WO2021134791A1 - 无线通信的方法和终端设备 - Google Patents

无线通信的方法和终端设备 Download PDF

Info

Publication number
WO2021134791A1
WO2021134791A1 PCT/CN2020/070318 CN2020070318W WO2021134791A1 WO 2021134791 A1 WO2021134791 A1 WO 2021134791A1 CN 2020070318 W CN2020070318 W CN 2020070318W WO 2021134791 A1 WO2021134791 A1 WO 2021134791A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
feedback channel
information
side row
type
Prior art date
Application number
PCT/CN2020/070318
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
林晖闵
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20910108.8A priority Critical patent/EP4087350A4/en
Priority to CN202080090380.6A priority patent/CN114868447A/zh
Priority to PCT/CN2020/070318 priority patent/WO2021134791A1/zh
Publication of WO2021134791A1 publication Critical patent/WO2021134791A1/zh
Priority to US17/856,324 priority patent/US20220338174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and terminal device for wireless communication.
  • the Internet of Vehicles system is based on the Long Term Evaluation Device to Device (LTE D2D) transmission technology of Sidelink (SL), and the communication data in the traditional LTE system is received or sent through the base station. The method is different.
  • the Internet of Vehicles system adopts terminal-to-terminal direct communication, so it has higher spectrum efficiency and lower transmission delay.
  • the side-line feedback channel is introduced.
  • the receiving end terminal can send the side line feedback information to the sending end terminal, so that the sending end terminal can follow the side line feedback information.
  • Line feedback information determines whether to retransmit.
  • the physical sidelink shared channel (PSSCH) on each carrier requires corresponding feedback information, or a physical sidelink shared channel (Physical Sidelink Shared Channel) PSSCH) supports multi-transport block (Transport Block, TB) transmission, and each TB needs corresponding feedback information.
  • PSSCH Physical Sidelink shared channel
  • TB Transport Block
  • the embodiments of the present application provide a wireless communication method and terminal device, which can implement multi-bit side-line feedback.
  • a wireless communication method including: a first terminal receives a sideline data channel and/or a sideline reference signal sent by a second terminal; and the first terminal sends a first terminal to the second terminal.
  • Side row feedback channel the first side row feedback channel carries side row feedback information of the side row data channel and/or the measurement result of the side row reference channel, wherein the first side row feedback channel carries The number of bits of information is greater than 1.
  • a terminal device which is used to execute the foregoing first aspect or any possible implementation of the first aspect.
  • the terminal device includes a unit for executing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a terminal device in a third aspect, includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a chip is provided for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or its implementation manners.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect or its implementation manners.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or its implementation manners.
  • the first terminal may receive the side-line data channel and/or the side-line reference channel sent by the second terminal, and determine that it is necessary to feed back multi-bit feedback information. Further, the first terminal may receive the multi-bit feedback information Feedback can be performed through a side-line feedback channel, which is beneficial to reduce feedback overhead. Further, the second terminal can determine whether to perform data retransmission based on the side-line feedback channel, thereby improving the reliability of data transmission.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of several communication modes between terminal devices.
  • Fig. 3 is a schematic diagram of the structure of a PSFCH carrying 1-bit feedback information.
  • Fig. 4 is a schematic diagram of an example of lateral feedback.
  • FIG. 5 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of time-domain symbols occupied by PSFCHs of the first type, PSFCHs of the second type, and PSFCHs of the third type according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of time domain symbols occupied by the second type of PSFCH according to an embodiment of the present application
  • Fig. 8 is a schematic diagram of time-domain symbols occupied by a DMRS sequence according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of frequency domain units occupied by the third type of PSFCH and the corresponding DMRS sequence.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • D2D Device to Device
  • a car networking system based on Long Term Evolution (LTE) for D2D communication or NR-V2X system.
  • LTE Long Term Evolution
  • NR-V2X NR-V2X
  • the communication system based on the Internet of Vehicles system may be the Global System of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, and Wideband Code Division Multiple Access (Wideband Code Division) system.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Wideband Code Division Multiple Access
  • Multiple Access (WCDMA) system General Packet Radio Service (GPRS), LTE system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), General Mobile communication system (Universal Mobile Telecommunication System, UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, 5G New Radio (NR) system, etc.
  • GPRS General Packet Radio Service
  • LTE LTE Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS General Mobile communication system
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G New Radio (NR) system etc.
  • the network equipment in the embodiments of this application can be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network side devices (gNB) in the NR network, or network devices in the future evolution of the public land mobile network (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access
  • the terminal device in the embodiment of the present application may be a terminal device capable of implementing D2D communication.
  • it can be a vehicle-mounted terminal device, a terminal device in an LTE system (LTE UE), a terminal device in an NR network (NR UE), or a public land mobile communication network (Public Land Mobile Network, PLMN) that will evolve in the future
  • LTE UE LTE system
  • NR UE NR network
  • PLMN Public Land Mobile Network
  • V2V vehicle to Vehicle
  • V2X vehicle to Everything
  • X can generally refer to any device with wireless receiving and sending capabilities, such as but not limited to slow-moving wireless devices, fast-moving vehicle-mounted devices, or network control nodes with wireless transmitting and receiving capabilities.
  • the embodiment of the present invention is mainly applied to the scenario of V2X communication, but can also be applied to any other D2D communication scenario, which is not limited in the embodiment of the present application.
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system in the embodiment of the present application may include multiple network devices and the coverage of each network device may include other numbers
  • the terminal device is not limited in this embodiment of the application.
  • the wireless communication system may also include other networks such as Mobile Management Entity (MME), Serving Gateway (S-GW), Packet Data Network Gateway (P-GW), etc. Entity, or, the wireless communication system may also include session management function (Session Management Function, SMF), unified data management (Unified Data Management, UDM), authentication server function (Authentication Server Function, AUSF) and other network entities.
  • MME Mobile Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • SMF Session Management Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • terminal devices can use mode A and mode B to communicate.
  • the terminal device 121 and the terminal device 122 may communicate in a D2D communication mode.
  • the terminal device 121 and the terminal device 122 directly communicate through a D2D link, that is, a side link (SL).
  • a D2D link that is, a side link (SL).
  • the transmission resources of the terminal equipment are allocated by the base station, and the terminal equipment can send data on the SL according to the resources allocated by the base station.
  • the base station can allocate a single transmission resource for the terminal device, or can allocate a semi-static transmission resource for the terminal.
  • the terminal device autonomously selects transmission resources from the SL resources. Specifically, the terminal device obtains the available transmission resources by means of interception in the resource pool, or the terminal device randomly selects a transmission resource from the resource pool.
  • mode 1 and mode 2 are introduced in NR-V2X, where mode 1 means that the side link transmission resources of the terminal device are allocated by the base station, and the base station uses the mode A and mode 1 to allocate the side link transmission resources
  • the method can be different, for example, it can be one using dynamic scheduling, the other using semi-static scheduling, or semi-static plus dynamic scheduling, etc.
  • Mode 2 means that the side link transmission resource of the terminal device is selected by the terminal of.
  • FIG. 2(a) shows the unicast transmission between UE1 and UE2; in the multicast transmission mode, the receiving end terminal is all terminals in a communication group, or all terminals within a certain transmission distance, as shown in Figure 2.
  • UE1, UE2, UE3, and UE4 form a communication group.
  • the other terminal devices in the communication group are all receiving end terminals; in the broadcast transmission mode, the receiving end can be any For a terminal, as shown in Figure 2(c), UE1 is a transmitting terminal, and other terminals around it can be receiving terminals.
  • a side-line feedback channel is introduced, for example, a Physical Sidelink Feedback Channel (PSFCH).
  • PSFCH Physical Sidelink Feedback Channel
  • the sender terminal sends sideline data (including PSCCH and PSSCH) to the receiver terminal, and the receiver terminal can send Hybrid Automatic Repeat reQuest (HARQ) sideline feedback information to the sender terminal.
  • HARQ Hybrid Automatic Repeat reQuest
  • the transmitting end terminal may determine whether retransmission is required according to the sideline feedback information of the receiving end terminal, where the HARQ sideline feedback information may be carried in the sideline feedback channel.
  • the PSFCH only carries 1 bit of side-line feedback information, and occupies two time-domain symbols in the time domain.
  • the two time-domain symbols carry the same side-line feedback information
  • the data on one time-domain symbol is the other.
  • the repetition of data on a time domain symbol for example, the second time domain symbol is used to carry side-line feedback information
  • the data on the first symbol is a copy of the data on the second symbol
  • the first symbol is used For automatic gain control (Automatic Gain Control, AGC).
  • the PSFCH occupies a physical resource block (Physical Resource Block, PRB) in the frequency domain.
  • PRB Physical Resource Block
  • Figure 3 is an example of the structure of PSFCH and Physical Sidelink Shared Channel (PSSCH)/Physical Sidelink Control Channel (PSCCH). Specifically, Figure 3 illustrates a time slot The position of the time domain symbols occupied by PSFCH, PSCCH and PSSCH in the PSFCH, PSCCH and PSSCH. Among them, in a slot, the last symbol (immediate domain symbol 13) can be used as a guard interval (Guard Period, GP), and the penultimate symbol ( The time domain symbol 12) is used for PSFCH transmission.
  • the data on the third-to-last symbol is the same as the data on the second-to-last symbol, which is used as AGC, and the fourth-to-last symbol is also used as GP.
  • PSCCH occupies 3 time domain symbols, the time domain symbols 1, 2 and 3, and the time domain symbols 1 to 9 is used to transmit PSSCH.
  • PSCCH and PSSCH occupy different frequency domain resources.
  • the PSSCH transmitted in time slots 2, 3, 4, and 5, and its corresponding side row feedback information is transmitted in time slot 7. Therefore, time slot ⁇ 2, 3, 4, 5 ⁇ can be regarded as a time slot Set, the PSSCH transmitted in the set of time slots, and the corresponding PSFCH can be transmitted in the same time slot.
  • the PSSCH supports multi-transport block (Transport Block, TB) transmission, and the PSFCH needs to transmit multiple bits of feedback information. For example, it supports PSSCH transmission of 4 or 8 layers, corresponding to 2 TB blocks, and each TB needs corresponding feedback information. Therefore, the PSFCH needs to transmit 2 bits of feedback information.
  • Transport Block TB
  • the PSFCH needs to transmit 2 bits of feedback information.
  • Case 2 Supports feedback based on Code Block Group (CBG).
  • CBG Code Block Group
  • a TB can be divided into multiple CBGs. For each CBG, corresponding feedback information is required.
  • the sender sends a TB, the receiver needs To feed back the feedback information of each of the multiple CBGs, multiple bits are required.
  • Case 3 When the period N of the feedback channel is greater than 1, for example, as shown in Figure 4, the transmitting end terminal can send the PSSCH to the receiving end terminal in multiple time slots. For example, the transmitting end terminal is in time slot 0, time slot 1, and Time slot 2 sends the PSSCH to the receiving end terminal separately, and the receiving end terminal needs to send feedback information corresponding to each PSSCH, then the receiving end terminal needs to send 3-bit feedback information in time slot 5.
  • Case 4 To support the simultaneous feedback of HARQ feedback information and channel state information (Channel State Information, CSI), it is necessary to multiplex the HARQ feedback information and CSI into a side row feedback channel for feedback, and multi-bit feedback information is required.
  • CSI Channel State Information
  • Case 5 Multi-carrier feedback is supported. For example, if the transmitting terminal sends PSSCH on multiple carriers, each PSSCH needs corresponding feedback information. In order to reduce the overhead of feedback resources, the feedback information on the multiple carriers needs to be changed. Multiplexed into a side-line feedback channel, therefore, the side-line feedback channel needs to carry multiple bits of feedback information.
  • FIG. 5 is a schematic flowchart of a wireless communication method 200 according to an embodiment of this application.
  • the method 200 may be executed by a terminal device in the communication system shown in FIG. 1.
  • the method 200 may include at least part of the following content:
  • the first terminal receives the sideline data channel and/or the sideline reference signal sent by the second terminal.
  • the first terminal sends a first side row feedback channel to the second terminal, where the first side row feedback channel carries side row feedback information of the side row data channel and/or the side row reference channel According to the measurement result of, the number of bits of information carried in the first side row feedback channel is greater than one.
  • the side-line feedback channel used to carry 1-bit feedback information is marked as the first type of side-line feedback channel
  • the side-line feedback channel used to carry multi-bit feedback information may be Including at least one of the second type side row feedback channel and the third type side row feedback channel, that is, the first type side row feedback channel may be the second type side row feedback channel or the third type side row feedback channel .
  • the second type of side-line feedback channel occupies all time-domain symbols that can be used for side-line transmission in a time slot, and can occupy M in the frequency domain.
  • the M is predefined, or pre-configured, or configured by a network device.
  • the network device may include the parameter M in the resource pool configuration information of the second type of sideline feedback channel. .
  • the third type of side row feedback channel occupies 2 time domain symbols that can be used for side row transmission in one time slot, for example, the same as the first
  • a type of side row feedback channel occupies the same time domain symbols, that is, both occupy the penultimate and third time domain symbols, and can occupy N PRBs in the frequency domain, where N is greater than 1.
  • the N is predefined, or pre-configured, or configured by a network device.
  • the network device may include the parameter N in the resource pool configuration information of the third-type sideline feedback channel. .
  • the side-line reference signal in the embodiment of the present application may include, for example, a side-line synchronization signal (Sidelink Synchronization Signal, SLSS), a side-line synchronization signal block (Sidelink Synchronization Signal Block, S-SSB), and a side-line channel state information reference Signal (Sidelink Channel State Information Reference Signal, SL CSI-RS), Demodulation Reference Signal (Demodulation Reference Signal, DMRS), where the S-SSB may include the Sidelink Primary Synchronization Signal (S-PSS) And sidelink Secondary Synchronization Signal (S-SSS), etc.; demodulation reference signals include PSSCH-DMRS, PSCCH DMRS and PSBCH DMRS.
  • SLSS Sidelink Synchronization Signal
  • S-SSB Sidelink Synchronization Signal Block
  • S-SSB Sidelink Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • demodulation reference signals include PSSCH-DMRS, PSCCH DMRS and PSBCH DM
  • the first terminal may receive a sideline data channel sent by the second terminal, and feedback of the sideline data channel requires multiple bits. It should be understood that the embodiment of the present application does not specifically limit the number of the side row data channels sent by the second terminal and received by the first terminal.
  • the multiple bits of feedback information may be feedback on multiple TBs transmitted in one side row data channel (for example, the aforementioned case 1), or may also be a TB in the opposite side row data channel.
  • the feedback of multiple CBGs for example, the aforementioned case 2), or the feedback of the sideline data channel transmitted in multiple time slots (for example, the aforementioned case 3), or the feedback of multiple carriers
  • the feedback of the sideline data channel transmitted in the medium for example, the aforementioned case 5).
  • the first terminal may receive the sideline reference signal sent by the second terminal, and feedback of the measurement result of the sideline reference signal requires multiple bits.
  • the first terminal may receive the sideline data channel and the sideline reference signal sent by the second terminal, the feedback information of the sideline data channel and the measurement result of the sideline reference signal Combined feedback requires multiple bits, for example, the aforementioned case 4.
  • the embodiment of the present application takes the feedback of the first example scenario as an example for description.
  • the implementation manners of other scenarios are similar, and for the sake of brevity, details are not repeated here.
  • Embodiment 1 The channel design of the second type of side-line feedback channel
  • the last time-domain symbol among all the time-domain symbols that can be used for side-line transmission in a time slot is not used to transmit the second type of side-line transmission.
  • the feedback channel for example, the last time domain symbol is used as a GP.
  • the first time domain symbol among all the time domain symbols that can be used for side-line transmission in a time slot is not used to transmit the second-type side
  • the first time domain symbol is used as AGC.
  • the data on the first time-domain symbol among all time-domain symbols that can be used for side-line transmission in a time slot is the data on the second time-domain symbol used for side-line transmission in the time slot
  • the data on the first time domain symbol and the second time domain symbol that can be used for side-line transmission are the same.
  • time slots used by the second type side row feedback channel and the first type side row feedback channel or the third type side row feedback channel are used to transmit the first type side row feedback channel and all the time slots.
  • the time domain symbols of the third type of side feedback channel are not used to transmit the second type of side feedback channel, that is, the time domain symbols of the second type of side feedback channel do not include the time domain symbols of the first type of side feedback channel. Domain symbols and the time domain symbols of the third type of side-line feedback channel.
  • the time domain symbol 11 and the time domain symbol 12 are used to transmit the first type of side feedback channel, and the time domain symbol 11 and the time domain symbol 12 are not used to transmit the second type of side feedback channel.
  • the time domain symbol 10 is also not used to transmit the second type of sideline feedback channel, and is used as a GP.
  • the demodulation reference signal (Demodulation Reference Signal, DMRS) sequence of the second type of side feedback channel and the second type of side feedback channel may be designed to be time-division.
  • time domain symbols used to transmit the DMRS sequence of the second type side feedback channel and the time domain symbols used to transmit the second type side feedback channel are different.
  • the number and/or position of the time domain symbols of the DMRS sequence of the second-type side row feedback channel in a time slot may be configured, for example, it may be on the second-type side
  • the resource pool configuration information of the row feedback channel includes the above-mentioned configuration information of the DMRS sequence.
  • Figure 8 shows the configuration of two DMRSs, namely DMRS patterns.
  • the number of time domain symbols used to transmit DMRS sequences in a time slot can be configured to be 2, occupying 3 and 3 time domain symbols. 9;
  • the number of time domain symbols used to transmit the DMRS sequence in a time slot can be configured to 4, occupying 2, 5, 8 and 11 time domain symbols.
  • the first terminal may determine the target DMRS pattern used for transmitting the second type of side feedback channel.
  • the first terminal may determine the target DMRS pattern according to first information, where the first information is used to indicate a specific DMRS pattern.
  • the first information may be sent by the second terminal.
  • the second terminal may carry the first information in Sidelink Control Information (SCI). information.
  • SCI Sidelink Control Information
  • it may also be sent through PC5-RRC signaling.
  • the first terminal and the second terminal may exchange configuration information through PC5-RRC signaling.
  • the first information is carried in the configuration information.
  • the first information may be configured by a network device.
  • the network device may broadcast messages (for example, System Information Block (SIB)) or radio resource control (Radio Resource Control (RRC) signaling configures the first information.
  • SIB System Information Block
  • RRC Radio Resource Control
  • the first information may also be configured by the group head terminal, and the group head terminal may refer to the communication group for multicast communication that has resource management, resource allocation, resource scheduling, resource coordination, etc.
  • the functional terminal such as the first car in the fleet formation or the car in the middle of the fleet.
  • the group head terminal may send the first message through SCI or PC5-RRC signaling, or may also configure the DMRS pattern used by the terminals in the communication group to send PSFCH when communicating in the group.
  • the DMRS sequence of the second type side row feedback channel is determined according to at least one of the following information:
  • the terminal identification information of the first terminal that is, the terminal identification information of the receiving end of the PSSCH;
  • the terminal identification information of the second terminal that is, the terminal identification information of the PSSCH transmitting end;
  • the terminals in each communication group need to send feedback information.
  • Multiple terminals may share the same feedback resource, but if different sequences are used for multiplexing, That is, the CDM multiplexing mode. Therefore, generating the DMRS sequence according to the identification information of the receiving end can reduce the interference between multiple terminals in the communication group.
  • the corresponding SCIs of PSSCHs sent by different terminals are usually different, so the CRC sequence generated according to the SCI is also different, and determining the DMRS sequence according to the CRC sequence can avoid interference between different terminals.
  • the SCI may be a second-order SCI.
  • the DMRS sequence may be a sequence with a low peak average power ratio (Peak Average Power Ratio, PAPR) characteristic.
  • PAPR Peak Average Power Ratio
  • the cyclic shift (Cyclic Shift) of the sequence may be based on the identification information of the transmitting end terminal (that is, the transmitting end of the PSSCH), that is, the terminal identification information of the second terminal, or the receiving end terminal ( That is, the identification information of the receiving end of the PSSCH, that is, the terminal identification information of the first terminal is determined.
  • the cyclic shift of the sequence is generated according to the CRC sequence of the second-order SCI sequence corresponding to the PSSCH.
  • the parameter n ID may be determined according to the terminal identification information of the first terminal, the terminal identification information of the second terminal, or the CRC sequence.
  • n ID Layer-1 source ID
  • n ID Layer-1 destination ID
  • n ID is determined by the lowest 16 bits of the CRC of the first-order SCI.
  • Layer-1 source ID represents the layer 1 identification information of the PSSCH transmitting end (ie, the second)
  • Layer-1 destination ID represents the layer 1 identification information of the PSSCH receiving end (ie, the first terminal).
  • the DMRS sequence is generated by a pseudo-random sequence.
  • the initialized value c init of the pseudo-random sequence may be determined according to the terminal identification information of the first terminal, the terminal identification information of the second terminal, or the CRC sequence.
  • the c init parameter is determined by the parameter definite, It can be determined based on the above information.
  • source ID, or destination ID or Determined by the lowest 16 bits of the CRC of the second-order SCI.
  • Layer-1 source ID represents the layer 1 identification information of the PSSCH transmitting end
  • Layer-1 destination ID represents the layer 1 identification information of the PSSCH receiving end.
  • the scrambling sequence used to scramble the side-line feedback information or the measurement result is determined according to at least one of the following information:
  • the terminal identification information of the first terminal that is, the terminal identification information of the receiving end of the PSSCH;
  • the terminal identification information of the second terminal that is, the terminal identification information of the PSSCH transmitting end;
  • the scrambling sequence of the PSFCH is determined to be generated, which is beneficial to reduce the interference of the PSFCH between different terminals.
  • bit sequence of the side-line feedback information needs to be scrambled before performing constellation modulation after processing such as channel coding to reduce interference between terminals.
  • the following formula is used to scramble the side-line feedback information or measurement result:
  • the bit sequence b(0),...,b(M bit -1) is the coded sequence
  • M bit represents the coded bit length
  • c(i) represents the scrambled sequence, for example, it can be generated according to a pseudo-random sequence
  • the initialization parameter c init of the pseudo-random sequence can be The terminal identification information or CRC sequence of the terminal is determined.
  • c init can be determined according to the following formula:
  • n RNTI Layer-1 source ID
  • n RNTI Layer-1 destination ID
  • n RNTI is determined according to the lowest 10 bits of the CRC of the first-order SCI.
  • the terminal identification information of the first terminal is cell identification information of a cell to which the first terminal belongs or in-group identification information of a terminal group or communication group to which the first terminal belongs.
  • the cell identification information of the cell to which the first terminal belongs may be the SL-V-RNTI of the cell.
  • the terminal identification information of the second terminal is cell identification information of a cell to which the second terminal belongs or in-group identification information of a terminal group or communication group to which the second terminal belongs.
  • the cell identification information of the cell to which the second terminal belongs may be the SL-V-RNTI of the cell.
  • Embodiment 2 Channel design of the third type of side-line feedback channel
  • the third type of side row feedback channel occupies 2 time domain symbols in one time slot.
  • the third type of side row The time domain symbols occupied by the feedback channel are the same as the time domain symbols occupied by the first type of sideline feedback channel, that is, the penultimate and third time domain symbols that can be used for sideline transmission in a time slot are occupied, Immediate domain symbol 11 and time domain symbol 12.
  • the data on one of the two time-domain symbols occupied by the third-type side-line feedback channel is a copy of data on the other time-domain symbol, for example, the data on the time-domain symbol 11 It can be a copy of the data on the time domain symbol 12.
  • a time domain symbol after the third type of sideline feedback channel is used as a GP, that is, no data is transmitted on this symbol.
  • the third type of side row feedback channel occupies N RPBs, and the N is greater than one.
  • the DMRS sequence of the third type of side row feedback channel and the third type of side row feedback channel are frequency-divided, that is, the third type of side row
  • the DMRS sequence of the feedback channel and the third type of side feedback channel occupy different frequency domain units or subcarriers.
  • the frequency domain units of the adjacent DMRS sequences are separated by 3 subcarriers.
  • the third type of PSFCH occupies two time-domain symbols.
  • the data on one symbol is a copy of the data on the other symbol.
  • the DMRS sequence and data on each symbol are frequency-division multiplexing (FDM). ), the frequency domain units of adjacent DMRS sequences are separated by 3 subcarriers. For example, if the frequency domain unit of the first DRMS sequence is subcarrier 0, then the frequency domain unit of the second DMRS sequence is subcarrier 3.
  • the first terminal may also determine the offset of the frequency domain position of the first DMRS sequence in a PRB relative to the first subcarrier, that is, the frequency domain position of the first DMRS sequence is Whether subcarrier 0, subcarrier 1 or subcarrier 2 is subcarrier, the frequency domain positions of other DMRS sequences can be determined according to the frequency domain position of the first DMRS sequence and the interval between adjacent DMRS sequences.
  • the first terminal may determine the offset according to at least one of the following information:
  • the configuration information of the network device, the configuration information of the group head terminal, the indication information of the second terminal, the CRC sequence generated according to the SCI sent by the second terminal, the identification information of the first terminal, the second terminal Or the group identification information of the communication group where the first terminal is located, and the indication information sent by the second terminal is used to indicate the offset.
  • the offset may be configured by the network device, configured by the group head terminal, configured by the second terminal, and determined according to specific information.
  • the specific information may be, for example, the CRC sequence generated by the SCI sent by the second terminal.
  • the configuration information of the network device may be the resource pool configuration information of the third type of side feedback channel, that is, the resource pool configuration of the third type of side feedback channel may be used
  • the information includes the configuration information of the offset.
  • the network device may send the configuration information through a broadcast message or an RRC message.
  • the group head terminal may send the offset to the first terminal through SCI or PC5-RRC signaling, or in multicast communication, notify the terminal equipment in the communication group of the offset the amount.
  • the group head terminal may refer to a terminal with functions such as resource management, resource allocation, resource scheduling, resource coordination, etc. in a communication group of multicast communication, such as the first car in a fleet formation or a car in the middle of the fleet.
  • the second terminal may carry the indication information in the SCI, or may also send the indication information through PC5-RRC signaling when the first terminal and the second terminal establish a connection, specifically, When establishing a connection, the first terminal and the second terminal can exchange configuration information through PC5-RRC signaling, and the configuration information can carry the indication information.
  • the first terminal determines the frequency domain offset of the DMRS sequence corresponding to the PSFCH according to the CRC sequence generated by the SCI sent by the second terminal.
  • the SCI Specifically, it can be a second-order SCI.
  • the DMRS sequence of the third type of side feedback channel is determined according to at least one of the following information:
  • Terminal identification information of the first terminal
  • Terminal identification information of the second terminal
  • the scrambling sequence used to scramble the side-line feedback information or the measurement result is determined according to at least one of the following information:
  • Terminal identification information of the first terminal
  • Terminal identification information of the second terminal
  • the method for determining the scrambling sequence refers to the related description in Embodiment 1. For the sake of brevity, details are not repeated here.
  • the second type of side row feedback channel and the third type of side row feedback channel are described in the time domain only by taking the time slot granularity as an example. In other embodiments, other types may also be used.
  • the time unit is a granular design, that is, the time slots of the second type of side feedback channel and the third type of side feedback channel can also be replaced with other time units.
  • only the PRB is used as an example in the frequency domain.
  • the second type of side row channel and the third type of side row feedback channel may also adopt other frequency domain units as granular designs. For the sake of brevity, details are not repeated here.
  • the feedback information of the side row data channel may be at least one of the following:
  • Hybrid Automatic Repeat reQuest-ACKnowledgement Hybrid-Automatic Repeat-reQuest-ACKnowledgement, HARQ-ACK
  • CQI Channel Quality Indicator
  • Rank indication (Rank Indication, RI);
  • PMI Precoding Matrix Indicator
  • the measurement result of the side row reference signal may include index information used to determine the beam.
  • the index information used to determine the beam may be channel state information reference signal (Channel State Information Reference Signal, CSI-RS) index information.
  • CSI-RS Channel State Information Reference Signal
  • the transmitting end terminal may transmit data in a beamforming manner to improve the reliability and transmission distance of data transmission, and the receiving end terminal may feed back the index information of the optimal beam to the transmitting end terminal.
  • a beam can be determined by the CSI-RS resource corresponding to the beam, so the index information of the CSI-RS resource is fed back to the transmitting end terminal, so that the receiving end terminal can determine the selection of the transmitting end terminal according to the index information of the CSI-RS resource The optimal beam.
  • FIG. 10 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication module 410 is configured to receive the sideline data channel and/or the sideline reference signal sent by the second terminal;
  • the first side row feedback channel carrying side row feedback information of the side row data channel and/or the measurement result of the side row reference channel, wherein The number of bits of information carried in the first side row feedback channel is greater than one.
  • the first side row feedback channel is a second type side row feedback channel, wherein the second type side row feedback channel can occupy a time slot in the time domain. All time domain symbols used for sideline transmission; or
  • the first side row feedback channel is a third type of side row feedback channel, wherein the third type of side row feedback channel occupies a time slot in the time domain of all time domain symbols that can be used for side row transmission
  • the penultimate and third time domain symbols, and the third type of side row feedback channel occupies N physical resource blocks PRB in the frequency domain, where N is a positive integer greater than 1.
  • the last time-domain symbol among all time-domain symbols that can be used for side-line transmission in a time slot is not used to transmit the second-type side-line feedback channel.
  • the N is a configuration parameter in the resource pool configuration information, or the N is predefined.
  • the second type of side row feedback channel occupies M physical resource blocks PRB in the frequency domain, where M is a positive integer.
  • the M is a configuration parameter in the resource pool configuration information, or the M is predefined.
  • the first side row feedback channel is a second type side row feedback channel
  • the first side row feedback channel and the first type side row feedback channel or the The third type of side row feedback channel uses the same time slot
  • the time domain symbols used to transmit the first side row feedback channel do not include the time domain symbols used to transmit the first type side row feedback channel or the third type side row
  • the first side row feedback channel is a second type of side row feedback channel, which is used to transmit the demodulation reference of the first side row feedback channel in one time slot
  • the time domain symbols of the signal DMRS sequence and the time domain symbols used for transmitting the first side feedback channel are time-divided.
  • the resource pool configuration information of the first side row feedback channel includes configuration information of at least one DMRS pattern, and the DMRS pattern is used to indicate the time domain that can be used to transmit the DMRS sequence position.
  • the at least one DMRS pattern includes multiple DMRS patterns
  • the terminal device further includes:
  • the determining module is configured to determine a target DMRS pattern used for transmitting the first side feedback channel among the multiple DMRS patterns according to the first information, wherein the first information is used to indicate a specific DMRS pattern.
  • the first information is sent by the second terminal to the terminal device.
  • the first information is sent by the network device to the terminal device;
  • the first information is sent by the group head terminal to the terminal device.
  • the second terminal sends the first information to the terminal device through sideline control information SCI or PC5-RRC signaling;
  • the group head terminal sends the first information to the terminal device through SCI or PC5-RRC signaling.
  • the first side row feedback channel is a third type of side row feedback channel, and on a time domain symbol that carries the first side row feedback channel, the first side The DMRS sequence of the row feedback channel and the first side row feedback channel are frequency-divided.
  • the interval between frequency domain units of two adjacent DRMS sequences is 3 subcarriers.
  • the terminal device further includes:
  • the determining module is used to determine the offset of the frequency domain position of the first DMRS sequence in a PRB relative to the first subcarrier.
  • the determining module is further configured to:
  • the offset is determined according to at least one of the following information:
  • the configuration information of the network device The configuration information of the network device, the configuration information of the group head terminal, the indication information of the second terminal, the CRC sequence generated according to the SCI sent by the second terminal, the identification information of the terminal device, the identification information of the second terminal Identification information, or group identification information of the communication group where the terminal device is located.
  • the indication information of the second terminal is sent through side control information SCI or PC5-RRC signaling;
  • the configuration information of the network device is sent through a broadcast message or radio resource control RRC signaling;
  • the configuration information of the group head terminal is sent through a multicast message.
  • the DMRS sequence of the second type side row feedback channel is determined according to at least one of the following information:
  • Terminal identification information of the terminal device
  • Terminal identification information of the second terminal
  • the DMRS sequence of the third type of side feedback channel is determined according to at least one of the following information:
  • Terminal identification information of the terminal device
  • Terminal identification information of the second terminal
  • the scrambling sequence used to scramble the side-line feedback information or the measurement result is determined according to at least one of the following information:
  • Terminal identification information of the terminal device
  • Terminal identification information of the second terminal
  • the terminal identification information of the terminal device is the cell identification information of the cell to which the terminal device belongs or the group identification information of the terminal group to which the terminal device belongs;
  • the terminal identification information of the second terminal is cell identification information of a cell to which the second terminal belongs or group identification information of a terminal group to which the second terminal belongs.
  • the above-mentioned communication module may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned determining module may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the terminal device 400 are to implement the method shown in FIG. 5, respectively.
  • the corresponding process of the first terminal in 200 will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 11 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the application. For the sake of brevity , I won’t repeat it here.
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 12 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和终端设备,该方法包括:第一终端接收第二终端发送的侧行数据信道和/或侧行参考信号;所述第一终端向所述第二终端发送第一侧行反馈信道,所述第一侧行反馈信道承载所述侧行数据信道的侧行反馈信息和/或所述侧行参考信道的测量结果,其中,所述第一侧行反馈信道中承载的信息的比特数大于1。

Description

无线通信的方法和终端设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和终端设备。
背景技术
车联网系统是基于长期演进车辆到车辆(Long Term Evaluation Device to Device,LTE D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的LTE系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此,具有更高的频谱效率以及更低的传输时延。
在车联网系统中,为了提高传输可靠性,引入了侧行反馈信道,在侧行反馈激活的情况下,接收端终端可以向发送端终端发送侧行反馈信息,以便于发送端终端根据该侧行反馈信息确定是否进行重传。
目前,考虑车联网系统支持多载波侧行传输,每个载波上的物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)都需要对应的反馈信息,或者一个物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)支持多传输块(Transport Block,TB)的传输,每个TB都需要对应的反馈信息,此情况下,进行侧行反馈以提升侧行传输的可靠性是一项亟需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和终端设备,能够实现多比特的侧行反馈。
第一方面,提供了一种无线通信的方法,包括:第一终端接收第二终端发送的侧行数据信道和/或侧行参考信号;所述第一终端向所述第二终端发送第一侧行反馈信道,所述第一侧行反馈信道承载所述侧行数据信道的侧行反馈信息和/或所述侧行参考信道的测量结果,其中,所述第一侧行反馈信道中承载的信息的比特数大于1。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,第一终端可以接收第二终端发送的侧行数据信道和/或侧行参考信道,确定需要反馈多比特的反馈信息,进一步所述第一终端可以将该多比特的反馈信息可以通过一个侧行反馈信道进行反馈,有利于降低反馈开销,进一步地,所述第二终端可以基于该侧行反馈信道确定是否进行数据的重传,提升数据传输的可靠性。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是终端设备之间的几种通信方式的示意性图。
图3是承载1比特反馈信息的PSFCH的结构示意图。
图4是侧行反馈的一例示意图。
图5是本申请实施例提供的一种无线通信的方法的示意性图。
图6是根据本申请实施例的第一类PSFCH、第二类PSFCH和第三类PSFCH所占用的时域符号的示意图。
图7是根据本申请实施例的第二类PSFCH所占用的时域符号的另一示意图
图8是根据本申请实施例的DMRS序列所占用的时域符号的示意图。
图9是第三类PSFCH和对应的DMRS序列所占用的频域单元的示意图。
图10是本申请实施例提供的一种终端设备的示意性框图。
图11是本申请另一实施例提供的一种通信设备的示意性框图。
图12是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于端到端(Device to Device,D2D)通信系统,例如,基于长期演进(Long Term Evolution,LTE)进行D2D通信的车联网系统,或者NR-V2X系统。与传统的LTE系统中终端之间的通信数据通过网络设备(例如,基站)接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。
可选地,车联网系统基于的通信系统可以是全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G新无线(New Radio,NR)系统等。
本申请实施例中的网络设备可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、NR网络中的网络侧设备(gNB)或者未来演进的公共陆地移动网络(Public  Land Mobile Network,PLMN)中的网络设备等。
本申请实施例中的终端设备可以是能够实现D2D通信的终端设备。例如,可以是车载终端设备,也可以是LTE系统中的终端设备(LTE UE),NR网络中的终端设备(NR UE),或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
D2D通信技术可以应用于车对车(Vehicle to Vehicle,简称“V2V”)通信或车辆到其他设备(Vehicle to Everything,V2X)通信。在V2X通信中,X可以泛指任何具有无线接收和发送能力的设备,例如但不限于慢速移动的无线装置,快速移动的车载设备,或是具有无线发射接收能力的网络控制节点等。应理解,本发明实施例主要应用于V2X通信的场景,但也可以应用于任意其它D2D通信场景,本申请实施例对此不做任何限定。
图1是本申请实施例的一个应用场景的示意图。图1示例性地示出了一个网络设备和两个终端设备,可选地,本申请实施例中的无线通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A上和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
可选地,该无线通信系统还可以包括移动管理实体(Mobile Management Entity,MME)、服务网关(Serving Gateway,S-GW)、分组数据网络网关(Packet Data Network Gateway,P-GW)等其他网络实体,或者,该无线通信系统还可以包括会话管理功能(Session Management Function,SMF)、统一数据管理(Unified Data Management,UDM),认证服务器功能(Authentication Server Function,AUSF)等其他网络实体,本申请实施例对此不作限定。
在该车联网系统中,终端设备可以采用模式A和模式B进行通信。
具体地,终端设备121和终端设备122可以通过D2D通信模式进行通信,在进行D2D通信时,终端设备121和终端设备122通过D2D链路即侧行链路(SideLink,SL)直接进行通信。其中,在模式A中,终端设备的传输资源是由基站分配的,终端设备可以根据基站分配的资源在SL上进行数据的发送。基站可以为终端设备分配单次传输的资源,也可以为终端分配半静态传输的资源。在模式B中,终端设备在SL资源上自主选取传输资源。具体的,终端设备在资源池中通过侦听的方式获取可用的传输资源,或者终端设备从资源池中随机选取一个传输资源。
应理解,上述模式A和模式B只是示例性的说明两种传输模式,可以定义其他的传输模式。例如,在NR-V2X中引入了模式1和模式2,其中,模式1表示终端设备的侧行链路传输资源是由基站分配的,基站采用该模式A和模式1分配侧行链路传输资源的方式可以不同,例如,可以是一个采用动态调度的方式,另一个采用半静态调度的方式,或半静态加动态调度的方式等,模式2表示终端设备的侧行链路传输资源是终端选取的。
在基于新无线(New Radio,NR)的车辆到其他设备(Vehicle to Everything,V2X)系统(简称NR-V2X)中,可以支持多种传输方式:单播传输方式,接收端终端只有一个终端,如图2的(a)所示为UE1和UE2之间的单播传输;组播传输方式,接收端终端为一个通信组内的所有终端,或者是一定传输距离内的所有终端,如图2的(b)所示,UE1,UE2,UE3和UE4构成一个通信组,其中,UE1发送数据,则该通信组内的其他终端设备都是接收端终端;广播传输方式,其接收端可以是任一终端,如图2的(c)所示,UE1为发送端终端,其周围的其他终端都可以是接收端终端。
在NR-V2X系统中,为了提高传输可靠性,引入了侧行反馈信道,例如,物理侧行反馈信道 (Physical Sidelink Feedback Channel,PSFCH)。对于单播传输,发送端终端向接收端终端发送侧行数据(包括PSCCH和PSSCH),接收端终端可以向发送端终端发送混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)侧行反馈信息,发送端终端可以根据接收端终端的侧行反馈信息判断是否需要进行重传,其中,HARQ侧行反馈信息可以承载在侧行反馈信道中。
其中,该PSFCH只承载1比特的侧行反馈信息,在时域上占用两个时域符号,其中,两个时域符号上承载相同的侧行反馈信息,一个时域符号上的数据是另一个时域符号上的数据的重复,例如,第二个时域符号用于承载侧行反馈信息,第一个符号上的数据是第二个符号上的数据的复制,该第一个符号用作自动增益控制(Automatic Gain Control,AGC)。该PSFCH在频域上占用一个物理资源块(Physical Resource Block,PRB)。图3是PSFCH和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)/物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)的结构的一种示例,具体地,图3中示例了一个时隙中PSFCH,PSCCH和PSSCH所占的时域符号的位置,其中,在一个时隙中,最后一个符号(即时域符号13)可以用作保护间隔(Guard Period,GP),倒数第二个符号(即时域符号12)用于PSFCH传输,倒数第三个符号上的数据和倒数第二个符号上的数据相同,用作AGC,倒数第四个符号也用作GP,该时隙中的第一个符号用作AGC,该第一个符号上的数据该时隙中的第二个符号上的数据相同,PSCCH占用3个时域符号,即时域符号1、2和3,时域符号1至9用于传输PSSCH,在时域符号1、2、3上,PSCCH和PSSCH占用不同的频域资源。
应理解,图3中所示例的PSCCH所占用的时域符号的数量和位置,PSFCH所占用的时域符号的位置仅为示例,本申请实施例并不限于此。
进一步地,为了降低PSFCH的开销,定义在每N个时隙中的一个时隙包括PSFCH传输资源,例如,N=1,2,4,其中,该N可以是预配置的或网络设备配置的,图4为N=4的示意图。其中,时隙2,3,4,5中传输的PSSCH,其对应的侧行反馈信息在时隙7中传输,因此,可以将时隙{2,3,4,5}看做一个时隙集合,该时隙集合中传输的PSSCH,其对应的PSFCH可以在相同的时隙中传输。
在如下的情况下,需要反馈多个比特的反馈信息,现有的PSFCH的设计不能满足传输需求:
情况1:PSSCH支持多传输块(Transport Block,TB)的传输,PSFCH需要传输多个比特的反馈信息。例如支持4层或8层的PSSCH传输,对应2个TB块,每个TB都需要对应的反馈信息,因此PSFCH需要传输2个比特的反馈信息。
情况2:支持基于码块组(Code Block Group,CBG)的反馈,例如一个TB可以分为多个CBG,针对每个CBG需要有对应的反馈信息,则发送端发送一个TB时,接收端需要反馈该多个CBG中的每个CBG的反馈信息,需要多个比特。
情况3:当反馈信道的周期N大于1时,例如图4所示,发送端终端可以在多个时隙中向接收端终端发送PSSCH,例如,发送端终端在时隙0,时隙1和时隙2分别向接收端终端发送PSSCH,并且需要接收端终端发送每个PSSCH对应的反馈信息,则接收端终端需要在时隙5发送3比特的反馈信息。
情况4:支持HARQ反馈信息和信道状态信息(Channel State Information,CSI)同时反馈,则需要把HARQ反馈信息和CSI复用到一个侧行反馈信道中进行反馈,则需要多比特的反馈信息。
情况5:支持多载波的反馈,例如,若发送端终端在多个载波上发送PSSCH,每个PSSCH都需要对应的反馈信息,为了降低反馈资源的开销,需要把该多个载波上的反馈信息复用到一个侧行反馈信道中,因此,该侧行反馈信道需要承载多个比特的反馈信息。
有鉴于此,如何进行承载多比特反馈信息的反馈信道设计是一项亟需解决的问题。
图5为本申请实施例提供的一种无线通信的方法200的示意性流程图。该方法200可以由图1所 示的通信系统中的终端设备执行,如图5所示,该方法200可以包括如下至少部分内容:
S210,第一终端接收第二终端发送的侧行数据信道和/或侧行参考信号;
S220,所述第一终端向所述第二终端发送第一侧行反馈信道,所述第一侧行反馈信道承载所述侧行数据信道的侧行反馈信息和/或所述侧行参考信道的测量结果,其中,所述第一侧行反馈信道中承载的信息的比特数大于1。
为便于区分和说明,在本申请实施例中,用于承载1比特的反馈信息的侧行反馈信道记为第一类侧行反馈信道,用于承载多比特的反馈信息的侧行反馈信道可以包括第二类侧行反馈信道和第三类侧行反馈信道中的至少一种,即所述第一侧行反馈信道可以为所述第二类侧行反馈信道或第三类侧行反馈信道。
如图6中的(b)所示,在时域上,所述第二类侧行反馈信道占用一个时隙中的能够用于侧行传输的所有时域符号,在频域上可以占用M个PRB,所述M为正整数,即所述第二类侧行反馈信道在频域上可以占用一个或多个PRB。
可选地,所述M是预定义的,或者预配置的,或者是网络设备配置的,例如所述网络设备可以在该第二类侧行反馈信道的资源池配置信息中包括所述参数M。
如图6中的(c)所示,在时域上,所述第三类侧行反馈信道占用一个时隙中的能够用于侧行传输的2个时域符号,例如,与所述第一类侧行反馈信道占用的时域符号相同,即都占用倒数第二个和倒数第三个时域符号,在频域上可以占用N个PRB,所述N大于1。
可选地,所述N是预定义的,或者预配置的,或者是网络设备配置的,例如所述网络设备可以在该第三类侧行反馈信道的资源池配置信息中包括所述参数N。
可选地,本申请实施例的侧行参考信号例如可以包括侧行同步信号(Sidelink Synchronization Signal,SLSS)、侧行同步信号块(Sidelink Synchronization Signal Block,S-SSB)、侧行信道状态信息参考信号(Sidelink Channel State Information Reference Signal,SL CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS),其中,该S-SSB可以包括侧行主同步信号(Sidelink Primary Synchronization Signal,S-PSS)和侧行辅同步信号(Sidelink Secondary Synchronization Signal,S-SSS)等;解调参考信号包括PSSCH-DMRS,PSCCH DMRS和PSBCH DMRS。
应理解,本申请实施例可以适用于各种需要反馈多比特的反馈信息的场景。
作为一种示例场景,所述第一终端可以接收所述第二终端发送的侧行数据信道,所述侧行数据信道的反馈需要多个比特。应理解,本申请实施例对于所述第一终端接收的所述第二终端发送的所述侧行数据信道的数量不作具体限定。
可选地,所述多个比特的反馈信息可以是对一个侧行数据信道中传输的多个TB的反馈(例如,前述的情况1),或者也可以是对侧行数据信道中的一个TB的多个CBG的反馈(例如,前述的情况2),或者也可以是对多个时隙中传输的侧行数据信道的反馈(例如,前述的情况3),或者也可以是对多个载波中传输的侧行数据信道的反馈(例如,前述的情况5)。
作为另一种示例场景,所述第一终端可以接收所述第二终端发送的侧行参考信号,所述侧行参考信号的测量结果的反馈需要多个比特。
作为再一示例场景,所述第一终端可以接收所述第二终端发送的侧行数据信道和侧行参考信号,所述侧行数据信道的反馈信息和所述侧行参考信号的测量结果的合并反馈需要多个比特,例如,前述的情况4。
本申请实施例以第一种示例场景的反馈为例进行说明,其他场景的实现方式类似,为了简洁,这里不再赘述。
以下结合实施例,说明所述第二类侧行反馈信道和所述第三类侧行反馈信道的信道设计。
实施例1:所述第二类侧行反馈信道的信道设计
可选地,如图6中的(b)以及图7所示,一个时隙中能够用于侧行传输的所有时域符号中的最后一个时域符号不用于传输所述第二类侧行反馈信道,例如,所述最后一个时域符号用作GP。
可选地,如图6中的(b)以及图7所示,一个时隙中能够用于侧行传输的所有时域符号中的第一个时域符号不用于传输所述第二类侧行反馈信道,例如,该第一个时域符号用作AGC。
可选地,一个时隙中能够用于侧行传输的所有时域符号中的第一个时域符号上的数据是该时隙中用于侧行传输的第二个时域符号上的数据的复制或拷贝,即能够用于侧行传输的第一个时域符号和第二个时域符号上的数据相同。
可选地,若所述第二类侧行反馈信道和第一类侧行反馈信道或第三类侧行反馈信道所使用的时隙相同,则用于传输第一类侧行反馈信道和所述第三类侧行反馈信道的时域符号不用于传输所述第二类侧行反馈信道,即所述第二类侧行反馈信道的时域符号不包括第一类侧行反馈信道的时域符号和第三类侧行反馈信道的时域符号。
例如,如图7所示,时域符号11和时域符号12用于传输第一类侧行反馈信道,则时域符号11和时域符号12不用于传输第二类侧行反馈信道,进一步地,时域符号10也不用于传输第二类侧行反馈信道,用作GP。
进一步地,可以设计所述第二类侧行反馈信道的解调参考信号(Demodulation Reference Signal,DMRS)序列和所述第二类侧行反馈信道是时分的。
即用于传输所述第二类侧行反馈信道的DMRS序列的时域符号和用于传输所述第二类侧行反馈信道的时域符号是不同的。
可选地,在一些实施例中,可以配置一个时隙中所述第二类侧行反馈信道的DMRS序列的时域符号的个数和/或位置,例如,可以在所述第二类侧行反馈信道的资源池配置信息中包括DMRS序列的上述配置信息。
图8示意了两种DMRS的配置,即DMRS图案,图8中的(a)中,可以配置一个时隙内用于传输DMRS序列的时域符号个数为2个,占用时域符号3和9;图8中(b)中,可以配置一个时隙内用于传输DMRS序列的时域符号个数为4个,占用时域符号2,5,8和11。
在本申请实施例中,若配置了多个DMRS图案,所述第一终端可以确定发送所述第二类侧行反馈信道所使用的目标DMRS图案。
作为一个实施例,所述第一终端可以根据第一信息确定所述目标DMRS图案,其中,所述第一信息用于指示特定的DMRS图案。
可选地,在一些实施例中,所述第一信息可以是所述第二终端发送的,例如所述第二终端可以在侧行控制信息(Sidelink Control Information,SCI)中携带所述第一信息。或者,也可以通过PC5-RRC信令发送,具体地,在第一终端和第二终端建立连接时,所述第一终端和所述第二终端可以通过PC5-RRC信令交互配置信息,可以在该配置信息中携带所述第一信息。
可选地,在另一些实施例中,所述第一信息可以是网络设备配置的,例如网络设备可以通过广播消息(例如,系统信息块(System Information Block,SIB))或无线资源控制(Radio Resource Control,RRC)信令配置该第一信息。
可选地,在其他实施例中,所述第一信息也可以是组头终端配置的,该组头终端可以指组播通信的通信组内具有资源管理、资源分配、资源调度、资源协调等功能的终端,例如在车队编队行驶中的第一辆车或者是车队中间位置的车。例如,所述组头终端可以通过SCI或PC5-RRC信令发送所述第 一消息,或者也可以在组内通信时,配置该通信组内的终端发送PSFCH所使用的DMRS图案。
可选地,在本申请一些实施例中,所述第二类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
所述第一终端的终端标识信息,即PSSCH的接收端的终端标识信息;
所述第二终端的终端标识信息,即PSSCH的发送端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
在一些场景中,当两个PSSCH发送端采用相同的资源发送PSSCH时,其对应的PSFCH的传输资源也相同,此情况下,根据PSSCH发送端的标识信息生成DMRS序列,可以降低多个PSFCH传输之间的干扰。
在另一些场景中,对于组播通信中第二种反馈方式,每个通信组内的终端都需要发送反馈信息,多个终端可能公用相同的反馈资源,但是若使用不同的序列进行复用,即CDM复用方式,因此,根据接收端的标识信息生成DMRS序列可以降低通信组内的多个终端之间的干扰。
在另一些场景中,不同终端发送的PSSCH,其对应的SCI通常也是不同的,因此根据SCI生成的CRC序列也不同,根据该CRC序列确定DMRS序列可以避免不同终端之间的干扰。
可选地,在一些实施例中,所述SCI可以为第二阶SCI。
作为一个示例,所述DMRS序列可以是具有低峰均功率比(Peak Average Power Ratio,PAPR)特性的序列。
可选地,在一些实施例中,该序列的循环移位(Cyclic Shift)可以根据发送端终端(即PSSCH的发送端)的标识信息,即第二终端的终端标识信息,或者接收端终端(即PSSCH的接收端)的标识信息,即第一终端的终端标识信息确定。
可选地,在另一些实施例中,该序列的循环移位根据PSSCH对应的第二阶SCI序列的CRC序列生成。具体地,在确定DMRS序列的根序列或者循环移位时,可以根据所述第一终端的终端标识信息、所述第二终端的终端标识信息或者CRC序列,确定参数n ID
例如,可以确定n ID=Layer-1source ID,或n ID=Layer-1destination ID,或n ID由第一阶SCI的CRC的最低16位确定。其中,Layer-1source ID表示PSSCH发送端(即第二的)的层1标识信息,Layer-1destination ID表示PSSCH接收端(即第一终端)的层1标识信息。
作为另一示例,DMRS序列由伪随机序列(pseudo-random sequence)生成。
可选地,可以根据所述第一终端的终端标识信息、所述第二终端的终端标识信息或者CRC序列,确定所述伪随机序列的初始化的值c init。作为一个示例,c init参数是由参数
Figure PCTCN2020070318-appb-000001
确定的,
Figure PCTCN2020070318-appb-000002
可以根据上述信息确定。例如,
Figure PCTCN2020070318-appb-000003
source ID,或
Figure PCTCN2020070318-appb-000004
destination ID,或
Figure PCTCN2020070318-appb-000005
由第二阶SCI的CRC的最低16位确定。其中,Layer-1source ID表示PSSCH发送端的层1标识信息,Layer-1destination ID表示PSSCH接收端的层1标识信息。
可选地,在本申请一些实施例中,用于加扰所述侧行反馈信息或测量结果的加扰序列根据如下信息中的至少一项确定:
所述第一终端的终端标识信息,即PSSCH的接收端的终端标识信息;
所述第二终端的终端标识信息,即PSSCH的发送端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
根据PSSCH的接收端的终端标识信息,PSSCH的发送端的终端标识信息或SCI的CRC序列确定生成PSFCH的加扰序列,有利于降低不同终端之间的PSFCH的干扰。
具体而言,侧行反馈信息的比特序列在经过信道编码等处理后,在进行星座调制之前,需要进行 加扰处理,以降低终端之间的干扰。
在一些实施例中,采用如下公式进行加扰侧行反馈信息或测量结果:
Figure PCTCN2020070318-appb-000006
其中,比特序列b(0),...,b(M bit-1)是编码后的序列,M bit表示编码后的比特长度,
Figure PCTCN2020070318-appb-000007
表示加扰后的序列,c(i)表示加扰序列,例如可以是根据伪随机序列生成的,伪随机序列的初始化参数c init可以根据所述第一终端的终端标识信息、所述第二终端的终端标识信息或者CRC序列确定。
作为一个示例,c init可以根据如下公式确定:
c init=n RNTI×2 15+n ID
其中,可以设置n RNTI=Layer-1 source ID,或n RNTI=Layer-1 destination ID,或者n RNTI根据第一阶SCI的CRC的最低10位确定。
可选地,在一些实施例中,所述第一终端的终端标识信息为所述第一终端所属小区的小区标识信息或所述第一终端所属终端组或通信组的组内标识信息。
例如,所述第一终端所属小区的小区标识信息可以为所述小区的SL-V-RNTI。
可选地,在一些实施例中,所述第二终端的终端标识信息为所述第二终端所属小区的小区标识信息或所述第二终端所属的终端组或通信组的组内标识信息。
例如,所述第二终端所属小区的小区标识信息可以为所述小区的SL-V-RNTI。
实施例2:第三类侧行反馈信道的信道设计
在时域上,所述第三类侧行反馈信道占用一个时隙中的2个时域符号,例如,如图6中的(a)和(c)所示,所述第三类侧行反馈信道所占用的时域符号与所述第一类侧行反馈信道占用的时域符号相同,即占用一个时隙中能够用于侧行传输的倒数第二个和第三个时域符号,即时域符号11和时域符号12。
可选地,所述第三类侧行反馈信道占用的2个时域符号中的一个时域符号上的数据是另一个时域符号上的数据的复制,例如,时域符号11上的数据可以是时域符号12上的数据的复制。
可选地,所述第三类侧行反馈信道之后的一个时域符号用作GP,即该符号上不传输数据。
在频域上,所述第三类侧行反馈信道占用N个RPB,该N大于1。
在承载所述第三类侧行反馈信道的时域符号上,所述第三类侧行反馈信道的DMRS序列和所述第三类侧行反馈信道是频分的,即第三类侧行反馈信道的DMRS序列和第三类侧行反馈信道占用不同的频域单元或子载波。
在一些实施例中,所述相邻的DMRS序列的频域单元相距3个子载波。
例如,第三类PSFCH占据2个时域符号,一个符号上的数据是另一个符号上的数据的复制,在每个符号上的DMRS序列和数据是频分复用(frequency-division multiplexing,FDM)的,相邻DMRS序列的频域单元相距3个子载波,例如,若第一个DRMS序列的频域单元为子载波0,则第二个DMRS序列的频域单元为子载波3。
在本申请实施例中,所述第一终端还可以确定一个PRB中第一个DMRS序列的频域位置相对于第一个子载波的偏移量,即第一个DMRS序列的频域位置是子载波0,子载波1还是子载波2,进一步可以根据该第一DMRS序列的频域位置,以及相邻的DMRS序列之间的间隔,确定其他DMRS序列的频域位置。
在一些实施例中,所述第一终端可以根据以下信息中的至少一种确定所述偏移量:
网络设备的配置信息,组头终端的配置信息,所述第二终端的指示信息,根据所述第二终端发送的SCI生成的CRC序列,所述第一终端的标识信息,所述第二终端的标识信息,或所述第一终端所 在通信组的组标识信息,所述第二终端发送的指示信息用于指示所述偏移量。
即所述偏移量可以是网络设备配置的,组头终端配置的,第二终端配置的,根据特定的信息确定的,该特定的信息例如可以为第二终端发送的SCI生成的CRC序列,第一终端的标识信息,所述第二终端的标识信息,或所述第一终端所在通信组的组标识信息。
可选地,在一些实施例中,所述网络设备的配置信息可以为所述第三类侧行反馈信道的资源池配置信息,即可以在所述第三类侧行反馈信道的资源池配置信息中包括所述偏移量的配置信息。可选地,所述网络设备可以通过广播消息或RRC消息发送所述配置信息。
可选地,所述组头终端可以通过SCI或者PC5-RRC信令向所述第一终端发送所述偏移量,或者在组播通信中,通知该通信组内的终端设备所述偏移量。该组头终端可以指组播通信的通信组内具有资源管理、资源分配、资源调度、资源协调等功能的终端,例如在车队编队行驶中的第一辆车或者是车队中间位置的车。
可选地,所述第二终端可以在SCI携带所述指示信息,或者也可以是在第一终端和第二终端建立连接时,通过PC5-RRC信令发送所述指示信息,具体地,在建立连接时,第一终端和第二终端可以通过PC5-RRC信令交互配置信息,可以在该配置信息中携带所述指示信息。
可选地,在一些实施例中,所述第一终端根据所述第二终端发送的SCI生成的CRC序列,确定发送PSFCH对应的DMRS序列的频域偏移量,可选地,所述SCI具体可以为第二阶SCI。
可选地,在本实施例中,所述第三类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
所述第一终端的终端标识信息;
所述第二终端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
所述第三类侧行反馈信道的DMRS序列的确定方式参考实施例1中所述第二类侧行反馈信道的DMRS序列确定方式的相关描述,为了简洁,这里不再赘述。
可选地,在本实施例中,用于加扰所述侧行反馈信息或测量结果的加扰序列根据如下信息中的至少一项确定:
所述第一终端的终端标识信息;
所述第二终端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
在所述第三类侧行反馈信道中,加扰序列的确定方式参考实施例1的相关描述,为了简洁,这里不再赘述。
应理解,在上述实施例中,所述第二类侧行反馈信道和第三类侧行反馈信道在时域上仅以时隙粒度为例进行说明,在其他实施例中,也可以采用其他时间单元为粒度设计,即第二类侧行反馈信道和所述第三类侧行反馈信道的时隙也可以替换为其他时间单元,类似地,在频域上仅以PRB为粒度为例进行说明,在其他实施例中,所述第二类侧行信道和所述第三类侧行反馈信道也可以采用其他频域单元为粒度设计,为了简洁,这里不再赘述。
在一些实施例中,所述侧行数据信道的反馈信息可以为以下中的至少一种:
混合自动请求重传确认(Hybrid Automatic Repeat reQuest-ACKnowledgement,HARQ-ACK);
信道质量指示(Channel Quality Indicator,CQI);
秩指示(Rank Indication,RI);
预编码矩阵指示(Precoding Matrix Indicator,PMI)。
在一些实施例中,所述侧行参考信号的测量结果可以包括用于确定波束的索引信息。
作为一个示例,所述用于确定波束的索引信息可以为信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的索引信息。
具体地,发送端终端可以采用波束赋形(beamforming)的方式传输数据以提高数据传输的可靠性和传输距离,接收端终端可以向发送端终端反馈最优的波束的索引信息。具体地,一个波束可以通过该波束对应的CSI-RS资源确定,因此向发送端终端反馈CSI-RS资源的索引信息,从而接收端终端可以根据该CSI-RS资源的索引信息确定发送端终端选择的最优的波束。
上文结合图5至图9详细描述了本申请的方法实施例,下文结合图10至图12,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的终端设备400的示意性框图。如图10所示,该终端设备400包括:
通信模块410,用于接收第二终端发送的侧行数据信道和/或侧行参考信号;以及
向所述第二终端发送第一侧行反馈信道,所述第一侧行反馈信道承载所述侧行数据信道的侧行反馈信息和/或所述侧行参考信道的测量结果,其中,所述第一侧行反馈信道中承载的信息的比特数大于1。
可选地,在本申请一些实施例中,所述第一侧行反馈信道为第二类侧行反馈信道,其中,所述第二类侧行反馈信道在时域上占用一个时隙中能够用于侧行传输的所有时域符号;或者
所述第一侧行反馈信道为第三类侧行反馈信道,其中,所述第三类侧行反馈信道在时域上占用一个时隙中能够用于侧行传输的所有时域符号中的倒数第二个和倒数第三个时域符号,并且所述第三类侧行反馈信道在频域上占用N个物理资源块PRB,其中,所述N为大于1的正整数。
可选地,在本申请一些实施例中,一个时隙中的能够用于侧行传输的所有时域符号中的最后一个时域符号不用于传输所述第二类侧行反馈信道。
可选地,在本申请一些实施例中,所述N是资源池配置信息中的配置参数,或者所述N是预定义的。
可选地,在本申请一些实施例中,所述第二类侧行反馈信道在频域上占用M个物理资源块PRB,其中,所述M为正整数。
可选地,在本申请一些实施例中,所述M是资源池配置信息中的配置参数,或者所述M是预定义的。
可选地,在本申请一些实施例中,若所述第一侧行反馈信道为第二类侧行反馈信道,并且所述第一侧行反馈信道与第一类侧行反馈信道或所述第三类侧行反馈信道使用相同的时隙,用于传输所述第一侧行反馈信道的时域符号不包括用于传输所述第一类侧行反馈信道或所述第三类侧行反馈信道的时域符号,其中,所述第一类侧行反馈信道用于承载1比特的侧行反馈信息。
可选地,在本申请一些实施例中,所述第一侧行反馈信道为第二类侧行反馈信道,在一个时隙内,用于传输所述第一侧行反馈信道的解调参考信号DMRS序列的时域符号和用于传输所述第一侧行反馈信道的时域符号是时分的。
可选地,在本申请一些实施例中,所述第一侧行反馈信道的资源池配置信息中包括至少一个DMRS图样的配置信息,所述DMRS图样用于指示可用于传输DMRS序列的时域位置。
可选地,在本申请一些实施例中,所述至少一个DMRS图样包括多个DMRS图样,所述终端设备还包括:
确定模块,用于根据第一信息,在所述多个DMRS图案中确定发送所述第一侧行反馈信道所使 用的目标DMRS图样,其中,所述第一信息用于指示特定的DMRS图样。
可选地,在本申请一些实施例中,所述第一信息是所述第二终端发送给所述终端设备的;或者
所述第一信息是网络设备发送给所述终端设备的;或者
所述第一信息是组头终端发送给所述终端设备的。
可选地,在本申请一些实施例中,所述第二终端通过侧行控制信息SCI或者PC5-RRC信令向所述终端设备发送所述第一信息;
所述网络设备通过广播消息或无线资源控制RRC信令发送所述第一信息;
所述组头终端通过SCI或者PC5-RRC信令向所述终端设备发送所述第一信息。
可选地,在本申请一些实施例中,所述第一侧行反馈信道为第三类侧行反馈信道,在承载所述第一侧行反馈信道的时域符号上,所述第一侧行反馈信道的DMRS序列和所述第一侧行反馈信道是频分的。
可选地,在本申请一些实施例中,相邻的两个DRMS序列的频域单元的间隔为3个子载波。
可选地,在本申请一些实施例中,所述终端设备还包括:
确定模块,用于确定一个PRB中第一个DMRS序列的频域位置相对于第一个子载波的偏移量。
可选地,在本申请一些实施例中,所述确定模块还用于:
根据以下信息中的至少一种确定所述偏移量:
网络设备的配置信息,组头终端的配置信息,所述第二终端的指示信息,根据所述第二终端发送的SCI生成的CRC序列,所述终端设备的标识信息,所述第二终端的标识信息,或所述终端设备所在通信组的组标识信息。
可选地,在本申请一些实施例中,所述第二终端的指示信息通过侧行控制信息SCI或者PC5-RRC信令发送;
所述网络设备的配置信息通过广播消息或无线资源控制RRC信令发送;
所述组头终端的配置信息通过组播消息发送。
可选地,在本申请一些实施例中,所述第二类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
所述终端设备的终端标识信息;
所述第二终端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
可选地,在本申请一些实施例中,所述第三类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
所述终端设备的终端标识信息;
所述第二终端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
可选地,在本申请一些实施例中,用于加扰所述侧行反馈信息或测量结果的加扰序列根据如下信息中的至少一项确定:
所述终端设备的终端标识信息;
所述第二终端的终端标识信息;
根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
可选地,在本申请一些实施例中,所述终端设备的终端标识信息为所述终端设备所属小区的小区标识信息或所述终端设备所属终端组的组内标识信息;
所述第二终端的终端标识信息为所述第二终端所属小区的小区标识信息或所述第二终端所属的终端组的组内标识信息。
可选地,在一些实施例中,上述通信模块可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述确定模块可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法200中第一终端的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备600示意性结构图。图11所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图11所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施 例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为 了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (47)

  1. 一种无线通信的方法,其特征在于,包括:
    第一终端接收第二终端发送的侧行数据信道和/或侧行参考信号;
    所述第一终端向所述第二终端发送第一侧行反馈信道,所述第一侧行反馈信道承载所述侧行数据信道的侧行反馈信息和/或所述侧行参考信道的测量结果,其中,所述第一侧行反馈信道中承载的信息的比特数大于1。
  2. 根据权利要求1所述的方法,其特征在于,所述第一侧行反馈信道为第二类侧行反馈信道,其中,所述第二类侧行反馈信道在时域上占用一个时隙中能够用于侧行传输的所有时域符号;或者
    所述第一侧行反馈信道为第三类侧行反馈信道,其中,所述第三类侧行反馈信道在时域上占用一个时隙中能够用于侧行传输的所有时域符号中的倒数第二个和倒数第三个时域符号,并且所述第三类侧行反馈信道在频域上占用N个物理资源块PRB,其中,所述N为大于1的正整数。
  3. 根据权利要求2所述的方法,其特征在于,一个时隙中的能够用于侧行传输的所有时域符号中的最后一个时域符号不用于传输所述第二类侧行反馈信道。
  4. 根据权利要求2或3所述的方法,其特征在于,所述N是资源池配置信息中的配置参数,或者所述N是预定义的。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述第二类侧行反馈信道在频域上占用M个物理资源块PRB,其中,所述M为正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述M是资源池配置信息中的配置参数,或者所述M是预定义的。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,若所述第一侧行反馈信道为第二类侧行反馈信道,并且所述第一侧行反馈信道与第一类侧行反馈信道或所述第三类侧行反馈信道使用相同的时隙,用于传输所述第一侧行反馈信道的时域符号不包括用于传输所述第一类侧行反馈信道或所述第三类侧行反馈信道的时域符号,其中,所述第一类侧行反馈信道用于承载1比特的侧行反馈信息。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述第一侧行反馈信道为第二类侧行反馈信道,在一个时隙内,用于传输所述第一侧行反馈信道的解调参考信号DMRS序列的时域符号和用于传输所述第一侧行反馈信道的时域符号是时分的。
  9. 根据权利要求8所述的方法,其特征在于,所述第一侧行反馈信道的资源池配置信息中包括至少一个DMRS图样的配置信息,所述DMRS图样用于指示可用于传输DMRS序列的时域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述至少一个DMRS图样包括多个DMRS图样,所述方法还包括:
    所述第一终端根据第一信息,在所述多个DMRS图案中确定发送所述第一侧行反馈信道所使用的目标DMRS图样,其中,所述第一信息用于指示特定的DMRS图样。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息是所述第二终端发送给所述第一终端的;或者
    所述第一信息是网络设备发送给所述第一终端的;或者
    所述第一信息是组头终端发送给所述第一终端的。
  12. 根据权利要求11所述的方法,其特征在于,所述第二终端通过侧行控制信息SCI或者PC5-RRC信令向所述第一终端发送所述第一信息;
    所述网络设备通过广播消息或无线资源控制RRC信令发送所述第一信息;
    所述组头终端通过SCI或者PC5-RRC信令向所述第一终端发送所述第一信息。
  13. 根据权利要求2至12中任一项所述的方法,其特征在于,所述第一侧行反馈信道为第三类侧行反馈信道,在承载所述第一侧行反馈信道的时域符号上,所述第一侧行反馈信道的DMRS序列和所述第一侧行反馈信道是频分的。
  14. 根据权利要求13所述的方法,其特征在于,相邻的两个DRMS序列的频域单元的间隔为3个子载波。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    确定一个PRB中第一个DMRS序列的频域位置相对于第一个子载波的偏移量。
  16. 根据权利要求15所述的方法,其特征在于,所述确定一个PRB中第一个DMRS序列的频域位置相对于第一个子载波的偏移量,包括:
    根据以下信息中的至少一种确定所述偏移量:
    网络设备的配置信息,组头终端的配置信息,所述第二终端的指示信息,根据所述第二终端发送的SCI生成的CRC序列,所述第一终端的标识信息,所述第二终端的标识信息,或所述第一终端所在通信组的组标识信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第二终端的指示信息通过侧行控制信息SCI或者PC5-RRC信令发送;
    所述网络设备的配置信息通过广播消息或无线资源控制RRC信令发送;
    所述组头终端的配置信息通过组播消息发送。
  18. 根据权利要求2至17中任一项所述的方法,其特征在于,所述第二类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
    所述第一终端的终端标识信息;
    所述第二终端的终端标识信息;
    根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
  19. 根据权利要求2至18中任一项所述的方法,其特征在于,所述第三类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
    所述第一终端的终端标识信息;
    所述第二终端的终端标识信息;
    根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
  20. 根据权利要求2至19中任一项所述的方法,其特征在于,用于加扰所述侧行反馈信息或测量结果的加扰序列根据如下信息中的至少一项确定:
    所述第一终端的终端标识信息;
    所述第二终端的终端标识信息;
    根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第一终端的终端标识信息为所述第一终端所属小区的小区标识信息或所述第一终端所属终端组的组内标识信息;
    所述第二终端的终端标识信息为所述第二终端所属小区的小区标识信息或所述第二终端所属的终端组的组内标识信息。
  22. 一种终端设备,其特征在于,包括:
    通信模块,用于接收第二终端发送的侧行数据信道和/或侧行参考信号;以及
    向所述第二终端发送第一侧行反馈信道,所述第一侧行反馈信道承载所述侧行数据信道的侧行反馈信息和/或所述侧行参考信道的测量结果,其中,所述第一侧行反馈信道中承载的信息的比特数大 于1。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一侧行反馈信道为第二类侧行反馈信道,其中,所述第二类侧行反馈信道在时域上占用一个时隙中能够用于侧行传输的所有时域符号;或者
    所述第一侧行反馈信道为第三类侧行反馈信道,其中,所述第三类侧行反馈信道在时域上占用一个时隙中能够用于侧行传输的所有时域符号中的倒数第二个和倒数第三个时域符号,并且所述第三类侧行反馈信道在频域上占用N个物理资源块PRB,其中,所述N为大于1的正整数。
  24. 根据权利要求23所述的终端设备,其特征在于,一个时隙中的能够用于侧行传输的所有时域符号中的最后一个时域符号不用于传输所述第二类侧行反馈信道。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述N是资源池配置信息中的配置参数,或者所述N是预定义的。
  26. 根据权利要求23至25中任一项所述的终端设备,其特征在于,所述第二类侧行反馈信道在频域上占用M个物理资源块PRB,其中,所述M为正整数。
  27. 根据权利要求26所述的终端设备,其特征在于,所述M是资源池配置信息中的配置参数,或者所述M是预定义的。
  28. 根据权利要求23至27中任一项所述的终端设备,其特征在于,若所述第一侧行反馈信道为第二类侧行反馈信道,并且所述第一侧行反馈信道与第一类侧行反馈信道或所述第三类侧行反馈信道使用相同的时隙,用于传输所述第一侧行反馈信道的时域符号不包括用于传输所述第一类侧行反馈信道或所述第三类侧行反馈信道的时域符号,其中,所述第一类侧行反馈信道用于承载1比特的侧行反馈信息。
  29. 根据权利要求23至28中任一项所述的终端设备,其特征在于,所述第一侧行反馈信道为第二类侧行反馈信道,在一个时隙内,用于传输所述第一侧行反馈信道的解调参考信号DMRS序列的时域符号和用于传输所述第一侧行反馈信道的时域符号是时分的。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第一侧行反馈信道的资源池配置信息中包括至少一个DMRS图样的配置信息,所述DMRS图样用于指示可用于传输DMRS序列的时域位置。
  31. 根据权利要求30所述的终端设备,其特征在于,所述至少一个DMRS图样包括多个DMRS图样,所述终端设备还包括:
    确定模块,用于根据第一信息,在所述多个DMRS图案中确定发送所述第一侧行反馈信道所使用的目标DMRS图样,其中,所述第一信息用于指示特定的DMRS图样。
  32. 根据权利要求31所述的终端设备,其特征在于,所述第一信息是所述第二终端发送给所述终端设备的;或者
    所述第一信息是网络设备发送给所述终端设备的;或者
    所述第一信息是组头终端发送给所述终端设备的。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第二终端通过侧行控制信息SCI或者PC5-RRC信令向所述终端设备发送所述第一信息;
    所述网络设备通过广播消息或无线资源控制RRC信令发送所述第一信息;
    所述组头终端通过SCI或者PC5-RRC信令向所述终端设备发送所述第一信息。
  34. 根据权利要求23至33中任一项所述的终端设备,其特征在于,所述第一侧行反馈信道为第三类侧行反馈信道,在承载所述第一侧行反馈信道的时域符号上,所述第一侧行反馈信道的DMRS 序列和所述第一侧行反馈信道是频分的。
  35. 根据权利要求34所述的终端设备,其特征在于,相邻的两个DRMS序列的频域单元的间隔为3个子载波。
  36. 根据权利要求34或35所述的终端设备,其特征在于,所述终端设备还包括:
    确定模块,用于确定一个PRB中第一个DMRS序列的频域位置相对于第一个子载波的偏移量。
  37. 根据权利要求36所述的终端设备,其特征在于,所述确定模块还用于:
    根据以下信息中的至少一种确定所述偏移量:
    网络设备的配置信息,组头终端的配置信息,所述第二终端的指示信息,根据所述第二终端发送的SCI生成的CRC序列,所述终端设备的标识信息,所述第二终端的标识信息,或所述终端设备所在通信组的组标识信息。
  38. 根据权利要求37所述的终端设备,其特征在于,所述第二终端的指示信息通过侧行控制信息SCI或者PC5-RRC信令发送;
    所述网络设备的配置信息通过广播消息或无线资源控制RRC信令发送;
    所述组头终端的配置信息通过组播消息发送。
  39. 根据权利要求23至38中任一项所述的终端设备,其特征在于,所述第二类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
    所述终端设备的终端标识信息;
    所述第二终端的终端标识信息;
    根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
  40. 根据权利要求23至39中任一项所述的终端设备,其特征在于,所述第三类侧行反馈信道的DMRS序列根据如下信息中的至少一项确定:
    所述终端设备的终端标识信息;
    所述第二终端的终端标识信息;
    根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
  41. 根据权利要求23至40中任一项所述的终端设备,其特征在于,用于加扰所述侧行反馈信息或测量结果的加扰序列根据如下信息中的至少一项确定:
    所述终端设备的终端标识信息;
    所述第二终端的终端标识信息;
    根据所述第二终端发送的SCI生成的循环冗余校验CRC序列。
  42. 根据权利要求39至41中任一项所述的终端设备,其特征在于,所述终端设备的终端标识信息为所述终端设备所属小区的小区标识信息或所述终端设备所属终端组的组内标识信息;
    所述第二终端的终端标识信息为所述第二终端所属小区的小区标识信息或所述第二终端所属的终端组的组内标识信息。
  43. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  44. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  46. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  47. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
PCT/CN2020/070318 2020-01-03 2020-01-03 无线通信的方法和终端设备 WO2021134791A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20910108.8A EP4087350A4 (en) 2020-01-03 2020-01-03 WIRELESS COMMUNICATION METHOD AND TERMINAL
CN202080090380.6A CN114868447A (zh) 2020-01-03 2020-01-03 无线通信的方法和终端设备
PCT/CN2020/070318 WO2021134791A1 (zh) 2020-01-03 2020-01-03 无线通信的方法和终端设备
US17/856,324 US20220338174A1 (en) 2020-01-03 2022-07-01 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070318 WO2021134791A1 (zh) 2020-01-03 2020-01-03 无线通信的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/856,324 Continuation US20220338174A1 (en) 2020-01-03 2022-07-01 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2021134791A1 true WO2021134791A1 (zh) 2021-07-08

Family

ID=76686321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070318 WO2021134791A1 (zh) 2020-01-03 2020-01-03 无线通信的方法和终端设备

Country Status (4)

Country Link
US (1) US20220338174A1 (zh)
EP (1) EP4087350A4 (zh)
CN (1) CN114868447A (zh)
WO (1) WO2021134791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4351259A1 (en) * 2022-08-18 2024-04-10 Quectel Wireless Solutions Co., Ltd Sidelink communication method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107995605A (zh) * 2016-10-27 2018-05-04 工业和信息化部电信研究院 一种移动通信系统及终端直通单播发送控制方法
CN108322414A (zh) * 2017-01-17 2018-07-24 华为技术有限公司 一种反馈信息传输方法及装置
WO2019019184A1 (en) * 2017-07-28 2019-01-31 Panasonic Intellectual Property Corporation Of America COMMUNICATION APPARATUS AND COMMUNICATION METHOD
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107995605A (zh) * 2016-10-27 2018-05-04 工业和信息化部电信研究院 一种移动通信系统及终端直通单播发送控制方法
CN108322414A (zh) * 2017-01-17 2018-07-24 华为技术有限公司 一种反馈信息传输方法及装置
WO2019019184A1 (en) * 2017-07-28 2019-01-31 Panasonic Intellectual Property Corporation Of America COMMUNICATION APPARATUS AND COMMUNICATION METHOD
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1903943, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 April 2019 (2019-04-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 17, XP051707058 *
INTEL CORPORATION: "Sidelink Physical Structure for NR V2X Communication", 3GPP DRAFT; R1-1904294 INTEL - EV2X_SL_L1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707173 *
See also references of EP4087350A4 *

Also Published As

Publication number Publication date
EP4087350A1 (en) 2022-11-09
US20220338174A1 (en) 2022-10-20
EP4087350A4 (en) 2023-01-18
CN114868447A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US10833829B2 (en) Method of transmitting ACK/NACK message in wireless communication system and terminal using same method
US11082994B2 (en) Method for V2X communication performed by means of terminal in wireless communication system and terminal using same
US11528108B2 (en) Operating method of terminal and base station in wireless communication system, and device for supporting same
WO2021134798A1 (zh) 无线通信的方法和终端设备
WO2020143059A1 (zh) 侧行通信的方法和终端设备
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
CN114051278B (zh) 无线通信的方法、终端设备和网络设备
US11723027B2 (en) Method for operating terminal and base station in wireless communication system, and device supporting same
WO2020143065A1 (zh) 侧行通信的方法、终端设备和网络设备
WO2020124353A1 (zh) 侧行通信的方法和终端设备
US20220095350A1 (en) Method of operating terminal and base station in wireless communication system and apparatus supporting same
TWI829760B (zh) 用於側行鏈路的通信方法和設備
WO2021134796A1 (zh) 无线通信的方法和终端设备
CN116390228A (zh) 确定传输资源的方法和装置
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
TW202019205A (zh) 一種資源配置方法及裝置、終端
CN110521154B (zh) 无线通信系统中终端执行v2x控制信息捎带的方法和使用该方法的终端
US11166266B2 (en) Information sending method and apparatus and information receiving method and apparatus
US20220338174A1 (en) Wireless communication method and terminal device
WO2021232425A1 (zh) 无线通信方法和终端设备
WO2023000899A1 (zh) 一种信息传输方法、装置、终端设备及网络设备
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
CN116170884A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910108

Country of ref document: EP

Effective date: 20220803