WO2020052426A1 - 一种制备具有树枝状结构的超疏水表面的方法 - Google Patents

一种制备具有树枝状结构的超疏水表面的方法 Download PDF

Info

Publication number
WO2020052426A1
WO2020052426A1 PCT/CN2019/102215 CN2019102215W WO2020052426A1 WO 2020052426 A1 WO2020052426 A1 WO 2020052426A1 CN 2019102215 W CN2019102215 W CN 2019102215W WO 2020052426 A1 WO2020052426 A1 WO 2020052426A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photoresist layer
metal film
solution
metal
Prior art date
Application number
PCT/CN2019/102215
Other languages
English (en)
French (fr)
Inventor
王清
徐双双
王宁
郑旭
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020052426A1 publication Critical patent/WO2020052426A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3697Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one metallic layer at least being obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to the field of hydrophobic surfaces, and in particular, to a method for preparing a superhydrophobic surface having a dendritic structure.
  • the superhydrophobicity of the material surface is not only affected by the surface energy of the material, but also controlled by the degree of surface roughness.
  • there are many methods for preparing superhydrophobic surfaces including spraying, etching, stenciling, plasma processing, sol-gel methods, etc.
  • One of the most widely used methods is to roughen the surface of the material by spraying.
  • the superhydrophobic surface prepared by the spraying method has poor adhesion to the substrate and insufficient hydrophobicity.
  • the volatile solvent used in the preparation process is harmful to human health and pollutes the environment.
  • the spraying method will also cause a large amount of waste of materials and cause economic losses.
  • the present invention provides a method for preparing a superhydrophobic surface having a dendritic structure.
  • the superhydrophobic surface prepared by the method has strong adhesion to a substrate and mechanical stability. it is good Excellent overall performance.
  • a method for preparing a superhydrophobic surface having a dendritic structure including the following steps:
  • the substrate is light-transmissive glass or plastic; in S2, the following sub-steps are included: [0013] S2a: coating a photoresist layer on one side of the substrate obtained in S1;
  • S2d performing reverse lithography on the photoresist layer obtained from S2c, and developing, rinsing, and drying processes to remove the photoresist layer and obtain a hollow metal film with a micro-nano structure.
  • the substrate obtained by S1 is placed on a glue conveyor, and the ultraviolet photoresist is dropped on the surface of the substrate by using a micropipette, and then homogenized twice.
  • the product obtained in S3 is further subjected to chemical modification treatment by a solution containing stearic acid.
  • the metal film is a copper film; in S3, the metal replacement solution is a solution containing 0.01 mol / L silver nitrate.
  • the solution used for chemical modification is an ethanol solution containing 0.01 mol / L stearic acid, and the modification time is 2 h.
  • the super-hydrophobic surface roughness is made uniform through the combination of vacuum evaporation technology and displacement reaction
  • FIG. 1 is a schematic structural diagram of a preparation process according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a vacuum evaporation film equipment
  • FIG. 3 is a schematic structural diagram of a preparation process according to a second embodiment of the present invention.
  • Each number in the figure corresponds to the following, a glass substrate 1, a copper film 2, a superhydrophobic surface 3, an ultraviolet photoresist 4, a light source 5, a vacuum cover 6, a substrate table 7, an evaporation boat 8, and a copper target 9.
  • a copper film is vacuum-evaporated
  • a cold water circulation device for a vacuum evaporation device is provided;
  • the second step is a displacement reaction
  • the copper-plated substrate was immersed in the configured silver nitrate solution and reacted for 10 minutes. After the reaction, it was taken out slowly and dried naturally in the air.
  • the glass substrate 1 of this embodiment may also be implemented by changing to a plastic.
  • the first step is ultraviolet lithography
  • the second step is vacuum evaporation of a copper film
  • the third step is to perform ultraviolet lithography again.
  • the copper-plated substrate was immersed in the configured silver nitrate solution to react for 10 minutes. After the reaction, it was taken out slowly and dried in the air.
  • the micro-nano structure can be selectively generated through two photolithography to obtain a partially copper-plated surface, and the finished product can have superior hydrophobic performance.
  • a layer of copper film is vapor-deposited on the substrate by using the vacuum coating technology. Since the evaporation technology is to heat and evaporate the copper target to solidify and deposit the copper target on the substrate surface, the thickness of the copper film is uniform and controllable, After the evaporation, the copper film has strong adhesion to the substrate. Then, the substrate on which the copper film is vapor-deposited is subjected to a substitution reaction with a silver nitrate solution. After the substitution reaction, a superhydrophobic surface having a dendritic structure is obtained, and the branches thereof The shape structure makes it have strong adhesion to the copper-plated substrate, and the surface roughness is also very uniform.
  • the mechanical stability and hydrophobic uniformity of the superhydrophobic surface are greatly improved;
  • the substrate is processed by ethanol solution of stearic acid
  • a layer of stearic acid was formed by self-assembly on the surface of the dendritic structure, which further reduced the surface energy of the substrate and made the substrate have superior superhydrophobic properties.
  • no volatile hazardous solvents are used, which will not cause harm and pollution to people and the environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种制备具有树枝状结构的超疏水表面的方法,包括以下步骤:S1、对基底的表面进行超声清洗、干燥;S2、在S1所得基底的表面真空蒸镀金属膜;S3、将S2所得基底浸入金属置换溶液,以使S2所得金属膜的外表面与金属置换溶液发生金属置换反应;S4、将S3所得产品取出、冲洗并干燥,即得。

Description

一种制备具有树枝状结构的超疏水表面的方法 技术领域
[0001] 本发明涉及疏水表面领域, 具体涉及一种制备具有树枝状结构的超疏水表面的 方法。
背景技术
[0002] 超疏水的研究源于“荷叶效应”, 一般来说, 超疏水表面的接触角大于 150°, 滚 动角小于 10°。 超疏水具有特殊的表面浸润性, 因此, 超疏水表面在油水分离、 自清洁、 防腐防污等领域具有极其广泛的应用。
[0003] 材料表面的超疏水性不但受到材料表面能的影响, 还受到表面粗糙程度的控制 。 目前制备超疏水表面的方法有很多, 包括喷涂法、 刻蚀法、 模板法、 等离子 处理法、 溶胶凝胶法等, 其中最广泛的方法之一就是利用喷涂法对材料表面进 行粗糙度处理。 但是利用喷涂法制备的超疏水表面与基底粘结力差, 疏水性不 足, 制备过程中使用的挥发性溶剂危害人体健康、 污染环境, 同时喷涂法也会 使得材料大量浪费, 造成经济损失。
[0004] 以喷涂法处理玻璃基底为例, 由于要求被喷涂的涂料的黏度比较小, 因此喷涂 的纳米颗粒与玻璃基底粘附力不足, 造成制备的超疏水表面机械稳定性差; 纳 米颗粒的堆积难以实现大面积、 高质量的控制, 因此导致利用喷涂法制备的超 疏水表面粗糙度不均匀, 造成制备的超疏水表面疏水性不足; 为了保证喷涂溶 液能够有效喷涂, 需要添加易挥发的涂料溶剂, 既污染环境, 不利于人体健康 , 又浪费涂料, 造成经济损失。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 为克服现有技术存在的上述不足, 本发明提供一种制备具有树枝状结构的超疏 水表面的方法, 由该方法制得的超疏水表面与基底的粘附力强, 机械稳定性好 , 综合性能优越。
[0006] 本发明通过以下技术方案实现:
[0007] 一种制备具有树枝状结构的超疏水表面的方法, 包括以下步骤:
[0008] S1、 对基底的表面进行超声清洗、 干燥;
[0009] S2、 在 S1所得基底的表面真空蒸镀金属膜;
[0010] S3、 将 S2所得基底浸入金属置换溶液, 以使 S2所得金属膜的外表面与所述金属 置换溶液发生金属置换反应;
[0011] S4、 将 S3所得产品取出、 冲洗并干燥, 即得。
[0012] 优选的, 在 S1中, 所述基底为透光的玻璃或塑料; 在 S2中, 包括以下分步骤: [0013] S2a、 在 S1所得基底的单侧表面涂覆光刻胶层;
[0014] S2b、 对 S2a所述光刻胶层进行光刻、 显影、 冲洗干燥处理, 以形成镂空的微纳 结构的图案;
[0015] S2c、 对 S2b所得基底的光刻胶层侧真空蒸镀金属膜;
[0016] S2d、 对 S2c所得光刻胶层进行反向光刻, 以及显影、 冲洗、 干燥处理, 以去除 光刻胶层, 并得到镂空的微纳结构的金属膜。
[0017] 优选的, 在 S2a中, 将 S1所得基底放在运胶机上, 使用微量移液器将紫外光刻 胶滴在所述基底的表面后, 匀胶两次。
[0018] 优选的, 在 S4中, S3所得产品还通过含有硬脂酸的溶液进行化学改性处理。
[0019] 优选的, 在 S2中, 所述金属膜为铜膜; 在 S3中, 所述金属置换溶液为含有 0.01 mol/L硝酸银的溶液。
[0020] 优选的, 在 S4中, 化学改性所用溶液为含有 0.01mol/L硬脂酸的乙醇溶液, 改性 时间为 2h。
发明的有益效果
有益效果
[0021] 本发明通过真空蒸镀技术与置换反应相结合, 使制得的超疏水表面粗糙度均匀
, 疏水性优良, 与基底的粘附力更强, 结构的机械稳定性更好, 制备过程中不 使用挥发性溶剂, 不会对环境和人体造成污染和危害, 绿色环保。
对附图的简要说明 附图说明
[0022] 下面结合附图和具体实施例对本发明作进一步详细说明。
[0023] 图 1为本发明实施例一的制备流程结构示意图;
[0024] 图 2为真空蒸镀膜设备示意图;
[0025] 图 3为本发明实施例二的制备流程结构示意图。
[0026] 图中各标号对应如下, 玻璃基底 1, 铜膜 2, 超疏水表面 3 , 紫外光刻胶 4, 光源 5, 真空罩 6, 基片台 7, 蒸发舟 8, 铜靶材 9。
发明实施例
本发明的实施方式
[0027] 下面结合具体实施方式对本发明进行进一步的描述:
[0028] 实施例 1
[0029] 如图 1和图 2所示, 第一步, 真空蒸镀铜膜
[0030] 1、 取一玻璃基底 1(图 1A), 尺寸为 2cmx3cm, 依次用丙酮、 乙醇、 去离子水超 声清洗 lOmin;
[0031] 2、 设置真空蒸镀设备的冷水循环装置;
[0032] 3、 打开真空罩 6, 将所要蒸镀的铜靶材 9放入蒸发舟 8, 将玻璃基底 1置于基片 台 7上并固定;
[0033] 4、 真空操作;
[0034] 5、 设置镀膜参数, 开始镀膜操作;
[0035] 6、 镀膜完成后(图 1B), 将蒸镀铜膜 2后的玻璃基底 1取出。
[0036] 第二步, 置换反应
[0037] 1、 配置浓度为 0.01mol/L的硝酸银溶液;
[0038] 2、 将镀铜基底浸入到配置好的硝酸银溶液中反应 10min, 反应后缓慢取出, 置 于空气中自然干燥。
[0039] 第三步, 化学改性
[0040] 1、 配置浓度为 0.01mol/L的硬脂酸的乙醇溶液;
[0041] 2、 将干燥后的玻璃基底 1放入配置好的硬脂酸的乙醇溶液中改性 2h, 改性后, 用乙醇冲洗, 然后置于空气中自然干燥, 即可制得具有树枝状结构的超疏水表 面 3(图 1C)。
[0042] 通过化学改性, 降低了基底的表面能, 使得基底具有更加优越的超疏水性能。
[0043] 应当理解的是, 本实施例的玻璃基底 1也可以变化为塑料的方式实施。
[0044] 实施例 2
[0045] 如图 2和图 3所示, 第一步, 紫外光刻
[0046] ( 1)根据需要, 预先设计出将要光刻的图案;
[0047] (2)取一玻璃基底 1(图 3A), 具体尺寸为 2cmx3cm, 将其依次在丙酮、 乙醇、 去 离子水中超声清洗并干燥;
[0048] (3)将清洗干净的玻璃基底 1放在匀胶机上, 使用微量移液器在玻璃基底 1上滴 入 AZ5214E型紫外光刻胶 4(正胶), 匀胶分两次, 转速和时间分别设置为 500rpm/ min和 10s以及 4000rpm/min和 30s ;
[0049] (4)将匀胶完成后的玻璃基底 1放在无掩膜光刻机上按照预先设计好的图案通过 光源 5进行光刻(图 3B);
[0050] (5)光刻完成后, 立即放入显影液中进行显影 40s, 显影完成后用去离子水冲洗 并干燥(图 3C);
[0051] 第二步, 真空蒸镀铜膜
[0052] 1、 设置真空蒸镀设备的冷水循环装置;
[0053] 2、 打开真空罩 6, 将所要蒸镀的铜靶材 9放入蒸发舟 8内, 将玻璃基底 1置于基 片台 7上并固定;
[0054] 3、 真空操作;
[0055] 4、 设置镀膜参数, 开始镀膜操作;
[0056] 5、 镀膜完成后, 将蒸镀铜膜 2后的具有微米级结构的玻璃基底 1取出(图 3D)。
[0057] 第三步, 再次进行紫外光刻
[0058] 1、 将镀膜后的具有微米级结构的玻璃基底 1重新放置在无掩膜光刻机上, 玻璃 基底 1朝向上方, 有微米级结构的一侧朝向下方, 继续按照预先设计好的图案进 行紫外光刻(图 3E);
[0059] 2、 光刻完成后, 立即放入显影液中进行显影 40s, 显影完成后用去离子水冲洗 并干燥(图 3F)。 [0060] 第四步, 置换反应
[0061] 1、 配置浓度为 0.01mol/L的硝酸银溶液;
[0062] 2、 将镀铜基底浸入到配置好的硝酸银溶液中反应 lOmin, 反应后缓慢取出, 置 于空气中自然干燥。
[0063] 第五步, 化学改性
[0064] 1、 配置浓度为 0.01mol/L的硬脂酸的乙醇溶液;
[0065] 2、 将干燥后的基底放入配置好的硬脂酸的乙醇溶液中改性 2h, 改性后, 用乙 醇冲洗, 然后置于空气中自然干燥, 即可制得具有树枝状结构的超疏水表面 3(图
3G)。
[0066] 本实施例通过两次光刻, 可以有选择性地生成微纳结构, 得到局部镀铜表面, 可使制得的成品具有优越的疏水性能。
[0067] 上述实施例利用真空镀膜技术在基底上蒸镀一层铜膜, 由于蒸镀技术是通过加 热蒸发铜靶材使铜靶材凝固并沉积在基底表面, 铜膜厚度均匀可控, 因此使得 蒸镀完成后的铜膜与基底粘附力强; 然后, 将蒸镀上一层铜膜的基底与硝酸银 溶液进行置换反应, 置换反应后得到具有树枝状结构的超疏水表面, 其树枝状 结构使得其与镀铜基底的粘附性也很强, 表面粗糙度也很均匀, 因此, 大大提 高了超疏水表面的机械稳定性和疏水均一性; 通过硬脂酸的乙醇溶液对基底进 行化学改性, 在树枝状结构表面自组装形成了一层硬脂酸膜, 进一步降低了基 底的表面能, 使得基底具有更加优越的超疏水性能。 在制备过程中, 不使用易 挥发的有害溶剂, 对人和环境不会造成危害和污染。
[0068] 应当理解的是, 对本领域普通技术人员来说, 可以根据上述说明加以改进或变 换, 而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
[0069] 上面对本发明专利进行了示例性的描述, 显然本发明专利的实现并不受上述方 式的限制, 只要采用了本发明专利的方法构思和技术方案进行的各种改进, 或 未经改进将本发明专利的构思和技术方案直接应用于其它场合的, 均在本发明 的保护范围内。

Claims

权利要求书
[权利要求 1] 一种制备具有树枝状结构的超疏水表面的方法, 其特征在于, 包括以 下步骤:
51、 对基底的表面进行超声清洗、 干燥;
52、 在 S1所得基底的表面真空蒸镀金属膜;
53、 将 S2所得基底浸入金属置换溶液, 以使 S2所得金属膜的外表面 与所述金属置换溶液发生金属置换反应;
54、 将 S3所得产品取出、 冲洗并干燥, 即得。
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于, 在 S1中, 所述基底为透光 的玻璃或塑料; 在 S2中, 包括以下分步骤:
S2a、 在 S1所得基底的单侧表面涂覆光刻胶层;
S2b、 对 S2a所述光刻胶层进行光刻、 显影、 冲洗干燥处理, 以形成镂 空的微纳结构的图案;
S2c、 对 S2b所得基底的光刻胶层侧真空蒸镀金属膜;
S2d、 对 S2c所得光刻胶层进行反向光刻, 以及显影、 冲洗、 干燥处理 , 以去除光刻胶层, 并得到镂空的微纳结构的金属膜。
[权利要求 3] 根据权利要求 2所述的方法, 其特征在于, 在 S2a中, 将 S1所得基底放 在运胶机上, 使用微量移液器将紫外光刻胶滴在所述基底的表面后, 匀胶两次。
[权利要求 4] 根据权利要求 1所述的方法, 其特征在于, 在 S4中, S3所得产品还通 过含有硬脂酸的溶液进行化学改性处理。
[权利要求 5] 根据权利要求 1所述的方法, 其特征在于, 在 S2中, 所述金属膜为铜 膜; 在 S3中, 所述金属置换溶液为含有 0.01mol/L硝酸银的溶液。
[权利要求 6] 根据权利要求 4所述的方法, 其特征在于, 在 S4中, 化学改性所用溶 液为含有 0.0 lmol/L硬脂酸的乙醇溶液, 改性时间为 2h。
PCT/CN2019/102215 2018-09-12 2019-08-23 一种制备具有树枝状结构的超疏水表面的方法 WO2020052426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811070934.7A CN109295419A (zh) 2018-09-12 2018-09-12 一种制备具有树枝状结构的超疏水表面的方法
CN201811070934.7 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020052426A1 true WO2020052426A1 (zh) 2020-03-19

Family

ID=65167057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102215 WO2020052426A1 (zh) 2018-09-12 2019-08-23 一种制备具有树枝状结构的超疏水表面的方法

Country Status (2)

Country Link
CN (1) CN109295419A (zh)
WO (1) WO2020052426A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295419A (zh) * 2018-09-12 2019-02-01 山东科技大学 一种制备具有树枝状结构的超疏水表面的方法
CN110171947B (zh) * 2019-05-07 2021-12-31 山东科技大学 一种表面具有树枝状结构的超疏水混凝土及其制备方法
CN110724954A (zh) * 2019-10-30 2020-01-24 华南理工大学 亲水性润湿梯度复合楔形图化表面及制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110287223A1 (en) * 2010-05-24 2011-11-24 Integran Technologies Inc. Metallic articles with hydrophobic surfaces
CN103469215A (zh) * 2013-09-06 2013-12-25 许昌学院 一种具有低摩擦系数的铜基超疏水表面及其制备方法
CN103676001A (zh) * 2013-04-25 2014-03-26 中国科学院电子学研究所 三维玻璃光波导制备方法
CN105401153A (zh) * 2015-08-26 2016-03-16 上海电力学院 一种具有耐蚀性能的纯铜超疏水表面的制备方法
CN105413994A (zh) * 2015-12-15 2016-03-23 大连理工大学 一种仿生微纳复合结构超疏水表面的制备方法
CN105671523A (zh) * 2016-01-17 2016-06-15 西安科技大学 一种制备银树枝超疏水表面的置换反应方法
CN109295419A (zh) * 2018-09-12 2019-02-01 山东科技大学 一种制备具有树枝状结构的超疏水表面的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107670A (zh) * 1986-11-25 1988-06-08 李海清 普通玻璃真空镀铜合金制茶镜工艺
CN1209953C (zh) * 2004-01-15 2005-07-06 北京东明化学工业有限公司 一种塑料手机壳内表面电磁屏蔽膜层的制备方法
DE102005020946B4 (de) * 2005-05-04 2007-08-02 Esk Ceramics Gmbh & Co. Kg Verfahren und Verdampferschiffchen zum Beschichten von Substraten mit Kupfer oder Silber
GB0618460D0 (en) * 2006-09-20 2006-11-01 Univ Belfast Process for preparing surfaces with tailored wettability
CN103132024A (zh) * 2013-03-12 2013-06-05 太仓协乐高分子材料有限公司 一种塑料制品表面金属化工艺
CN103406248B (zh) * 2013-08-26 2016-01-06 武汉理工大学 铜基超疏水表面结构的制备方法
CN103588164A (zh) * 2013-10-08 2014-02-19 上海交通大学 一种金属铜银微纳米多级结构超疏水表面及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110287223A1 (en) * 2010-05-24 2011-11-24 Integran Technologies Inc. Metallic articles with hydrophobic surfaces
CN103676001A (zh) * 2013-04-25 2014-03-26 中国科学院电子学研究所 三维玻璃光波导制备方法
CN103469215A (zh) * 2013-09-06 2013-12-25 许昌学院 一种具有低摩擦系数的铜基超疏水表面及其制备方法
CN105401153A (zh) * 2015-08-26 2016-03-16 上海电力学院 一种具有耐蚀性能的纯铜超疏水表面的制备方法
CN105413994A (zh) * 2015-12-15 2016-03-23 大连理工大学 一种仿生微纳复合结构超疏水表面的制备方法
CN105671523A (zh) * 2016-01-17 2016-06-15 西安科技大学 一种制备银树枝超疏水表面的置换反应方法
CN109295419A (zh) * 2018-09-12 2019-02-01 山东科技大学 一种制备具有树枝状结构的超疏水表面的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, QIAN ET AL.: "Fabrication . of Superhydrophobic Surface on Metallic Substrate by Pulse Cu Electroplating and Silver Plating", CHINA SURFACE ENGINEERING, vol. 28, no. 5, 31 October 2015 (2015-10-31) *

Also Published As

Publication number Publication date
CN109295419A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2020052426A1 (zh) 一种制备具有树枝状结构的超疏水表面的方法
CN108722200A (zh) 一种具有光热效应的双仿生膜蒸馏用超疏水疏油膜的制备方法
CN100453698C (zh) 用于无电镀膜材料的预处理方法和生产具有镀层的元件的方法
CN112095092A (zh) 利用纳米层状双金属氢氧化物制备高性能超疏水不锈钢的方法及制得的高性能超疏水不锈钢
CN105859154A (zh) 一种磺酸基修饰的抗生物污染涂层的制备方法
CN109248878A (zh) 一种清洗平台以及清洗方法
US3686017A (en) Surface treatment of nylon shaped articles with aqueous reducing agents
CN107716244A (zh) 一种用纳米涂料做印刷线路板“三防”防护体系的方法
JP2018202308A (ja) シランカップリング剤処理方法、シランカップリング剤処理基材の製造方法および積層体の製造方法
CN102513074B (zh) 一种纳米颗粒光催化板及其制备方法与应用
KR102241457B1 (ko) 비 전도성 플라스틱의 습식 표면처리 방법
JP2011530656A (ja) ポリマー基材の光学物理的処理方法及び当該方法を実施するための装置
KR20090064670A (ko) 마그네슘 합금 판재의 표면 처리 방법
US20220081779A1 (en) Treating method of metal surface and coating method thereof using the same
JPH024269A (ja) ホトレジストの除去方法
TW478016B (en) Method to strip off polyimide layer for electro-optic and semiconductor manufacture process
JP4376575B2 (ja) めっき被覆部材の製造方法
JPH04202028A (ja) 板ガラスの洗浄法
JP2003183841A (ja) 無電解めっき素材の前処理方法
JPS6173885A (ja) チタニウム又はチタニウム合金への表面処理方法
CN101781756A (zh) 不锈电镀工艺
JP2005243845A5 (zh)
CN110923658A (zh) 一种镀pvd材料表面处理液及蚀刻工艺
SU1123999A1 (ru) Способ обработки поверхности диэлектриков перед химической металлизацией
JPH0714816A (ja) 薄膜形成用治具洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860271

Country of ref document: EP

Kind code of ref document: A1