmission waveforms of the control channel and the data channel may have various forms, and the transmission waveforms of the control channel and the data channel may be the same or different. Different transmission waveforms can correspond to side link control information in different formats.
  • the instruction information may indicate the waveform information of the control channel and / or the data channel, or the instruction information indicates whether the waveforms of the control channel and the data channel are the same, and then the receiving end device can determine the control channel and the data channel according to the instruction information. Waveform information. With this method, the receiving end device can better receive information, and improve communication efficiency and user experience.
  • the indication information is carried in side link control information SCI, and a waveform of the control channel and / or the data channel is determined according to the indication information
  • the information includes: determining whether waveforms of the control channel and the data channel are the same according to one or more reserved bits in the SCI, and determining waveform information of the control channel and / or the data channel.
  • the reserved bits in the side link control information can be used reasonably, and the reserved bits can be used to indicate whether the waveforms of the control channel and the data channel are the same, thereby reducing the signaling overhead.
  • a field of one or more bits may be added to indicate whether the waveforms of the control channel and the data channel are the same.
  • the receiving device may determine whether the waveforms of the control channel and the data channel are the same according to a field of one or more bits, and then determine the waveform information of the control channel and / or the data channel.
  • the indication information is a second sequence
  • the second sequence has a correspondence relationship with whether the waveforms of the control channel and the data channel are the same; Or, there is a correspondence relationship between the second sequence and the waveform information of the data channel and / or the waveform information of the control channel.
  • the receiving end device may determine the waveform information of the control channel and / or the data channel according to the corresponding relationship and the received sequence.
  • an apparatus for transmitting side link control information includes a processor and a transceiver.
  • the processor is configured to determine transmission parameters of the side link control information SCI, and the transmission parameters It includes at least one of the following: the number of transmissions of the SCI, the format of the SCI, or the transmission resource parameters of the SCI; the transceiver is configured to send the SCI to a receiving device based on the transmission parameters.
  • the transmission parameter includes the number of transmissions of the SCI
  • the processor is specifically configured to determine the number of transmissions of the SCI as T, where T is greater than 1 Or an integer equal to 1; the transceiver is specifically configured to send the SCI T times.
  • the transceiver before the T is greater than 1, the transceiver sends T times each of the first T-1 times in the SCI before the transceiver further Used to: send a first demodulation reference signal DMRS sequence, where the first DMRS sequence is used to indicate that the SCI currently sent is not the last one sent.
  • the transceiver before the transceiver sends T times the Tth time in the SCI, the transceiver is further configured to: send a second DMRS sequence, and the first The two DMRS sequences are used to indicate that the T-th sent SCI is the last sent.
  • the transceiver before the T is greater than 1, sends T times each of the first T-1 times in the SCI before the processor further For: selecting a first modulation mode from a first modulation mode set, selecting a second modulation mode from a second modulation mode set, and using the first modulation mode and the second modulation mode to modulate the SCI, the The first modulation mode and the second modulation mode indicate that the SCI currently transmitted is not the last transmission.
  • the processor before the transceiver sends T times the Tth time in the SCI, the processor is further configured to: select the third modulation mode set from the third modulation mode set.
  • the three modulation modes use the third modulation mode to modulate the SCI, and the third modulation mode indicates that the T-th sent SCI is the last sent.
  • the transmission parameters include a format of the SCI and transmission resource parameters of the SCI
  • the processor is specifically configured to determine the format of the SCI and the Transmission resource parameters
  • the transmission resource parameters of the SCI include the size of the time-frequency resources occupied by the SCI
  • the transceiver is specifically configured to: use the size of the time-frequency resources occupied by the SCI, and adopt the format of the SCI The SCI is sent.
  • the format of the SCI corresponds to a size of a time-frequency resource occupied by the SCI; and the processor is specifically configured to: determine the IP address according to the format of the SCI Describe the size of time-frequency resources occupied by SCI.
  • the transceiver before the transceiver sends the SCI based on the transmission parameter, the transceiver is further configured to: select a first sequence from a first sequence set Sending the first sequence, where the first sequence is used to indicate a transmission resource parameter of the SCI, and / or the first sequence is used to indicate a format of the SCI.
  • the transceiver before the transceiver sends the SCI based on the transmission parameter, the transceiver is further configured to: send instruction information, the instruction information includes the following At least one item: a correspondence between the first sequence set and a set of time-frequency resources, where the set of time-frequency resources includes at least two types of time-frequency resources, where A sequence corresponds to a size of a time-frequency resource in the set of time-frequency resources; or, a correspondence between the first sequence set and a set in a SCI format, where the set in the SCI format includes at least two SCI format, one sequence in the first sequence set corresponds to one SCI format in the SCI format set; or, the first sequence set and the set of the time-frequency resource size and the SCI format The corresponding relationship of the set, wherein a sequence in the first sequence set and a size of a time-frequency resource in the set of sizes of the time-frequency resource and one of the SCI format set Corresponding to SCI format
  • the processor before the transceiver sends the SCI based on the transmission parameter, the processor is further configured to: use a disturbance corresponding to a format of the SCI The code identifies the ID and scrambles the cyclic redundancy check CRC in the SCI.
  • an apparatus for receiving side link control information includes a processor and a transceiver.
  • the transceiver is configured to: receive side link control information SCI sent by a transmitting device, and the SCI
  • the SCI is sent based on transmission parameters of the SCI.
  • the transmission parameters include at least one of the following: the number of transmissions of the SCI, the format of the SCI, or the transmission resource parameters of the SCI; the processor is configured to decode the SCI.
  • the transmission parameter includes the number of transmissions of the SCI; the transceiver is specifically configured to receive T SCIs, where T is an integer greater than 1 or equal to 1
  • the processor is specifically configured to: decode the SCI if the T is equal to 1; and perform merge decoding on the SCI if the T is greater than 1.
  • the T is greater than 1, and before the transceiver receives each of the first T-1 times in the SCI T times, the transceiver is further configured to: : Receiving and sending a first demodulation reference signal DMRS sequence, and determining, according to the first DMRS sequence, that the current received SCI is not the last reception.
  • the transceiver before the transceiver receives the Tth time in the SCI, the transceiver is further configured to: receive a second DMRS sequence, and according to the second The DMRS sequence determines that the T-th received SCI is the last received.
  • the T is greater than 1, and before the transceiver receives each of the first T-1 times in the SCI T times, the processor is further configured to: : Determine that the modulation mode of the current received SCI includes a first modulation mode and a second modulation mode, and determine that the received SCI is not the last reception according to the first modulation mode and the second modulation mode, where The first modulation mode is a modulation mode in a first modulation mode set, and the second modulation mode is a modulation mode in a second modulation mode set.
  • the processor before the transceiver receives the Tth time in the Tth SCI, the processor is further configured to: determine a modulation of the Tth time in the received SCI The mode is a third modulation mode, and the T-th received SCI is determined to be the last reception according to the third modulation mode, wherein the third modulation mode is a modulation mode in a third modulation mode set.
  • the transmission parameters include a format of the SCI and transmission resource parameters of the SCI
  • the transmission resource parameters of the SCI include a size of a time-frequency resource occupied by the SCI
  • the transceiver before the transceiver receives the SCI, the transceiver is further configured to: receive a first sequence, and determine a transmission resource of the SCI according to the first sequence Parameters, and / or determine the format of the SCI according to the first sequence, wherein the first sequence is a sequence in a first sequence set; and the processor is specifically configured to: based on the SCI transmission resource Parameters and / or the format of the SCI to decode the SCI.
  • a format of the SCI corresponds to a size of a time-frequency resource occupied by the SCI.
  • the transceiver before the transceiver receives the SCI, the transceiver is further configured to receive instruction information, where the instruction information includes at least one of the following: the first Correspondence between a sequence set and a size set of time-frequency resources, wherein the size set of time-frequency resources includes the sizes of at least two kinds of time-frequency resources, and one sequence in the first sequence set and the time-frequency resource Corresponding to the size of one time-frequency resource in the set of sizes; or, the correspondence between the first sequence set and the set of SCI format, wherein the set of SCI format includes at least two SCI formats, the first sequence A sequence in the set corresponds to a SCI format in the set of the SCI format; or, a correspondence between the first sequence set and a set of the size of the time-frequency resource and the set of the SCI format, where A sequence in the first sequence set corresponds to a size of a time-frequency resource in the set of sizes of the time-frequency resource and a
  • the processor is specifically configured to: descramble the SCI to obtain a scrambling code identification ID; according to the scrambling code ID and the scrambling code The correspondence between the ID and the format of the SCI determines the format of the SCI.
  • an apparatus for transmitting waveform information includes a processor and a transceiver.
  • the processor is configured to determine waveform information of a control channel and a data channel.
  • the transceiver is configured to transmit instruction information.
  • the instruction information is used to indicate: waveform information of the control channel and / or the data channel, and / or whether the waveforms of the control channel and the data channel are the same.
  • the indication information is carried in side link control information SCI, and the indication information is used to indicate whether the waveforms of the control channel and the data channel are The same, including: indicating whether the waveforms of the control channel and the data channel are the same through one or more reserved bits in the SCI.
  • the indication information is a second sequence
  • the second sequence has a correspondence relationship with whether the waveforms of the control channel and the data channel are the same; Or, there is a correspondence relationship between the second sequence and the waveform information of the data channel and / or the waveform information of the control channel.
  • an apparatus method for receiving waveform information includes a processor and a transceiver.
  • the transceiver is configured to receive instruction information, where the instruction information is used to indicate: a control channel and / or a data channel. Waveform information, and / or whether the waveforms of the control channel and the data channel are the same; the processor is configured to determine the waveform information of the control channel and / or the data channel according to the instruction information.
  • the indication information is carried in side-link control information SCI, and the processor is specifically configured to: according to one or more of the SCIs
  • the reserved bits determine whether the waveforms of the control channel and the data channel are the same, and determine waveform information of the control channel and / or the data channel.
  • the indication information is a second sequence
  • the second sequence has a correspondence relationship with whether the waveforms of the control channel and the data channel are the same; Or, there is a correspondence relationship between the second sequence and the waveform information of the data channel and / or the waveform information of the control channel.
  • a communication apparatus which includes each module or unit for executing the method in the first aspect, the third aspect, or any one of the first aspect and the third aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the foregoing first aspect, the third aspect, or the method in any one of the possible implementation manners of the first aspect and the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input / output interface.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a communication device which includes each module or unit for performing the method in any one of the second aspect, the fourth aspect, or the second aspect and the fourth aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the foregoing second aspect, the fourth aspect, or the method in any one of the possible implementation manners of the second aspect and the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any one of the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • An input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • a signal output by the output circuit may be, for example, but not limited to, output to a transmitter and transmitted by the transmitter
  • the circuits may be the same circuit, which are used as input circuits and output circuits respectively at different times.
  • the embodiments of the present application do not limit specific implementations of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to execute the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect. Methods.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the memory may be a non-transitory memory, such as a read-only memory (ROM), which may be integrated on the same chip as the processor, or may be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the way of setting the memory and the processor.
  • ROM read-only memory
  • sending instruction information may be a process of outputting instruction information from a processor
  • receiving capability information may be a process of receiving input capability information by a processor.
  • the processed output data can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the above fourteenth aspect may be one chip.
  • the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc .; when implemented by software, the processor may be a general-purpose processor. It is implemented by reading software code stored in a memory, which can be integrated in a processor, can be located outside the processor, and exists independently.
  • a computer program product includes a computer program (also referred to as code or instructions), and when the computer program is executed, causes a computer to execute the first aspect to The method in the fourth aspect and any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also referred to as code or instructions
  • a computer-readable medium stores a computer program (also referred to as code, or instructions) that when executed on a computer, causes the computer to execute the first aspect to The method in the fourth aspect and any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also referred to as code, or instructions
  • a communication system including the foregoing network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is another schematic diagram of a communication system applicable to an embodiment of the present application.
  • 3 is a schematic diagram of LTE V2X frequency domain resources
  • FIG. 4 is a schematic interaction diagram of a method for transmitting and receiving side link control information according to an embodiment of the present application
  • 5 is a schematic diagram of a resource mapping manner of the SL control channel and the data channel
  • FIG. 6 is a schematic diagram of a frame structure of an FDM system applicable to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frame structure of a TDM system applicable to an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a frame structure of an FDM system applicable to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a frame structure of a TDM system applicable to an embodiment of the present application.
  • FIG. 10 is a schematic interaction diagram of a method for transmitting and receiving side link control information according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of CRC scrambling applicable to an embodiment of the present application.
  • FIG. 12 is a schematic interaction diagram of a method for sending and receiving waveform information according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • 5G 5th generation
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnected microwave access system Access
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as network device 111 shown in FIG. 1, and the wireless communication system 100 may further include at least one terminal device, such as terminal device 121 shown in FIG. 1. To the terminal device 123. Both network equipment and terminal equipment can be configured with multiple antennas, and network equipment and terminal equipment can use multi-antenna technology to communicate.
  • a network device can manage one or more cells, and there can be an integer number of terminal devices in a cell.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system. Without loss of generality, this cell is referred to as cell # 1.
  • the network device 111 may serve terminal devices (for example, the terminal device 121) in the cell # 1.
  • a cell can be understood as a serving cell of a network device, that is, an area within a coverage area of a wireless network of the network device.
  • FIG. 1 is only for easy understanding, and schematically shows the network device 111 and the terminal device 121 to the terminal device 123, but this should not constitute any limitation to this application, and the wireless communication system may also include a larger number Network equipment may also include a greater or lesser number of terminal equipment. The same network equipment may communicate with different terminal equipment, or different network equipment may communicate with different terminal equipment, which is not limited in this application. .
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to an embodiment of the present application. As shown in FIG. 2, the technical solution of the embodiment of the present application can also be applied to D2D communication.
  • D2D technology can reduce the burden on the cellular network, reduce the battery power consumption of the terminal equipment, increase the data rate, and can well meet the needs of nearby services.
  • D2D technology can allow multiple D2D-capable terminal devices to send and receive signals with or without network infrastructure.
  • an application scenario of the Internet of Vehicles based on D2D technology is proposed.
  • V2X vehicle networking technology is proposed under the LTE technology network proposed by the 3rd Generation Partnership Project (3GPP).
  • V2X communication refers to communication between the vehicle and the outside world, including V2V communication, V2P communication, V2I communication, and V2N communication.
  • the wireless communication system 200 includes multiple terminal devices, such as the terminal device 124 to the terminal device 126 in FIG. 2.
  • the terminal device 124 to the terminal device 126 can communicate directly.
  • the terminal device 124 and the terminal device 125 may send data to the terminal device 126 separately or simultaneously.
  • the wireless communication device further includes one or more network devices, such as the network device 112 in FIG. 2.
  • the terminal device 124 to the terminal device 126 can communicate with the network device 112.
  • the network device 112 communicates with the terminal device 126.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the network equipment includes, but is not limited to: a base station (BS), an evolved Node B (eNB), a radio network controller (RNC), a node B (Node B, NB), and a base station Controller (base station controller, BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • BS base station
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station Controller
  • BTS base transceiver station
  • home base station e.g., home NodeB, or home NodeB, HNB
  • BBU baseband unit
  • AP
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in 5G systems, or it can also be Network nodes that make up a gNB or transmission point, such as a baseband unit (BBU) or a distributed unit (DU).
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio frequency unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (PDCP) layer functions, and DU implements wireless chain Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (RAN), or the CU can be divided into network equipment in a core network (CN), which is not limited in this application.
  • RAN access network
  • CN core network
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminals, terminals, wireless communication devices, user agents, or user devices.
  • the terminal device in the embodiments of the present application may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, or an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted communication devices, and so on.
  • the embodiment of the present application does not limit the application scenario.
  • FIG. 2 is only for easy understanding, and schematically illustrates the terminal device 124 to the terminal device 126 and the network device 112, but this should not constitute any limitation to this application, and a larger number of The network device may also include a greater or lesser number of terminal devices, which is not limited in this application.
  • V2X communication is aimed at high-speed equipment represented by vehicles. It is the basic technology and key technology applied in scenarios that require high communication delay in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • LTE V2X communication can support communication scenarios with network coverage and no network coverage.
  • the resource allocation method can adopt the network access equipment scheduling mode, such as evolved UMTS terrestrial radio access network.
  • a vehicle user can periodically change some information about itself, such as position, speed, intention (turn, merge, and reverse), and some non-periodic event-triggered information. Send to surrounding V-UE. Similarly, V-UE will also receive information from surrounding users in real time.
  • the 3GPP standards organization officially released the first-generation LTE V2X standard in early 2017, with the LTE version number Release 14.
  • the transmitting end in the LTE V2X network can be divided into a communication process based on base station scheduling and an autonomous selection mode.
  • the V2X sender When the V2X sender is in the base station-based scheduling mode, the sender first makes a resource request to the base station. After receiving the resource request, the base station sends resource scheduling information to the V2X sender through the physical downlink control channel (PDCCH). After receiving the resource scheduling information, the V2X sender sends control information and data information at corresponding locations.
  • the V2X sender is in an autonomous selection mode, the sender can autonomously select physical resources based on historical perception. In these two modes, the receiver can blindly check the control information at a specific position according to the subband allocation rules, and obtain the corresponding sidelink physical layer control information (physical sidelink share channel, PSSCH) physical layer coding information Thereby obtaining the final shared information.
  • PSSCH physical sidelink share channel
  • LTE V2X at this stage cannot effectively support it.
  • 5G NR and V2X will also be further developed. For example, it can support lower transmission delays, more reliable communication transmission, higher throughput, and better user experience. Meet the needs of a wider range of application scenarios. Therefore, NR-V2X proposes to support 99.99% or even 99.999% reliability transmission.
  • NR-V2X also needs to support the transmission of control information in different formats and different lengths. The existing LTE-V2X cannot meet the above performance requirements.
  • the present application provides a method for transmitting and receiving side link control information, which can ensure the transmission reliability of the SCI, ensure that the receiving end device correctly receives the SCI, and thereby improve communication efficiency.
  • Resource element Or, resource element. Occupies one symbol in the time domain and one subcarrier in the frequency domain.
  • Resource block One RB is occupied in the frequency domain Continuous subcarriers, occupying in the time domain Consecutive symbols. among them, Both are positive integers. For example, in the LTE protocol, Equals 12, Equals 7; in the NR protocol, Equals 12, Is equal to 14. Need to understand that in the evolution of communication protocols There may be different values, which are not limited in this application. In the embodiment of the present application, the RB may be an example of a resource unit.
  • the symbols may include uplink symbols and downlink symbols.
  • uplink symbols may be referred to as single carrier-frequency division multiple access (SC-FDMA) symbols or orthogonal frequency division multiple access (orthogonal frequency division multiplexing (OFDM) symbols; downlink symbols may be referred to as OFDM symbols, for example.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiplexing
  • Resource unit It can be used as a unit of measurement for resources occupied by resources in the time-frequency domain.
  • the resource unit may include, for example, an RB, a resource block group (RBG) composed of one or more RBs, one or more RB pairs, half RBs, and 1/4 RB, RE group consisting of one or more REs, etc.
  • RBG resource block group
  • RE group consisting of one or more REs, etc.
  • an RB is composed of 12 consecutive subcarriers in the frequency domain and 14 consecutive symbols in the time domain.
  • Time slot In NR, time slot is the smallest scheduling unit of time.
  • a slot format includes 14 OFDM symbols, and a cyclic prefix (CP) of each OFDM symbol is a normal CP (normal cyclic prefix).
  • a slot format includes 12 OFDM symbols, and the CP of each OFDM symbol is an extended CP (extended cyclic prefix).
  • a slot format includes 7 OFDM symbols, and the CP of each OFDM symbol is a regular CP.
  • the OFDM symbols in a time slot can be used for all uplink transmissions; all of them can be used for downlink transmissions; some can be used for downlink transmissions, some are used for uplink transmissions, and some are reserved for no transmission. It should be understood that the above examples are merely illustrative, and should not be construed as limiting the present application. For system forward compatibility considerations, the slot format is not limited to the above example.
  • Data or data information can be understood as the bits generated after the information block is encoded, or "data” or “data information” can also be understood as the information block Modulation symbol generated after code modulation.
  • Data or data information may be carried by time-frequency resources, where the time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resource may include one or more time-domain units (or may also be referred to as a time unit), and in the frequency domain, the time-frequency resource may include a frequency-domain unit or a resource unit.
  • a time domain unit (also referred to as a time unit) may be a symbol, or a mini-slot, or a slot, or a subframe, in which a sub-frame
  • the duration of a frame in the time domain can be 1 millisecond (ms).
  • a slot consists of 7 or 14 symbols.
  • a mini slot can include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols). Symbol, or any number of symbols less than or equal to 14 symbols).
  • Transmission parameters It can also be called transmission mode or transmission scheme, which can be the transmission scheme defined in LTE protocol or NR protocol. Transmission parameters can be used to represent parameters related to the technical solution used to transmit information or data. Specifically, in the embodiment of the present application, the transmission parameter may be used to indicate a parameter related to transmission of side link control information (sidelink control information) (SCI).
  • SCI sidelink control information
  • the transmission parameter is only a naming, and this application does not exclude the possibility of replacing the transmission parameter by other naming in future protocols.
  • side link control letter SCI also known as side link control information.
  • a side link or a sidelink refers to a transmission link between terminal devices.
  • SL data transmission between terminal devices is not relayed through network devices.
  • the system 200 is shown in FIG. 2.
  • Sub-channel In LTE V2X, the concept of sub-channel is defined in the frequency domain.
  • Figure 3 shows a schematic diagram of LTE V2X frequency domain resources.
  • a sub-channel contains several consecutive RBs in the frequency domain and several consecutive symbols in the time domain. The size of the sub-channel can be configured or predefined by the network device. Any sub-channel can be used for V2X data transmission. In a sub-channel, it starts with the lowest RB sequence number (lowest index of the RB).
  • a total of two consecutive RBs are side link physical layer control information (physical control channel (PSCCH)) channels, which are used to transmit V2X control information, that is, side link assignment information (SA).
  • PSSCH physical layer control information
  • SA side link assignment information
  • the remaining consecutive RBs are PSSCH channels and are used to transmit data information (data).
  • one subframe is used as a basic unit.
  • SA and data in LTE V2X may adopt the form of frequency division multiplexing (FDM) in the frequency domain,
  • the transmission resources of the entire V2X can be divided into several sub-channels.
  • the control information ie, SCI
  • data resources transmitted and received are also relatively fixed.
  • the receiving end receives the SA at a specific position, and then further decodes the data according to the control information carried in the SA.
  • Demodulation reference signal a reference signal that can be used to demodulate data or signaling. According to different transmission directions, it can be divided into uplink demodulation reference signal and downlink demodulation reference signal.
  • the demodulation reference signal may be a demodulation reference signal (demodulation reference signal, DMRS) in the LTE protocol or the NR protocol, or may be other reference signals defined in future protocols for implementing the same or similar functions. This application does not limit this.
  • a DMRS can be carried in a physical shared channel and sent with a data signal, and is used to demodulate the data signal carried in the physical shared channel. For example, it is sent with downlink data in a physical downlink shared channel (PDSCH), or it is sent with uplink data in a physical uplink shared channel (PUSCH).
  • the DMRS can also be carried in the physical control channel and sent together with the control signaling for demodulating the control signaling carried by the physical control channel summary.
  • the PDCCH is transmitted together with the downlink control signaling
  • the physical uplink control channel (physical uplink control channel, PUCCH) is transmitted together with the uplink control signaling.
  • the demodulation reference signal may include a downlink demodulation reference signal sent through a PDCCH or a PDSCH, and may also include an uplink demodulation reference signal sent through a PUCCH or a PUSCH.
  • the demodulation reference signal is simply referred to as DMRS.
  • the DMRS can adopt a pseudo-noise (PN) sequence. Therefore, the DMRS can also be called a DMRS sequence.
  • PN pseudo-noise
  • DMRS and DMRS sequence are used interchangeably, but those skilled in the art can understand that the meanings to be expressed are the same when the difference is not emphasized.
  • the DMRS sequence may be composed of modulation symbols carried on multiple REs, and each modulation symbol may be, for example, a Quadrature Phase Shift Keying (QPSK) symbol.
  • QPSK Quadrature Phase Shift Keying
  • the modulation symbol r (n) of the DMRS sequence carried on the nth subcarrier can be obtained by the following formula 1:
  • the form presented by r (n) is a complex form obtained by modulating a pseudo-random sequence, for example, it can represent a QPSK symbol.
  • n represents the n-th subcarrier among the subcarriers occupied by the DMRS in the component carrier (CC).
  • d represents the density of the DMRS in an RB on an OFDM symbol, It can represent the number of RBs included in a CC.
  • c (i) represents a pseudo-random sequence defined by an initial value c init .
  • Equation 2 The initial value of the pseudo-random sequence c init can be obtained by Equation 2 shown below:
  • the initial value of the pseudo-random sequence is l, SA flag function. among them Represents the number of system subframes with a subcarrier interval of ⁇ , and l is the symbol index in the current subframe. It is configured by a higher layer, and the value may be a user identity (ID), a cell ID, a group ID, or a fixed value.
  • Equation 3 One possible form of the initial value of the pseudo-random sequence c init can be further obtained by Equation 3 shown below:
  • the SA flag can be indicated by downlink control information (DCI), Can be indicated by high-level parameters.
  • DCI downlink control information
  • the DCI may include an indication field for indicating the value of the SA flag .
  • the value of this SA flag can be 0 or 1, and can be used for downlink transmission; the high-level parameter scrambling ID 0 (scramblingID0) in the DMRS-DownlinkConfig (information element) information element (IE)
  • IE information element information element
  • the SA flag and It In most cases, it is UE-specific.
  • the SA flag and It may be the same or it may be different.
  • control information and "SCI” are often used interchangeably. It should be noted that when the difference is not emphasized, the meanings to be expressed are the same. That is, in the present application, all the “control information” in the following embodiments may be replaced with “SCI”. Or, in the present application, all “SCI” in the following embodiments may be replaced with "control information”.
  • DMRS and “DMRS sequence” can be used interchangeably, and the meanings to be expressed are the same when the difference is not emphasized.
  • Transport resource parameter and “transmission resource” can be used interchangeably.
  • Current sending and “current sending” can be used interchangeably.
  • the meanings to be expressed are the same.
  • the terms “physical resources” and “time-frequency resources” are often used interchangeably, but those skilled in the art can understand the meaning.
  • the terms “network” and “system” are often used interchangeably, but those skilled in the art can understand the meaning.
  • Information (information), signal (signal), message (message), channel (channel) can sometimes be mixed. It should be noted that when the difference is not emphasized, the meanings to be expressed are the same. "Of”, “corresponding, relevant” and “corresponding” can sometimes be used interchangeably. It should be noted that when the difference is not emphasized, the meanings to be expressed are the same.
  • the last transmission is mentioned multiple times, it should be understood that this description is relative to one transmission opportunity, that is, “the last transmission” refers to the repeated transmission Last time, there were no other restrictions.
  • the first, the second, and the third are only for the convenience of distinguishing different objects, and should not constitute any limitation to the present application.
  • different mapping relationships, different DMRS, and different indication information are distinguished.
  • pre-acquisition may include indication or pre-definition by network device signaling, for example, protocol definition.
  • pre-defined can be achieved by pre-saving corresponding codes, forms, or other methods that can be used to indicate related information in devices (for example, terminal devices and network devices), and this application does not make specific implementations thereof. limited.
  • the one or more memories may be provided separately or integrated in an encoder or a decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory may be any form of storage medium, which is not limited in this application.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include an LTE protocol, a 5G or NR protocol, and a related protocol applied in a future communication system. Be limited.
  • “at least one” may mean “one or more”.
  • implementation in at least one of mode A, mode B, and mode C means: it can be implemented in mode A, or mode B, or mode C; it can also be expressed as: mode A and mode B Implementation, or implementation by means B and C, or implementation by means A and C; it can also be expressed as: implementation by means A, B and C.
  • “at least two” may mean “two or more”.
  • the method for transmitting and receiving side link control information provided in this application may be applicable to a wireless communication system.
  • the method for sending and receiving side link control information provided in this application may be applicable to communication between at least one network device and at least one terminal device, for example, the system 100 shown in FIG. 1 or the system 200 shown in FIG. 2.
  • the method for sending and receiving side link control information provided in this application may be applicable to communication between at least two terminal devices.
  • the sending-end device may be any terminal device or network device that has a wireless connection relationship with one or more terminal devices in a wireless communication system.
  • the sending device may be the network device 111 in the system 100 shown in FIG. 1 or 112 in the system 200 shown in FIG. 2, or may be the terminal device 126 in the system 200 shown in FIG. 2. It can be understood that any terminal device in the wireless communication system 100 or 200 can implement wireless communication based on the same technical solution. This application does not limit this.
  • FIG. 4 is a schematic interaction diagram of a method 200 for transmitting and receiving side link control information according to an embodiment of the present application, which is shown from the perspective of device interaction. As shown in the figure, the method 200 may include steps 210 to 230, and each step is described in detail below.
  • a transmission parameter of the side link control information SCI is determined, and the transmission parameter includes at least one of the following: the number of transmission times of the SCI, the format of the SCI, or the transmission resource parameter of the SCI.
  • the number of SCI transmissions refers to the number of SCI transmissions.
  • T is an integer greater than or equal to 1.
  • the sending-end device determines the number of times to send the SCI (ie, T).
  • the sending-end device defaults to sending the SCI times. For example, for services with extremely high reliability requirements, the sending device will send multiple times by default.
  • the sending-end device confirms the number of times the SCI is sent according to the channel quality. For example, when the wireless channel quality is poor, it can be determined to send multiple times; when the wireless channel quality is good, it can be determined to send once.
  • the transmission resource parameter of the SCI refers to the size of the time-frequency resources occupied by the transmission of the SCI.
  • FIG. 5 first shows a manner of resource mapping of a control channel and a data channel in an SL system.
  • one data transmission includes one control channel and one data transmission channel.
  • the control channel occupies two consecutive RBs at the start of the frequency domain, and the time domain duration is one transmission slot.
  • the data channel is next to the control control channel, and the physical resources of the remaining subchannels can be multiplexed in FDM.
  • the specific frequency-domain resource bandwidth used is indicated in the control information.
  • the last symbol of a transmission slot is idle.
  • control channel Generally, the size of physical resources (or time-frequency resources) occupied by control channels in V2X is fixed.
  • One data transmission needs to be accompanied by one transmission of control information (ie, an example of SCI).
  • control information ie, an example of SCI
  • the control channel has an upper limit for the transmitted data.
  • the control channel needs to support multiple formats of SCI, especially when the length of the SCI of some formats is greater than the length of the existing format, the current control channel physical resources cannot meet the transmission requirements.
  • the control channel also needs performance enhancement.
  • the transmitting device determines the transmission resource parameter and / or SCI format of the SCI, and sends the SCI based on the determined transmission resource parameter and / or SCI format of the SCI.
  • step 220 the transmitting device sends the SCI to the receiving device based on the transmission parameters of the SCI. Accordingly, the receiving device receives the SCI.
  • the transmission parameter includes the number of transmissions.
  • the sending device determines that the number of SCI transmissions is T, and the sending device sends the SCI to the receiving device T times.
  • the transmission parameters include the SCI format. After the sending-end device determines the format of the SCI to be sent, the sending-end device can select a time-frequency resource of an appropriate size to send the SCI.
  • the transmission parameters include transmission resource parameters. The transmitting device may first determine the size of the time-frequency resource occupied by the SCI to be transmitted, and use the time-frequency resource to send the SCI.
  • step 230 the receiving end device decodes the SCI.
  • the transmission parameter includes the number of transmissions T as an example.
  • the receiving device can decode the SCI based on the number of transmissions. Specifically, in the case where T is equal to 1, the SCI is directly decoded; in the case where T is greater than 1, the SCI is combined and decoded for T times.
  • the receiving end device can determine the number of transmissions. One possible way is that the sending end device can send an instruction to the receiving end device. The instruction information is used to indicate the number of times the SCI is sent, and the receiving end device can be further notified. Time-frequency resources occupied by each transmission of the SCI.
  • the sending end device may implicitly indicate whether the current (or current) SCI is the last one sent, thereby further saving signaling overhead.
  • T when T is equal to 1 or T is greater than 1, how the receiving end device decodes the SCI will be specifically described in the following embodiments. It should be understood that the SCI currently sent or the SCI currently sent refers to the SCI sent at this sending opportunity.
  • the transmitting device can determine the transmission parameters of the SCI to be transmitted, for example, determine the number of transmissions of the SCI, determine the format of the SCI, and the transmission resource parameters of the SCI, and send the SCI based on the transmission parameters, so that the transmitting device and the The receiving end device can communicate flexibly and improve communication efficiency.
  • the sending device may determine the number of SCI transmissions, that is, determine to send T times the SCI. For example, when the channel quality is poor, the sending end device can send the SCI multiple times so that the receiving end device can correctly receive the SCI, thereby ensuring transmission reliability.
  • the sending device may determine the format of the SCI.
  • the sending device can determine the format of the SCI to be sent, and send the SCI based on the format of the SCI.
  • the transmission parameters of the sent SCI not only can communication be flexibly performed, but also the receiving end device can be guaranteed to correctly receive the SCI.
  • the transmission parameters include the number of transmissions of the SCI
  • sending the SCI based on the transmission parameters of the SCI includes: sending the SCI T times, where T is an integer greater than or equal to 1.
  • the communication types in the V2X network are generally divided into unicast communication, multicast communication, and broadcast communication.
  • broadcast communication in a scenario where one sending end corresponds to multiple receiving ends and the number of receiving users is uncertain, in order to ensure transmission reliability, the performance of PSCCH transmission can be enhanced.
  • the embodiment of the present application proposes a method for flexibly supporting multiple SCI transmissions, that is, in one data transmission, one or more SCIs can be transmitted according to factors such as service type and channel quality, thereby enhancing the control channel.
  • the transmission parameter includes the number of transmissions, and the number of transmissions refers to the number of times that the SCI is repeatedly transmitted.
  • sending the SCI based on the number of transmissions may refer to any of the following: sending the SCI once and sending the SCI multiple times.
  • the sending device determines that the number of SCI transmissions is T.
  • the sending device itself determines the number of SCI transmissions.
  • the sending device determines the number of times to send the SCI according to factors such as service type and channel quality.
  • the sending-end device may determine the number of SCI transmission times according to an instruction of the receiving-end device.
  • the sending-end device when the sending-end device sends the SCI multiple times, the content sent by the sending-end device each time.
  • the content sent every time can be all the same.
  • the transmitting-end device in order to ensure the transmission reliability of the information, the transmitting-end device repeatedly sends the receiving-end device multiple times for the receiving-end device to receive.
  • the content sent each time may be partially the same.
  • the sending-end device may repeatedly send to the receiving-end device multiple times for the receiving-end device to receive.
  • the content sent each time may be all different.
  • a part of the content may be sent each time, and the content of the information may be sent to the receiving device in multiple times.
  • the embodiments of the present application are not limited.
  • the sending end device may send an instruction message, where the instruction information is used to indicate the number of transmissions of the SCI, that is, the number of transmissions.
  • the receiving device determines the number of SCI transmissions according to the instruction information.
  • the sending-end device indicates whether the current SCI is the last transmission before each transmission.
  • the SCI currently sent is the last one sent.
  • One way is to implicitly indicate based on the DMRS sequence whether the current sent SCI is the last sent.
  • One way is that the SCI-based modulation mode implicitly indicates whether the current SCI is the last transmission. The two methods are described in detail below.
  • the concealment based on the DMRS sequence indicates whether the current sent SCI is the last sent.
  • a sequence # 1 is selected from the sequence set # 1.
  • the sequence # 1 is transmitted, and the sequence # 1 is used to indicate that the transmission SCI is not the last transmission. Further, any sequence in sequence set # 1 is used to indicate that the SCI transmitted this time is not the last transmission.
  • the sequence set # 1 includes at least one sequence. Accordingly, before the last SCI is transmitted, a sequence # 2 is selected from the sequence set # 2. The sequence # 2 is transmitted, and the sequence # 2 indicates that the transmission SCI is the last transmission. Further, any sequence in sequence set # 2 is used to indicate that the SCI transmitted this time is not the last transmission.
  • the sequence set # 2 includes at least one sequence.
  • the receiving-end device determines that the received SCI is not the last transmission according to the received sequence # 1, or the receiving-end device determines that the received SCI is the last sending according to the received sequence # 2.
  • the receiving device can determine the number of transmissions T of the SCI after receiving the last transmitted SCI.
  • sequence # 1 or sequence # 2 described above may belong to one transmission with the SCI, that is, the sequence # 1 or sequence # 2 may be sent to the receiver together with the resources of the control channel and / or data channel occupied by the SCI for one transmission. ⁇ ⁇ End equipment.
  • the last transmission refers to the last time of repeated transmission.
  • sequence # 1 is the first DMRS sequence.
  • Sequence # 2 is the second DMRS sequence.
  • the sending end device does not send the SCI for the last time, it sends a first DMRS sequence, and the first DMRS sequence is used to indicate that the sent SCI is not the last transmission.
  • the sending-end device sends the SCI for the last time, it sends a second DMRS sequence, and the second DMRS sequence is used to indicate that the sent SCI is the last sending.
  • the receiving end device determines that the received SCI is not the last transmission according to the received first DMRS sequence, or the receiving end device determines that the received SCI is the last transmission according to the received second DMRS sequence.
  • the receiving device can determine the number of transmissions T of the SCI after receiving the last transmitted SCI.
  • the transmitting device may generate a DMRS sequence according to whether the SCI is the last transmission.
  • the initial value of the pseudo-random sequence c init can be obtained by the function of formula two, or, more specifically, it can be obtained by formula three.
  • the DMRS sequence is denoted as S1 (ie, an example of the first DMRS sequence). Therefore, based on the DMRS sequence concealing to indicate whether the current sent SCI is the last sent, it can be defined that there are two possible DMRS sequences for a SCI transmission, S0 and S1, respectively. Among them, S0 can be used to indicate that this transmission is the last SCI transmission, and S1 can be used to indicate that this transmission is not the last SCI transmission.
  • the correspondence between different sequences or different sequence sets and whether the current transmission is the last transmission can be predefined or instructed by the sending end device in advance.
  • the sending end device sends instruction information to the receiving end device, the indication information includes a first mapping relationship, and the first mapping relationship includes: whether sequence set # 1 and sequence set # 2 and the current sent SCI are last sent Correspondence; or, the correspondence between different DMRS sequences and the SCI currently sent is the last sent.
  • the first mapping relationship is that the SCI of any sequence pair in sequence set # 1 should be sent last time, and the SCI of any sequence pair in sequence set # 2 should be sent last time.
  • S0 corresponds to the last sent SCI
  • S1 corresponds to the non-last sent SCI.
  • the corresponding relationship may be globally configured, or may be configured at a cell level, or may be configured at a user equipment (UE) group level, or may be configured at a UE level. This application does not address this. limited.
  • the correspondence relationship may be predefined, such as a protocol definition, or may be configured by a network device. This application does not limit this.
  • the sending end device may send the first mapping relationship to the receiving end device in advance.
  • the first mapping relationship may be set in advance, and the receiving end device may directly obtain the pre-stored first mapping relationship.
  • the first mapping relationship is saved in advance, and both the sending-end device and the receiving-end device know the first mapping relationship.
  • the receiving device decodes the SCI. Specifically, when T is equal to 1, the receiving end device directly decodes the SCI. In the case where T is greater than 1, the receiving end device performs T-times SCI combined decoding. Optionally, when T is greater than 1, the receiving end device may decode the SCI every time it receives the SCI, and then the receiving end device decodes T times after receiving the last SCI sent and decoded Information is combined, or one of the T decoding times is selected to select a better decoding result. Alternatively, after receiving the last transmitted SCI, the receiving device may decode the received SCI after T times. As for how to combine and decode, the embodiment of the present application does not specifically limit.
  • the sending device repeatedly sends the SCI twice.
  • the first mapping relationship includes that S0 corresponds to the last sent SCI, and S1 corresponds to the sent SCI, which is a non-last sent.
  • PSCCH and PSSCH are multiplexed in a frequency division manner.
  • the control channel and the data channel are multiplexed in a frequency division manner. Then the first transmission of the PSCCH starts from the lowest RB of the time-frequency resource, occupies a fixed number of RB resources, and occupies the entire time slot in the time domain.
  • the SCI is carried on the PSCCH.
  • the transmitting device uses S1 as a pilot for the sending.
  • the receiving end device performs a blind detection on the pilot transmitted this time, and determines that the received SCI is not the last transmission according to the pilot detected this time as S1.
  • the transmitting device uses S0 as a pilot for the transmission.
  • the receiver device continues to perform blind detection on the pilot, and determines that the received SCI is the last transmission according to the detected pilot as S0.
  • the receiving device can determine the number of transmission times T of the transmitting device repeatedly sending the SCI. In this example, the receiving device determines that the number of transmissions is two.
  • the repeatedly transmitted SCI can be frequency division multiplexed next to the previous SCI, and the frequency domain resources are used in increasing order, as shown in Figure 6. Show. Therefore, it is convenient for the receiving end device to receive information quickly and correctly, and the receiving complexity of the receiving end device is reduced.
  • the sending-end device may send instruction information to the receiving-end device, indicating the time-frequency resource location of the PSCCH that carries the SCI for the second transmission.
  • the sending-end device and the receiving-end device may also preset the time-frequency resource location of the PSCCH of the SCI that is transmitted for the second time in advance.
  • the receiving device decodes the SCI. Specifically, when T is equal to 1, the receiving end device directly decodes the SCI. In the case where T is greater than 1, the receiving end device performs T-times SCI combined decoding. According to the foregoing description, after the receiving end device determines that the sending end device has sent the SCI twice after receiving the last SCI, the receiving end device combines and decodes the two SCIs. Specifically, the receiving end device may decode the SCI once, receive the SCI twice, and combine the two decoded information, or select a better decoding result from the two decoding results. Or after receiving the last SCI, the receiving device can decode the two SCIs after merging. As for how to combine and decode, the embodiment of the present application does not specifically limit.
  • PSCCH and PSSCH are multiplexed in a time division manner.
  • the control channel and the data channel are multiplexed in a time division manner.
  • the first PSCCH transmission is mapped on the first part of symbols of the occupied time-frequency resources, and the entire bandwidth is occupied in the frequency domain.
  • the SCI is carried on the PSCCH.
  • the transmitting device uses S1 as a pilot for the sending.
  • the receiving end device performs a blind detection on the pilot transmitted this time, and determines that the received SCI is not the last transmission according to the pilot detected this time as S1.
  • the transmitting device uses S0 as a pilot for the transmission.
  • the receiver device continues to perform blind detection on the pilot, and determines that the received SCI is the last transmission according to the detected pilot as S0. After receiving the last transmitted SCI, the receiving device can determine the number of transmission times T of the transmitting device repeatedly sending the SCI. In this example, the receiving device determines that the number of transmissions is two.
  • the repeatedly transmitted SCI can be time-division multiplexed next to the previous SCI and use time domain resources in increasing order, as shown in Figure 7 . Therefore, it is convenient for the receiving end device to receive information quickly and correctly, and the receiving complexity of the receiving end device is reduced.
  • the sending-end device may send instruction information to the receiving-end device, indicating the time-frequency resource location of the PSCCH that carries the SCI for the second transmission.
  • the sending-end device and the receiving-end device may also preset the time-frequency resource location of the PSCCH of the SCI that is transmitted for the second time in advance.
  • the receiving device decodes the SCI. Specifically, when T is equal to 1, the receiving end device directly decodes the SCI. In the case where T is greater than 1, the receiving end device performs T-times SCI combined decoding. According to the foregoing description, after the receiving end device determines that the sending end device has sent the SCI twice after receiving the last SCI, the receiving end device combines and decodes the two SCIs. Specifically, the receiving end device may decode the SCI once, receive the SCI twice, and combine the two decoded information, or select a better decoding result from the two decoding results. Or after receiving the last SCI, the receiving device can decode the two SCIs after merging. As for how to combine and decode, the embodiment of the present application does not specifically limit.
  • S0 indicates that the SCI transmitted this time is not the last transmission
  • S0 indicates that the SCI transmitted this time is the last transmission
  • the transmitting device can repeatedly send the SCI multiple times, so that the receiving device can correctly receive the SCI, thereby ensuring transmission reliability.
  • the receiving end device may also determine whether the SCI received at the current time is the last received according to the received DMRS sequence. After receiving the last transmitted SCI, the receiving device can determine the number of transmissions of the transmitting device repeatedly sending the SCI, and can decode the SCI based on the number of transmissions.
  • the modulation mode of the SCI indicates whether the SCI is the last transmission.
  • different modulation modes are used to indicate that the current transmission SCI is the last transmission or a non-last transmission.
  • This application uses the SCI modulation mode to implicitly indicate whether the SCI currently sent is the last one sent.
  • a first modulation mode is selected from the first modulation mode set
  • a second modulation mode is selected from the second modulation mode set
  • the first modulation mode and the The second modulation mode modulates the SCI.
  • the first modulation mode and the second modulation mode indicate that the current transmission SCI is not the last transmission, where i is greater than or equal to 1 and less than T.
  • any modulation mode in the first modulation mode set and any modulation mode in the second modulation mode set are used to indicate that the SCI transmitted this time is not the last transmission.
  • the first modulation mode set includes at least one modulation mode
  • the second modulation mode set includes at least one modulation mode.
  • a third modulation mode is selected from the third modulation mode set to modulate the SCI, and the third modulation mode indicates that the transmission of the SCI is the last transmission. Further, any modulation mode in the third modulation mode set is used to indicate that the SCI transmitted this time is not the last transmission.
  • the third modulation mode set includes at least one modulation mode.
  • the receiving-end device determines that the received SCI is not the last transmission according to the modulation mode of the received SCI, including the first modulation mode and the second modulation mode; or the receiving-end device according to the modulation mode of the received SCI For the third modulation mode, it is determined that the received SCI is the last transmission.
  • the receiving device can determine the number of transmissions T of the SCI after receiving the last transmitted SCI.
  • a modulation mode is selected from the third modulation mode set to modulate the SCI.
  • the third modulation mode set includes a modulation mode, so all REs carrying the SCI use the same modulation mode.
  • a modulation mode is selected from the first modulation mode set and the second modulation mode set to modulate the SCI.
  • the first modulation mode set includes at least one modulation mode
  • the second modulation mode set includes at least one modulation mode
  • at least one modulation mode of the first modulation mode set and the second modulation mode set are different. Therefore, not all REs carrying the SCI use the same modulation mode.
  • the modulation modes in the first modulation mode set, the second modulation mode set, and the third modulation mode set may be predetermined by the protocol, or may be saved by the transmitting device according to historical data, or may be The sending end device determines it in real time, which is not limited in the embodiment of the present application.
  • the specific modulation modes in the first modulation mode set, the second modulation mode set, and the third modulation mode set do not limit the protection scope of the embodiments of the present application.
  • the modulation mode in the third modulation mode set may be the same as one modulation mode in the first modulation mode set or the second modulation mode set.
  • the modulation modes in the third modulation mode set may be different from those in the first modulation mode set or the second modulation mode set.
  • the modulation mode in the third modulation mode set is QPSK
  • the modulation mode in the first modulation mode set is ⁇ / 4-QPSK
  • the modulation mode in the second modulation mode set is 16th-order quadrature amplitude modulation ( quadrature amplitude modulation (QAM).
  • the modulation mode in the third modulation mode set is QPSK
  • the modulation mode in the first modulation mode set is ⁇ / 4-QPSK
  • the modulation mode in the second modulation mode set is QPSK.
  • the modulation mode in the third modulation mode set is QPSK
  • the modulation modes in the first modulation mode set include ⁇ / 4-QPSK and QPSK
  • the modulation mode in the second modulation mode set is 16th-order QAM.
  • the correspondence between different sets of modulation modes or different modulation modes and whether the current or current transmission is the last transmission may be predefined or instructed in advance by the transmitting end device.
  • the sending end device sends instruction information to the receiving end device, the indication information includes a second mapping relationship, and the second mapping relationship includes: a correspondence relationship between a set of different modulation modes and a current or current sent SCI is the last sent; Or, the corresponding relationship between the different modulation modes and the current or current sent SCI is the last sent.
  • the first mapping relationship is that any modulation mode in the first modulation mode set and any modulation mode in the second modulation mode set corresponds to the current or current SCI is not the last transmission, and any in the third modulation mode set A modulation mode corresponding to the current or current SCI is not the last transmission.
  • the SCI corresponding to the first modulation mode and the second modulation mode is the last transmission, and the SCI corresponding to the current transmission is the last transmission.
  • the modulation modes adopted by all REs are all the same, which corresponds to the last SCI transmission, and the modulation modes adopted by all REs are not the same, which corresponds to the non-last SCI transmission, that is, all REs use
  • the modulation modes are not all the same, which means that there are one or more SCI transmissions after this transmission.
  • the corresponding relationship may be globally configured, cell-level configured, UE-group-level configured, or UE-level configured, which is not limited in this application.
  • the correspondence relationship may be predefined, such as a protocol definition, or may be configured by a network device. This application does not limit this.
  • the sending end device may send the second mapping relationship to the receiving end device in advance.
  • the second mapping relationship may be set in advance, and the receiving end device may directly obtain the pre-stored second mapping relationship.
  • the second mapping relationship is saved in advance, and both the transmitting device and the receiving device are aware of the second mapping relationship.
  • the receiving device decodes the SCI. Specifically, when T is equal to 1, the receiving end device directly decodes the SCI. In the case where T is greater than 1, the receiving end device performs T-times SCI combined decoding. Optionally, when T is greater than 1, the receiving device can decode the SCI every time it receives the SCI, and then the receiving device decodes T times after receiving the last SCI sent and decoded Information is combined, or one of the T decoding times is selected to select a better decoding result. Alternatively, after receiving the last transmitted SCI, the receiving device may decode the received SCI after T times. As for how to combine and decode, the embodiment of the present application does not specifically limit.
  • the transmitting device repeatedly sends the SCI twice.
  • the first mapping relationship includes that the modulation modes used by all REs are all the same.
  • the SCI sent this time is the last transmission.
  • the modulation modes used by all REs are not all the same.
  • the SCI sent is not the last sent.
  • PSCCH and PSSCH are multiplexed in a frequency division manner.
  • the control channel and the data channel are multiplexed in a frequency division manner. Then the first transmission of the PSCCH starts from the lowest RB of the time-frequency resource, occupies a fixed number of RB resources, and occupies the entire time slot in the time domain.
  • the SCI is carried on the PSCCH.
  • the transmitting device uses different modulation modes to modulate the RE in the SCI. As shown in FIG. 8, some REs use ⁇ / 4-QPSK modulation, and some REs use QPSK modulation.
  • the receiving device determines the modulation mode of the received SCI, and determines that the received SCI is not the last transmission according to the modulation modes of the REs in the SCI are not all the same.
  • the transmitting device uses a modulation mode to modulate all REs in the SCI. As shown in Figure 8, all REs use QPSK modulation.
  • the receiving device determines the modulation mode of the received SCI, and determines that the received SCI is the last transmission according to the modulation modes of the RE in the SCI are all the same. After receiving the last transmitted SCI, the receiving device can determine the number of transmission times T of the transmitting device repeatedly sending the SCI. In this example, the receiving device determines that the number of transmissions is two.
  • the SCI that is repeatedly sent can be frequency division multiplexed next to the previous SCI, using frequency domain resources in increasing order, such as Figure 8 shows. Therefore, it is convenient for the receiving end device to receive information quickly and correctly, and the receiving complexity of the receiving end device is reduced.
  • the sending-end device may send instruction information to the receiving-end device, indicating the time-frequency resource location of the PSCCH that carries the SCI for the second transmission.
  • the sending-end device and the receiving-end device may also preset the time-frequency resource location of the PSCCH of the SCI that is transmitted for the second time in advance.
  • the receiving device decodes the SCI. Specifically, when T is equal to 1, the receiving end device directly decodes the SCI. In the case where T is greater than 1, the receiving end device performs T-times SCI combined decoding. According to the foregoing description, after the receiving end device determines that the sending end device has sent the SCI twice after receiving the last SCI, the receiving end device combines and decodes the two SCIs. Specifically, the receiving end device may decode the SCI once, receive the SCI twice, and combine the two decoded information, or select a better decoding result from the two decoding results. Or after receiving the last SCI, the receiving device can decode the two SCIs after merging. As for how to combine and decode, the embodiment of the present application does not specifically limit.
  • PSCCH and PSSCH are multiplexed in a time division manner.
  • the control channel and the data channel are multiplexed in a time division manner.
  • the first PSCCH transmission is mapped on the first part of symbols of the occupied time-frequency resources, and the entire bandwidth is occupied in the frequency domain.
  • the SCI is carried on the PSCCH.
  • the transmitting device uses different modulation modes to modulate the RE in the SCI. As shown in FIG. 9, some REs use ⁇ / 4-QPSK modulation, and some REs use QPSK modulation.
  • the receiving device determines the modulation mode of the received SCI, and determines that the received SCI is not the last transmission according to the modulation modes of the REs in the SCI are not all the same.
  • the transmitting device uses a modulation mode to modulate all REs in the SCI. As shown in FIG. 9, all REs use QPSK modulation.
  • the receiving device determines the modulation mode of the received SCI, and determines that the received SCI is the last transmission according to the modulation modes of the RE in the SCI are all the same. After receiving the last transmitted SCI, the receiving device can determine the number of transmission times T of the transmitting device repeatedly sending the SCI. In this example, the receiving device determines that the number of transmissions is two.
  • the repeatedly sent SCI can be time-division multiplexed next to the previous SCI and use time domain resources in increasing order, as shown in the figure 9 shown. Therefore, it is convenient for the receiving end device to receive information quickly and correctly, and the receiving complexity of the receiving end device is reduced.
  • the sending-end device may send instruction information to the receiving-end device, indicating the time-frequency resource location of the PSCCH that carries the SCI for the second transmission.
  • the sending-end device and the receiving-end device may also preset the time-frequency resource location of the PSCCH of the SCI that is transmitted for the second time in advance.
  • the receiving device decodes the SCI. Specifically, when T is equal to 1, the receiving end device directly decodes the SCI. In the case where T is greater than 1, the receiving end device performs T-times SCI combined decoding. According to the foregoing description, after the receiving end device determines that the sending end device has sent the SCI twice after receiving the last SCI, the receiving end device combines and decodes the two SCIs. Specifically, the receiving end device may decode the SCI once, receive the SCI twice, and combine the two decoded information, or select a better decoding result from the two decoding results. Or after receiving the last SCI, the receiving device can decode the two SCIs after merging. As for how to combine and decode, the embodiment of the present application does not specifically limit.
  • QPSK modulation and ⁇ / 4-QPSK modulation are only used to indicate two different modulation modes, and the embodiments of the present application are not limited thereto, as long as the solutions of different modulation modes belong to the embodiments of the present application Scope of protection.
  • some REs use 16th-order QAM modulation, and the remaining REs use QPSK modulation.
  • some REs use QAM modulation, some REs use ⁇ / 4-QPSK modulation, and the remaining REs use QPSK modulation.
  • the above-mentioned modulation modes adopted by all REs in the SCI are all the same, which means that the SCI sent this time is the last transmission, and the modulation modes adopted by all REs in the SCI are not the same, which means that the SCI sent this time is non
  • the last transmission is exemplified as an example.
  • the embodiments of the present application are not limited to this.
  • the same modulation mode used by all REs in the SCI may indicate that the SCI sent this time is not the last transmission, and the modulation modes used by all REs in the SCI are not the same, indicating that the SCI sent this time is the last send.
  • the transmitting device can repeatedly send the SCI multiple times, so that the receiving device can correctly receive the SCI, thereby ensuring transmission reliability.
  • the receiving device may also determine whether the current or current received SCI is the last received according to the modulation mode of the received SCI. After receiving the last transmitted SCI, the receiving device can determine the number of transmissions of the transmitting device repeatedly sending the SCI, and can decode the SCI based on the number of transmissions.
  • the transmission parameters include the number of transmissions is described above with reference to FIGS. 6 to 9.
  • the following describes the scheme in which the transmission parameters include the SCI format and / or SCI's transmission resource parameters with reference to FIG. 10 and FIG. 11.
  • the transmission resource parameters of the SCI include the size of the time-frequency resources occupied by the SCI; use the size of the time-frequency resources occupied by the SCI, and send the SCI in the format of the SCI.
  • the transmitting device may first determine the format of the SCI, and determine the time-frequency resources occupied by sending the SCI, and then send the SCI.
  • the size of the time-frequency resource occupied by the SCI means the size of the time-frequency resource occupied when the SCI is sent.
  • the size of the time-frequency resource may be the number of resource units (for example, RB, RE, etc.).
  • FIG. 10 is a schematic interaction diagram of a method 400 for transmitting and receiving side link control information according to another embodiment of the present application. As shown, the method 400 may include steps 410 to 430:
  • step 410 the sending end device performs coding processing on the SCI on the target time-frequency resource corresponding to the SCI;
  • step 420 the transmitting device sends the SCI to the receiving device
  • step 430 the receiving end device decodes the SCI based on the target time-frequency resource.
  • the target time-frequency resource corresponding to the SCI includes the size of the time-frequency resource occupied by sending the SCI.
  • the format of the SCI corresponds to the size of the time-frequency resource occupied by the SCI, then the sender determines the format of the SCI to be sent, and uses the time-frequency resource of the size corresponding to the SCI format to send The SCI.
  • the corresponding relationship between the SCI format and the time-frequency resource size is described in detail below.
  • this embodiment of the present application proposes a solution that can support variable transmission resources (that is, physical resources or time-frequency resources) in different transmission opportunities, using different sizes of Transfer resources to send SCI in different formats.
  • PSCCH time-frequency resources of different sizes can be divided, and PSCCH time-frequency resources of different sizes can transmit SCIs of different lengths and / or SCIs of different formats, thereby using resources reasonably and avoiding waste.
  • the SCI is carried on the PSCCH, and the PSCCH time-frequency resource indicates the time-frequency resource occupied by sending the SCI.
  • the PSCCH time-frequency resource is used to indicate the time-frequency resource occupied by sending SCI
  • the size of the PSCCH time-frequency resource is used to indicate the size of the time-frequency resource used to send SCI.
  • the size of the time-frequency resource, the size of the PSCCH time-frequency resource, the time-frequency resource corresponding to the SCI, the time-frequency resource corresponding to the SCI format, and the time-frequency resource used by the SCI are all used to Indicates the size of the time-frequency resources occupied by sending the SCI.
  • the specific name does not limit the scope of the embodiments of the present application.
  • the resource unit is RB as an example, and the number of resource units is used to represent the size of the time-frequency resource.
  • the transmission parameter includes a SCI format and / or a transmission resource parameter of the SCI.
  • the transmission resource parameters include the size of the PSCCH time-frequency resources.
  • the format of the SCI corresponds to the size of the PSCCH time-frequency resource, so the size of the PSCCH time-frequency resource can be determined according to the format of the SCI.
  • the transmitting device selects a PSCCH time-frequency resource of an appropriate size according to the format of the SCI to be transmitted and / or the length of the SCI, and independently encodes the PSCCH time-frequency resource.
  • the correspondence between the size of the PSCCH time-frequency resource and the SCI format includes at least the following possibilities.
  • a PSCCH time-frequency resource corresponds to a SCI format. That is, one format of SCI corresponds to one size of time-frequency resources. For example, it is assumed that PSCCH time-frequency resources of at least three different sizes are divided and recorded as A RB, B RB, and C RB, respectively, where A, B, and C are all integers greater than or equal to 1. There are three types of SCI formats, which are recorded as Format 1, Format 2, Format 3.
  • B RBs correspond to format 2, that is, when the format of the SCI to be sent is format 2
  • B RBs are used to transmit the SCI;
  • C RBs correspond to Format 3, that is, when the format of the SCI to be transmitted is Format 3, C RBs are used to transmit the SCI.
  • one PSCCH time-frequency resource corresponds to multiple SCI formats. That is, multiple formats of SCI correspond to time-frequency resources of one size. For example, suppose that three PSCCH time-frequency resources of different sizes are divided into A RBs, B RBs, and C RBs, where A, B, and C are all integers greater than or equal to 1. There are five SCI formats, which are recorded as Format 1, Format 2, Format 3, Format 4, and Format 5.
  • a RB corresponding to format 1 and format 2 that is, when the format of the SCI to be transmitted is format 2 or format 1, use A RB to transmit the SCI;
  • B RB corresponds to format 3, that is, when the SCI to be transmitted When the format of the SCI is Format 3, B RBs are used to transmit the SCI;
  • C RBs correspond to Format 4 and Format 5, that is, when the format of the SCI to be transmitted is Format 4 or Format 5, C RBs are used to transmit the SCI.
  • multiple PSCCH time-frequency resources correspond to multiple SCI formats. That is, multiple formats of SCI correspond to multiple sizes of time-frequency resources. For example, suppose that two PSCCH time-frequency resources of different sizes are divided into A RBs and B RBs, where A and B are integers greater than or equal to 1. There are three types of SCI formats, which are recorded as Format 1, Format 2, Format 3. Then it can be A RB and B RB corresponding to Format 1, Format 2, Format 3, that is, when the format of the SCI to be transmitted is any of Format 1, Format 2, and Format 3, A RB can be used Or B RBs to transmit the SCI.
  • Dividing PSCCH time-frequency resources of different sizes not only can reasonably use resources, but also can distinguish SCIs of different formats and / or SCIs of different lengths according to PSCCH time-frequency resources of different sizes, which can reduce the complexity of the receiving end device and improve Communication efficiency.
  • the receiving device decodes the SCI. Specifically, the receiving end device decodes the SCI based on the size of the PSCCH time-frequency resource and / or the format of the SCI. There are many ways for the receiving device to determine the size of the PSCCH time-frequency resource and / or the format of the SCI. In one possible implementation, the size of the PSCCH time-frequency resource and / or the format of the SCI is determined according to the instruction information sent by the sending device. . Before sending the SCI based on the size of the PSCCH time-frequency resource and / or the format of the SCI, the sending device may send an indication message, which is used to indicate the size of the PSCCH time-frequency resource and / or the format of the SCI. The receiving end device determines the size of the PSCCH time-frequency resource and / or the format of the SCI according to the received instruction information, and then can decode the SCI on the PSCCH time-frequency resource.
  • the sending end device may implicitly indicate the size of the PSCCH time-frequency resource and / or the format of the SCI based on the sequence.
  • the transmitting device selects a sequence # 3 from the sequence set # 3.
  • the sequence # 3 is transmitted, and the sequence # 3 is used to indicate the size of the PSCCH time-frequency resource and / or the format of the SCI.
  • the sequence set # 3 includes at least one sequence.
  • the receiving end device determines the size of the PSCCH time-frequency resource and / or the format of the SCI according to the received sequence # 3. Further, the receiving end device decodes the SCI on the determined size of the PSCCH time-frequency resource, or decides whether to decode based on whether the SCI in the format is the SCI required by itself.
  • the sequence can be an independently functioning sequence or a PSCCH DMRS sequence.
  • the sequence can be transmitted at a determined time slot, and the transmission position is different according to the multiplexing status of the system (such as FDM or TDM).
  • the SCI is independently coded on the corresponding time-frequency resources.
  • the correspondence between the sequence (that is, sequence # 3) and the PSCCH time-frequency resource size or the SCI format includes at least three possibilities.
  • sequence and the PSCCH time-frequency resource size is taken as an example for description.
  • a sequence corresponds to a size of the PSCCH time-frequency resource.
  • the resource unit Take the resource unit as an example. Assume that there are three PSCCH time-frequency resources of different sizes, which are denoted as a RB, b RB, and c RB, respectively, where a, b, and c are integers greater than 1 or equal to 1. . Then, the correspondence between the sequence and the size of the PSCCH time-frequency resource can be shown in Table 1.
  • sequence PSCCH time-frequency resource size Sequence 1 a RB Sequence 2 b RBs Sequence 3 c RBs
  • sequence 1, sequence 2, and sequence 3 are any three different sequences among q 0 , q 1 , ..., q (N-1) .
  • sequence 1 corresponds to a RB
  • sequence 2 corresponds to b RB
  • sequence 3 corresponds to c RB.
  • the sending end device uses a RB to send SCI, it sends sequence 1 to the receiving end device.
  • the sequence 1 indicates that the size of the PSCCH time-frequency resource occupied by the SCI sent by the sending end device is a RB.
  • the receiving end device can perform decoding on the SCI on a RB (that is, the size of the PSCCH time-frequency resource corresponding to the sequence 1).
  • one possibility is that there is a one-to-many relationship between the sequence and the size of the PSCCH time-frequency resource, that is, a sequence corresponds to multiple PSCCH time-frequency resources of different sizes.
  • a sequence corresponds to multiple PSCCH time-frequency resources of different sizes.
  • the resource unit as an RB
  • the correspondence between the sequence and the size of the PSCCH time-frequency resource can be shown in Table 2.
  • sequence PSCCH time-frequency resource size Sequence 1 a RB
  • sequence 1 and sequence 2 are any two different sequences among q 0 , q 1 , ..., q (N-1) . It can be seen from Table 2 that sequence 1 may correspond to a RB or b RB, and sequence 2 corresponds to c RB.
  • sequence 1 may correspond to a RB or b RB
  • sequence 2 corresponds to c RB.
  • the sending device uses a RB or b RBs to send SCI, it sends sequence 1 to the receiving device.
  • Sequence 1 indicates that the size of the PSCCH time-frequency resource occupied by the SCI sent by the sending device is a RB or b RBs.
  • the receiving end device can perform decoding on the SCI on a RB or b RBs (that is, the size of the PSCCH time-frequency resource corresponding to the sequence 1).
  • the sequence and the size of the PSCCH time-frequency resource are in a many-to-one relationship, that is, multiple sequences correspond to a PSCCH time-frequency resource of a different size.
  • the resource unit as an RB as an example, it is assumed that there are two PSCCH time-frequency resources of different sizes, which are denoted as a RB and b RB, respectively, where a and b are integers greater than or equal to 1.
  • the correspondence between the sequence and the size of the PSCCH time-frequency resource can be shown in Table 3.
  • sequence PSCCH time-frequency resource size Sequence 1 a RB Sequence 2 a RB Sequence 3 b RBs
  • sequence 1, sequence 2, and sequence 3 are any three different sequences among q 0 , q 1 , ..., q (N-1) . It can be seen from Table 3 that both sequence 1 and sequence 2 can correspond to a RB, and sequence 3 corresponds to c RB.
  • the sending device uses a RB to send SCI, it can send sequence 1 or sequence 2 to the receiving device.
  • the sequence 1 or 2 indicates that the size of the PSCCH time-frequency resource occupied by the SCI sent by the sending device is a RB.
  • the receiving end device can perform decoding on the SCI on a RB (that is, the size of the PSCCH time-frequency resource corresponding to the sequence 1 or sequence 2).
  • the sequence and the size of the PSCCH time-frequency resource may be a many-to-many correspondence.
  • the sequence corresponds to the size of the PSCCH time-frequency resource and the SCI format.
  • the resource unit as an RB
  • Integer Assume that there are three different SCI formats, which are denoted as Format 1, Format 2, Format 3. Then, the correspondence between the size of the sequence and the PSCCH time-frequency resource and the SCI format can be shown in Table 4.
  • Sequence 1 Format 1 a RB Sequence 2 Format 2 a RB Sequence 3 Format 3 b RBs
  • sequence 1, sequence 2, and sequence 3 are any three different sequences among q 0 , q 1 , ..., q (N-1) .
  • sequence 1 corresponds to format 1 and a RB, that is, when the format of the SCI sent by the sending device is format 1, it can be sent using a RB and send sequence 1 to the receiving device.
  • the size of the PSCCH time-frequency resource occupied by the SCI sent by the receiving device is a RB, and the format of the SCI is format 1.
  • the receiving end device may determine that the format of the SCI sent by the sending end device is format 1, and the size of the PSCCH time-frequency resource occupied by the SCI is a RB. Further, the receiving device may determine whether the SCI of format 1 is required by itself, and if it is required by itself, decode the SCI on a RB (that is, the size of the PSCCH time-frequency resource corresponding to sequence 1). .
  • sequence 2 corresponds to format 2 and b RBs. That is, when the format of the SCI sent by the sending device is format 2, it can be sent using b RBs and send the sequence 2 to the receiving device to indicate the receiving end.
  • the PSCCH time-frequency resources occupied by the SCI sent by the device are b RBs, and the format of the SCI is format 2.
  • the receiving end device may determine that the format of the SCI sent by the sending end device is format 2, and the size of the PSCCH time-frequency resource occupied by the SCI is b RBs. Further, the receiving device may determine whether the SCI of format 2 is required by itself, and if it is required by itself, decode the SCI on b RBs (that is, the size of the PSCCH time-frequency resource corresponding to sequence 2). .
  • sequence 3 corresponds to format 3 and c RBs.
  • the receiving device may determine that the format of the SCI sent by the sending device is format 3, and the size of the PSCCH time-frequency resource occupied by the SCI is c RBs. Further, the receiving device may determine whether the SCI of format 3 is required by itself, and if it is required by itself, decode the SCI on c RBs (that is, the size of the PSCCH time-frequency resource corresponding to sequence 3) .
  • the corresponding relationship between the size of the above sequence and the PSCCH time-frequency resource and the SCI format is only an exemplary description, and the embodiments of the present application are not limited thereto.
  • the correspondence between the size of the sequence and the PSCCH time-frequency resource and the SCI format may also be a one-to-many or many-to-one relationship.
  • step 440 the transmitting device sends instruction information to the receiving device.
  • the indication information includes a third mapping relationship, and the third mapping relationship includes any one of the following: a first sequence set (for example, sequence 1, sequence 2, and sequence 3 in Tables 1 to 4 above may be used as a first sequence set)
  • a set of time-frequency resources for example, a RB, b RB, and c RBs in Tables 1 to 4 above can be used as a set of time-frequency resources.
  • the size set includes at least two types of time-frequency resources.
  • One sequence in the first sequence set corresponds to the size of one time-frequency resource in the set of time-frequency resources; or, the first sequence set and the SCI format set Corresponding relationship, where the SCI format set includes at least two SCI formats, one sequence in the first sequence set corresponds to one SCI format in the SCI format set; or, the first sequence set and the size set of time-frequency resources Correspondence with a set of SCI formats, where a sequence in the first sequence set and a time-frequency resource in a set of time-frequency resource sizes and a SCI format pair in a SCI format set .
  • the third mapping relationship may be that a sequence in the first sequence set corresponds to a size of a time-frequency resource in a set of time-frequency resources.
  • the correspondence between any of the N divided sequences q 0 , q 1 ,..., Q (N-1) and one or more PSCCH time-frequency resources of different sizes (for example, the above table)
  • the receiving end device can determine the size of the PSCCH time-frequency resource occupied by the transmitted SCI.
  • the third mapping relationship may also be that one sequence in the first sequence set corresponds to one SCI format in the SCI format set.
  • the correspondence between any of the N different sequences q 0 , q 1 ,..., Q (N-1) divided above and one or more SCIs in different formats (for example, Tables 1 to Tables above)
  • the corresponding relationship shown in any one of 3 is to replace the PSCCH time-frequency resources of different sizes in the above Tables 1 to 3 with different SCI formats.
  • the receiving device can determine the SCI format to be sent. , And then correctly receive the SCI it needs.
  • the third mapping relationship may also be a correspondence between a first sequence set, a set of sizes of time-frequency resources, and a set of SCI formats.
  • the correspondence between the above N different sequences q 0 , q 1 ,..., Q (N-1) and one or more PSCCH time-frequency resources of different sizes and one or more SCIs of different formats can be determined according to the transmitted sequence.
  • the corresponding relationship may be globally configured, cell-level configured, UE-group-level configured, or UE-level configured, which is not limited in this application.
  • the correspondence relationship may be predefined, such as a protocol definition, or may be configured by a network device. This application does not limit this.
  • the sending end device may send the third mapping relationship to the receiving end device in advance.
  • the third mapping relationship may be set in advance, and the receiving end device may directly obtain the pre-stored third mapping relationship.
  • the sending-end device and the receiving-end device know N possible sizes of time-frequency resources by default.
  • the third mapping relationship is saved in advance, and both the sending-end device and the receiving-end device know the third mapping relationship.
  • the form of the correspondence between the sequence and the size of the PSCCH time-frequency resource is not specifically limited.
  • the foregoing uses the correspondence between the sequence and the frequency domain size of the PSCCH time-frequency resource as an example for description.
  • the above correspondence may also be the correspondence between the sequence and the time domain size of the PSCCH time-frequency resource.
  • PSCCH and PSSCH are multiplexed in a frequency division manner.
  • the sending-end device and the receiving-end device may default to the N possible PSCCH time-frequency resource sizes that are known.
  • the receiving end device performs channel estimation on the DMRS corresponding to the SCI on the M RBs, and determines q i through information such as correlation. After the receiving device determines q i , it decodes the SCI on the PSCCH time-frequency resource corresponding to q i .
  • PSCCH and PSSCH are multiplexed in a time division manner.
  • the control information and data information are time division multiplexed scenarios.
  • the sending end device and the receiving end device may default to N possible physical resource sizes.
  • the receiving end device performs channel estimation on the DMRS corresponding to the SCI on the X symbols, and determines q i through information such as correlation. After the receiving device determines q i , it decodes the SCI on the PSCCH time-frequency resource corresponding to q i .
  • the number of transmissions, SCI format, and transmission resource parameters may be considered separately, or the number of transmissions, SCI format, and transmission resource parameters may be considered at the same time. That is, the embodiment of FIG. 10 may be used alone, or may be used in combination with the embodiment of FIG. 6 or FIG. 7, or may be used in combination with the embodiment of FIG. 8 or FIG. 9.
  • the time-frequency resources corresponding to the SCI can be flexibly changed in one transmission opportunity.
  • the size of the time-frequency resources occupied by the SCI can be implicitly indicated based on an independent sequence or a DMRS sequence.
  • it can flexibly support the variable bit rate of control information, thereby improving the reliability of SCI transmission.
  • different formats of SCI can be sent by selecting time-frequency resources of different sizes, and the receiving device can distinguish the SCI format according to time-frequency resources of different sizes.
  • V2X there may be many different SCI formats. Therefore, the following three situations may occur.
  • the PSCCH time-frequency resources of different sizes can be selected for transmission according to the method shown in the embodiment of FIG. 10, and the receiving end device can distinguish the SCI format according to the PSCCH time-frequency resources of different sizes.
  • the PSCCH time-frequency resources of different sizes may also be selected for transmission according to the method shown in the embodiment of FIG. 10, and the receiving end device may distinguish the SCI format according to the size of the PSCCH time-frequency resources.
  • the corresponding PSCCH time-frequency resources can be considered to be approximately the same, so that the PSCCH time-frequency resources of the same size can be selected for transmission, and the receiving end device can distinguish the SCI according to the PSCCH time-frequency resources Format, and decode processing for different formats of SCI.
  • the SCIs of different formats can also send PSCCH time-frequency resources of the same size according to the method shown in the embodiment of FIG. 10.
  • the receiving device can distinguish the SCI format according to the size of the PSCCH time-frequency resources, and target different SCI formats. Format SCIs are decoded separately.
  • the embodiment of the present application proposes a method for these three cases, especially the above cases 2 and 3, which can not only distinguish different SCI formats, but also further reduce the complexity of the blind detection algorithm of the receiving end device.
  • the scramble code ID corresponding to the format of the SCI is used to scramble the CRC in the SCI. Specifically, the CRC check bits are scrambled by using a fixed scrambling code.
  • the receiving end device receives the SCI and descrambles the received SCI to obtain a scrambling code ID; according to the scrambling code ID and the correspondence between the scrambling code ID and the SCI format, the format of the SCI is determined.
  • W is an integer greater than or equal to 1.
  • W types of scramble code IDs can be defined, and the W types of scramble code IDs correspond to the W types of SCI formats one-to-one.
  • the W kinds of scrambling code IDs can be expressed as W 0 , W 1 ,..., W (N-1) .
  • the ID length is the same as the CRC check bit length.
  • FIG. 11 is a schematic diagram of a possible encoding manner according to an embodiment of the present application.
  • a SCI ie, SCI data
  • a CRC check is performed first, and after the CRC check, a step of scrambling a CRC check bit is added.
  • the receiving device applies different scrambling code IDs to descramble the CRC check bits. If the CRC check after the descrambling of a certain scrambling code ID W j is correct, it is determined to use the SCI format corresponding to W j to parse the received SCI.
  • the sending end device sends instruction information to the receiving end device, where the instruction information includes a fourth mapping relationship, and the fourth mapping relationship includes a correspondence between a scrambling code ID and a format of the SCI.
  • the fourth mapping relationship includes a correspondence between a scrambling code ID and a format of the SCI.
  • one possible scrambling code ID may be to number all SCI formats starting from 0 and use the corresponding binary representation as the scrambling code ID. It is assumed that the length of the scramble code ID is 16, the scramble code ID generated according to the above method is shown in Table 5, and other IDs can be automatically extended.
  • SCI format Scrambling ID Format 0 ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> Format 1 ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1> Format 2 ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0>
  • the correspondence between the scrambling code ID and the format of the SCI can be specified in advance by the sending end device.
  • the sending device sends a correspondence between the scrambling code ID and the format of the SCI to the receiving device.
  • the correspondence between the scrambling code ID and the format of the SCI is predefined, such as a protocol definition or a network device pre-configured, and the receiving end device can directly obtain the pre-stored correspondence.
  • the correspondence relationship is saved in advance, and the sending end device and the receiving end device both know the correspondence relationship.
  • a method of compensating placeholders can also be adopted, so that SCI formats with different lengths reach the same length.
  • placeholders can be padded with the shorter SCI format to make them the same length.
  • the same code rate can be used to encode SCI formats of similar length, thereby reducing the complexity of blind detection.
  • the purpose of blind detection can be achieved by performing blind detection on the CRC, which greatly reduces the complexity of the receiving device.
  • the embodiment in FIG. 11 may be considered separately, or the embodiment in FIG. 11 and the embodiment in FIG. 10 may be used in combination at the same time.
  • the technical solution in FIG. 11 may be further adopted to distinguish SCIs in different formats.
  • the embodiment mode of FIG. 11 may be used in combination with the embodiment of FIG. 6 or FIG. 7, and may also be used in combination with the embodiment of FIG. 8 or FIG. 9.
  • control information in any of the embodiments described in FIG. 4 to FIG. 11 may be replaced with “SCI”.
  • SCI in any of the embodiments described in FIG. 4 to FIG. 11 may be replaced with “control information”.
  • the waveforms of the control channel and the data channel are both discrete Fourier transform spread spectrum orthogonal frequency division multiplex multiple access technology solutions. , DFT-OFDM).
  • DFT-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplex multiple access technology solutions
  • FIG. 12 is a schematic interaction diagram of a method 600 for sending and receiving waveform information according to another embodiment of the present application.
  • step 610 the transmitting device determines waveform information of the control channel and the data channel.
  • step 620 the transmitting device sends instruction information, which is used to indicate: the waveform information of the control channel and / or the data channel, and / or whether the waveforms of the control channel and the data channel are the same, and the receiving device receives the instruction. information;
  • step 630 the receiving end device determines the waveform information of the control channel and / or the data channel according to the indication information.
  • the transmission waveforms of the control channel and the data channel may have various forms, and the transmission waveforms of the control channel and the data channel may be the same or different. Different transmission waveforms can correspond to different formats of SCI.
  • the instruction information may indicate the waveform information of the control channel and / or the data channel, or the instruction information may indicate whether the waveforms of the control channel and the data channel are the same, thereby facilitating the receiving device to determine the waveform information of the control channel and the data channel. With this method, the receiving end device can better receive information, and improve communication efficiency and user experience.
  • the indication information is carried in the SCI, and one or more reserved bits in the SCI are used to indicate whether the waveforms of the control channel and the data channel are the same.
  • a 1-bit field is added in the SCI to indicate whether the waveforms of the control channel and the data channel are the same.
  • 0 corresponds to the waveforms of the control channel and the data channel
  • 1 corresponds to the waveforms of the control channel and the data channel.
  • the transmitting device determines that the waveforms of the control channel and the data channel are the same
  • a "0" bit field can be added to the SCI.
  • the receiving device decodes the SCI and determines that the bit field added in the SCI is "0", and then the receiving device determines that the waveforms of the control channel and the data channel are the same.
  • the waveform of the control channel is configured in advance, and before receiving the SCI, the receiving end device determines the waveform of the data channel or the control channel according to the scheduling or pre-configuration information.
  • the receiving end device receives the SCI, determines that the bit field added in the SCI is "0", and then the receiving end device determines that the waveforms of the control channel and the data channel are the same, and then determines the waveforms of the control channel or the data channel.
  • the waveforms of the control channel and the data channel corresponding to 0 above are the same, and the waveforms of the control channel and the data channel corresponding to 1 are different.
  • the description is given by way of example, and the present application is not limited to this.
  • a waveform corresponding to 1 for the control channel and the data channel is the same, and a waveform corresponding to 0 for the control channel and the data channel is different.
  • the indication information is sequence #A (that is, an example of the second sequence), and there is a correspondence between sequence #A and the waveform information of the control channel; or, there is a correspondence between sequence #A and the waveform information of the data channel. Relationship; or, there is a correspondence relationship between the sequence #A and the waveform information of the data channel and the waveform information of the control channel.
  • sequence #A can be carried by an automatic gain control sequence. It is independent of the control channel and data channel on the symbol or symbols at the beginning of the transmission slot. Different sequences #A can correspond to different waveforms. Optionally, different waveforms may correspond to different SCI formats, and the transmitting device may determine the transmission waveforms of the control channel and / or the data channel according to the SCI format.
  • the receiving end device can determine the waveform information of the control channel and / or the data channel.
  • the waveform information of the data channel and / or the control channel may be determined according to sequence #A by at least four methods.
  • the sequence #A has a correspondence relationship with the waveform information of the control channel and the data channel.
  • Table 6 shows a possible correspondence between the sequence #A and the waveform information of the control channel and the data channel. As shown in Table 6, it is assumed that there are four different sequences #A, which are denoted as q0, q1, q2, q3, respectively. Taking two waveforms as examples, they are: cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) and DFT-OFDM. Each sequence #A corresponds to a set of waveform information, that is, each sequence #A corresponds to a waveform of a control channel and a waveform of a data channel.
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • DFT-OFDM DFT-OFDM
  • the sending end device may send the corresponding relationship to the receiving end device in advance.
  • the corresponding relationship may be set in advance, and the receiving end device may directly obtain the pre-stored corresponding relationship.
  • the correspondence relationship is saved in advance, and the sending end device and the receiving end device both know the correspondence relationship.
  • the waveform information corresponding to q0 is: the waveform of the control channel is CP-OFDM, and the waveform of the data channel is CP-OFDM.
  • the transmitting device sends sequence #A to q0
  • the receiving device can determine that the waveform of the control channel is CP-OFDM and the waveform of the data channel is according to the received q0 and the corresponding relationship shown in Table 6.
  • CP-OFDM the waveform information corresponding to q1 is: the waveform of the control channel is CP-OFDM, and the waveform of the data channel is DFT-OFDM.
  • the receiving device can determine that the waveform of the control channel is CP-OFDM and the waveform of the data channel according to the received q1 and the corresponding relationship shown in Table 6. It is DFT-OFDM.
  • the waveform information corresponding to q2 is: the waveform of the control channel is DFT-OFDM, and the waveform of the data channel is CP-OFDM.
  • the receiving device can determine that the waveform of the control channel is DFT-OFDM and the waveform of the data channel according to the received q2 and the corresponding relationship shown in Table 6. CP-OFDM.
  • the waveform information corresponding to q3 is: the waveform of the control channel is DFT-OFDM, and the waveform of the data channel is DFT-OFDM.
  • the receiving device can determine that the waveform of the control channel is DFT-OFDM and the waveform of the data channel according to the received q3 and the corresponding relationship shown in Table 6. It is DFT-OFDM.
  • Table 6 is only an exemplary description, and the embodiments of the present application are not limited thereto.
  • the correspondence between the sequence #A and the waveform information of the data channel and the waveform information of the control channel, the number of the sequence #A, and the specific type of the waveform in Table 6 do not limit the protection scope of the present application.
  • one or more rows may be added to Table 6, that is, sequence #A and other waveform information are added.
  • a sequence q4 is added, and the waveform information corresponding to the q4 is: the waveform of the control channel is CP-OFDM, and the waveform of the data channel is pulse-shaped OFDM.
  • the configuration in the actual system may be one or more rows in Table 6, that is, the sequence #A is reduced. For example, only any two sequences #A in Table 6 are included.
  • the receiving end device may determine the waveforms of the control channel and the data channel according to the received sequence #A.
  • Sequence #A has a correspondence relationship with whether the waveforms of the control channel and the data channel are the same.
  • Table 7 shows a possible correspondence between sequence #A and whether the waveforms of the control channel and the data channel are the same. As shown in Table 7, it is assumed that there are two different sequences #A, which are denoted as q0 and q1, respectively. The waveforms of q0 corresponding to the control channel and the data channel are the same, and the waveforms of q1 corresponding to the control channel and the data channel are the same.
  • Control channel and data channel waveforms q0 The control and data channels have the same waveform q1 Control and data channels have different waveforms
  • the sending end device may send the corresponding relationship to the receiving end device in advance.
  • the corresponding relationship may be set in advance, and the receiving end device may directly obtain the pre-stored corresponding relationship.
  • the correspondence relationship is saved in advance, and the sending end device and the receiving end device both know the correspondence relationship.
  • a possible implementation manner is to determine a waveform of a data channel according to scheduling or pre-configuration information in combination with sequence #A. That is, the waveform of the control channel is pre-configured. Before receiving the control channel and the data channel, the receiving end device detects the received sequence #A to determine whether the waveforms of the control channel and the data channel are consistent. According to the consistency and the corresponding relationship, the receiving end device can determine the waveform of the data channel.
  • the waveform of the control channel is CP-OFDM
  • the receiver device knows in advance that the waveform of the control channel is CP-OFDM.
  • Table 7 Taking the correspondence relationship shown in Table 7 as an example, if the transmitting device determines that the waveforms of the control channel and the data channel are the same, it sends q0 to the receiving device, where q0 is used to indicate that the waveforms of the control channel and the data channel are the same. After the receiving device receives q0, it is determined that the waveforms of the control channel and the data channel are the same. Therefore, it can be determined that the waveform of the data channel is CP-OFDM.
  • the waveform of the data channel may also be configured in advance, and then the waveform of the control channel may be determined according to whether the waveforms of the control channel and the data channel are the same.
  • the waveform of the control channel may be determined according to whether the waveforms of the control channel and the data channel are the same.
  • I will not repeat them.
  • Table 8 shows a possible correspondence between the sequence #A and the waveform information of the data channel. As shown in Table 8, it is assumed that there are two different sequences #A, which are denoted as q0 and q1, respectively. Take two waveforms as examples: CP-OFDM and DFT-OFDM. Each sequence #A corresponds to the waveform of one data channel.
  • the sending end device may send the corresponding relationship to the receiving end device in advance.
  • the corresponding relationship may be set in advance, and the receiving end device may directly obtain the pre-stored corresponding relationship.
  • the correspondence relationship is saved in advance, and the sending end device and the receiving end device both know the correspondence relationship.
  • the waveform information corresponding to q0 is: the waveform of the data channel is CP-OFDM.
  • the receiving-end device can determine that the waveform of the data channel is CP-OFDM according to the received q0 and the corresponding relationship.
  • the waveform information corresponding to q1 is: the waveform of the data channel is DFT-OFDM.
  • the sequence #A sent by the transmitting device is q1
  • the receiving device can determine that the waveform of the data channel is DFT-OFDM according to the received q1 and the corresponding relationship.
  • Table 8 is only an exemplary description, and the embodiments of the present application are not limited thereto.
  • the correspondence between the sequence #A and the waveform information of the data channel, the number of the sequence #A, and the specific type of the waveform in Table 8 do not limit the protection scope of the present application.
  • one or more rows may be added to Table 8, that is, sequence #A and other waveform information are added.
  • the waveform information corresponding to q2 is: the waveform of the data channel is pulse-shaped OFDM.
  • method 3 can also be used in combination with method 2.
  • the receiving device determines the control channel according to the scheduling or pre-configuration information.
  • the receiving end device may determine whether the waveforms of the control channel and the data channel are the same according to the received sequence #A. If they are not the same, it may further combine the correspondence relationship shown in Table 8 to determine the waveform of the data channel.
  • Table 9 shows a possible correspondence between the sequence #A and the waveform information of the control channel. As shown in Table 9, it is assumed that there are two different sequences #A, which are denoted as q0 and q1, respectively. Take two waveforms as examples: CP-OFDM and DFT-OFDM. Each sequence #A corresponds to the waveform of one control channel.
  • the sending end device may send the corresponding relationship to the receiving end device in advance.
  • the corresponding relationship may be set in advance, and the receiving end device may directly obtain the pre-stored corresponding relationship.
  • the correspondence relationship is saved in advance, and the sending end device and the receiving end device both know the correspondence relationship.
  • the receiving end device, or the transmitting end device and the receiving end device stores the correspondence relationship shown in Table 9, and according to the correspondence relationship shown in Table 9, the waveform information of the control channel can be determined by the received sequence #A.
  • the waveform information corresponding to q0 is: the waveform of the control channel is CP-OFDM.
  • the receiving-end device may determine that the waveform of the control channel is CP-OFDM according to the received q0 and the corresponding relationship.
  • the waveform information corresponding to q1 is: the waveform of the control channel is DFT-OFDM.
  • the sequence #A sent by the transmitting device is q1
  • the receiving device may determine that the waveform of the control channel is DFT-OFDM according to the received q1 and the corresponding relationship.
  • Table 9 is only an exemplary description, and the embodiments of the present application are not limited thereto.
  • the correspondence between the sequence #A and the waveform information of the control channel, the number of the sequence #A, and the specific type of the waveform in Table 9 do not limit the protection scope of the present application.
  • one or more rows may be added to Table 9, that is, sequence #A and other waveform information are added.
  • the waveform information corresponding to q2 is: the waveform of the control channel is pulsed OFDM.
  • method 4 can also be used in combination with method 2. For example, assuming that the waveform of the data channel is pre-configured, the receiving end device determines the data channel according to the scheduling or pre-configuration information. The receiving end device may determine whether the waveforms of the control channel and the data channel are the same according to the received sequence #A. If they are not the same, it may further combine the correspondence relationship shown in Table 9 to determine the waveform of the control channel.
  • method 2 and method 3 are merely exemplary descriptions, and the embodiments of the present application are not limited thereto.
  • method 2 and method 3 may be used in combination.
  • FIG. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • the communication device 500 may include a transceiver unit 510 and a processing unit 520.
  • the communication device 500 may correspond to the terminal device in the foregoing method embodiment.
  • the communication device 500 may be a terminal device or a chip configured in the terminal device.
  • the communication device 500 may correspond to the method 200, the method 400, the method 600 according to the embodiments of the present application, and the transmitting end or the receiving end in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG. It may include methods for performing the method 200 in FIG. 4, the method 400 in FIG. 10, the method 600 in FIG. 12, and the methods performed by the transmitting end or the receiving end in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG. unit.
  • each unit in the communication device 500 and the other operations and / or functions described above are implemented to implement the method 200 in FIG. 4, the method 400 in FIG. 10, the method 600 in FIG. 12, and FIGS. 5 to 9, and 11 respectively.
  • the transceiver unit 510 may be used to execute step 220 in the method 200, and the processing unit 520 may be used to execute step 210 in the method 200. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 510 may be used to execute steps 420 and 440 in the method 400, and the processing unit 520 may be used to execute step 410 in the method 400 or the processing unit 520 It may be used to perform step 430 in method 400. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 510 may be used to execute step 620 in the method 600, and the processing unit 520 may be used to execute step 610 in the method 600. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • transceiver unit in the communication device 500 may correspond to the transceiver 602 in the terminal device 600 shown in FIG. 14, and the processing unit 520 in the communication device 500 may correspond to the terminal device shown in FIG. 14.
  • the processor 601 in 600 may correspond to the transceiver 602 in the terminal device 600 shown in FIG. 14, and the processing unit 520 in the communication device 500 may correspond to the terminal device shown in FIG. 14.
  • the processor 601 in 600 may correspond to the transceiver 602 in the terminal device 600 shown in FIG. 14, and the processing unit 520 in the communication device 500 may correspond to the terminal device shown in FIG. 14.
  • the processor 601 in 600 may correspond to the terminal device shown in FIG. 14.
  • the communication device 500 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 500 may correspond to the method 200, the method 400, the method 600 according to the embodiments of the present application, and the transmitting end in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG.
  • each unit in the communication device 500 and the other operations and / or functions described above are implemented to implement the method 200 in FIG. 4, the method 400 in FIG. 10, the method 60 in FIG. 12, and FIGS. 5 to 9, and 11 respectively.
  • the transceiver unit 510 may be used to execute step 220 in the method 200, and the processing unit 520 may be used to execute step 210 in the method 200. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 510 may be used to execute steps 420 and 440 in the method 400, and the processing unit 520 may be used to execute step 410 in the method 400. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 510 may be used to execute step 620 in the method 600, and the processing unit 520 may be used to execute step 610 in the method 600. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • transceiver unit 510 in the communication device 500 may correspond to the transceiver 720 in the network device 700 shown in FIG. 15, and the processing unit 520 in the communication device 500 may correspond to the network shown in FIG. 15.
  • the processor 710 in the device 700 may correspond to the transceiver 720 in the network device 700 shown in FIG. 15, and the processing unit 520 in the communication device 500 may correspond to the network shown in FIG. 15.
  • the processor 710 in the device 700 may correspond to the transceiver 720 in the network device 700 shown in FIG.
  • FIG. 14 is a schematic structural diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 includes a processor 601 and a transceiver 602.
  • the terminal device 600 further includes a memory 603.
  • the processor 601, the transceiver 602, and the memory 603 can communicate with each other through an internal connection path to transfer control and / or data signals.
  • the memory 603 is used to store a computer program
  • the processor 601 is used to store the computer program
  • the computer program is called and executed to control the transceiver 602 to send and receive signals.
  • the terminal device 600 may further include an antenna 604 for sending uplink data or uplink control signaling output by the transceiver 602 through a wireless signal.
  • the processor 601 and the memory 603 may be combined into a processing device, and the processor 601 is configured to execute program codes stored in the memory 603 to implement the foregoing functions.
  • the memory 603 may also be integrated in the processor 601 or independent of the processor 601.
  • the processor 601 when the program instructions stored in the memory 603 are executed by the processor 601, the processor 601 is used to control the transceiver 602: receiving side link control information SCI sent by the sending end device, which is based on It is sent by a transmission parameter of the SCI, and the transmission parameter includes at least one of the following: the number of transmissions of the SCI, the format of the SCI, or the transmission resource parameter of the SCI, and the processor 601 is further configured to decode the SCI.
  • the processor 601 when the program instructions stored in the memory 603 are executed by the processor 601, the processor 601 is configured to determine transmission parameters of the side link control information SCI, and the transmission parameters include at least one of the following : The number of SCI transmissions, the format of the SCI, or the transmission resource parameters of the SCI, and controls the transceiver 602 to send the SCI to the receiving device based on the transmission parameters of the SCI.
  • the terminal device 600 may correspond to the method 200, the method 400, the method 600 according to the embodiments of the present application, and the sending end or the receiving end in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG. It may include units for performing the method 200, the method 400, the method 600, and the method performed by the sending end or the receiving end in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG.
  • each unit in the terminal device 600 and the other operations and / or functions described above are respectively used to implement the method 200, the method 400, the method 600, and the corresponding processes in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG.
  • the foregoing processor 601 may be used to perform the actions implemented in the sending method or the receiving end described in the previous method embodiment, and the transceiver 602 may be used to perform the sending to or receiving from the sending terminal described in the previous method embodiment.
  • the action received by the end may also be used to perform the action that the receiving end sends to or receives from the sending end described in the foregoing method embodiment.
  • the above-mentioned terminal device 600 may further include a power source 605 for supplying power to various devices or circuits in the terminal device.
  • the terminal device 600 may further include one or more of an input unit 606, a display unit 607, an audio circuit 608, a camera 609, and a sensor 610, and the audio circuit It may also include a speaker 6082, a microphone 6084, and the like.
  • FIG. 15 is a schematic structural diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 includes a processor 710 and a transceiver 720.
  • the network device 700 further includes a memory 730.
  • the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the memory 730 is used to store a computer program, and the processor 710 is used to call from the memory 730.
  • the computer program is run to control the transceiver 720 to send and receive signals.
  • the processor 710 and the memory 730 may be combined into a processing device, and the processor 710 is configured to execute program codes stored in the memory 730 to implement the foregoing functions.
  • the memory 730 may also be integrated in the processor 710, or be independent of the processor 710.
  • the above network device 700 may further include an antenna 740 for sending downlink data or downlink control signaling output by the transceiver 720 through a wireless signal.
  • the processor 710 When the program instructions stored in the memory 730 are executed by the processor 710, the processor 710 is configured to determine transmission parameters of the side link control information SCI, and the transmission parameters include at least one of the following: the number of transmissions of the SCI, and the format of the SCI Or transmission resource parameters of the SCI, and controls the transceiver 720 to send the SCI based on the transmission parameters of the SCI.
  • the network device 700 may correspond to the method 200, the method 400, the method 600 according to the embodiments of the present application, and the sending end in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG.
  • each unit in the network device 700 and the other operations and / or functions described above are used to implement the method 200, the method 400, the method 600, and the corresponding processes in the embodiments of FIG. 5 to FIG. 9, FIG. 11, and FIG. 12, respectively.
  • the specific process of performing the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • the foregoing processor 710 may be configured to perform the actions implemented by the network device described in the foregoing method embodiment, and the transceiver 720 may be configured to perform the network device described in the foregoing method embodiment to send or receive from the terminal device to the terminal device. action.
  • the transceiver 720 may be configured to perform the network device described in the foregoing method embodiment to send or receive from the terminal device to the terminal device. action.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits. (application specific integrated circuit (ASIC)), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer executes the operations shown in FIG. 4 to FIG. 11. The method in the examples is shown.
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program code, and when the program code runs on the computer, the computer executes the operations shown in FIG. 4 to FIG. 11.
  • the method in the examples is shown.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收侧行链路控制信息的方法以及装置。该方法包括确定侧行链路控制信息(sidelink control information,SCI)的传输参数,该传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数。基于该SCI的传输参数发送SCI,例如发送多次SCI,或者发送不同格式的SCI,或者在相应大小的时频资源上发送SCI。基于本申请,终端设备之间可以灵活地进行通信,进而提高通信效率和用户体验。

Description

发送和接收侧行链路控制信息的方法以及装置
本申请要求于2018年09月13日提交中国专利局、申请号为201811067527.0、申请名称为“发送和接收侧行链路控制信息的方法以及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体的,涉及发送和接收侧行链路控制信息的方法以及装置。
背景技术
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此设备到设备(device-to-device,D2D)技术应运而生。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出。
目前,在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出。此外,随着未来的第五代(5th generation,5G)系统或新无线(new radio,NR)技术在3GPP标准组织中的开发,5G NR V2X也将进一步发展。比如,可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验,以满足更加广泛的应用场景需求。
因此,希望提供一种方法,能够保证终端设备之间进行灵活的通信传输。
发明内容
本申请提供一种发送和接收侧行链路控制信息的方法以及装置,能够使得终端设备之间灵活地进行通信,进而提高通信效率。
第一方面,提供了一种发送侧行链路控制信息的方法,该方法包括:确定侧行链路控制信息SCI的传输参数,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;基于所述SCI的传输参数向接收端设备发送所述SCI。
第一方面提供的方法可以由发送端设备执行,例如网络设备或终端设备执行,也可以由配置于发送端设备中的芯片执行,本申请对此不做限定。
基于上述技术方案,对于待发送的侧行链路控制信息来说,发送端设备可以确定待发送的侧行链路控制信息的传输参数,例如,侧行链路控制信息的传输次数、侧行链路控制信息的格式、侧行链路控制信息的传输资源,并基于传输参数发送该侧行链路控制信息,以便发送端设备和接收端设备可以灵活通信,提高通信效率。具体的,发送端设备可以确定侧行链路控制信息的传输次数。如当信道质量较差时,发送端设备可以发送多次该侧行 链路控制信息,以便保证传输可靠性。具体的,发送端设备还可以确定侧行链路控制信息的格式。如可以存在多种格式的侧行链路控制信息,发送端设备可以确定待发送的侧行链路控制信息的格式。具体的,发送端设备还可以确定侧行链路控制信息的传输资源参数。如可以有多种不同大小的时频资源,发送端设备可以确定待发送的侧行链路控制信息所占用的时频资源。通过考虑与该侧行链路控制信息相关的因素,不仅可以灵活地进行通信,提高通信效率,而且可以保证接收端设备正确接收侧行链路控制信息。
结合第一方面,在第一方面的某些实现方式中,所述传输参数包括SCI的传输次数,所述确定SCI的传输参数包括:确定所述SCI的传输次数为T,其中,T为大于1或等于1的整数;所述基于所述SCI的传输参数发送所述SCI,包括:发送T次所述SCI。
基于上述技术方案,发送端设备可以基于待发送的侧行链路控制信息的传输次数来发送该侧行链路控制信息,以便保证传输可靠性,提高通信效率。例如,当信道质量较差时,发送端设备可以发送多次该侧行链路控制信息,以便保证传输可靠性。又如,当信道质量较好时,发送端设备可以发送一次该侧行链路控制信息。又如,发送端设备还可以确定该侧行链路控制信息的格式和/或长度,来确定发送该侧行链路控制信息的次数。
结合第一方面,在第一方面的某些实现方式中,所述T大于1,所述发送T次所述SCI中的前T-1次中的每一次之前,所述方法还包括:发送第一解调参考信号(demodulation reference signal,DMRS)序列,所述第一DMRS序列用于指示当次发送的SCI为非最后一次发送。
基于上述技术方案,发送端设备可以通过DMRS序列来隐示指示当次发送的侧行链路控制信息是否为最后一次发送,如可以在前T-1次,接收端设备向发送端设备发送第一DMRS序列,根据该第一DMRS序列,确定当次发送的侧行链路控制信息非最后一次发送,进而便于接收端设备正确接收全部的信息,进而正确译码,保证传输可靠性。
结合第一方面,在第一方面的某些实现方式中,所述发送T次所述SCI中的第T次之前,所述方法还包括:发送第二DMRS序列,所述第二DMRS序列用于指示所述第T次发送的SCI为最后一次发送。
基于上述技术方案,当发送端设备最后一次发送侧行链路控制信息时,可以向接收端设备发送第二DMRS序列,接收端设备根据该第二DMRS序列,可以确定第T次接收到的侧行链路控制信息为最后一次发送。其中,第一DMRS序列和第二DMRS序列都属于解调参考信号,只是序列值不同。通过不同的DMRS序列,不仅可以指示侧行链路控制信息是否为最后一次发送,而且可以节省通知信令。
结合第一方面,在第一方面的某些实现方式中,所述T大于1,所述发送T次所述SCI中的前T-1次中的每一次之前,所述方法还包括:从第一调制模式集合中选择第一调制模式,从第二调制模式集合中选择第二调制模式,采用所述第一调制模式和所述第二调制模式调制所述SCI,所述第一调制模式和所述第二调制模式指示当次发送的SCI为非最后一次发送。
基于上述技术方案,发送端设备可以通过侧行链路控制信息的调制模式来隐示指示当次发送的侧行链路控制信息是否为最后一次发送。如果不是最后一次发送侧行链路控制信息时,则可以通过使用不同的调制模式来调制侧行链路控制信息的资源粒子。
结合第一方面,在第一方面的某些实现方式中,所述发送T次所述SCI中的第T次 之前,所述方法还包括:从第三调制模式集合中选择第三调制模式,采用所述第三调制模式调制所述SCI,所述第三调制模式指示所述第T次发送的SCI为最后一次发送。
基于上述技术方案,发送端设备可以通过侧行链路控制信息的调制模式来隐示指示当次或当前发送的侧行链路控制信息是否为最后一次发送。如果是最后一次发送侧行链路控制信息时,则使用一种调制模式调制侧行链路控制信息。
结合第一方面,在第一方面的某些实现方式中,所述传输参数包括SCI的格式和SCI的传输资源参数,所述确定SCI的传输参数包括:确定所述SCI的格式和所述SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小;所述基于所述SCI的传输参数发送所述SCI,包括:用所述SCI占用的时频资源的大小,并采用所述SCI的格式发送所述SCI。
基于上述技术方案,可以先确定发送侧行链路控制信息时所使用的时频资源,以及该侧行链路控制信息的格式,然后发送该侧行链路控制信息。SCI占用的时频资源的大小即表示发送SCI所要使用的时频资源的大小。
结合第一方面,在第一方面的某些实现方式中,所述SCI的格式与所述SCI占用的时频资源的大小对应;所述确定所述SCI的传输资源参数包括:根据所述SCI的格式确定所述SCI占用的时频资源的大小。
基于上述技术方案,可以将多种时频资源(即传输资源)划分成多种不同大小的时频资源,用于发送侧行链路控制信息的时频资源与侧行链路控制信息的格式对应,进而可以在合适的时频资源上传输对应的侧行链路控制信息,从而可以合理地利用资源。此外,发送端设备也可以根据侧行链路控制信息的格式,来确定发送该侧行链路控制信息所使用的时频资源。
结合第一方面,在第一方面的某些实现方式中,所述基于所述SCI的传输参数发送所述SCI之前,所述方法还包括:从第一序列集合中选择第一序列,发送所述第一序列,其中,所述第一序列用于指示所述SCI的传输资源参数,和/或,所述第一序列用于指示所述SCI的格式。
基于上述技术方案,通过序列隐示指示接收端设备所述SCI的传输资源参数和/或所述SCI的格式,进而使得接收端设备接收正确的信息,并减少盲检次数,节约资源。其中,第一序列集合中可以包括1个或多个序列,每个序列可以对应1种或多种不同大小的时频资源,和/或,每个序列还可以对应1种或多种侧行链路控制信息的格式。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述基于所述SCI的传输参数发送所述SCI之前,所述方法还包括:发送指示信息,所述指示信息包括以下至少一项:所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的 一种,所述SCI的格式为所述SCI格式集合中的一个。
可选的,上述对应关系可以是通信网络中预定义的。
基于上述技术方案,序列与时频资源的大小和/或侧行链路控制信息的格式具有对应关系,根据该对应关系,发送端设备可以通过序列指示接收端设备时频资源的大小和/或侧行链路控制信息的格式,便于接收端设备可以更好地接收信息,提高用户体验。
结合第一方面,在第一方面的某些实现方式中,所述基于所述SCI的传输参数发送所述SCI之前,所述方法还包括:采用与所述SCI的格式对应的扰码标识ID,对所述SCI中的循环冗余校验CRC进行加扰处理。
基于上述技术方案,可以通过对侧行链路控制信息中的循环冗余校验CRC进行加扰,并根据扰码ID来确定对应的侧行链路控制信息的格式,进而可以通过对CRC进行盲检测即可达到盲检测的目的,极大降低了接收端设备的复杂度。
第二方面,提供了一种接收侧行链路控制信息的方法,该方法包括:接收发送端设备发送的侧行链路控制信息SCI,所述SCI是基于所述SCI的传输参数发送的,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;对所述SCI进行译码。
第二方面提供的方法可以由接收端设备执行,例如终端设备,也可以由配置于接收端设备中的芯片执行,本申请对此不做限定。
基于上述技术方案,接收端设备接收到侧行链路控制信息是发送端设备基于传输参数发送的。例如,传输参数包括侧行链路控制信息的传输次数。具体的,发送端设备可以确定侧行链路控制信息的传输次数。如当信道质量较差时,发送端设备可以发送多次该侧行链路控制信息,接收端设备接收多次侧行链路控制信息,进而可以正确地接收到侧行链路控制信息,保证传输可靠性,提高通信效率。又如,传输参数包括侧行链路控制信息的格式。具体的,发送端设备还可以确定侧行链路控制信息的格式,接收端设备可以接收多种格式的侧行链路控制信息。又如,传输参数包括侧行链路控制信息的传输资源参数。具体的,可以有多种不同大小的时频资源,接收端设备可以在不同大小的时频资源上进行译码。
结合第二方面,在第二方面的某些实现方式中,所述传输参数包括SCI的传输次数;所述接收SCI,包括:接收T次SCI,其中,T为大于1或等于1的整数;所述对所述SCI进行译码,包括:在所述T等于1的情况下,对所述SCI进行译码;在所述T大于1的情况下,对所述T次SCI进行合并译码。
基于上述技术方案,接收端设备可以基于该侧行链路控制信息的传输次数进行译码。例如,当确定侧行链路控制信息的传输次数为一次时,可以对接收到的侧行链路控制信息进行直接译码。又如,当确定侧行链路控制信息的传输次数为多次时,可以对接收到的侧行链路控制信息进行合并译码。
结合第二方面,在第二方面的某些实现方式中,所述T大于1,所述接收T次SCI中的前T-1次中的每一次之前,所述方法还包括:接收送第一解调参考信号DMRS序列,根据所述第一DMRS序列确定当次接收的SCI为非最后一次接收。
基于上述技术方案,接收端设备可以在每次接收侧行链路控制信息时,接收一个序列,根据该序列判断该次侧行链路控制信息发送是否为最后一次发送。例如,当接收到第一DMRS序列时,确定当前(或当次)接收的侧行链路控制信息非最后一次接收。
结合第二方面,在第二方面的某些实现方式中,所述接收T次SCI中的第T次之前,所述方法还包括:接收第二DMRS序列,根据所述第二DMRS序列确定所述第T次接收的SCI为最后一次接收。
基于上述技术方案,当接收到第二DMRS序列时,确定当次(即第T次)接收的侧行链路控制信息为最后一次接收。
结合第二方面,在第二方面的某些实现方式中,所述T大于1,所述接收T次SCI中的前T-1次中的每一次之前,所述方法还包括:确定当次接收的SCI的调制模式包括第一调制模式和第二调制模式,根据所述第一调制模式和所述第二调制模式确定当次接收的SCI为非最后一次接收,其中,所述第一调制模式为第一调制模式集合中的调制模式,所述第二调制模式为第二调制模式集合中的调制模式。
基于上述技术方案,接收端设备可以通过侧行链路控制信息的调制模式来确定该侧行链路控制信息是否为最后一次接收,进而节省通知信令。例如,使用不同的调制模式调制侧行链路控制信息的资源粒子时,可以快速简单地确定侧行链路控制信息非最后一次接收。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述接收T次SCI中的第T次之前,所述方法还包括:确定所述第T次接收的SCI的调制模式为第三调制模式,根据所述第三调制模式确定所述第T次接收的SCI为最后一次接收,其中,所述第三调制模式为第三调制模式集合中的调制模式。
基于上述技术方案,发送端设备可以通过侧行链路控制信息的调制模式来隐示指示侧行链路控制信息是否为最后一次发送。接收端设备确定侧行链路控制信息的调制模式为一种时,可以认为当前(即第T次)接收的侧行链路控制信息为最后一次接收。
结合第二方面,在第二方面的某些实现方式中,所述传输参数包括SCI的格式和SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小。
基于上述技术方案,可以先确定发送侧行链路控制信息时所使用的时频资源,以及该侧行链路控制信息的格式,然后对该侧行链路控制信息进行译码。
结合第二方面,在第二方面的某些实现方式中,所述接收SCI之前,所述方法还包括:接收第一序列,根据所述第一序列确定所述SCI的传输资源参数,和/或,根据所述第一序列确定所述SCI的格式,其中,所述第一序列为第一序列集合中的序列;所述对所述SCI进行译码,包括:基于所述SCI的传输资源参数和/或所述SCI的格式,对所述SCI进行译码。
基于上述技术方案,通过序列隐示指示接收端设备所述SCI的传输资源参数和/或所述SCI的格式,进而使得接收端设备接收正确的侧行链路控制信息,并减少盲检次数,节约资源。其中,第一序列集合中可以包括1个或多个序列,每个序列可以对应1种或多种不同大小的时频资源,和/或,每个序列还可以对应1种或多种侧行链路控制信息的格式。
结合第二方面,在第二方面的某些实现方式中,所述SCI的格式与所述SCI占用的时频资源的大小对应。
基于上述技术方案,可以将多种时频资源(即传输资源)划分成多种不同大小的时频资源,时频资源与侧行链路控制信息的格式对应,进而可以在合适的时频资源上传输对应的侧行链路控制信息,从而可以合理地利用资源。
结合第二方面,在第二方面的某些实现方式中,所述接收SCI之前,所述方法还包括:接收指示信息,所述指示信息包括以下至少一项:所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集合中的一个。
可选的,上述对应关系可以是通信网络中预定义的。
基于上述技术方案,序列与传输资源参数和/或侧行链路控制信息的格式具有对应关系,根据该对应关系,接收端设备可以更好地接收信息,提高用户体验。
结合第二方面,在第二方面的某些实现方式中,所述对所述SCI进行译码之前,所述方法还包括:对所接收的所述SCI进行解扰,获得所述扰码标识ID;所述方法还包括:根据所述扰码ID,以及所述扰码ID与所述SCI的格式之间的对应关系,确定所述SCI的格式。
基于上述技术方案,可以通过对侧行链路控制信息中的循环冗余校验CRC进行加扰,并根据扰码ID来确定对应的侧行链路控制信息的格式,进而可以通过对CRC进行盲检测即可达到盲检测的目的,极大降低了接收端设备的复杂度。
第三方面,提供了一种发送波形信息的方法,包括:确定控制信道和数据信道的波形信息;发送指示信息,所述指示信息用于指示:所述控制信道和/或所述数据信道的波形信息,和/或,所述控制信道和所述数据信道的波形是否相同。
基于上述技术方案,控制信道和数据信道的发送波形可以有多种形式,且控制信道和数据信道的发送波形可以相同也可以不同。不同的发送波形可以对应不同格式的侧行链路控制信息。此外,通过指示信息可以指示控制信道和/或数据信道的波形信息,或者,通过指示信息来指示控制信道和数据信道的波形是否相同,继而便于接收端设备确定控制信道和数据信道的波形信息。通过该方法,可以使得接收端设备更好地接收信息,提高通信效率和用户体验。
结合第三方面,在第三方面的某些实现方式中,所述指示信息携带于侧行链路控制信息SCI中,所述指示信息用于指示所述控制信道和所述数据信道的波形是否相同,包括:通过所述SCI中的1个或多个预留比特指示:所述控制信道和所述数据信道的波形是否相同。
基于上述技术方案,可以合理地利用侧行链路控制信息中的预留比特,通过预留比特来指示控制信道和数据信道的波形是否相同,继而可以减少节省信令开销。例如,可以增加1个或多个比特的字段,来指示控制信道和数据信道的波形是否相同。
结合第三方面,在第三方面的某些实现方式中,所述指示信息为第二序列,所述第二序列与所述控制信道和所述数据信道的波形是否相同之间具有对应关系;或,所述第二序 列与所述数据信道的波形信息和/或所述控制信道的波形信息之间具有对应关系。
基于上述技术方案,通过序列(即第二序列)可以指示控制信道和/或数据信道的波形信息,或者,通过序列来指示控制信道和数据信道的波形是否相同。接收端设备能够根据序列与控制信道和/或数据信道的波形信息之间的对应关系,确定控制信道和/或数据信道的波形信息。
第四方面,提供了一种接收波形信息的方法,包括:接收指示信息,所述指示信息用于指示:控制信道和/或数据信道的波形信息,和/或,控制信道和数据信道的波形是否相同;根据所述指示信息确定所述控制信道和/或所述数据信道的波形信息。
基于上述技术方案,控制信道和数据信道的发送波形可以有多种形式,且控制信道和数据信道的发送波形可以相同也可以不同。不同的发送波形可以对应不同格式的侧行链路控制信息。此外,通过指示信息可以指示控制信道和/或数据信道的波形信息,或者,通过指示信息来指示控制信道和数据信道的波形是否相同,继而接收端设备能够根据指示信息确定控制信道和数据信道的波形信息。通过该方法,可以使得接收端设备更好地接收信息,提高通信效率和用户体验。
结合第四方面,在第四方面的某些实现方式中,所述指示信息携带于侧行链路控制信息SCI中,根据所述指示信息确定所述控制信道和/或所述数据信道的波形信息,包括:根据所述SCI中的1个或多个预留比特确定所述控制信道和所述数据信道的波形是否相同,并确定所述控制信道和/或所述数据信道的波形信息。
基于上述技术方案,可以合理地利用侧行链路控制信息中的预留比特,通过预留比特来指示控制信道和数据信道的波形是否相同,继而可以减少节省信令开销。例如,可以增加1个或多个比特的字段,来指示控制信道和数据信道的波形是否相同。接收端设备可以根据1个或多个比特的字段,来确定控制信道和数据信道的波形是否相同,进而确定控制信道和/或数据信道的波形信息。
结合第四方面,在第四方面的某些实现方式中,所述指示信息为第二序列,所述第二序列与所述控制信道和所述数据信道的波形是否相同之间具有对应关系;或,所述第二序列与所述数据信道的波形信息和/或所述控制信道的波形信息之间具有对应关系。
基于上述技术方案,序列(即第二序列)与控制信道和/或数据信道的波形信息之间具有对应关系。进而接收端设备可以根据该对应关系以及接收到的序列,确定控制信道和/或数据信道的波形信息。
第五方面,提供了一种发送侧行链路控制信息的装置,该装置包括包括处理器和收发器;所述处理器用于:确定侧行链路控制信息SCI的传输参数,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;所述收发器用于:基于所述传输参数向接收端设备发送所述SCI。
结合第五方面,在第五方面的某些实现方式中,所述传输参数包括SCI的传输次数,所述处理器具体用于:确定所述SCI的传输次数为T,其中,T为大于1或等于1的整数;所述收发器具体用于:发送T次所述SCI。
结合第五方面,在第五方面的某些实现方式中,所述T大于1,所述收发器发送T次所述SCI中的前T-1次中的每一次之前,所述收发器还用于:发送第一解调参考信号DMRS序列,所述第一DMRS序列用于指示当次发送的SCI为非最后一次发送。
结合第五方面,在第五方面的某些实现方式中,所述收发器发送T次所述SCI中的第T次之前,所述收发器还用于:发送第二DMRS序列,所述第二DMRS序列用于指示所述第T次发送的SCI为最后一次发送。
结合第五方面,在第五方面的某些实现方式中,所述T大于1,所述收发器发送T次所述SCI中的前T-1次中的每一次之前,所述处理器还用于:从第一调制模式集合中选择第一调制模式,从第二调制模式集合中选择第二调制模式,采用所述第一调制模式和所述第二调制模式调制所述SCI,所述第一调制模式和所述第二调制模式指示当次发送的SCI为非最后一次发送。
结合第五方面,在第五方面的某些实现方式中,所述收发器发送T次所述SCI中的第T次之前,所述处理器还用于:从第三调制模式集合中选择第三调制模式,采用所述第三调制模式调制所述SCI,所述第三调制模式指示所述第T次发送的SCI为最后一次发送。
结合第五方面,在第五方面的某些实现方式中,所述传输参数包括SCI的格式和SCI的传输资源参数,所述处理器具体用于:确定所述SCI的格式和所述SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小;所述收发器具体用于:用所述SCI占用的时频资源的大小,并采用所述SCI的格式发送所述SCI。
结合第五方面,在第五方面的某些实现方式中,所述SCI的格式与所述SCI占用的时频资源的大小对应;所述处理器具体用于:根据所述SCI的格式确定所述SCI占用的时频资源的大小。
结合第五方面,在第五方面的某些实现方式中,所述收发器在基于所述传输参数发送所述SCI之前,所述收发器还用于:从第一序列集合中选择第一序列,发送所述第一序列,其中,所述第一序列用于指示所述SCI的传输资源参数,和/或,所述第一序列用于指示所述SCI的格式。
结合第五方面,在第五方面的某些实现方式中,所述收发器在基于所述传输参数发送所述SCI之前,所述收发器还用于:发送指示信息,所述指示信息包括以下至少一项:所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集合中的一个。
结合第五方面,在第五方面的某些实现方式中,所述收发器在基于所述传输参数发送所述SCI之前,所述处理器还用于:采用与所述SCI的格式对应的扰码标识ID,对所述SCI中的循环冗余校验CRC进行加扰处理。
第六方面,提供了一种接收侧行链路控制信息的装置,该装置包括处理器和收发器;所述收发器用于:接收发送端设备发送的侧行链路控制信息SCI,所述SCI是基于所述SCI的传输参数发送的,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI 的传输资源参数;所述处理器用于:对所述SCI进行译码。
结合第六方面,在第六方面的某些实现方式中,所述传输参数包括SCI的传输次数;所述收发器具体用于:接收T次SCI,其中,T为大于1或等于1的整数;所述处理器具体用于:在所述T等于1的情况下,对所述SCI进行译码;在所述T大于1的情况下,对所述T次SCI进行合并译码。
结合第六方面,在第六方面的某些实现方式中,所述T大于1,所述收发器接收T次SCI中的前T-1次中的每一次之前,所述收发器还用于:接收送第一解调参考信号DMRS序列,根据所述第一DMRS序列确定当次接收的SCI为非最后一次接收。
结合第六方面,在第六方面的某些实现方式中,所述收发器接收T次SCI中的第T次之前,所述收发器还用于:接收第二DMRS序列,根据所述第二DMRS序列确定所述第T次接收的SCI为最后一次接收。
结合第六方面,在第六方面的某些实现方式中,所述T大于1,所述收发器接收T次SCI中的前T-1次中的每一次之前,所述处理器还用于:确定当次接收的SCI的调制模式包括第一调制模式和第二调制模式,根据所述第一调制模式和所述第二调制模式确定当次接收的SCI为非最后一次接收,其中,所述第一调制模式为第一调制模式集合中的调制模式,所述第二调制模式为第二调制模式集合中的调制模式。
结合第六方面,在第六方面的某些实现方式中,所述收发器接收T次SCI中的第T次之前,所述处理器还用于:确定所述第T次接收的SCI的调制模式为第三调制模式,根据所述第三调制模式确定所述第T次接收的SCI为最后一次接收,其中,所述第三调制模式为第三调制模式集合中的调制模式。
结合第六方面,在第六方面的某些实现方式中,所述传输参数包括SCI的格式和SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小。
结合第六方面,在第六方面的某些实现方式中,所述收发器接收SCI之前,所述收发器还用于:接收第一序列,根据所述第一序列确定所述SCI的传输资源参数,和/或,根据所述第一序列确定所述SCI的格式,其中,所述第一序列为第一序列集合中的序列;所述处理器具体用于:基于所述SCI的传输资源参数和/或所述SCI的格式,对所述SCI进行译码。
结合第六方面,在第六方面的某些实现方式中,所述SCI的格式与所述SCI占用的时频资源的大小对应。
结合第六方面,在第六方面的某些实现方式中,所述收发器接收SCI之前,所述收发器还用于:接收指示信息,所述指示信息包括以下至少一项:所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集 合中的一个。
结合第六方面,在第六方面的某些实现方式中,所述处理器具体用于:对所述SCI进行解扰,获得扰码标识ID;根据所述扰码ID,以及所述扰码ID与所述SCI的格式之间的对应关系,确定所述SCI的格式。
第七方面,提供了一种发送波形信息的装置,该装置包括处理器和收发器;所述处理器用于:确定控制信道和数据信道的波形信息;所述收发器用于:发送指示信息,所述指示信息用于指示:所述控制信道和/或所述数据信道的波形信息,和/或,所述控制信道和所述数据信道的波形是否相同。
结合第七方面,在第七方面的某些实现方式中,所述指示信息携带于侧行链路控制信息SCI中,所述指示信息用于指示所述控制信道和所述数据信道的波形是否相同,包括:通过所述SCI中的1个或多个预留比特指示:所述控制信道和所述数据信道的波形是否相同。
结合第七方面,在第七方面的某些实现方式中,所述指示信息为第二序列,所述第二序列与所述控制信道和所述数据信道的波形是否相同之间具有对应关系;或,所述第二序列与所述数据信道的波形信息和/或所述控制信道的波形信息之间具有对应关系。
第八方面,提供了一种接收波形信息的装置方法,该装置包括处理器和收发器;所述收发器用于:接收指示信息,所述指示信息用于指示:控制信道和/或数据信道的波形信息,和/或,控制信道和数据信道的波形是否相同;所述处理器用于:根据所述指示信息确定所述控制信道和/或所述数据信道的波形信息。
结合第八方面,在第八方面的某些实现方式中,所述指示信息携带于侧行链路控制信息SCI中,所述处理器具体用于:根据所述SCI中的1个或多个预留比特确定所述控制信道和所述数据信道的波形是否相同,并确定所述控制信道和/或所述数据信道的波形信息。
结合第八方面,在第八方面的某些实现方式中,所述指示信息为第二序列,所述第二序列与所述控制信道和所述数据信道的波形是否相同之间具有对应关系;或,所述第二序列与所述数据信道的波形信息和/或所述控制信道的波形信息之间具有对应关系。
第九方面,提供了一种通信装置,包括用于执行第一方面、第三方面或第一方面、第三方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面或第一方面、第三方面中任一种可能实现方式中的方法。可选的,该通信装置还包括存储器。可选的,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
或者,在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选的,所述收发器可以为收发电路。可选的,所述输入/输出接口可以为输入/输出电路。
第十一方面,提供了一种通信装置,包括用于执行第二方面、第四方面或第二方面、第四方面中任一种可能实现方式中的方法的各个模块或单元。
第十二方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面或第二方面、第四方面中任一种可能实现方式中的方法。可选的,该通信装置还包括存储器。可选的,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选的,所述收发器可以为收发电路。可选的,所述输入/输出接口可以为输入/输出电路。
第十三方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十四方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
可选的,所述处理器为一个或多个,所述存储器为一个或多个。
可选的,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体的,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十四方面中的处理装置可以是一个芯片。该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软 件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十六方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十七方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信系统的一示意图;
图2是适用于本申请实施例的通信系统的另一示意图;
图3是LTE V2X频域资源的示意图;
图4是根据本申请实施例提供的发送和接收侧行链路控制信息的方法的示意性交互图;
图5是SL控制信道和数据信道的一种资源映射方式的一示意图;
图6是适用于本申请实施例的FDM系统帧结构的一示意图;
图7是适用于本申请实施例的TDM系统帧结构的一示意图;
图8是适用于本申请实施例的FDM系统帧结构的另一示意图;
图9是适用于本申请实施例的TDM系统帧结构的另一示意图;
图10是根据本申请另一实施例提供的发送和接收侧行链路控制信息的方法的示意性交互图;
图11是适用于本申请实施例的CRC加扰的示意图;
图12是根据本申请又一实施例提供的发送和接收波形信息的方法的示意性交互图;
图13是本申请实施例提供的通信装置的示意性框图;
图14是本申请实施例提供的终端设备的结构示意图;
图15是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:未来的第五代(5th generation,5G)系统或新无线(new radio,NR)、全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统等。本 申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆网系统中的通信。其中,车辆网系统中的通信方式统称为车联万物(vehicle-to-everything,V2X),X代表任何事物。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。
如1图所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
一个网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选的,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将该小区记为小区#1。网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的服务小区,也就是网络设备的无线网络的覆盖范围内的区域。
应理解,图1中仅为便于理解,示意性地示出了网络设备111和终端设备121至终端设备123,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多数量的网络设备,也可以包括更多或更少数量的终端设备,同一个网络设备可以与不同的终端设备通信,也可以是不同的网络设备与不同的终端设备通信,本申请对此不做限定。
图2是适用于本申请实施例的无线通信系统200的另一示意图。如2图所示,本申请实施例的技术方案还可以应用于D2D通信。
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此D2D技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少终端设备的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。D2D技术能够允许多个支持D2D功能的终端设备之间在有网络基础设施或无网络基础设施的情况下都能发送信号和接收信号。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出。例如,在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的LTE技术的网络下,V2X的车联网技术被提出。其中,V2X通信是指车辆与外界的任何事物的通信,包括V2V的通信、V2P的通信、V2I的通信、V2N的通信。
如图2所示,该无线通信系统200包括多个终端设备,例如图2中的终端设备124至终端设备126。终端设备124至终端设备126之间可以直接进行通信。例如,终端设备124和终端设备125可以单独或同时发送数据给终端设备126。该无线通信设备还包括一个或多个网络设备,例如图2中的网络设备112。终端设备124至终端设备126都可以与网络设备112进行通信,例如图2中,网络设备112与终端设备126进行通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:基站(base station,BS)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载的通信设备等等。本申请的实施例对应用场景不做限定。
应理解,图2中仅为便于理解,示意性地示出了终端设备124至终端设备126、网络设备112,但这不应对本申请构成任何限定,该无线通信系统中还可以更多数量的网络设备,也可以包括更多或更少数量的终端设备,本申请对此不做限定。
以V2X通信为例。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。LTE V2X通信可以支持有网络覆盖和无网络覆盖的通信场景,其资源分配方式可以采取网络接入设备调度模式,如演进通用陆地无线接入网节点B(evolved UMTS terrestrial radio access network evolved Node B,E-UTRAN Node B)调度模式和终端设备自选模式。基于V2X技术,车辆用户(vehicle user equipment,V-UE)能将自身的一些信息, 例如位置、速度、意图(转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的V-UE发送。同样地,V-UE也会实时接收周围用户的信息。3GPP标准组织在2017年初正式发布第一代LTE V2X标准,LTE版本号Release 14。
LTE V2X网络中的发送端可以分为基于基站调度的通信过程和自主选择模式。当V2X发送端处于基于基站调度模式时,首先发送端向基站侧进行资源请求,基站收到资源请求后通过物理下行控制信道(physical downlink control channel,PDCCH)向V2X发送端发送资源调度信息。V2X发送端接收到资源调度信息后在对应位置发送控制信息及数据信息。当V2X发送端处于自主选择模式时,发送端可以基于历史感知,自主选择物理资源。在这两种模式下,接收端都可以根据子带分配规则,在特定位置盲检控制信息,并获得对应的侧行链路物理层控制信息(physical sidelink share channel,PSSCH)物理层编码信息,从而获得最终的共享信息。
然而对于未来的完全智能驾驶、自动驾驶等应用场景而言,现阶段的LTE V2X还不能有效的支持。随着5G NR技术在3GPP标准组织中的开发,5G NR V2X也将进一步发展,比如可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验,以满足更加广泛的应用场景需求。因此NR-V2X提出要支撑99.99%甚至99.999%的可靠性传输。同时为了支撑不同的业务需求,NR-V2X也需要支撑不同格式不同长度的控制信息传输。现有的LTE-V2X已不能满足上述性能需求。
有鉴于此,本申请提供一种发送和接收侧行链路控制信息的方法,能够保证SCI的传输可靠性,保证接收端设备正确接收SCI,进而提高通信效率。
为便于理解本申请,在介绍本申请实施例之前,先对本申请中涉及到的几个概念做简单介绍。
1、资源粒子(resource element,RE):或者称,资源元素。在时域上占用一个符号,在频域上占用一个子载波。
2、资源块(resource block,RB):一个RB在频域上占用
Figure PCTCN2019104148-appb-000001
个连续的子载波,且在时域上占用
Figure PCTCN2019104148-appb-000002
个连续的符号。其中,
Figure PCTCN2019104148-appb-000003
均为正整数。例如,在LTE协议中,
Figure PCTCN2019104148-appb-000004
等于12,
Figure PCTCN2019104148-appb-000005
等于7;在NR协议中,
Figure PCTCN2019104148-appb-000006
等于12,
Figure PCTCN2019104148-appb-000007
等于14。需要理解,在通信协议的演变过程中
Figure PCTCN2019104148-appb-000008
可能有不同的取值,本申请对此不作限定。在本申请实施例中,RB可以是资源单元的一例。
3、符号(symbol):时域资源的最小单位。本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。符号可以包括上行符号和下行符号,作为示例而非限定,上行符号例如可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号;下行符号例如可以称为OFDM符号。
4、资源单元:可用于作为资源在时频域占用的资源的计量单位。在本申请实施例中,资源单元例如可以包括RB、一个或多个RB构成的资源块组(RB group,RBG)、一个或多个RB对(RB pair)、半个RB、1/4个RB、一个或多个RE构成的RE组等。在NR协议中,一个RB是由频域上的12个连续的子载波和时域上的14个连续的符号组成。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。
5、时隙:在NR中,时隙为时间的最小调度单元。一种时隙的格式为包含14个OFDM 符号,每个OFDM符号的循环前缀(cyclic prefix,CP)为常规CP(normal cyclic prefix)。一种时隙的格式为包含12个OFDM符号,每个OFDM符号的CP为扩展CP(extended cyclic prefix)。一种时隙的格式为包含7个OFDM符号,每个OFDM符号的CP为常规CP。一个时隙中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分预留不进行传输。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,时隙格式不限于以上示例。
6、数据或数据信息:在本申请实施例中,“数据”或“数据信息”可以理解为信息块经过编码后生成的比特,或者,“数据”或“数据信息”还可以理解为信息块经过编码调制后生成的调制符号。数据或数据信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单位(或者,也可以称为时间单位),在频域上,时频资源可以包括频域单位或资源单元。
其中,一个时域单位(也可称为时间单元)可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
7、传输参数:或者也可以称为传输方式或传输方案,可以为LTE协议或NR协议中定义的transmission scheme。传输参数可用于表示与传输信息或数据所使用的技术方案相关的参数。具体的,在本申请实施例中,传输参数可以用于表示与传输侧行链路控制信息(sidelink control information,SCI)所使用的相关的参数。应理解,传输参数仅为一个命名,本申请并不排除在未来的协议中通过其他的命名来替代传输参数的可能。
8、侧行链路控制信SCI:也可以称为边链路控制信息。其中,边链路或侧行链路(sidelink,SL)指终端设备之间的传输链路。在SL中,终端设备之间的数据传输不经过网络设备进行中转。如图2所示的系统200。
9、子信道(sub-channel):在LTE V2X中,频域上,定义了sub-channel的概念。图3示出了LTE V2X频域资源的示意图。一个sub-channel包含若干个在频域上连续的RB和若干个在时域上连续的符号,sub-channel的大小可以由网络设备配置或预定义。任何一个sub-channel都可以用来进行V2X数据信息的传输。在一个sub-channel内,从最低的RB序号(lowest index of the RB)开始。一共两个连续的RB的为侧行链路物理层控制信息(physical sidelink control channel,PSCCH)信道,用于传输V2X控制信息,即侧行链路分配信息(sidelink assignment,SA)。剩余的连续的RB为PSSCH信道,用于传输数据信息(data)。时域上,以一个子帧(subframe)为基本单位。进一步地,LTE V2X中SA和data在频域上可以采用频分复用(frequency division multiplexing,FDM)的形式,在时域上共同占满整个子帧。
从整个V2X系统的角度而言,整个V2X的传输资源可以划分为若干个sub-channel。对于发送端和接收端而言,所发送和接收的控制信息(即,SCI)和数据资源也是相对固定的。接收端在特定的位置接收SA,根据SA中所携带的控制信息再去进一步解码data。
10、解调参考信号:可用于解调数据或信令的参考信号。根据传输方向的不同,可分为上行解调参考信号和下行解调参考信号。解调参考信号可以为LTE协议或NR协议中的解调参考信号(demodulation reference signal,DMRS),或者也可以为未来协议中定义的其他用于实现相同或相似功能的参考信号。本申请对此不做限定。
在LTE或NR协议中,DMRS可以承载在物理共享信道中与数据信号一起发送,以用于对物理共享信道中承载的数据信号进行解调。如,在物理下行共享信道(physical downlink share channel,PDSCH)中与下行数据一起发送,或者,在物理上行共享信道(physical uplink share channel,PUSCH)中与上行数据一起发送。DMRS还可以承载在物理控制信道中与控制信令一起发送,以用于对物理控制信道汇总承载的控制信令进行解调。如,在PDCCH中与下行控制信令一起发送,或者,在物理上行控制信道(physical uplink control channel,PUCCH)中与上行控制信令一起发送。
在本申请实施例中,解调参考信号可包括通过PDCCH或PDSCH发送的下行解调参考信号,也可包括通过PUCCH或PUSCH发送的上行解调参考信号。下文中为方便说明,将解调参考信号简称为DMRS。
在LTE和NR协议中,DMRS可采用伪随机(pseudo-noise,PN)序列,因此,DMRS也可以称为DMRS序列。在本申请实施例中,“DMRS”和“DMRS序列”交替使用,但本领域的技术人员可以理解,在不强调其区别时,其所要表达的含义是一致的。
DMRS序列可以由承载于多个RE上的调制符号构成,每个调制符号例如可以是一个正交相移键控(Quadrature Phase Shift Keying,QPSK)符号。其中,第n个子载波上承载的DMRS序列的调制符号r(n)可以由下文所示的公式一获得:
Figure PCTCN2019104148-appb-000009
其中,r(n)所呈现的形式是伪随机序列通过调制得到的复数形式,例如可表示一个QPSK符号。n表示组分载波(component carrier,CC)中DMRS占用的子载波中的第n个子载波。
Figure PCTCN2019104148-appb-000010
d表示一个RB内、一个OFDM符号上的DMRS的密度(density),
Figure PCTCN2019104148-appb-000011
可表示一个CC中包含的RB数。c(i)表示由初始值c init定义的伪随机序列。
伪随机序列的初始值c init可以由下文所示的公式二获得:
Figure PCTCN2019104148-appb-000012
即伪随机序列的初始值为
Figure PCTCN2019104148-appb-000013
l、SA flag的函数。其中
Figure PCTCN2019104148-appb-000014
表示子载波间隔为μ的系统子帧号,l为当前子帧内的符号索引。
Figure PCTCN2019104148-appb-000015
由高层配置,取值可能为用户标识(identity,ID)、小区ID、组ID或者固定值。SA flag为本申请定义的信息是否重传标识。例如,若当前(或者说当次)发送的SCI为最后一次发送,则SA flag=0;若当前(或者说当次)发送的SCI不是最后一次发送,则SA flag=1。
伪随机序列的初始值c init的一种可能形式可以进一步由下文所示的公式三获得:
Figure PCTCN2019104148-appb-000016
在NR中,SA flag可通过下行控制信息(downlink control information,DCI)指示,
Figure PCTCN2019104148-appb-000017
可通过高层参数指示。例如,当终端设备接收到格式(format)1_1的DCI时,该DCI中 可包括用于指示该SA flag的取值的指示域。在NR中,该SA flag的取值可以为0或1,且可用于下行传输;DMRS下行配置(DMRS-DownlinkConfig)信息元素(information element,IE)中的高层参数扰码标识0(scramblingID0)和扰码标识1(scramblingID1)可配置SA flag的取值分别为0或1时
Figure PCTCN2019104148-appb-000018
的值。在NR中,
Figure PCTCN2019104148-appb-000019
SA flag
Figure PCTCN2019104148-appb-000020
在大多数情况下是终端级别(UE specific)的,给不同的终端设备发送的DMRS使用的SA flag
Figure PCTCN2019104148-appb-000021
可能是相同的,也可能是不同的。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,在下文示出的实施例中,名词“控制信息”、“SCI”经常交替使用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。即,在本申请中,可以将下文实施例中的“控制信息”全替换为“SCI”。或,在本申请中,可以将下文实施例中的“SCI”全替换为“控制信息”。
第二,在下文示出的实施例中,“DMRS”和“DMRS序列”可以交替使用,在不强调其区别时,其所要表达的含义是一致的。“传输资源参数”和“传输资源”可以交替使用,在不强调其区别时,其所要表达的含义是一致的。“当前发送”和“当次发送”可以交替使用,在不强调其区别时,其所要表达的含义是一致的。
第三,在下文示出的实施例中,名词“物理资源”和“时频资源”经常交替使用,但本领域的技术人员可以理解其含义。名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
第四,在下文示出的实施例中,多次提及“最后一次发送”,应理解,这种描述是相对于一次传输时机而言,即“最后一次发送”指的是重复发送中的最后一次,并没有其它限定。
第五,在下文示出的实施例中,第一、第二、第三仅为便于区分不同的对象,而不应对本申请构成任何限定。例如,区分不同的映射关系、不同的DMRS、不同的指示信息等。
第六,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第七,在下文示出的实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第八,在下文示出的实施例中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、5G或NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第九,在下文示出的实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三 种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
第十,在下文示出的实施例中,“至少一个”可表示“一个或多个”。例如,通方式A、方式B、方式C中的至少一个方式实现,表示:可以通过方式A实现、或通过方式B实现、或通过方式C实现;也可以表示为:可以通过方式A和方式B实现、或通过方式B和方式C实现、或通过方式A和方式C实现;也可以表示为:可以通过方式A和方式B和方式C实现。与此类似地,“至少两个”可表示“两个或更多个”。下面将结合附图详细说明本申请提供的技术方案。
下面将结合附图详细说明本申请实施例。
应理解,本申请提供的发送和接收侧行链路控制信息的方法可适用于无线通信系统。本申请提供的发送和接收侧行链路控制信息的方法可适用于至少一个网络设备和至少一个终端设备之间的通信,例如,图1中所示的系统100或图2中的系统200。或者,本申请提供的发送和接收侧行链路控制信息的方法可适用于至少两个终端设备之间的通信。例如,图2中所示的系统200。
以下,不失一般性,以发送端设备与接收端设备之间的交互过程为例详细说明本申请实施例。该发送端设备可以为处于无线通信系统中与一个或多个终端设备具有无线连接关系的任意终端设备或网络设备。例如,该发送端设备可以为图1所示的系统100中的网络设备111或者图2所示的系统200中的112,也可以为图2所示的系统200中的终端设备126。可以理解的是,处于如无线通信系统100或200中的任意一个终端设备均可以基于相同的技术方案实现无线通信。本申请对此不做限定。
图4是从设备交互的角度示出的本申请实施例提供的发送和接收侧行链路控制信息的方法200的示意性交互图。如图所示,方法200可以包括步骤210至步骤230,下面具体描述各个步骤。
在步骤210中,确定侧行链路控制信息SCI的传输参数,该传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数。
其中,SCI的传输次数指发送SCI的次数。基于传输次数发送SCI,包括发送T次SCI,其中T为大于1或等于1的整数。发送端设备确定发送该SCI的次数(即T)的方式至少包括两种,一种可能的方式,发送端设备默认发送SCI的次数。例如,对于可靠性要求极高的业务,发送端设备默认会发送多次。或者,一种可能的方式,发送端设备根据信道质量,确认发送SCI的次数。例如,在无线信道质量较差时,可以确定发送多次;在无线信道质量较好时,可以确定发送1次。
其中,SCI的传输资源参数指的是发送SCI所占用的时频资源的大小。为便于理解,首先图5示出了在SL系统中,控制信道和数据信道的资源映射的一种方式。如图所示,一次数据传输包含一个控制信道,一个数据传输信道。控制信道占用频域起始位置的连续两个RB,时域持续时间为一个传输时隙。数据信道紧邻控制控制信道,可以以FDM的方式复用剩余子信道的物理资源,具体使用的频域资源带宽在控制信息中指示。一个传输 时隙的最后一个符号空闲。
一般地,V2X中控制信道占用的物理资源(或时频资源)大小是固定的。一次数据传输需要伴随一次控制信息(即,SCI的一例)传输。基于可靠性考虑,控制信道有传输数据上限。当控制信道需要支持多种格式的SCI,特别是有些格式的SCI的长度大于现有格式的长度时,当前的控制信道物理资源就不能满足传输需求。特别是考虑到NR-V2X的高可靠性需求,控制信道也需要性能增强。
因此,在本申请实施例中,发送端设备确定SCI的传输资源参数和/或SCI格式,并基于确定的SCI的传输资源参数和/或SCI格式来发送SCI。
在步骤220中,发送端设备基于该SCI的传输参数,向接收端设备发送该SCI。相应的,接收端设备接收该SCI。
一种可能的实现方式,传输参数包括传输次数。发送端设备确定SCI的传输次数为T,则发送端设备向接收端设备发送T次SCI。另一种可能的实现方式,传输参数包括SCI格式。发送端设备确定待发送的SCI的格式后,发送端设备可以选择合适大小的时频资源来发送该SCI。又一种可能的实现方式,传输参数包括传输资源参数。发送端设备可以先确定待发送的SCI所占用的时频资源的大小,并使用该时频资源来发送该SCI。
在步骤230中,接收端设备对该SCI进行译码。
具体的,以传输参数包括传输次数T为例。接收端设备可以基于传输次数对SCI进行译码。具体的,在T等于1的情况下,对SCI进行直接译码;在T大于1的情况下,对T次SCI进行合并译码。接收端设备确定传输次数的方式有很多,一种可能的方式是,发送端设备可以向接收端设备发送一个指示信息,该指示信息用来指示发送SCI的次数,并且可以进一步地通知接收端设备每次发送SCI所占用的时频资源。或者,一种可能的方式是,发送端设备可以隐示指示当次(或当前)发送的SCI是否为最后一次发送,从而可以进一步节省信令开销。此外,T等于1或T大于1的情况下,接收端设备如何对SCI进行译码,在下文实施例中具体介绍。需要理解的是,当次发送的SCI或当前发送的SCI指的是本次发送时机中发送的SCI。
通过本申请,发送端设备可以根据确定待发送的SCI的传输参数,例如,确定SCI的传输次数、确定SCI的格式、SCI的传输资源参数,并基于传输参数发送该SCI,以便发送端设备和接收端设备可以灵活通信,提高通信效率。例如,发送端设备可以确定SCI的传输次数,即确定发送T次SCI。如当信道质量较差时,发送端设备可以发送多次该SCI,以便接收端设备可以正确接收该SCI,进而保证传输可靠性。又如,发送端设备还可以确定SCI的格式。如发送端设备可以确定待发送的SCI的格式,基于该SCI的格式来发送该SCI。通过考虑发送的SCI的传输参数,不仅可以灵活地进行通信,而且可以保证接收端设备正确接收SCI。
下面分别从传输次数、SCI的格式、传输资源参数这三个方面具体描述。
方面一
传输次数
可选的,传输参数包括SCI的传输次数,基于SCI的传输参数发送SCI,包括:发送T次SCI,T为大于1或等于1的整数。
具体的,V2X网络中的通信类型一般分为单播通信、多播通信和广播通信。特别是针 对广播通信,一个发送端对应多个接收端,且接收用户数量不确定的场景下,为保证传输可靠性,可以增强PSCCH传输的性能。本申请实施例针对此,提出了灵活支持多次发送SCI的方法,即在一次数据传输中可以根据业务类型、信道质量等因素,发送一次或多次SCI,进而增强控制信道。
在本申请的一些实施例中,传输参数包括传输次数,传输次数指重复发送SCI的次数。
在本申请实施例中,基于传输次数发送SCI,可以指以下任意一项:发送1次SCI,发送多次SCI。
发送端设备确定SCI的传输次数为T,一种可能的实现方式,发送端设备自身确定SCI的传输次数,例如,发送端设备根据业务类型、信道质量等因素确定发送该SCI的次数。另一种可能的实现方式,发送端设备可以根据接收端设备的指示确定SCI的传输次数。
具体的,其中,当发送端设备发送多次SCI时,关于发送端设备每次发送的内容。一种可能的方式,每次发送的内容可以是全都相同。例如,针对待发送的信息(即,SCI的一例),为了保证该信息的传输可靠性,发送端设备向接收端设备重复发送多次,以便接收端设备接收。或者,一种可能的方式,每次发送的内容也可以是部分相同。例如,针对待发送的信息中比较重要的内容,发送端设备可以向接收端设备重复发送多次,以便接收端设备接收。或者,一种可能的方式,每次发送的内容也可以是全都不同。例如,针对待发送的信息,可以每次发送一部分内容,分多次将该信息的内容全都发送给接收端设备。对此,本申请实施例不作限定。
一种可能的实现方式中,在基于传输次数发送1次或多次SCI之前,发送端设备可以发送一个指示信息,该指示信息用来指示发送SCI的次数,即传输次数。接收端设备根据该指示信息确定SCI的传输次数。
可选的,发送端设备在每次发送之前指示当次发送的SCI是否为最后一次发送。
具体的,在本申请实施例中,至少可以通过以下两种方式来指示当次发送的SCI是否为最后一次发送。一种方式是,基于DMRS序列隐示指示当次发送的SCI是否为最后一次发送。一种方式是,基于SCI的调制模式隐示指示当次发送的SCI是否为最后一次发送。下面分别对这两种方式具体描述。
方式1
基于DMRS序列隐示指示当次发送的SCI是否为最后一次发送。
可选的,在最后一次发送SCI之前的每次发送SCI之前,从序列集合#1中选择一个序列#1。发送该序列#1,该序列#1用于指示该次发送SCI非最后一次发送。进一步的,序列集合#1中的任一序列用于指示该次发送的SCI为非最后一次发送。序列集合#1中包括至少一个序列。相应的,在最后一次发送SCI之前,从序列集合#2中选择一个序列#2。发送该序列#2,该序列#2指示该次发送SCI为最后一次发送。进一步的,序列集合#2中的任一序列用于指示该次发送的SCI为非最后一次发送。序列集合#2中包括至少一个序列。相应的,接收端设备根据接收到的序列#1确定该次接收的SCI为非最后一次发送,或接收端设备根据接收到的序列#2确定该次接收的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定SCI的传输次数T。
应理解,上文所述的序列#1或序列#2可以和SCI属于一次传输,即序列#1或序列#2可以和SCI占用一次传输的控制信道和/或数据信道的资源一起发送给接收端设备。
还应理解,在本申请实施例中,最后一次发送指的是重复发送的最后一次。
可选的,序列#1为第一DMRS序列。序列#2为第二DMRS序列。具体的,发送端设备非最后一次发送SCI时,发送第一DMRS序列,该第一DMRS序列用于指示该次发送的SCI为非最后一次发送。或者,发送端设备最后一次发送SCI时,发送第二DMRS序列,该第二DMRS序列用于指示该次发送的SCI为最后一次发送。相应的,接收端设备根据接收到的第一DMRS序列确定该次接收的SCI为非最后一次发送,或接收端设备根据接收到的第二DMRS序列确定该次接收的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定SCI的传输次数T。
本申请通过使用不同的PSCCH DMRS序列隐式的指示当次的SCI是否为最后一次发送。具体的,发送端设备可以根据该次的SCI是否为最后一次发送来生成DMRS序列。如前所述,伪随机序列的初始值c init可以通过公式二的函数获得,或者,更具体的,可以通过公式三获得。其中,SA flag为重传标识。例如,若该次SCI为最后一次发送,则SA flag=0,继而得到一个DMRS序列,为简洁,将该DMRS序列记为S0(即,第二DMRS序列的一例)。若该次SCI为非最后一次发送,则SA flag=1,继而得到一个DMRS序列,为简洁,将该DMRS序列记为S1(即,第一DMRS序列的一例)。因此,基于DMRS序列隐示指示当次发送的SCI是否为最后一次发送,可以定义一次SCI发送有两种可能的DMRS序列,分别为S0和S1。其中S0可以用来表示本次发送为最后一次SCI发送,S1可以用来表示本次发送的SCI为非最后一次发送。
不同序列或不同序列集合与当次发送是否为最后一次发送之间的对应关系,可以是预定义的,或者是发送端设备预先指示的。示例的,发送端设备向接收端设备发送指示信息,该指示信息包括第一映射关系,第一映射关系包括:序列集合#1和序列集合#2与当次发送的SCI是否为最后一次发送的对应关系;或,不同DMRS序列与当次发送的SCI是否为最后一次发送的对应关系。例如,第一映射关系为,序列集合#1中的任一序列对应当次发送的SCI为非最后一次发送,序列集合#2中的任一序列对应当次发送的SCI为最后一次发送。又例如,S0对应本次发送的SCI为最后一次发送,S1对应本次发送的SCI为非最后一次发送。
一种可能的实施方式中,第一映射关系为不同重传标识与当次发送的SCI是否为最后一次发送的对应关系。例如,SA flag=0对应本次发送为最后一次SCI发送,SA flag=1对应本次发送为非最后一次SCI发送,即SA flag=1表示本次发送后续还有一次或多次SCI发送。
其中,对应关系可以是全局配置的,也可以是小区级别配置的,还可以是用户设备(user equipment,UE)组(group)级别配置的,还可以是UE级别配置的,本申请对此不作限定。另外,该对应关系可以是预先定义的,如协议定义,也可以是网络设备配置的。本申请对此不作限定。
发送端设备可以预先向接收端设备发送该第一映射关系。或者,可以预先设置第一映射关系,接收端设备可以直接获取预存的第一映射关系。或者,预先保存该第一映射关系,发送端设备与接收端设备均已知该第一映射关系。
接收端设备对SCI进行译码。具体的,在T等于1的情况下,接收端设备对SCI进行直接译码。在T大于1的情况下,接收端设备对T次SCI进行合并译码。可选的,在T大于1的情况下,接收端设备可以每接收一次SCI,对该SCI进行一次译码,然后接收端设备在接收最后一次发送的SCI并译码之后,将T次译码的信息进行合并,或者选择T 次译码中选择一个较好的译码结果。或者,接收端设备可以在接收最后一次发送的SCI之后,对T次接收的SCI进行合并后译码。关于如何合并译码,本申请实施例不作具体限定。
下面为便于理解,以具体的示例描述两种场景中本申请实施例的过程。在以下示例中,发送端设备重复发送两次SCI,第一映射关系包括S0对应本次发送的SCI为最后一次发送,S1对应本次发送的SCI为非最后一次发送。
场景1
PSCCH和PSSCH以频分方式复用。
具体的,如图5、图6所示,控制信道和数据信道以频分方式复用。那么PSCCH的首次传输从该时频资源的最低RB开始,占用固定的RB资源数,时域上占用整个时隙。SCI承载在PSCCH上。在第一次发送SCI的情况下,发送端设备将S1作为该次发送的导频。接收端设备对该次发送的导频进行盲检,根据该次检到的导频为S1来确定该次接收到的SCI为非最后一次发送。在第二次发送该SCI的情况下,即当前或当次发送为最后一次发送,发送端设备将S0作为该次发送的导频。接收端设备继续对导频进行盲检,根据该次检到的导频为S0来确定该次接收到的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定发送端设备重复发送SCI的传输次数T,在该示例中接收端设备确定传输次数为2。
可选的,在这种帧结构下,在S1作为该次发送的导频时,重复发送的SCI可以以频分复用的方式紧邻前次SCI,增序使用频域资源,如图6所示。从而便于接收端设备快速、正确地接收信息,降低接收端设备的接收复杂度。或者,发送端设备可以向接收端设备发送指示信息,指示承载第二次发送的SCI的PSCCH的时频资源位置。又或者,发送端设备和接收端设备也可以预先默认承载第二次发送的SCI的PSCCH的时频资源位置。
接收端设备对SCI进行译码。具体的,在T等于1的情况下,接收端设备对SCI进行直接译码。在T大于1的情况下,接收端设备对T次SCI进行合并译码。根据前文所述,接收端设备在接收到最后一次发送的SCI之后,确定发送端设备发送了2次SCI,则接收端设备对该2次SCI进行合并译码。具体的,接收端设备可以每接收一次SCI,对该SCI进行一次译码,将两次译码的信息进行合并,或者,在两次译码结果中选择较好的一个译码结果。或者接收端设备可以在接收到最后一次SCI之后,将2次SCI合并后译码。关于如何合并译码,本申请实施例不作具体限定。
场景2
PSCCH和PSSCH以时分方式复用。
具体的,如图7所示,控制信道和数据信道以时分方式复用。PSCCH首次发送映射在所占用时频资源的开始一部分符号上,频域上占用整个带宽。SCI承载在PSCCH上。在第一次发送SCI的情况下,发送端设备将S1作为该次发送的导频。接收端设备对该次发送的导频进行盲检,根据该次检到的导频为S1来确定该次接收到的SCI为非最后一次发送。在第二次发送该SCI的情况下,即当次发送为最后一次发送,发送端设备将S0作为该次发送的导频。接收端设备继续对导频进行盲检,根据该次检到的导频为S0来确定该次接收到的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定发送端设备重复发送SCI的传输次数T,在该示例中接收端设备确定传输次数为2。
可选的,在这种帧结构下,在S1作为该次发送的导频时,重复发送的SCI可以以时分复用的方式紧邻前次SCI,增序使用时域资源,如图7所示。从而便于接收端设备快速、正确地接收信息,降低接收端设备的接收复杂度。或者,发送端设备可以向接收端设备发送指示信息,指示承载第二次发送的SCI的PSCCH的时频资源位置。又或者,发送端设备和接收端设备也可以预先默认承载第二次发送的SCI的PSCCH的时频资源位置。
接收端设备对SCI进行译码。具体的,在T等于1的情况下,接收端设备对SCI进行直接译码。在T大于1的情况下,接收端设备对T次SCI进行合并译码。根据前文所述,接收端设备在接收到最后一次发送的SCI之后,确定发送端设备发送了2次SCI,则接收端设备对该2次SCI进行合并译码。具体的,接收端设备可以每接收一次SCI,对该SCI进行一次译码,将两次译码的信息进行合并,或者,在两次译码结果中选择较好的一个译码结果。或者接收端设备可以在接收到最后一次SCI之后,将2次SCI合并后译码。关于如何合并译码,本申请实施例不作具体限定。
需要说明的是,上述两种场景仅是示例性说明,本申请实施例并未限定于此。
还需要说明的是,上述以S0表示本次发送的SCI为最后一次发送,S1表示本次发送的SCI为非最后一次发送为例进行说明。本申请实施例并未限定于此。例如,也可以是,S1表示本次发送的SCI为非最后一次发送,S0表示本次发送的SCI为最后一次发送。
通过图6或图7可以看出,基于方式1,发送端设备可以重复发送多次SCI,以便接收端设备可以正确接收该SCI,进而保证传输可靠性。接收端设备也可以根据接收到的DMRS序列,确定当次接收到的SCI是否为最后一次接收。接收端设备在接收到最后一次发送的SCI后可以确定发送端设备重复发送SCI的传输次数,并可以基于传输次数对SCI进行译码。
方式2
通过SCI的调制模式指示SCI是否为最后一次发送。
可选的,利用不同的调制模式指示当次发送SCI为最后一次发送或非最后一次发送。
本申请通过SCI的调制模式隐示指示当次发送的SCI是否为最后一次发送。
可选的,在最后一次发送SCI之前的每次发送SCI之前,从第一调制模式集合中选择第一调制模式,从第二调制模式集合中选择第二调制模式,并采用第一调制模式和第二调制模式调制SCI,第一调制模式和第二调制模式指示当次发送SCI为非最后一次发送,其中,i大于1或等于1,且小于T。进一步的,第一调制模式集合中的任一调制模式和第二调制模式集合中的任一调制模式用于指示该次发送的SCI为非最后一次发送。第一调制模式集合中包括至少一种调制模式,第二调制模式集合中包括至少一种调制模式。相应的,在最后一次发送SCI之前,从第三调制模式集合选择第三调制模式调制SCI,第三调制模式指示该次发送SCI为最后一次发送。进一步的,第三调制模式集合中的任一调制模式用于指示该次发送的SCI为非最后一次发送。第三调制模式集合中包括至少一种调制模式。相应的,接收端设备根据接收的SCI的调制模式包括第一调制模式和第二调制模式,确定该次接收的SCI为非最后一次发送;或接收端设备根据接收到的接收的SCI的调制模式为第三调制模式,确定该次接收的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定SCI的传输次数T。
具体的,若当前或当次SCI为最后一次发送,则从第三调制模式集合中选择调制模式 来调制该SCI。可选的,第三调制模式集合中包括一种调制模式,因此承载该SCI的所有RE采用的调制模式全都相同。若当前或当次SCI为非最后一次发送,则从第一调制模式集合和第二调制模式集合中分别选择调制模式来调制该SCI。第一调制模式集合中至少包括一种调制模式,第二调制模式集合中至少包括一种调制模式,且第一调制模式集合和第二调制模式集合的至少一种调制模式不同。因此,承载该SCI的所有RE采用的调制模式不全都相同。
其中,第一调制模式集合、第二调制模式集合、第三调制模式集合中的调制模式,可以是协议预先规定的,或者,也可以是发送端设备根据历史数据保存的,或者,也可以是发送端设备实时确定的,对此,本申请实施例不作限定。
第一调制模式集合、第二调制模式集合、第三调制模式集合中的具体调制模式不对本申请实施例的保护范围造成限定。例如第三调制模式集合中的调制模式可以与第一调制模式集合或第二调制模式集合中的一种调制模式相同。又如,第三调制模式集合中的调制模式也可以与第一调制模式集合或第二调制模式集合中的调制模式均不同。具体的,例如,第三调制模式集合中的调制模式为QPSK,第一调制模式集合中的调制模式为π/4-QPSK,第二调制模式集合中的调制模式为16阶正交幅度调制(quadrature amplitude modulation,QAM)。又如,第三调制模式集合中的调制模式为QPSK,第一调制模式集合中的调制模式为π/4-QPSK,第二调制模式集合中的调制模式为QPSK。又如,第三调制模式集合中的调制模式为QPSK,第一调制模式集合中的调制模式包括π/4-QPSK和QPSK,第二调制模式集合中的调制模式为16阶QAM。
不同的调制模式集合或不同的调制模式与当前或当次发送是否为最后一次发送之间的对应关系,可以是预定义的,或者是发送端设备预先指示的。示例的,发送端设备向接收端设备发送指示信息,该指示信息包括第二映射关系,第二映射关系包括:不同调制模式集合与当前或当次发送的SCI是否为最后一次发送的对应关系;或,不同调制模式与当前或当次发送的SCI是否为最后一次发送的对应关系。例如,第一映射关系为,第一调制模式集合中任一调制模式和第二调制模式集合中任一调制模式对应当前或当次发送的SCI为非最后一次发送,第三调制模式集合中任一调制模式对应当前或当次发送的SCI为非最后一次发送。又例如,第一调制模式模式和第二调制模式对应本次发送的SCI为非最后一次发送,第三调制模式对应本次发送的SCI为最后一次发送。
一种可能的实施方式,所有RE采用的调制模式全都相同对应本次发送为最后一次SCI发送,所有RE采用的调制模式不全都相同对应本次发送为非最后一次SCI发送,即,所有RE采用的调制模式不全都相同表示本次发送后续还有一次或多次SCI发送。
其中,对应关系可以是全局配置的,也可以是小区级别配置的,还可以是UE group级别配置的,还可以是UE级别配置的,本申请对此不作限定。另外,该对应关系可以是预先定义的,如协议定义,也可以是网络设备配置的。本申请对此不作限定。
发送端设备可以预先向接收端设备发送该第二映射关系。或者,可以预先设置第二映射关系,接收端设备可以直接获取预存的第二映射关系。或者,预先保存该第二映射关系,发送端设备与接收端设备均已知该第二映射关系。
接收端设备对SCI进行译码。具体的,在T等于1的情况下,接收端设备对SCI进行直接译码。在T大于1的情况下,接收端设备对T次SCI进行合并译码。可选的,在T 大于1的情况下,接收端设备可以每接收一次SCI,对该SCI进行一次译码,然后接收端设备在接收最后一次发送的SCI并译码之后,将T次译码的信息进行合并,或者选择T次译码中选择一个较好的译码结果。或者,接收端设备可以在接收最后一次发送的SCI之后,对T次接收的SCI进行合并后译码。关于如何合并译码,本申请实施例不作具体限定。
下面为便于理解,以具体的示例描述两种场景中本申请实施例的过程。在以下示例中,发送端设备重复发送两次SCI,第一映射关系包括所有RE采用的调制模式全都相同对应本次发送的SCI为最后一次发送,所有RE采用的调制模式不全都相同对应本次发送的SCI为非最后一次发送。
场景1
PSCCH和PSSCH以频分方式复用。
具体的,如图8所示,控制信道和数据信道以频分方式复用。那么PSCCH的首次传输从该时频资源的最低RB开始,占用固定的RB资源数,时域上占用整个时隙。SCI承载在PSCCH上。在第一次发送SCI的情况下,发送端设备采用不同的调制模式来调制SCI中的RE,如图8所示,部分RE采用π/4-QPSK调制、部分RE采用QPSK调制。接收端设备确定该次接收到的SCI的调制模式,根据SCI中的RE的调制模式不全都相同确定该次接收到的SCI为非最后一次发送。在第二次发送该SCI的情况下,即当次(或当前)发送为最后一次发送,发送端设备采用一种调制模式来调制SCI中的所有RE,如图8所示,所有RE采用QPSK调制。接收端设备确定该次接收到的SCI的调制模式,根据SCI中的RE的调制模式全都相同确定该次接收到的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定发送端设备重复发送SCI的传输次数T,在该示例中接收端设备确定传输次数为2。
可选的,在这种帧结构下,在采用不同的调制模式来调制SCI中的RE时,重复发送的SCI可以以频分复用的方式紧邻前次SCI,增序使用频域资源,如图8所示。从而便于接收端设备快速、正确地接收信息,降低接收端设备的接收复杂度。或者,发送端设备可以向接收端设备发送指示信息,指示承载第二次发送的SCI的PSCCH的时频资源位置。又或者,发送端设备和接收端设备也可以预先默认承载第二次发送的SCI的PSCCH的时频资源位置。
接收端设备对SCI进行译码。具体的,在T等于1的情况下,接收端设备对SCI进行直接译码。在T大于1的情况下,接收端设备对T次SCI进行合并译码。根据前文所述,接收端设备在接收到最后一次发送的SCI之后,确定发送端设备发送了2次SCI,则接收端设备对该2次SCI进行合并译码。具体的,接收端设备可以每接收一次SCI,对该SCI进行一次译码,将两次译码的信息进行合并,或者,在两次译码结果中选择较好的一个译码结果。或者接收端设备可以在接收到最后一次SCI之后,将2次SCI合并后译码。关于如何合并译码,本申请实施例不作具体限定。
场景2
PSCCH和PSSCH以时分方式复用。
具体的,如图9所示,控制信道和数据信道以时分方式复用。PSCCH首次发送映射在所占用时频资源的开始一部分符号上,频域上占用整个带宽。SCI承载在PSCCH上。 在第一次发送SCI的情况下,发送端设备采用不同的调制模式来调制SCI中的RE,如图9所示,部分RE采用π/4-QPSK调制、部分RE采用QPSK调制。接收端设备确定该次接收到的SCI的调制模式,根据SCI中的RE的调制模式不全都相同确定该次接收到的SCI为非最后一次发送。在第二次发送该SCI的情况下,即当前或当次发送为最后一次发送,发送端设备采用一种调制模式来调制SCI中的所有RE,如图9所示,所有RE采用QPSK调制。接收端设备确定该次接收到的SCI的调制模式,根据SCI中的RE的调制模式全都相同确定该次接收到的SCI为最后一次发送。接收端设备在接收到最后一次发送的SCI后可以确定发送端设备重复发送SCI的传输次数T,在该示例中接收端设备确定传输次数为2。
可选的,在这种帧结构下,在采用不同的调制模式来调制SCI中的RE时,重复发送的SCI可以以时分复用的方式紧邻前次SCI,增序使用时域资源,如图9所示。从而便于接收端设备快速、正确地接收信息,降低接收端设备的接收复杂度。或者,发送端设备可以向接收端设备发送指示信息,指示承载第二次发送的SCI的PSCCH的时频资源位置。又或者,发送端设备和接收端设备也可以预先默认承载第二次发送的SCI的PSCCH的时频资源位置。
接收端设备对SCI进行译码。具体的,在T等于1的情况下,接收端设备对SCI进行直接译码。在T大于1的情况下,接收端设备对T次SCI进行合并译码。根据前文所述,接收端设备在接收到最后一次发送的SCI之后,确定发送端设备发送了2次SCI,则接收端设备对该2次SCI进行合并译码。具体的,接收端设备可以每接收一次SCI,对该SCI进行一次译码,将两次译码的信息进行合并,或者,在两次译码结果中选择较好的一个译码结果。或者接收端设备可以在接收到最后一次SCI之后,将2次SCI合并后译码。关于如何合并译码,本申请实施例不作具体限定。
需要说明的是,上述两种场景仅是示例性说明,本申请实施例并未限定于此。
还需要说明的是,QPSK调制和π/4-QPSK调制仅是用于表示两种不同的调制模式,本申请实施例并未限定于此,只要是不同调制模式的方案都属于本申请实施例的保护范围。例如,部分RE采用16阶QAM调制,剩余的RE采用QPSK调制。又如,部分RE采用QAM调制,部分RE采用π/4-QPSK调制,剩余的RE采用QPSK调制
还需要说明的是,上述以SCI中的所有RE采用的调制模式全都相同表示本次发送的SCI为最后一次发送,SCI中的所有RE采用的调制模式不全都相同表示本次发送的SCI为非最后一次发送为例进行了示例性说明。本申请实施例并未限定于此。例如,也可以是,SCI中的所有RE采用的调制模式全都相同表示本次发送的SCI为非最后一次发送,SCI中的所有RE采用的调制模式不全都相同表示本次发送的SCI为最后一次发送。
通过图8或图9可以看出,基于方式2,发送端设备可以重复发送多次SCI,以便接收端设备可以正确接收该SCI,进而保证传输可靠性。接收端设备也可以根据接收到的SCI的调制模式,确定当前或当次接收到的SCI是否为最后一次接收。接收端设备在接收到最后一次发送的SCI后可以确定发送端设备重复发送SCI的传输次数,并可以基于传输次数对SCI进行译码。
上文结合图6至图9介绍了传输参数包括传输次数的方案。下面结合图10和图11介绍传输参数包括SCI格式和/或SCI的传输资源参数的方案。
方面二
SCI格式和/或SCI的传输资源参数
确定SCI的格式和/或SCI的传输资源参数,其中,SCI的传输资源参数包括SCI占用的时频资源的大小;用SCI占用的时频资源的大小,并采用SCI的格式发送SCI。
针对待发送的SCI,发送端设备可以先确定该SCI的格式,并确定发送该SCI所占用的时频资源,进而发送该SCI。SCI占用的时频资源的大小,即表示发送该SCI时所占用的时频资源的大小。时频资源的大小可以是资源单元(例如,RB、RE等)的数量。
图10是根据本申请另一实施例提供的发送和接收侧行链路控制信息的方法400的示意性交互图。如图所示,方法400可以包括步骤410至步骤430:
在步骤410中,发送端设备在与SCI对应的目标时频资源上,对SCI进行编码处理;
在步骤420中,发送端设备向接收端设备发送该SCI;
在步骤430中,接收端设备基于目标时频资源对该SCI进行译码。
其中,与SCI对应的目标时频资源包括发送该SCI所占用的时频资源的大小。在本申请实施例中,可选的,SCI的格式与SCI占用的时频资源的大小对应,则发送端确定待发送的SCI的格式,并使用与该SCI格式对应大小的时频资源来发送该SCI。关于SCI格式与时频资源大小之间的对应关系,下文详细描述。
为了进一步提高资源的利用率,区分不同的SCI格式,本申请实施例提出了一种方案,可以支持不同传输机会中,传输资源(即,物理资源或时频资源)可变,使用不同大小的传输资源来发送不同格式的SCI。
具体的,可以划分N种不同大小的PSCCH时频资源,不同大小的PSCCH时频资源可以传输不同长度的SCI和/或不同格式的SCI,进而可以合理地使用资源,避免浪费。其中,SCI承载在PSCCH上,PSCCH时频资源表示发送SCI所占用的时频资源。为简洁,在下文的实施例中,用PSCCH时频资源表示发送SCI所占用的时频资源,用PSCCH时频资源的大小表示发送SCI所占用的时频资源的大小。
需要说明的是,在本申请实施例中,时频资源的大小、PSCCH时频资源的大小、SCI对应的时频资源、SCI格式对应的时频资源、SCI使用的时频资源,都用来表示发送SCI所占用的时频资源的大小。其具体名称不对本申请实施例的范围造成限定。下文为便于理解,以资源单元为RB为例,以资源单元的数量来表示时频资源的大小。
在本申请的一些实施例中,传输参数包括SCI格式和/或SCI的传输资源参数。传输资源参数包括PSCCH时频资源的大小。可选的,SCI的格式与PSCCH时频资源的大小对应,因此可以根据SCI的格式确定PSCCH时频资源的大小。具体地,发送端设备根据待发送的SCI的格式和/或SCI的长度,选择合适大小的PSCCH时频资源,并在该PSCCH时频资源上独立编码。
其中,关于PSCCH时频资源的大小与SCI格式的对应关系,至少包括以下几种可能。
一种可能是,一种PSCCH时频资源对应一种SCI格式。即,一种格式的SCI对应一种大小的时频资源。例如,假设划分至少三种不同大小的PSCCH时频资源,分别记为A个RB、B个RB、C个RB,其中,A、B、C均为大于或等于1的整数。SCI格式有三种,分别记为格式1、格式2、格式3。那么可以是A个RB对应格式1,即当待发送的SCI的格式为格式1时,使用A个RB来传输该SCI;B个RB对应格式2,即当待发送的SCI 的格式为格式2时,使用B个RB来传输该SCI;C个RB对应格式3,即当待发送的SCI的格式为格式3时,使用C个RB来传输该SCI。
例如,假设A=1、B=2、C=3,当待发送的SCI的格式为格式1时,使用1个RB来传输该SCI;当待发送的SCI的格式为格式2时,使用2个RB来传输该SCI;当待发送的SCI的格式为格式3时,使用3个RB来传输该SCI。
或者,一种可能是,一种PSCCH时频资源对应多种SCI格式。即,多种格式的SCI对应一种大小的时频资源。例如,假设划分三种不同大小的PSCCH时频资源,分别记为A个RB、B个RB、C个RB,其中,A、B、C均为大于或等于1的整数。SCI格式有五种,分别记为格式1、格式2、格式3、格式4、格式5。那么可以是A个RB对应格式1和格式2,即当待发送的SCI的格式为格式2或格式1时,使用A个RB来传输该SCI;B个RB对应格式3,即当待发送的SCI的格式为格式3时,使用B个RB来传输该SCI;C个RB对应格式4和格式5,即当待发送的SCI的格式为格式4或格式5时,使用C个RB来传输该SCI。
例如,假设A=1、B=2、C=3,当待发送的SCI的格式为格式1或格式2时,使用1个RB来传输该SCI;当待发送的SCI的格式为格式3时,使用2个RB来传输该SCI;当待发送的SCI的格式为格式4或格式5时,使用3个RB来传输该SCI。
或者,一种可能是,多种PSCCH时频资源对应多种SCI格式。即,多种格式的SCI对应多种大小的时频资源。例如,假设划分两种不同大小的PSCCH时频资源,分别记为A个RB、B个RB,其中,A、B均为大于或等于1的整数。SCI格式有三种,分别记为格式1、格式2、格式3。那么可以是A个RB和B个RB对应格式1、格式2、格式3,即即当待发送的SCI的格式为格式1、格式2、格3中的任一格式时,可以使用A个RB或B个RB来传输该SCI。
例如,假设A=1、B=2,当待发送的SCI的格式为格式1、格式2、格3中的任一格式时,可以使用1个RB来传输该SCI,也可以使用2个RB来传输该SCI。
应理解,上述三种可能性的情况中列举的具体例子仅为示例性说明,本申请并未限定于此。
划分不同大小的PSCCH时频资源,不仅可以合理地利用资源,而且根据不同大小的PSCCH时频资源可以区分不同格式的SCI和/或不同长度的SCI,从而可以降低接收端设备的复杂度,提高通信效率。
接收端设备对SCI进行译码。具体地,接收端设备基于PSCCH时频资源的大小和/或SCI的格式,对SCI进行译码。接收端设备确定PSCCH时频资源的大小和/或SCI的格式的方式有很多,一种可能的实现方式中,根据发送端设备发送的指示信息确定PSCCH时频资源的大小和/或SCI的格式。在基于PSCCH时频资源的大小和/或SCI的格式发送SCI之前,发送端设备可以发送一个指示信息,该指示信息用来指示PSCCH的时频资源的大小和/或SCI的格式。接收端设备根据接收到的指示信息确定PSCCH时频资源的大小和/或SCI的格式,进而可以在该PSCCH时频资源上对SCI进行译码。
可选的,发送端设备可以基于序列隐示指示PSCCH时频资源的大小和/或SCI的格式。
一种可能的实现方式,发送端设备在基于PSCCH时频资源的大小发送SCI之前,从序列集合#3中选择一个序列#3。发送该序列#3,该序列#3用于指示PSCCH时频资源的大 小和/或SCI的格式。序列集合#3中包括至少一个序列。相应的,接收端设备根据接收到的序列#3确定PSCCH时频资源的大小和/或SCI的格式。进一步地,接收端设备在确定的PSCCH时频资源的大小上对SCI进行译码,或者,根据该格式的SCI是否为自身所需的SCI,决定是否译码。
具体的,可以定义N个不同的序列(即,第一序列集合的一例):q 0,q 1,…,q (N-1),该N个序列分别对应N种不同大小的PSCCH时频资源。因此,当发送某个序列q i时,接收端设备可以通过该q i确定PSCCH时频资源的大小,其中,i=0,1,…,(N-1)。或者,定义N个不同的序列q 0,q 1,…,q (N-1),分别对应N种不同格式的SCI。因此,当发送某个序列q i时,可以通过该q i确定SCI格式。该序列可以是独立功能的序列,也可以是PSCCH DMRS序列。该序列可以在确定的时隙发送,根据系统的复用状态(如FDM或TDM),发送位置有所区别。SCI在对应的时频资源上独立编码。
序列(即序列#3)与PSCCH时频资源大小或SCI格式的对应关系,至少包括三种可能。下面,以序列与PSCCH时频资源大小的对应关系为例进行说明。
一种可能是,序列与PSCCH时频资源大小是一一对应的关系,即一个序列对应一种大小的PSCCH时频资源。以资源单元为RB为例,假设有三种不同大小的PSCCH时频资源,分别记为a个RB、b个RB、c个RB,其中,a、b、c均为大于1或等于1的整数。那么,序列与PSCCH时频资源大小的对应关系可以如表1所示。
表1
序列 PSCCH时频资源的大小
序列1 a个RB
序列2 b个RB
序列3 c个RB
其中,序列1、序列2、序列3为q 0,q 1,…,q (N-1)中的任意三个不同的序列。从表1可以看出,序列1对应a个RB,序列2对应b个RB,序列3对应c个RB。例如,发送端设备使用a个RB发送SCI时,向接收端设备发送序列1,通过序列1指示发送端设备发送的SCI所占用的PSCCH时频资源的大小为a个RB。接收端设备接收到序列1,或者确定序列1后,可以在a个RB(即序列1对应的PSCCH时频资源的大小)上的SCI进行译码。
需要说明的是,上述仅是以三个序列、三种不同大小的PSCCH时频资源为例进行示例性说明,本申请并未限定于此,序列或不同大小的PSCCH时频资源的个数,对本申请实施例的保护范围不作限定。
或者,一种可能是,序列与PSCCH时频资源大小是一对多的关系,即一个序列对应多种不同大小的PSCCH时频资源。仍以资源单元为RB为例,假设有三种不同大小的PSCCH时频资源,分别记为a个RB、b个RB、c个RB,其中,a、b、c均为大于1或等于1的整数。那么,序列与PSCCH时频资源大小的对应关系可以如表2所示。
表2
序列 PSCCH时频资源的大小
序列1 a个RB
序列1 b个RB
序列2 c个RB
其中,序列1、序列2为q 0,q 1,…,q (N-1)中的任意两个不同的序列。从表2可以看出,序列1可以对应a个RB,也可以对应b个RB,序列2对应c个RB。例如,发送端设备使用a个RB或b个RB发送SCI时,向接收端设备发送序列1,通过序列1指示发送端设备发送的SCI所占用的PSCCH时频资源的大小为a个RB或b个RB。接收端设备接收到序列1,或者确定序列1后,可以在a个RB或b个RB(即序列1对应的PSCCH时频资源的大小)上的SCI进行译码。
需要说明的是,上述仅是以两个序列、三种不同大小的PSCCH时频资源为例进行示例性说明,本申请并未限定于此,序列或不同大小的PSCCH时频资源的个数,对本申请实施例的保护范围不作限定。
或者,一种可能是,序列与PSCCH时频资源大小是多对一的关系,即多个序列对应一种不同大小的PSCCH时频资源。仍以资源单元为RB为例,假设有两种不同大小的PSCCH时频资源,分别记为a个RB、b个RB,其中,a、b均为大于1或等于1的整数。那么,序列与PSCCH时频资源大小的对应关系可以如表3所示。
表3
序列 PSCCH时频资源的大小
序列1 a个RB
序列2 a个RB
序列3 b个RB
其中,序列1、序列2、序列3为q 0,q 1,…,q (N-1)中的任意三个不同的序列。从表3可以看出,序列1和序列2都可以对应a个RB,序列3对应c个RB。例如,发送端设备使用a个RB发送SCI时,可以向接收端设备发送序列1或序列2,通过序列1或序列2指示发送端设备发送的SCI所占用的PSCCH时频资源的大小为a个RB。接收端设备接收到序列1或序列2,或者确定序列1或序列2后,可以在a个RB(即序列1或序列2对应的PSCCH时频资源的大小)上的SCI进行译码。
需要说明的是,上述仅是以三个序列、两种不同大小的PSCCH时频资源为例进行示例性说明,本申请并未限定于此,序列或不同大小的PSCCH时频资源的个数,对本申请实施例的保护范围不作限定。
还需要说明的是,上述三种可能性仅是示例性说明,本申请实施例并未限定于此。例如序列与PSCCH时频资源大小也可以是多对多的对应关系。
还需要说明的是,序列与SCI的格式也可以有上述几种可能的对应关系,此处,为简洁,不再赘述。
可选的,序列与PSCCH时频资源的大小和SCI格式对应。仍以资源单元为RB为例,假设有三种不同大小的PSCCH时频资源,分别记为a个RB、b个RB、c个RB,其中,a、b、c均为大于1或等于1的整数。假设有三种不同的SCI格式,记为格式1、格式2、格式3。那么,序列与PSCCH时频资源的大小和SCI格式对应关系可以如表4所示。
表4
序列 SCI格式 PSCCH时频资源的大小
序列1 格式1 a个RB
序列2 格式2 a个RB
序列3 格式3 b个RB
其中,序列1、序列2、序列3为q 0,q 1,…,q (N-1)中的任意三个不同的序列。从表4可以看出,序列1与格式1、a个RB对应,即,发送端设备发送的SCI的格式为格式1时,可以采用a个RB发送,并向接收端设备发送序列1,用于指示接收端设备发送的SCI占用的PSCCH时频资源的大小为a个RB,该SCI的格式为格式1。接收端设备接收到序列1,或者确定序列1后,可以确定发送端设备发送的SCI的格式为格式1,该SCI所占用的PSCCH时频资源的大小为a个RB。进一步的,接收端设备可以确定格式1的SCI是否为自身所需的,如果是自身所需的,则在a个RB(即序列1对应的PSCCH时频资源的大小)上的SCI进行译码。类似地,序列2与格式2、b个RB对应,即,发送端设备发送的SCI的格式为格式2时,可以采用b个RB发送,并向接收端设备发送序列2,用于指示接收端设备发送的SCI占用的PSCCH时频资源为b个RB,该SCI的格式为格式2。接收端设备接收到序列2,或者确定序列2后,可以确定发送端设备发送的SCI的格式为格式2,该SCI所占用的PSCCH时频资源的大小为b个RB。进一步的,接收端设备可以确定格式2的SCI是否为自身所需的,如果是自身所需的,则在b个RB(即序列2对应的PSCCH时频资源的大小)上的SCI进行译码。类似地,序列3与格式3、c个RB对应,即,发送端设备发送的SCI的格式为格式3时,可以采用c个RB发送,并向接收端设备发送序列3,用于指示接收端设备发送的SCI占用的PSCCH时频资源为c个RB,该SCI的格式为格式3。接收端设备接收到序列3,或者确定序列3后,可以确定发送端设备发送的SCI的格式为格式3,该SCI所占用的PSCCH时频资源的大小为c个RB。进一步的,接收端设备可以确定格式3的SCI是否为自身所需的,如果是自身所需的,则在c个RB(即序列3对应的PSCCH时频资源的大小)上的SCI进行译码。
需要说明的是,上述仅是以三个序列、三种不同大小的PSCCH时频资源、三种不同的SCI格式为例进行示例性说明,本申请并未限定于此,序列的个数、不同大小的PSCCH时频资源的个数、SCI的格式的个数,对本申请实施例的保护范围不作限定。
还需要说明的是,上述序列与PSCCH时频资源的大小和SCI格式对应关系仅是示例性说明,本申请实施例并未限定于此。例如序列与PSCCH时频资源的大小和SCI格式对应关系也可以是一对多或多对一的关系。
序列与PSCCH时频资源的大小和/或SCI格式的对应关系,可以是预定义的,或者是发送端设备预先指示的。示例的,在步骤410之前,包括步骤440。在步骤440中,发送端设备向接收端设备发送指示信息。该指示信息包括第三映射关系,第三映射关系包括以下任意一项:第一序列集合(例如上述表1至表4中的序列1、序列2、序列3,可以作为一个第一序列集合)与时频资源的大小的集合(例如上述表1至表4中的a个RB、b个RB、c个RB,可以作为一个时频资源的大小的集合)的对应关系,其中时频资源的大小的集合包括至少两种时频资源的大小,第一序列集合中的一个序列与时频资源的大小的 集合中的一个时频资源的大小对应;或,第一序列集合与SCI格式的集合的对应关系,其中SCI格式的集合包括至少两个SCI格式,第一序列集合中的一个序列与SCI格式的集合中的一个SCI格式对应;或,第一序列集合与时频资源的大小的集合和SCI格式的集合的对应关系,其中第一序列集合中的一个序列与时频资源的大小的集合中的一个时频资源的大小和SCI格式集合中的一个SCI格式对应。
其中,第三映射关系可以为第一序列集合中的一个序列与时频资源的大小的集合中的一个时频资源的大小对应。例如,上述划分的N个不同的序列q 0,q 1,…,q (N-1)中的任一序列与一个或多个不同大小的PSCCH时频资源之间的对应关系(例如上述表1至表3中的任意一种所示的对应关系),根据该对应关系,接收端设备可以确定发送的SCI所占用的PSCCH时频资源的大小。或者,第三映射关系还可以为第一序列集合中的一个序列与SCI格式的集合中的一个SCI格式对应。例如,上述划分的N个不同的序列q 0,q 1,…,q (N-1)中的任一序列与一个或多个不同格式的SCI之间的对应关系(例如上述表1至表3中的任意一种所示的对应关系,将上述表1至表3中的不同大小的PSCCH时频资源替换为不同的SCI格式),根据该对应关系,接收端设备可以确定发送的SCI格式,进而正确接收本身所需的SCI。或者,第三映射关系还可以为第一序列集合与时频资源的大小的集合和SCI格式的集合的对应关系。例如,上述N个不同的序列q 0,q 1,…,q (N-1)与一个或多个不同大小的PSCCH时频资源以及一个或多个不同格式的SCI之间的对应关系(例如,上述的表4所示的对应关系),继而可以根据发送的序列,确定SCI所占用的PSCCH时频资源以及SCI的格式。
其中,对应关系可以是全局配置的,也可以是小区级别配置的,还可以是UE group级别配置的,还可以是UE级别配置的,本申请对此不作限定。另外,该对应关系可以是预先定义的,如协议定义,也可以是网络设备配置的。本申请对此不作限定。
发送端设备可以预先向接收端设备发送该第三映射关系。或者,可以预先设置第三映射关系,接收端设备可以直接获取预存的第三映射关系。或者,发送端设备和接收端设备默认已知N种可能的时频资源大小。或者,预先保存该第三映射关系,发送端设备与接收端设备均已知该第三映射关系。
需要说明的是,在本申请实施例中,关于序列与PSCCH时频资源的大小的对应关系的形式,不作具体的限定。上述以序列与PSCCH时频资源的频域大小的对应关系为例进行了说明,上述对应关系也可以是序列与PSCCH时频资源的时域大小之间的对应关系。
下面为便于理解,仍结合两种场景来说明。
场景1
PSCCH和PSSCH以频分方式复用。
针对控制信息和数据信息是频分复用的场景。如前所述,发送端设备和接收端设备可以默认已知的N种可能的PSCCH时频资源大小。发送端设备使用q i对应的PSCCH时频资源发送SCI,其中,i=0,1,…,(N-1)。假设定义最小可以使用的RB数为M,M为大于1或等于1的整数。接收端设备对M个RB上的SCI对应的DMRS做信道估计,并通过相关性等信息确定q i。接收端设备确定q i后,在q i对应的PSCCH时频资源上的SCI进行译码。
场景2
PSCCH和PSSCH以时分方式复用。
针对控制信息和数据信息是时分复用场景。如前所述,发送端设备和接收端设备可以默认已知的N种可能的物理资源大小。发送端设备使用q i对应的PSCCH时频资源发送SCI,其中,i=0,1,…,(N-1)。假设定义最小可以使用的符号数为X,X为大于1或等于1的整数。接收端设备对X个符号上的SCI对应的DMRS做信道估计,并通过相关性等信息确定q i。接收端设备确定q i后,在q i对应的PSCCH时频资源上的SCI进行译码。
需要说明的是,上述两种场景仅是示例性说明,本申请实施例并未限定于此。
还需要说明的是,在发送SCI时,可以单独考虑传输次数、SCI格式、传输资源参数,或者,也可以同时考虑传输次数、SCI格式、传输资源参数。即,图10的实施例可以单独使用,或者,也可以同图6或图7的实施例结合使用,还可以同图8或图9的实施例结合使用。
基于本申请实施例,可以在一次传输机会中支持SCI对应的时频资源可灵活变动,例如可以基于独立的序列或DMRS序列隐式指示SCI占用的时频资源的大小。进而灵活支持控制信息码率可变,从而提高SCI传输可靠性。此外,还可以通过选择不同大小的时频资源发送不同格式的SCI,接收端设备可以根据不同大小的时频资源区分SCI格式。
上文结合图10介绍了划分不同大小的PSCCH时频资源,并根据不同大小的PSCCH时频资源区分不同格式的SCI。下面结合图11介绍另一种能够区分不同SCI格式的方法。
在V2X中,可能会有多种不同的SCI格式。因此,可能会出现以下三种情况。
情况1:不同格式的SCI的长度差异较大。
当不同格式的SCI的长度差异较大时,可以按照图10实施例所示的方法,选择不同大小的PSCCH时频资源发送,接收端设备可以根据不同大小的PSCCH时频资源区分SCI格式。
情况2:不同格式的SCI的长度差异较小。
当不同格式的SCI的长度差异较小时,也可以按照图10实施例所示的方法,选择不同大小的PSCCH时频资源发送,接收端设备可以根据PSCCH时频资源的大小区分SCI格式。或者,当不同格式的SCI的长度差异较小时,其对应的PSCCH时频资源大小可以被认为近似一致,从而可以选择相同大小的PSCCH时频资源发送,接收端设备可以根据PSCCH时频资源区分SCI格式,并针对不同格式的SCI分别进行译码处理。
情况3:不同格式的SCI的长度相同。
当不同格式的SCI的长度相同时,也可以按照图10实施例所示的方法,选择相同大小的PSCCH时频资源发送,接收端设备可以根据PSCCH时频资源的大小区分SCI格式,并针对不同格式的SCI分别进行译码处理。
本申请实施例针对这三种情况,尤其是上述情况2和情况3,提出了一种方法,不仅可以区分不同的SCI格式,而且可以进一步降低接收端设备的盲检测算法复杂度。发送端设备发送SCI之前,采用与SCI的格式对应的扰码ID,对SCI中的CRC进行加扰处理。具体地,利用固定扰码对CRC的校验比特进行加扰。接收端设备接收SCI,并对接收的SCI进行解扰,获得扰码ID;根据该扰码ID,以及扰码ID与SCI格式之间的对应关系,确定SCI的格式。
具体的,假设有W种SCI格式,W为大于1或等于1的整数。针对W种SCI格式, 可以定义W种扰码ID,该W种扰码ID与W种SCI格式一一对应。该W种扰码ID可以表示为W 0,W 1,…,W (N-1)。ID长度与CRC校验位长度一致。假设CRC校验位长度为T,T为大于1或等于1的整数,则一个扰码ID W j可以表示为W (0,j),W (1,j),…,W (T-1,j),其中,j=0,1,…,(N-1)。图11示出了根据本申请实施例提供的一种可能的编码方式的示意图。如图11所示,对于待发送的SCI(即SCI数据),先进行CRC校验,在CRC校验后,增加对CRC校验位进行加扰的步骤。接收端设备在信道译码完成后,应用不同扰码ID对CRC校验位比特解扰。若某个扰码ID W j解扰后CRC校验正确,即确定采用W j对应的SCI格式对接收到的SCI进行解析。
可选的,发送端设备向接收端设备发送指示信息,该指示信息包括第四映射关系,第四映射关系包括扰码ID与SCI的格式的对应关系。例如,一种可能的扰码ID可以是把所有的SCI格式从0开始编号,用其对应的二进制表示为扰码ID。假定扰码ID长度为16,根据上述方法生成扰码ID如表5所示,其他ID可自动延伸。
表5
SCI格式 扰码ID
格式0 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>
格式1 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>
格式2 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0>
扰码ID与SCI的格式之间的对应关系,可以发送端设备预先指示的。示例的,发送端设备向接收端设备发送扰码ID与SCI的格式之间的对应关系。或者,扰码ID与SCI的格式之间的对应关系是预先定义的,如协议定义或网络设备预配置的,接收端设备可以直接获取预存的该对应关系。或者,预先保存该对应关系,发送端设备与接收端设备均已知该对应关系。
此外,可选的,针对上述情况2,即对于长度相近的SCI格式,还可以采用补偿占位符的方法,使得不同长度的SCI格式,达到相同的长度。例如,可以对其中长度较短的SCI格式填充占位符,使其长度相同。这样,在对SCI编码过程中,可以采用相同码率对长度相近的SCI格式进行编码,从而可以降低盲检测复杂度。此外,通过对CRC进行盲检测即可达到盲检测的目的,极大降低了接收端设备的复杂度。
基于上述图11所述的技术方案,通过利用固定扰码对CRC的校验比特进行加扰,并建立SCI格式与扰码ID之间的对应关系,可以区分不同的SCI格式,使得接收端快速、方便地确定本身所需的SCI格式。此外,针对不同格式的SCI,如果其长度相差较小时的情况,可以通过填充占位符的方式,使其长度相同,且采用相同的码率进行编码,同时采用与SCI格式对应的扰码ID对其CRC检验比特进行加扰,不仅可以达到区分不同SCI格式的目的,而且可以极大降低盲检测算法复杂度。
需要说明的是,在发送SCI时,可以单独考虑图11的实施方式,或者,也可以同时将图11的实施例方式与图10的实施例可以结合使用。例如,当多种时频资源对应多种格式的SCI时,可以进一步采用图11的技术方案以区分不同格式的SCI。或者,也可以将图11的实施例方式同图6或图7的实施例结合使用,还可以同图8或图9的实施例结合使用。
应理解,在本申请中,可以将在上述图4至图11所述的任一实施例中的“控制信息”全替换为“SCI”。或,在本申请中,可以将在上述图4至图11所述的任一实施例中的“SCI”全替换为“控制信息”。
以上,结合图4至图11详细说明了本申请实施例提供的发送和接收侧行链路控制信息的方法。SCI的传输与信道的波形也有很大的关系,下面结合图12说明数据信道和控制信道的波形信息。
现有的方式中,仅支持一种SCI格式,控制信道和数据信道的波形均为离散傅里叶变换扩频的正交频分复用多址接入技术方案(discrete fourier transform orthogonal frequency division multiplexing,DFT-OFDM)。如前所述,在本申请实施例中,可以支持多种格式的SCI。因此,本申请实施例提供一种方法,能够支持多种波形。
图12是根据本申请又一实施例提供的发送和接收波形信息的方法600的示意性交互图。
在步骤610中,发送端设备确定控制信道和数据信道的波形信息;
在步骤620中,发送端设备发送指示信息,该指示信息用于指示:控制信道和/或数据信道的波形信息,和/或,控制信道和数据信道的波形是否相同,接收端设备接收该指示信息;
在步骤630中,接收端设备根据指示信息确定控制信道和/或数据信道的波形信息。
根据本申请实施例,控制信道和数据信道的发送波形可以有多种形式,且控制信道和数据信道的发送波形可以相同也可以不同。不同的发送波形可以对应不同格式的SCI。此外,通过指示信息可以指示控制信道和/或数据信道的波形信息,或者,通过指示信息来指示控制信道和数据信道的波形是否相同,继而便于接收端设备确定控制信道和数据信道的波形信息。通过该方法,可以使得接收端设备更好地接收信息,提高通信效率和用户体验。
可选的,指示信息携带于SCI中,通过SCI中的1个或多个预留比特指示:控制信道和数据信道的波形是否相同。
一种可能的实现方式,在SCI中增加一个1比特的字段来指示控制信道和数据信道的波形是否相同。可选的,0对应控制信道和数据信道的波形相同,1对应控制信道和数据信道的波形不同。例如,当发送端设备确定控制信道和数据信道的波形相同,则可以在SCI中增加一个“0”的比特字段。接收端设备接收到SCI后,对SCI进行译码,确定SCI中增加的比特字段为“0”,继而接收端设备确定控制信道和数据信道的波形相同。进一步的,预先配置好控制信道的波形,接收端设备在接收SCI之前,根据调度或预配置信息确定数据信道或控制信道的波形。接收端设备接收SCI,确定SCI中增加的比特字段为“0”,继而接收端设备确定控制信道和数据信道的波形相同,进而确定控制信道或数据信道的波形。
需要说明的是,上述以0对应控制信道和数据信道的波形相同,1对应控制信道和数据信道的波形不同。为例进行了说明,本申请并未限定于此,例如,1对应控制信道和数据信道的波形相同,0对应控制信道和数据信道的波形不同。
还需要说明的是,上述以在SCI中增加一个1比特的字段来指示控制信道和数据信道的波形是否相同为例进行了说明,本申请并未限定于此,例如,也可以增加一个2比特的 字段来指示控制信道和数据信道的波形是否相同。可选的,01对应控制信道和数据信道的波形相同,10对应控制信道和数据信道的波形不同。
可选的,指示信息为序列#A(即,第二序列的一例),序列#A与控制信道的波形信息之间具有对应关系;或,序列#A与数据信道的波形信息之间具有对应关系;或,序列#A与数据信道的波形信息和控制信道的波形信息之间具有对应关系。
序列#A的功能可以由自动增益控制(automatic gain control)序列携带。在发送时隙开始的一个或者几个符号上,独立于控制信道和数据信道。不同的序列#A可以对应不同的波形。可选的,不同的波形可以对应不同的SCI格式,发送端设备可以根据SCI格式,来确定控制信道和/或数据信道的发送波形。
根据本申请实施例,序列#A与控制信道和/或数据信道的波形信息之间具有对应关系,根据该对应关系,接收端设备可以确定控制信道和/或数据信道的波形信息。在本申请实施例中,至少可以通过四种方法来根据序列#A确定数据信道和/或控制信道的波形信息。
方法1
序列#A与控制信道和数据信道的波形信息之间具有对应关系。
表6示出了序列#A与控制信道和数据信道的波形信息之间一种可能的对应关系。如表6所示,假设有四种不同的序列#A,分别记为q0、q1、q2、q3。以两种波形为例,分别为:循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)和DFT-OFDM。每种序列#A对应一组波形信息,即每种序列#A对应一个控制信道的波形和一个数据信道的波形。
表6
序列#A 控制信道波形 数据信道波形
q0 CP-OFDM CP-OFDM
q1 CP-OFDM DFT-OFDM
q2 DFT-OFDM CP-OFDM
q3 DFT-OFDM DFT-OFDM
其中,关于序列#A与数据信道的波形信息和控制信道的波形信息之间的对应关系,可以是发送端设备预先向接收端设备发送该对应关系。或者,可以预先设置该对应关系,接收端设备可以直接获取预存的对应关系。或者,预先保存该对应关系,发送端设备与接收端设备均已知该对应关系。
以表6所示的对应关系为例,例如,q0对应的波形信息为:控制信道的波形为CP-OFDM,数据信道的波形为CP-OFDM。换句话说,当发送端设备发送序列#A为q0时,接收端设备可以根据接收到的q0,以及表6所示的对应关系,确定控制信道的波形为CP-OFDM,数据信道的波形为CP-OFDM。又如,q1对应的波形信息为:控制信道的波形为CP-OFDM,数据信道的波形为DFT-OFDM。换句话说,当发送端设备发送的序列#A为q1时,接收端设备可以根据接收到的q1,以及表6所示的对应关系,确定控制信道的波形为CP-OFDM,数据信道的波形为DFT-OFDM。又如,q2对应的波形信息为:控制 信道的波形为DFT-OFDM,数据信道的波形为CP-OFDM。换句话说,当发送端设备发送的序列#A为q2时,接收端设备可以根据接收到的q2,以及表6所示的对应关系,确定控制信道的波形为DFT-OFDM,数据信道的波形为CP-OFDM。又如,q3对应的波形信息为:控制信道的波形为DFT-OFDM,数据信道的波形为DFT-OFDM。换句话说,当发送端设备发送的序列#A为q3时,接收端设备可以根据接收到的q3,以及表6所示的对应关系,确定控制信道的波形为DFT-OFDM,数据信道的波形为DFT-OFDM。
需要说明的是,上述表6仅是示例性说明,本申请实施例并未限定于此。表6中的序列#A与数据信道的波形信息和控制信道的波形信息之间的对应关系、序列#A的个数、波形的具体种类,均不对本申请的保护范围造成限定。例如,还可以在表6中增加1行或多行,即增加序列#A以及其他的波形信息。如增加一个序列q4,该q4对应的波形信息为:控制信道的波形为CP-OFDM,数据信道的波形为脉冲形OFDM(pulse shaped OFDM)。或者,实际系统中的配置可能为表6中的某一行或某几行,即减少序列#A。如,只包括表6中的任两个序列#A。
基于上述方法1,接收端设备可以根据接收到的序列#A确定控制信道和数据信道的波形。
方法2
序列#A与控制信道和数据信道的波形是否相同之间具有对应关系。
表7示出了序列#A与控制信道和数据信道的波形是否相同之间一种可能的对应关系。如表7所示,假设有两种不同的序列#A,分别记为q0、q1。q0对应控制信道和数据信道的波形相同,q1对应控制信道和数据信道的波形相同。
表7
序列#A 控制信道和数据信道的波形
q0 控制信道和数据信道的波形相同
q1 控制信道和数据信道的波形不同
其中,关于序列#A与控制信道和数据信道的波形是否相同之间的对应关系,可以是发送端设备预先向接收端设备发送该对应关系。或者,可以预先设置该对应关系,接收端设备可以直接获取预存的对应关系。或者,预先保存该对应关系,发送端设备与接收端设备均已知该对应关系。
一种可能的实现方式是,根据调度或预配置信息,结合序列#A,确定数据信道的波形。即预先配置好控制信道的波形,接收端设备在接收控制信道和数据信道之前,先对接收到的序列#A进行检测,判断控制信道和数据信道的波形是否一致。根据是否一致,以及对应关系,接收端设备可以确定数据信道的波形。
具体的,假设控制信道的波形为CP-OFDM,接收端设备预先知道该控制信道的波形为CP-OFDM。以表7所示的对应关系为例,如果发送端设备确定控制信道和数据信道的波形相同,则向接收端设备发送q0,该q0用于指示控制信道和数据信道的波形相同。接收端设备接收到q0后,确定控制信道和数据信道的波形相同,因此,可以确定数据信道的波形为CP-OFDM。
或者,也可以预先配置好数据信道的波形,再根据控制信道和数据信道的波形是否相同,确定控制信道的波形。此处,为简洁,不再赘述。
方法3
序列#A与数据信道的波形信息之间具有对应关系。
表8示出了序列#A与数据信道的波形信息之间一种可能的对应关系。如表8所示,假设有两种不同的序列#A,分别记为q0、q1。以两种波形为例,分别为:CP-OFDM和DFT-OFDM。每种序列#A对应一个数据信道的波形。
表8
序列#A 数据信道波形
q0 CP-OFDM
q1 DFT-OFDM
其中,关于序列#A与数据信道的波形信息之间的对应关系,可以是发送端设备预先向接收端设备发送该对应关系。或者,可以预先设置该对应关系,接收端设备可以直接获取预存的对应关系。或者,预先保存该对应关系,发送端设备与接收端设备均已知该对应关系。
以表8所示的对应关系为例,例如,q0对应的波形信息为:数据信道的波形为CP-OFDM。换句话说,当发送端设备发送序列#A为q0时,接收端设备可以根据接收到的q0,以及对应关系,确定数据信道的波形为CP-OFDM。又如,q1对应的波形信息为:数据信道的波形为DFT-OFDM。换句话说,当发送端设备发送的序列#A为q1时,接收端设备可以根据接收到的q1,以及对应关系,确定数据信道的波形为DFT-OFDM。
需要说明的是,上述表8仅是示例性说明,本申请实施例并未限定于此。表8中的序列#A与数据信道的波形信息之间的对应关系、序列#A的个数、波形的具体种类,均不对本申请的保护范围造成限定。例如,还可以在表8中增加1行或多行,即增加序列#A以及其他的波形信息。如增加一个序列q2,该q2对应的波形信息为:数据信道的波形为脉冲形OFDM。
还需要说明的是,方法3还可以和方法2结合使用。例如,假设预先配置好控制信道的波形,接收端设备根据调度或预配置信息确定控制信道。接收端设备可以根据接收到的序列#A确定控制信道和数据信道的波形是否相同,如果不同时,可以进一步结合表8所示的对应关系,确定数据信道的波形。
方法4
序列#A与控制信道的波形信息之间具有对应关系。
表9示出了序列#A与控制信道的波形信息之间一种可能的对应关系。如表9所示,假设有两种不同的序列#A,分别记为q0、q1。以两种波形为例,分别为:CP-OFDM和DFT-OFDM。每种序列#A对应一个控制信道的波形。
表9
序列#A 控制信道波形
q0 CP-OFDM
q1 DFT-OFDM
其中,关于序列#A与控制信道的波形信息之间的对应关系,可以是发送端设备预先向接收端设备发送该对应关系。或者,可以预先设置该对应关系,接收端设备可以直接获取预存的对应关系。或者,预先保存该对应关系,发送端设备与接收端设备均已知该对应关系。例如,接收端设备,或者发送端设备与接收端设备,保存如表9所示的对应关系,根据该表9所示的对应关系,可以通过接收到的序列#A确定控制信道的波形信息。
以表9所示的对应关系为例,例如,q0对应的波形信息为:控制信道的波形为CP-OFDM。换句话说,当发送端设备发送序列#A为q0时,接收端设备可以根据接收到的q0,以及对应关系,确定控制信道的波形为CP-OFDM。又如,q1对应的波形信息为:控制信道的波形为DFT-OFDM。换句话说,当发送端设备发送的序列#A为q1时,接收端设备可以根据接收到的q1,以及对应关系,确定控制信道的波形为DFT-OFDM。
需要说明的是,上述表9仅是示例性说明,本申请实施例并未限定于此。表9中的序列#A与控制信道的波形信息之间的对应关系、序列#A的个数、波形的具体种类,均不对本申请的保护范围造成限定。例如,还可以在表9中增加1行或多行,即增加序列#A以及其他的波形信息。如增加一个序列q2,该q2对应的波形信息为:控制信道的波形为脉冲形OFDM。
还需要说明的是,方法4还可以和方法2结合使用。例如,假设预先配置好数据信道的波形,接收端设备根据调度或预配置信息确定数据信道。接收端设备可以根据接收到的序列#A确定控制信道和数据信道的波形是否相同,如果不同时,可以进一步结合表9所示的对应关系,确定控制信道的波形。
需要说明的是,上述四种方法仅为示例性说明,本申请实施例并未限定于此。例如,方法2和方法3、或方法2和方法4均可以结合使用。
以上,结合图4至图12详细说明了本申请实施例提供的发送和接收侧行链路控制信息的方法。以下,结合图13至图15详细说明本申请实施例提供的通信装置。
图13是本申请实施例提供的通信装置的示意性框图。如图13所示,该通信装置500可以包括收发单元510和处理单元520。
在一种可能的设计中,该通信装置500可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体的,该通信装置500可对应于根据本申请实施例的方法200、方法400、方法600以及图5至图9、图11、图12实施例中的发送端或接收端,该通信装置500可以包括用于执行图4中的方法200、图10中的方法400、图12中的方法600以及图5至图9、图11、图12实施例中的发送端或接收端执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图4中的方法200、图10中的方法400、图12中的方法600以及图5至图9、图11、图12实施例中的相应流程。
其中,当该通信装置500用于执行图4中的方法200时,收发单元510可用于执行方法200中的步骤220,处理单元520可用于执行方法200中的步骤210。应理解,各单元 执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图10中的方法400时,收发单元510可用于执行方法400中的步骤420、步骤440,处理单元520可用于执行方法400中的步骤410,或者,处理单元520可用于执行方法400中的步骤430。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图12中的方法600时,收发单元510可用于执行方法600中的步骤620,处理单元520可用于执行方法600中的步骤610。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500中的收发单元可对应于图14中示出的终端设备600中的收发器602,该通信装置500中的处理单元520可对应于图14中示出的终端设备600中的处理器601。
在另一种可能的设计中,该通信装置500可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体的,该通信装置500可对应于根据本申请实施例的方法200、方法400、方法600以及图5至图9、图11、图12实施例中的发送端,该通信装置500可以包括用于执行图4中的方法200、图10中的方法400、图12中的方法60以及图5至图9、图11、图12实施例中的发送端执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图4中的方法200、图10中的方法400、图12中的方法60以及图5至图9、图11、图12实施例的相应流程。
其中,当该通信装置500用于执行图2中的方法200时,收发单元510可用于执行方法200中的步骤220,处理单元520可用于执行方法200中的步骤210。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图10中的方法400时,收发单元510可用于执行方法400中的步骤420、步骤440,处理单元520可用于执行方法400中的步骤410。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图12中的方法600时,收发单元510可用于执行方法600中的步骤620,处理单元520可用于执行方法600中的步骤610。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500中的收发单元510可对应于图15中示出的网络设备700中的收发器720,该通信装置500中的处理单元520可对应于图15中示出的网络设备700中的处理器710。
图14是本申请实施例提供的终端设备600的结构示意图。如图所示,该终端设备600包括处理器601和收发器602。可选的,该终端设备600还包括存储器603。其中,处理器601、收发器602和存储器603之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器603用于存储计算机程序,该处理器601用于从该存储器603中调用并运行该计算机程序,以控制该收发器602收发信号。可选的,终端设备600还可以包括天 线604,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器601和存储器603可以合成一个处理装置,处理器601用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器601中,或者独立于处理器601。
一种可能的方式,当存储器603中存储的程序指令被处理器601执行时,该处理器601用于控制收发器602:接收发送端设备发送的侧行链路控制信息SCI,该SCI是基于SCI的传输参数发送的,该传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数,且该处理器601还用于对SCI进行译码。
或,另一种可能的方式,当存储器603中存储的程序指令被处理器601执行时,该处理器601用于确定侧行链路控制信息SCI的传输参数,该传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数,并控制收发器602基于该SCI的传输参数向接收端设备发送该SCI。
具体的,该终端设备600可对应于根据本申请实施例的方法200、方法400、方法600以及图5至图9、图11、图12实施例中的发送端或接收端,该终端设备600可以包括用于执行方法200、方法400、方法600以及图5至图9、图11、图12实施例中的发送端或接收端执行的方法的单元。并且,该终端设备600中的各单元和上述其他操作和/或功能分别为了实现方法200、方法400、方法600以及图5至图9、图11、图12实施例中的相应流程。
上述处理器601可以用于执行前面方法实施例中描述的由发送端或接收端内部实现的动作,而收发器602可以用于执行前面方法实施例中描述的发送端向接收端发送或从接收端接收的动作,或者,也可以用于执行前面方法实施例中描述的接收端向发送端发送或从发送端接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选的,上述终端设备600还可以包括电源605,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备600还可以包括输入单元606、显示单元607、音频电路608、摄像头609和传感器610等中的一个或多个,所述音频电路还可以包括扬声器6082、麦克风6084等。
图15是本申请实施例提供的网络设备700的结构示意图。如图所示,该网络设备700包括处理器710和收发器720。可选的,该网络设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。
上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
上述网络设备700还可以包括天线740,用于将收发器720输出的下行数据或下行控制信令通过无线信号发送出去。
当存储器730中存储的程序指令被处理器710执行时,该处理器710用于确定侧行链路控制信息SCI的传输参数,该传输参数包括以下至少一项:SCI的传输次数、SCI的格 式或SCI的传输资源参数,并控制收发器720基于该SCI的传输参数发送该SCI。
具体的,该网络设备700可对应于根据本申请实施例的方法200、方法400、方法600以及图5至图9、图11、图12实施例中的发送端,该网络设备700可以包括用于执行方法200、方法400、方法600以及图5至图9、图11、图12实施例中的发送端执行的方法的单元。并且,该网络设备700中的各单元和上述其他操作和/或功能分别为了实现方法200、方法400、方法600以及图5至图9、图11、图12实施例中的相应流程,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上述处理器710可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器720可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4至图11所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4至图11所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种发送侧行链路控制信息的方法,由发送端设备执行,其特征在于,包括:
    确定侧行链路控制信息SCI的传输参数,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;
    基于所述传输参数向接收端设备发送所述SCI。
  2. 根据权利要求1所述的方法,其特征在于,所述传输参数包括SCI的传输次数,
    所述确定SCI的传输参数包括:确定所述SCI的传输次数为T,其中,T为大于1或等于1的整数;
    所述基于所述传输参数发送所述SCI,包括:
    发送T次所述SCI。
  3. 根据权利要求2所述的方法,其特征在于,所述T大于1,所述发送T次所述SCI中的前T-1次中的每一次之前,所述方法还包括:
    发送第一解调参考信号DMRS序列,所述第一DMRS序列用于指示当次发送的SCI为非最后一次发送。
  4. 根据权利要求2或3所述的方法,其特征在于,所述发送T次所述SCI中的第T次之前,所述方法还包括:
    发送第二DMRS序列,所述第二DMRS序列用于指示所述第T次发送的SCI为最后一次发送。
  5. 根据权利要求2所述的方法,其特征在于,所述T大于1,所述发送T次所述SCI中的前T-1次中的每一次之前,所述方法还包括:
    从第一调制模式集合中选择第一调制模式,从第二调制模式集合中选择第二调制模式,采用所述第一调制模式和所述第二调制模式调制所述SCI,所述第一调制模式和所述第二调制模式指示当次发送的SCI为非最后一次发送。
  6. 根据权利要求2或5所述的方法,其特征在于,所述发送T次所述SCI中的第T次之前,所述方法还包括:
    从第三调制模式集合中选择第三调制模式,采用所述第三调制模式调制所述SCI,所述第三调制模式指示所述第T次发送的SCI为最后一次发送。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述传输参数包括SCI的格式和SCI的传输资源参数,所述确定SCI的传输参数包括:
    确定所述SCI的格式和所述SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小;
    所述基于所述传输参数发送所述SCI,包括:
    用所述SCI占用的时频资源的大小,并采用所述SCI的格式发送所述SCI。
  8. 根据权利要求7所述的方法,其特征在于,所述SCI的格式与所述SCI占用的时频资源的大小对应;
    所述确定所述SCI的传输资源参数包括:
    根据所述SCI的格式确定所述SCI占用的时频资源的大小。
  9. 根据权利要求7或8所述的方法,其特征在于,所述基于所述传输参数发送所述SCI之前,所述方法还包括:
    从第一序列集合中选择第一序列,发送所述第一序列,其中,所述第一序列用于指示所述SCI的传输资源参数,和/或,所述第一序列用于指示所述SCI的格式。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述基于所述传输参数发送所述SCI之前,所述方法还包括:
    发送指示信息,所述指示信息包括以下至少一项:
    所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,
    所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,
    所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;
    其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集合中的一个。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述基于所述传输参数发送所述SCI之前,所述方法还包括:
    采用与所述SCI的格式对应的扰码标识ID,对所述SCI中的循环冗余校验CRC进行加扰处理。
  12. 一种接收侧行链路控制信息的方法,由接收端设备执行,其特征在于,包括:
    接收发送端设备发送的侧行链路控制信息SCI,所述SCI是基于所述SCI的传输参数发送的,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;
    对所述SCI进行译码。
  13. 根据权利要求12所述的方法,其特征在于,所述传输参数包括SCI的传输次数;
    所述接收SCI,包括:
    接收T次SCI,其中,T为大于1或等于1的整数;
    所述对所述SCI进行译码,包括:
    在所述T等于1的情况下,对所述SCI进行译码;
    在所述T大于1的情况下,对所述T次SCI进行合并译码。
  14. 根据权利要求13所述的方法,其特征在于,所述T大于1,所述接收T次SCI中的前T-1次中的每一次之前,所述方法还包括:
    接收送第一解调参考信号DMRS序列,根据所述第一DMRS序列确定当次接收的SCI为非最后一次接收。
  15. 根据权利要求13或14所述的方法,其特征在于,所述接收T次SCI中的第T次之前,所述方法还包括:
    接收第二DMRS序列,根据所述第二DMRS序列确定所述第T次接收的SCI为最后一次接收。
  16. 根据权利要求13所述的方法,其特征在于,所述T大于1,所述接收T次SCI中的前T-1次中的每一次之前,所述方法还包括:
    确定当次接收的SCI的调制模式包括第一调制模式和第二调制模式,根据所述第一调制模式和所述第二调制模式确定当次接收的SCI为非最后一次接收,其中,所述第一调制模式为第一调制模式集合中的调制模式,所述第二调制模式为第二调制模式集合中的调制模式。
  17. 根据权利要求13或16所述的方法,其特征在于,所述接收T次SCI中的第T次之前,所述方法还包括:
    确定所述第T次接收的SCI的调制模式为第三调制模式,根据所述第三调制模式确定所述第T次接收的SCI为最后一次接收,其中,所述第三调制模式为第三调制模式集合中的调制模式。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述传输参数包括SCI的格式和SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小。
  19. 根据权利要求18所述的方法,其特征在于,所述接收SCI之前,所述方法还包括:
    接收第一序列,根据所述第一序列确定所述SCI的传输资源参数,和/或,根据所述第一序列确定所述SCI的格式,其中,所述第一序列为第一序列集合中的序列;
    所述对所述SCI进行译码,包括:
    基于所述SCI的传输资源参数和/或所述SCI的格式,对所述SCI进行译码。
  20. 根据权利要求18或19所述的方法,其特征在于,所述SCI的格式与所述SCI占用的时频资源的大小对应。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述接收SCI之前,所述方法还包括:
    接收指示信息,所述指示信息包括以下至少一项:
    所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,
    所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,
    所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;
    其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集合中的一个。
  22. 根据权利要求18所述的方法,其特征在于,所述对所述SCI进行译码,包括:
    对所述SCI进行解扰,获得扰码标识ID;
    所述方法还包括:
    根据所述扰码ID,以及所述扰码ID与所述SCI的格式之间的对应关系,确定所述SCI的格式。
  23. 一种发送侧行链路控制信息的装置,其特征在于,包括处理器和收发器,
    所述处理器用于:确定侧行链路控制信息SCI的传输参数,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;
    所述收发器用于:基于所述传输参数向接收端设备发送所述SCI。
  24. 根据权利要求23所述的装置,其特征在于,所述传输参数包括SCI的传输次数,
    所述处理器具体用于:确定所述SCI的传输次数为T,其中,T为大于1或等于1的整数;
    所述收发器具体用于:发送T次所述SCI。
  25. 根据权利要求24所述的装置,其特征在于,所述T大于1,所述收发器发送T次所述SCI中的前T-1次中的每一次之前,所述收发器还用于:发送第一解调参考信号DMRS序列,所述第一DMRS序列用于指示当次发送的SCI为非最后一次发送。
  26. 根据权利要求24或25所述的装置,其特征在于,所述收发器发送T次所述SCI中的第T次之前,所述收发器还用于:发送第二DMRS序列,所述第二DMRS序列用于指示所述第T次发送的SCI为最后一次发送。
  27. 根据权利要求24所述的装置,其特征在于,所述T大于1,所述收发器发送T次所述SCI中的前T-1次中的每一次之前,所述处理器还用于:从第一调制模式集合中选择第一调制模式,从第二调制模式集合中选择第二调制模式,采用所述第一调制模式和所述第二调制模式调制所述SCI,所述第一调制模式和所述第二调制模式指示当次发送的SCI为非最后一次发送。
  28. 根据权利要求24或27所述的装置,其特征在于,所述收发器发送T次所述SCI中的第T次之前,所述处理器还用于:从第三调制模式集合中选择第三调制模式,采用所述第三调制模式调制所述SCI,所述第三调制模式指示所述第T次发送的SCI为最后一次发送。
  29. 根据权利要求23-28任一项所述的装置,其特征在于,所述传输参数包括SCI的格式和SCI的传输资源参数,所述处理器具体用于:确定所述SCI的格式和所述SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小;
    所述收发器具体用于:用所述SCI占用的时频资源的大小,并采用所述SCI的格式发送所述SCI。
  30. 根据权利要求29所述的装置,其特征在于,所述SCI的格式与所述SCI占用的时频资源的大小对应;所述处理器具体用于:根据所述SCI的格式确定所述SCI占用的时频资源的大小。
  31. 根据权利要求29或30所述的装置,其特征在于,所述收发器在基于所述传输参数发送所述SCI之前,所述收发器还用于:从第一序列集合中选择第一序列,发送所述第一序列,其中,所述第一序列用于指示所述SCI的传输资源参数,和/或,所述第一序列用于指示所述SCI的格式。
  32. 根据权利要求29-31任一项所述的装置,其特征在于,所述收发器在基于所述传输参数发送所述SCI之前,所述收发器还用于:发送指示信息,所述指示信息包括以下至少一项:
    所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,
    所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,
    所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;
    其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集合中的一个。
  33. 根据权利要求23-32任一项所述的装置,其特征在于,所述收发器在基于所述传输参数发送所述SCI之前,
    所述处理器还用于:采用与所述SCI的格式对应的扰码标识ID,对所述SCI中的循环冗余校验CRC进行加扰处理。
  34. 一种接收侧行链路控制信息的装置,其特征在于,包括处理器和收发器,
    所述收发器用于:接收发送端设备发送的侧行链路控制信息SCI,所述SCI是基于所述SCI的传输参数发送的,所述传输参数包括以下至少一项:SCI的传输次数、SCI的格式或SCI的传输资源参数;
    所述处理器用于:对所述SCI进行译码。
  35. 根据权利要求34所述的装置,其特征在于,所述传输参数包括SCI的传输次数;
    所述收发器具体用于:接收T次SCI,其中,T为大于1或等于1的整数;
    所述处理器具体用于:
    在所述T等于1的情况下,对所述SCI进行译码;
    在所述T大于1的情况下,对所述T次SCI进行合并译码。
  36. 根据权利要求35所述的装置,其特征在于,所述T大于1,所述收发器接收T次SCI中的前T-1次中的每一次之前,所述收发器还用于:
    接收送第一解调参考信号DMRS序列,根据所述第一DMRS序列确定当次接收的SCI为非最后一次接收。
  37. 根据权利要求35或36所述的装置,其特征在于,所述收发器接收T次SCI中的第T次之前,所述收发器还用于:
    接收第二DMRS序列,根据所述第二DMRS序列确定所述第T次接收的SCI为最后一次接收。
  38. 根据权利要求35所述的装置,其特征在于,所述T大于1,所述收发器接收T次SCI中的前T-1次中的每一次之前,所述处理器还用于:
    确定当次接收的SCI的调制模式包括第一调制模式和第二调制模式,根据所述第一调 制模式和所述第二调制模式确定当次接收的SCI为非最后一次接收,其中,所述第一调制模式为第一调制模式集合中的调制模式,所述第二调制模式为第二调制模式集合中的调制模式。
  39. 根据权利要求35或38所述的装置,其特征在于,所述收发器接收T次SCI中的第T次之前,所述处理器还用于:
    确定所述第T次接收的SCI的调制模式为第三调制模式,根据所述第三调制模式确定所述第T次接收的SCI为最后一次接收,其中,所述第三调制模式为第三调制模式集合中的调制模式。
  40. 根据权利要求34-39任一项所述的装置,其特征在于,所述传输参数包括SCI的格式和SCI的传输资源参数,所述SCI的传输资源参数包括所述SCI占用的时频资源的大小。
  41. 根据权利要求40所述的装置,其特征在于,所述收发器接收SCI之前,所述收发器还用于:接收第一序列,根据所述第一序列确定所述SCI的传输资源参数,和/或,根据所述第一序列确定所述SCI的格式,其中,所述第一序列为第一序列集合中的序列;
    所述处理器具体用于:基于所述SCI的传输资源参数和/或所述SCI的格式,对所述SCI进行译码。
  42. 根据权利要求40或41所述的装置,其特征在于,所述SCI的格式与所述SCI占用的时频资源的大小对应。
  43. 根据权利要求40-42任一项所述的装置,其特征在于,所述收发器接收SCI之前,所述收发器还用于:接收指示信息,所述指示信息包括以下至少一项:
    所述第一序列集合与时频资源的大小的集合的对应关系,其中所述时频资源的大小的集合包括至少两种时频资源的大小,所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小对应;或,
    所述第一序列集合与SCI格式的集合的对应关系,其中所述SCI格式的集合包括至少两个SCI格式,所述第一序列集合中的一个序列与所述SCI格式的集合中的一个SCI格式对应;或,
    所述第一序列集合与所述时频资源的大小的集合和所述SCI格式的集合的对应关系,其中所述第一序列集合中的一个序列与所述时频资源的大小的集合中的一个时频资源的大小和所述SCI格式集合中的一个SCI格式对应;
    其中,所述SCI占用的时频资源的大小为所述时频资源的大小的集合中的一种,所述SCI的格式为所述SCI格式集合中的一个。
  44. 根据权利要求40所述的装置,其特征在于,所述处理器具体用于:
    对所述SCI进行解扰,获得扰码标识ID;
    根据所述扰码ID,以及所述扰码ID与所述SCI的格式之间的对应关系,确定所述SCI的格式。
  45. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-22任一项所述的方法。
PCT/CN2019/104148 2018-09-13 2019-09-03 发送和接收侧行链路控制信息的方法以及装置 WO2020052469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811067527.0A CN110896345B (zh) 2018-09-13 2018-09-13 发送和接收侧行链路控制信息的方法以及装置
CN201811067527.0 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020052469A1 true WO2020052469A1 (zh) 2020-03-19

Family

ID=69776757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104148 WO2020052469A1 (zh) 2018-09-13 2019-09-03 发送和接收侧行链路控制信息的方法以及装置

Country Status (2)

Country Link
CN (1) CN110896345B (zh)
WO (1) WO2020052469A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865478B (zh) * 2019-04-26 2022-02-11 华为技术有限公司 侧行链路控制信息的发送方法及设备
CN111510272B (zh) * 2020-04-14 2022-04-22 重庆邮电大学 一种NR sidelink中两步SCI传输优化方法
EP4209021A4 (en) * 2020-09-04 2024-06-05 Qualcomm Inc DIRECTIONAL SIDELINK TRANSMISSIONS TECHNIQUES WITH USER EQUIPMENT (UE) SERVING MULTIPLE TRANSMISSION AND RECEIPT POINTS (TRP)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
CN107534828A (zh) * 2015-04-08 2018-01-02 英特尔公司 用于增强的设备到设备(d2d)的控制信令机制
EP3324695A1 (en) * 2015-07-15 2018-05-23 Nec Corporation Terminal, base station, and method for same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095119A1 (zh) * 2014-12-17 2016-06-23 华为技术有限公司 用户设备、基站及d2d通信的方法
CN107615844B (zh) * 2015-04-17 2021-11-09 松下电器(美国)知识产权公司 在侧行链路控制时段期间的多邻近服务组通信
CN111224767B (zh) * 2015-06-12 2021-10-22 华为技术有限公司 一种网络设备、终端设备及资源分配方法
US20180234994A1 (en) * 2015-08-13 2018-08-16 Ntt Docomo, Inc. User apparatus and communication method
CN107548106A (zh) * 2016-06-24 2018-01-05 华为技术有限公司 一种覆盖等级切换方法、基站及终端
CN108512576A (zh) * 2017-02-28 2018-09-07 华为技术有限公司 一种实现用户设备协作的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211A (zh) * 2014-09-25 2016-03-30 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
CN107534828A (zh) * 2015-04-08 2018-01-02 英特尔公司 用于增强的设备到设备(d2d)的控制信令机制
EP3324695A1 (en) * 2015-07-15 2018-05-23 Nec Corporation Terminal, base station, and method for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Corrections on SCI transmission for V2X retransmission, R2-166220", 3GPP TSG-RAN WG2 MEETING #95BIS, vol. RAN WG2, 9 October 2016 (2016-10-09), XP051150546 *

Also Published As

Publication number Publication date
CN110896345A (zh) 2020-03-20
CN110896345B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US20230069882A1 (en) Method for configuring sidelink feedback resource, terminal device, and network device
CN111278108B (zh) 确定传输资源的方法和装置
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
JP2020529801A (ja) サイドリンクフィードバックのためのシステムおよび方法
WO2017000143A1 (zh) 传输上行数据的方法和装置
EP3179824B1 (en) User terminal and processor
KR20210095880A (ko) 다수의 송신-수신 포인트들을 이용한 반영구적 스케줄링
EP3133848A1 (en) User equipment and method for packet based device-to-device (d2d) discovery in an lte network
WO2020029973A1 (zh) 一种信息的处理方法和通信装置
CN108353401A (zh) 用于v2x应用的lte-d通信
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
WO2020052469A1 (zh) 发送和接收侧行链路控制信息的方法以及装置
JP2022534239A (ja) 2ステップのランダムアクセス手順のための複数の物理アップリンク共有チャネルリソースユニットへの1つのプリアンブルのマッピング
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2021212391A1 (zh) 信息传输方法及装置
WO2021134791A1 (zh) 无线通信的方法和终端设备
WO2020063596A1 (zh) 一种通信方法及装置
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2022022236A1 (zh) 数据传输方法及装置
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2021088069A1 (zh) 信息传输方法及相关产品
CN116472763A (zh) 资源确定方法、第一终端设备和第二终端设备
KR20200050820A (ko) Nr v2x 시스템에서 harq 피드백 송수신 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860586

Country of ref document: EP

Kind code of ref document: A1