WO2020052390A1 - 单向阀及涡旋压缩机 - Google Patents

单向阀及涡旋压缩机 Download PDF

Info

Publication number
WO2020052390A1
WO2020052390A1 PCT/CN2019/099969 CN2019099969W WO2020052390A1 WO 2020052390 A1 WO2020052390 A1 WO 2020052390A1 CN 2019099969 W CN2019099969 W CN 2019099969W WO 2020052390 A1 WO2020052390 A1 WO 2020052390A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
check valve
scroll compressor
fluid
valve seat
Prior art date
Application number
PCT/CN2019/099969
Other languages
English (en)
French (fr)
Inventor
吴凌云
盛刚
陈新虹
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821509943.7U external-priority patent/CN208966580U/zh
Priority claimed from CN201811074864.2A external-priority patent/CN110905803A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to KR1020217010133A priority Critical patent/KR20210055745A/ko
Priority to EP19859796.5A priority patent/EP3851675A4/en
Priority to KR1020237040374A priority patent/KR20230166142A/ko
Publication of WO2020052390A1 publication Critical patent/WO2020052390A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type

Definitions

  • the present disclosure relates to a check valve and a scroll compressor including the same.
  • the valve when the scroll compressor is stopped, the valve may be affected by the adhesion of the lubricating oil or the pressure difference between the two sides of the valve may not be sufficient to quickly close the valve hole downwards, which will cause the shutdown reverse noise It also brings the risk of wear and damage to the parts.
  • the valve disc when the scroll compressor is operating, the valve disc may not be able to be stably maintained in the upper open position, thereby generating working noise and affecting the reliability of the scroll compressor.
  • An object of one or more embodiments of the present disclosure is to provide a check valve capable of reducing the operating noise of a scroll compressor and improving the reliability.
  • Another object of one or more embodiments of the present disclosure is to provide a one-way valve having a shorter response time, preventing a fluid from flowing back, and reducing the noise of a scroll compressor.
  • Another object of one or more embodiments of the present disclosure is to provide a one-way valve capable of preventing an excessive pressure drop loss and reducing the working efficiency of a scroll compressor while reducing noise and preventing backflow.
  • the one-way valve includes: a valve seat, a valve hole for fluid passage is formed in the valve seat; a valve plate, the valve plate is provided Above the valve seat and configured to selectively open or close the valve hole; a valve stop, which is disposed above the valve disc and is fixedly connected to the valve seat, the valve stop including a restriction A stopper for a maximum displacement range of the valve disc and a guide part for guiding the movement of the valve disc; and a deflector configured to guide a fluid flowing through the check valve, The force exerted by the fluid on the valve plate is thereby controlled.
  • the deflector is configured to surround the stopper on an outer side of the stopper, and the deflector is in a vertical direction at least between the valve seat and the stopper. Between the departments.
  • the flow guide is configured as a hollow cylindrical structure.
  • the deflector is fixed to an outer peripheral surface of the valve seat through an interference fit, or the deflector and the valve seat are formed as an integrated piece.
  • the flow guide extends downward from the first end portion to the second end portion in the vertical direction, wherein the first end portion is aligned with the stop portion in the vertical direction. Flat or located above the stopper, and the second end portion is flush with the upper surface of the valve seat in the vertical direction or is located below the upper surface.
  • the flow guide is formed as an integral piece with the valve stop or the flow guide is fixed to an outer peripheral surface of the valve stop through an interference fit.
  • a gap is formed between the flow guide and the stopper to allow fluid to flow therethrough.
  • a scroll compressor including a partition that divides the scroll compressor into an intake side and an exhaust side, the partition having The exhaust port of the scroll compression mechanism of the scroll compressor is an opening in fluid communication, and the scroll compressor is provided with a check valve at the opening, the check valve includes: a valve seat, the A valve hole for fluid passage is formed in the valve seat; a valve disc is disposed above the valve seat and is configured to selectively open or close the valve hole; a valve stop is provided at the valve seat; The valve disc is above the valve disc and is fixedly connected to the valve seat, the valve stop includes a stop portion that limits a maximum displacement range of the valve disc and a guide portion for guiding the movement of the valve disc; and a flow guide, The deflector is fixed on the partition plate, and the deflector is configured to guide a fluid flowing through the check valve, thereby controlling a force applied by the fluid to the valve plate.
  • FIG. 1 schematically illustrates an exploded perspective view of a check valve according to a comparative example
  • FIG. 2 schematically illustrates a cross-sectional view of a scroll compressor to which the check valve shown in FIG. 1 is applied;
  • FIG. 3 schematically illustrates a fluid return path in a scroll compressor to which the check valve shown in FIG. 1 is applied;
  • FIG. 4 schematically illustrates an exploded perspective view of a check valve according to a first embodiment of the present disclosure
  • FIG. 6 schematically illustrates a partial cross-sectional view of a scroll compressor to which a check valve according to a second embodiment of the present disclosure is applied;
  • FIG. 8 schematically illustrates a perspective view of an integral piece formed of a flow guide and a valve seat of a check valve according to a third embodiment of the present disclosure
  • FIG. 9 schematically illustrates a partial cross-sectional view of a scroll compressor to which a check valve according to a fourth embodiment of the present disclosure is applied;
  • 10 (a) and 10 (b) are perspective views schematically showing an integrated piece formed of a deflector and a valve stop of a check valve according to a fourth embodiment of the present disclosure.
  • FIG. 11 (a)-(d) show the check valve structure of the comparative example shown in FIG. 1 and the flow guide provided with a flow guide according to the present disclosure when the scroll compressor working under different working conditions is stopped.
  • check valve structure according to the present disclosure will be described taking an application of the check valve in a scroll compressor as an example.
  • the check valve structure according to the present disclosure is not limited to the application of the scroll compressor, and can be applied to any applicable application.
  • FIG. 1 schematically shows an exploded perspective view of the check valve 100 according to a comparative example
  • FIG. 2 schematically shows an application A cross-sectional view of a scroll compressor having the check valve 100 shown in FIG. 1
  • FIG. 3 schematically illustrates a fluid return path in a scroll compressor to which the check valve shown in FIG. 1 is applied.
  • the scroll compressor 10 includes a substantially closed casing 20.
  • the housing 20 may be composed of a substantially cylindrical body portion 22, a top cover 24 provided at one end of the body portion 22, and a bottom cover 26 provided at the other end of the body portion 22.
  • a partition plate 30 is provided between the top cover 24 and the body portion 22, and the partition plate 30 is usually fixed to the top cover 24 and the body portion 22 by welding. Of course, those skilled in the art can conceive other suitable fixing methods.
  • the partition 30 divides the internal space of the housing 20 into an intake side and an exhaust side, wherein a space between the partition 30 and the top cover 24 forms an exhaust side, and a space between the partition 30 and the bottom cover 26 A suction side is formed.
  • An exhaust port 34 is formed on the exhaust side for discharging the compressed fluid.
  • a scroll compression mechanism including a fixed scroll member 40 and a movable scroll member 50 is provided below the partition plate 30.
  • the check valve 100 may be provided at the opening 32 of the partition plate 30.
  • the opening 32 of the partition plate 30 is in fluid communication with the exhaust port of the fixed scroll member 40, thereby allowing the compressed fluid to go from the exhaust port of the scroll compression mechanism toward the scroll compressor through the check valve 100 provided at the opening 32.
  • the exhaust port 34 flows.
  • FIG. 1 shows a schematic configuration diagram of a check valve 100 according to a comparative example.
  • the check valve 100 may include a valve seat 110, a valve plate 120, and a valve stop 130.
  • the valve seat 110 may be fixed to the partition plate 30 in any suitable manner, such as by welding, screwing, etc.
  • the valve seat 110 may be fixed to the partition plate 30 by an interference fit to facilitate installation and removal.
  • the valve seat 110 may include a generally annular outer wall 112 and an inner wall 114, and a plurality of partitions 113 may be connected between the outer wall 112 and the inner wall 114.
  • a valve hole 116 allowing a fluid to flow therethrough may be formed between the adjacent partition portion 113 and the outer wall 112.
  • the annular inner wall 114 may form a central hole 118.
  • the valve seat 110 may optionally include a bottom flange 117 that may be engaged with the partition plate 30 so that the valve seat 110 is firmly engaged with the partition plate 30.
  • a valve stop 130 may be connected to the central hole 118 of the valve seat 110.
  • the valve stop 130 may include a stop portion 134 and a guide portion 136.
  • the stopper portion 134 may be formed with a flange extending circumferentially around the guide portion 136, and the stopper portion 134 may be formed with a through hole 135 allowing a fluid to flow therethrough.
  • the guide portion 136 may extend downward from the lower surface of the stopper portion 134, and the guide portion 136 may be fixed in the central hole 118 of the valve seat 110 by, for example, a screw connection.
  • the guide portion 136 may be used to enable the valve plate 120 to move up and down along it to selectively close or open the valve hole 116, thereby allowing or preventing fluid from passing through the valve hole 116.
  • the valve plate 120 may be formed as an annular plate having a central hole 125, wherein the guide portion 136 may be inserted through the central hole 125 into the central hole 118 of the valve seat 110.
  • the diameter of the central hole 125 may be slightly larger than the diameter of the guide portion 136, so that a gap may be formed between the valve plate 120 and the guide portion 136, so that the valve plate 120 can slide along the guide portion 136.
  • the maximum displacement range of the valve plate 120 is limited by the stopper portion 134 above the guide portion 136.
  • the fluid compressed by the scroll compression mechanism flows upward through the valve hole 116 of the check valve 100 and acts on the valve disc 120 to displace the valve disc 120 upward, thereby opening.
  • the valve hole 116 allows the fluid to be discharged through the check valve 100 toward the exhaust port 34.
  • the scroll compressor is stopped, the fluid returns to the check valve 100 through the exhaust port 34, and the valve plate 120 moves downward due to its own gravity and the pressure of the returned fluid, thereby closing the valve hole 116 to prevent the fluid from returning to the suction. side.
  • the discharge fluid of the scroll compressor is usually mixed with a part of the lubricating oil, these lubricants flow through the check valve 100 and may adhere to the check valve 100.
  • the valve The sheet 120 is affected by the adhesive force of the lubricating oil, so that the time for falling to the valve seat 110 is extended.
  • the falling time of the valve plate 120 will be extended longer.
  • the force of the fluid on the valve plate 120 may be small enough to cause the valve plate 120 to fall quickly, so the check valve 100 cannot immediately close the valve hole in response to the shutdown of the scroll compressor. 116.
  • the fluid may flow horizontally under the valve plate 120 and return to the scroll compression mechanism through the valve hole 116. Since the fluid under the valve plate 120 may affect the valve plate 120 Generates a certain lift force, which further increases the time that the valve plate 120 responds to the scroll compressor shutdown, thereby generating relatively obvious noise, which deteriorates the noise level of the scroll compressor, and the high-speed gas return causes the compressor to reverse at high speed. Rotating, under such high-speed reversal, the internal parts of the compressor are easily damaged.
  • the force of the fluid acting on the valve plate 120 may not be sufficient to keep the valve plate 120 firmly in the open position away from the valve seat 110, thereby causing the valve plate 120 to sway and produce work.
  • FIG. 4 schematically illustrates an exploded perspective view of the check valve 200 according to the first embodiment of the present disclosure.
  • FIG. 5 schematically illustrates a partial cross-sectional view of a scroll compressor to which the check valve 200 according to the first embodiment of the present disclosure is applied.
  • the check valve 200 according to an embodiment of the present disclosure may include a valve seat 210, a valve disc 220, and a valve stop 230.
  • the structures of the valve seat 210, the valve plate 220, and the valve stop 230 according to this embodiment may be similar to the structures of the corresponding components of the check valve 100 shown in FIG. 1, and will not be repeated here.
  • the check valve 200 of the embodiment shown in FIG. 4 may include a flow guide 240 disposed around the valve seat 210.
  • the deflector 240 is fixed to the valve seat 210 by an interference fit.
  • any other suitable fixing method such as screw connection or welding can also be used.
  • the flow guide 240 may be formed in a cylindrical shape surrounding the valve seat 210.
  • the flow guide 240 may not be limited to the shape shown, but may be in any suitable other shape, such as an oval tube, a rectangular tube, a triangular tube, or the like.
  • the compressed fluid discharged from the valve hole 216 can concentrate on the area of the valve plate 220, thereby increasing the lift force applied to the valve plate 220 and shortening it.
  • the response time of the one-way valve 200 and the valve disc 220 can be firmly maintained away from the open position of the valve seat 210 to reduce the working noise and improve the reliability of the scroll compressor.
  • the flow guide 240 may extend upward from the first end portion 242 to the second end portion 244 in the vertical direction.
  • the first end portion 242 is exemplarily shown as being provided below the upper surface of the valve seat 210 and provided on the partition plate 30, but the present disclosure is not limited thereto, and the first end portion 242 may also be provided to be located on the valve seat 210 other positions below the top surface.
  • the second end portion 244 of the flow guide 240 may be disposed flush with the lower surface of the stop portion 234 of the valve stop 230. More preferably, as shown in FIG.
  • the second end portion 244 of the flow guide 240 may be disposed flush with the upper surface of the stop portion 234, or the second end portion 244 may be disposed above the stop portion 234 Above the surface, in this case, when the scroll compressor is stopped, as shown by arrow B in FIG. 5, the return fluid from the exhaust port 34 is guided by the deflector 240 and flows above the stopper 234. The through hole 235 passing through the stopper 234 then flows downward, so that the fluid exerts downward pressure on the valve plate 220. As a result, the valve plate 220 can be quickly moved down to the valve seat 210 to close the valve hole 216, thereby reducing the noise and improving the working efficiency of the scroll compressor. Although it is shown in FIG.
  • the size of the valve plate 220 and the stop portion 234 of the valve stop 230 basically correspond, those skilled in the art should understand that the size of the stop portion 234 can also be formed to be larger than the size of the valve plate 220. Bigger or smaller. In a case where the size of the stopper portion 234 is smaller than the size of the valve plate 220, the return fluid can directly act on the valve plate 220 without passing through the through hole 235 on the outer edge of the valve plate 220.
  • a gap may be provided between the deflector 240 and the stopper 234, so that when the scroll compressor is operated, the compressed fluid can be discharged through the gap, thereby increasing the fluid circulation area and avoiding Generate excessive pressure drop loss and reduce the working efficiency of the scroll compressor.
  • the stopper portion 234 may also be formed with more or fewer through holes. 216.
  • the through holes 235 are arranged symmetrically with respect to the guide portion 236, so that the force of the fluid is applied symmetrically on the valve plate 220, thereby improving the stability and reliability of the movement of the valve plate 220.
  • valve seat 210 may be formed with any number of valve holes 235 of at least one.
  • valve seat 210, the valve plate 220, and the valve stop 230 are not limited to the shapes shown, but may have any other suitable shape such as a square or rectangular cross section.
  • the flow guide 240 may be provided only on one side of the valve seat 210, that is, partially disposed around the valve seat 210.
  • the deflector 240 may be formed only on the right side of the valve seat 210, that is, the side where the exhaust port 34 is located.
  • FIG. 6 schematically illustrates a partial cross-sectional view of a scroll compressor to which a check valve 300 according to a second embodiment of the present disclosure is applied.
  • the check valve 300 according to the second embodiment of the present disclosure may include a valve seat 310, a valve disc 320, a valve stop 330, and a flow guide 340.
  • the structures of the valve seat 310, the valve disc 320, the valve stop 330, and the flow guide 340 according to this embodiment may be similar to those of the corresponding components of the check valve 200 shown in FIG. 5, and are not repeated here.
  • a difference from the structure of the check valve 200 shown in FIG. 5 is that the flow guide 340 of the check valve 300 of the embodiment shown in FIG.
  • FIG. 7 schematically illustrates a partial cross-sectional view of a scroll compressor to which a check valve 400 according to a third embodiment of the present disclosure is applied.
  • the structures of the valve plate 420 and the valve stop 430 according to this embodiment may be similar to the structures of the corresponding components of the check valves 200 and 300 shown in FIG. 5 and FIG. 6, and will not be repeated here.
  • the structure of the check valve 200 and 300 shown in FIGS. 5 and 6 is different from that of the check valve 440 of the embodiment shown in FIG. 7, which is combined with the valve seat 410 to form a single piece.
  • the term “integral piece” herein refers to an integrally formed component, rather than two separate components that are mechanically connected or fixed to each other.
  • FIG. 9 schematically illustrates a partial cross-sectional view of a scroll compressor to which a check valve 500 according to a fourth embodiment of the present disclosure is applied.
  • the structures of the valve seat 510 and the valve disc 520 according to this embodiment may be similar to the structures of the corresponding components of the check valves 200 and 300 shown in FIG. 5 and FIG. 6, and are not repeated here.
  • the flow guide 540 of the check valve 500 according to the embodiment shown in FIG. 9 is combined with the valve stop 530 to form an integral part. .
  • valve stop 530 may be formed with an extension portion 532 extending outward from the stop portion 534, and the flow guide 540 may extend downward from an outer edge of the extension portion 532.
  • the flow guide 540 may extend from the first end portion 542 in the vertical direction to the second end portion 544 in a vertical direction, although FIG.
  • first end portion 542 is disposed to stop
  • the upper surface of the blocking portion 534 is flush and the second end portion 544 is positioned flush with the upper surface of the valve seat 510, but those skilled in the art should understand that the first end portion 542 may also be positioned at the blocking portion 534.
  • the second end portion 544 may be disposed below the upper surface of the valve seat 510.
  • an orifice 538 may be formed between the adjacent extension portion 532 and the flow guide 540, thereby increasing the area of fluid flow.
  • the plurality of orifices 538 may be symmetrically arranged on the integral piece, so that the force applied by the fluid is uniformly distributed, so that the valve disc 520 can move stably, and the stability and reliability of the check valve and the scroll compressor are improved.
  • the integral piece may be formed with more or less Of the extension 532.
  • the number of through holes 535 of the valve stop 530 shown in FIG. 10 (a) is also exemplary only.
  • Figures 11 (a)-(d) show the pressure changes over time of the upper and lower sides of the check valve disc when the scroll compressor is stopped, because the valve disc is downward when a significant pressure difference occurs The displacement is to close the valve hole, so the time when a significant pressure difference occurs can be used as the response time of the check valve in response to the shutdown of the scroll compressor.
  • 11 (a) and 11 (b) show the pressure change of a check valve in a compressor operating under a large pressure difference.
  • FIG. 11 (a) shows the The pressure change of the check valve of the comparative example
  • FIG. 11 (b) shows the pressure change of the check valve having a flow guide according to an embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种单向阀(200)和涡旋压缩机,其中单向阀(200)包括:阀座(210),该阀座(210)中形成有用于流体通过的阀孔(216);阀片(220),阀片(220)设置在阀座(210)上方并且构造成选择性地打开或封闭阀孔(216);阀挡(230),该阀挡(230)设置在阀片(220)上方,并固定连接至阀座(210),阀挡(230)包括限制阀片(220)的最大位移范围的止挡部(234)和用于引导阀片(220)运动的引导部(236);以及导流件(240),该导流件(240)构造成对流动通过单向阀(200)的流体进行引导,从而控制流体施加至阀片(220)的力。该单向阀(200)利用导流件(240)对流体的流动方向进行控制,从而降低涡旋压缩机的工作噪声和停机噪声、提高涡旋压缩机的效率以及工作的可靠性。

Description

单向阀及涡旋压缩机
本申请要求以下中国专利申请的优先权:于2018年9月14日提交中国专利局的申请号为201811074864.2、发明创造名称为“单向阀及涡旋压缩机”的中国专利申请;2018年9月14日提交中国专利局的申请号为201821509943.7、发明创造名称为“单向阀及涡旋压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种单向阀以及一种包括该单向阀的涡旋压缩机。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
在涡旋压缩机领域中,为了防止涡旋压缩机在停机时发生反转,通常会在涡旋压缩机中安装单向阀。这种单向阀包括形成有阀孔的阀座、能够打开或封闭阀孔的阀片以及限制阀片的位移范围并引导阀片运动的阀挡。当涡旋压缩机工作时,从阀片下方的阀座排出的流体作用在阀片上使其向上运动,从而打开阀孔,以允许流体流动通过单向阀。当涡旋压缩机停机时,阀片受回流流体的压力而向下运动以封闭阀孔,从而防止流体回流。
然而,在某些情况下,阀片在涡旋压缩机停机时可能受到润滑油的粘附作用或者阀片两侧的压差不足而不能快速地向下封闭阀孔,从而产生停机反转噪音并且带来磨损和零件损坏的风险;此外,在涡旋压缩机工作时,阀片可能不能够稳定地保持在上方的打开位置,从而产生工作噪声,并且影响涡旋压缩机的可靠性。
因此,需要一种能够至少部分地解决上述问题的单向阀结构。
发明内容
本公开的一个或多个实施方式的一个目的是提供一种能够减小涡旋压缩机的工作噪声、提高可靠性的单向阀。
本公开的一个或多个实施方式的另一个目的是提供一种响应时间更短、防止流体回流并且降低涡旋压缩机噪声的单向阀。
本公开的一个或多个实施方式的另一个目的是提供一种能够在降低噪声且防止回流的情况下,防止产生过大的压降损失而降低涡旋压缩机工作效率的单向阀。
本公开的一个或多个实施方式的另一个目的是提供一种具有改善的稳定性和可靠性的单向阀。
为了实现上述目的中的一个或多个,根据本公开的一个方面,所述单向阀包括:阀座,所述阀座中形成有用于流体通过的阀孔;阀片,所述阀片设置在所述阀座上方并且构造成选择性地打开或封闭所述阀孔;阀挡,所述阀挡设置在所述阀片上方,并固定连接至所述阀座,所述阀挡包括限制所述阀片的最大位移范围的止挡部和用于引导所述阀片运动的引导部;以及导流件,所述导流件构造成对流动通过所述单向阀的流体进行引导,从而控制所述流体施加至所述阀片的力。
根据本公开的一个方面,所述导流件构造成在所述止挡部的外侧围绕所述止挡部,并且所述导流件沿竖向方向至少在所述阀座与所述止挡部之间延伸。
根据本公开的一个方面,所述导流件构造成中空的筒式结构。
根据本公开的一个方面,所述导流件从第一端部沿竖向方向向上延伸至第二端部,其中,所述第一端部在竖向方向上与所述阀座的上表面齐平或位于所述上表面的下方,并且所述第二端部在竖向方向上与所述止挡部齐平或位于所述止挡部的上方。
根据本公开的一个方面,所述导流件通过过盈配合固定至所述阀座的外周面,或者所述导流件与所述阀座形成为一体件。
根据本公开的一个方面,所述导流件从第一端部沿竖向方向向下延伸至第二端部,其中,所述第一端部在竖向方向上与所述止挡部齐平或位于所述止挡部的上方,并且所述第二端部在竖向方向上与所述阀座的上表面齐平或位于所述上表面的下方。
根据本公开的一个方面,所述导流件与所述阀挡形成为一体件或者所述导流件通过过盈配合固定至所述阀挡的外周面。
根据本公开的一个方面,所述导流件与所述止挡部之间形成有允许流体流 动通过的间隙。
根据本公开的一个方面,所述引导部插入穿过所述阀片的中央孔并且固定连接在所述阀座中,所述阀片能够沿着所述引导部移动。
根据本公开的另一个方面,提供了一种具有上述单向阀的涡旋压缩机。
根据本公开的又一个方面,提供了一种涡旋压缩机,所述涡旋压缩机包括将所述涡旋压缩机分隔为吸气侧和排气侧的隔板,所述隔板具有与所述涡旋压缩机的涡旋压缩机构的排气口流体连通的开口,并且所述涡旋压缩机在所述开口处设置有单向阀,所述单向阀包括:阀座,所述阀座中形成有用于流体通过的阀孔;阀片,所述阀片设置在所述阀座上方并且构造成选择性地打开或封闭所述阀孔;阀挡,所述阀挡设置在所述阀片上方,并固定连接至所述阀座,所述阀挡包括限制所述阀片的最大位移范围的止挡部和用于引导所述阀片运动的引导部;以及导流件,所述导流件固定在所述隔板上,所述导流件构造成对流动通过所述单向阀的流体进行引导,从而控制所述流体施加至所述阀片的力。
根据本公开的又一个方面,所述导流件与所述阀座之间形成有间隙。
采用根据本公开的单向阀,由于导流件的布置而可以对流动通过单向阀的流体方向进行引导控制,使得流体至少部分地沿期望的方向对阀片施加相应的作用力,从而在涡旋压缩机运行时将阀片稳定地保持在向上的打开位置,并且在涡旋压缩机停机时使阀片快速地向下移动至封闭位置。由此,达到降低工作噪声和停机噪声、提高涡旋压缩机效率以及工作可靠性的目的。此外,通过在导流件与阀挡之间设置有允许流体流动通过的间隙,可以增大流体的流通面积,从而能够在降低噪声且防止流体回流的情况下,避免产生过大的压降损失而降低涡旋压缩机的工作效率。
附图说明
通过以下参照附图的描述,本公开的一个或几个实施方式的特征和优点将变得更加容易理解。这里所描述的附图仅是出于说明目的而非意图以任何方式限制本公开的范围,附图并非按比例绘制,并且一些特征可能被放大或缩小以显示特定部件的细节。在附图中:
图1示意性地示出了根据比较示例的单向阀的分解立体图;
图2示意性地示出了应用有图1所示的单向阀的涡旋压缩机的剖视图;
图3示意性地示出了流体在应用有图1所示的单向阀的涡旋压缩机中的回流路径;
图4示意性地示出了根据本公开的第一实施方式的单向阀的分解立体图;
图5示意性地示出了应用有根据本公开的第一实施方式的单向阀的涡旋压缩机的局部剖视图;
图6示意性地示出了应用有根据本公开的第二实施方式的单向阀的涡旋压缩机的局部剖视图;
图7示意性地示出了应用有根据本公开的第三实施方式的单向阀的涡旋压缩机的局部剖视图;
图8示意性地示出了根据本公开的第三实施方式的单向阀的由导流件和阀座形成的一体件的立体图;
图9示意性地示出了应用有根据本公开的第四实施方式的单向阀的涡旋压缩机的局部剖视图;
图10(a)和图10(b)示意性地示出了根据本公开的第四实施方式的单向阀的由导流件和阀挡形成的一体件的立体图;以及
图11(a)-(d)示出了在不同工况下工作的涡旋压缩机停机时,如图1所示的比较示例的单向阀结构以及根据本公开的设置有导流件的单向阀结构的阀片上下两侧的压力随时间的变化图。
具体实施方式
下面对本公开各实施方式的描述仅仅是示例性的,而绝不是对本公开及其应用或用法的限制。在各个附图中采用相同的附图标记来表示相同的部件,因此相同部件的构造将不再重复描述。
此外,在下面的描述中,将以单向阀在涡旋压缩机中的应用为例对根据本公开的单向阀的结构进行描述。然而,可以理解的是,根据本公开的单向阀结构不以涡旋压缩机为应用限制,其可以应用于任何适用的应用中。
下面将参照图1-3对根据比较示例的单向阀100进行描述,其中,图1示意性地示出了根据比较示例的单向阀100的分解立体图;图2示意性地示出了应用有图1所示的单向阀100的涡旋压缩机的剖视图;而图3示意性地示出了 流体在应用有如图1所示的单向阀的涡旋压缩机中的回流路径。
如图2所示,涡旋压缩机10包括大致封闭的壳体20。壳体20可以由大致圆筒形的本体部22、设置在本体部22一端的顶盖24、设置在本体部22另一端的底盖26构成。在顶盖24和本体部22之间设置有隔板30,隔板30通常通过焊接固定在顶盖24和本体部22上,当然,本领域技术人员可以构想出采用其他适当的固定方式。隔板30将壳体20的内部空间分隔成吸气侧和排气侧,其中,隔板30与顶盖24之间的空间形成排气侧,而隔板30与底盖26之间的空间形成吸气侧。在排气侧形成有用于排出压缩后的流体的排气端口34。隔板30下方设置有包括定涡旋部件40和动涡旋部件50的涡旋压缩机构。
单向阀100可以设置在隔板30的开口32处。隔板30的开口32与定涡旋部件40的排气口流体连通,从而允许压缩后的流体从涡旋压缩机构的排气口经由设置在开口32处的单向阀100朝向涡旋压缩机的排气端口34流动。
图1示出了根据比较示例的单向阀100的结构示意图。如图1所示,单向阀100可以包括阀座110、阀片120和阀挡130。阀座110可以以任何适当的方式固定至隔板30上,例如通过焊接、螺纹连接等,优选地,阀座110可以通过过盈配合固定至隔板30以便于安装和拆卸。阀座110可以包括大致环形的外壁112和内壁114,外壁112与内壁114之间可以连接有若干分隔部113。相邻的分隔部113与外壁112之间可以形成有允许流体流动通过的阀孔116。环形的内壁114可以形成中央孔118。阀座110可以可选地包括底部凸缘117,底部凸缘117可以与隔板30接合从而使得阀座110稳固地接合在隔板30上。阀座110的中央孔118中可以连接有阀挡130。阀挡130可以包括止挡部134和引导部136。止挡部134可以形成有围绕引导部136周向延伸的凸缘,并且止挡部134中可以形成有允许流体流动通过的通孔135。引导部136可以从止挡部134的下表面向下延伸,并且引导部136可以例如通过螺纹连接固定在阀座110的中央孔118中。引导部136可以用于使阀片120能够沿着其上下移动,以选择性地封闭或者打开阀孔116,从而允许或防止流体通过阀孔116。阀片120可以形成为具有中央孔125的环形片,其中,引导部136可以穿过中央孔125插入阀座110的中央孔118中。中央孔125的直径可以略大于引导部136的直径,从而在阀片120与引导部136之间可以形成有空隙,使得阀片120能够沿着引导部136滑动。阀片120的最大位移范围受到引导部136上方的止 挡部134限制。
参照图2,当涡旋压缩机工作时,来自涡旋压缩机构压缩后的流体经由单向阀100的阀孔116向上流动并且作用在阀片120上以使阀片120向上移位,从而打开阀孔116,使得流体可以穿过单向阀100朝向排气端口34排出。当涡旋压缩机停机时,流体通过排气端口34回流至单向阀100,阀片120由于自身的重力和回流流体的压力向下移动,从而封闭阀孔116,以防止流体回流到吸气侧。
然而,由于涡旋压缩机的排出流体通常混合有部分的润滑油,这些润滑油随着流体流动经过单向阀100并可能粘附在单向阀100中,在涡旋压缩机停机时,阀片120受润滑油的粘附力作用而使得下落至阀座110的时间被延长。特别地,在使用高粘度润滑油的情况下,阀片120的下落时间将被延长地更久。此外,在质量流量较低的情况下,流体作用于阀片120的力可能较小而不足以使阀片120快速下落,由此单向阀100不能立即响应涡旋压缩机停机而封闭阀孔116。在这些情况下,如图3的箭头A所示,流体可能在阀片120下方水平地流动,并且穿过阀孔116回流至涡旋压缩机构,由于阀片120下方的流体会对阀片120产生一定的升力,这进一步增加了阀片120响应涡旋压缩机停机的时间,从而产生比较明显的噪音,恶化了涡旋压缩机的噪音水平,并且高速的气体回流,导致压缩机高速反向转动,在这种高速反转下,压缩机内部零件易损坏。另一方面,在涡旋压缩机工作时,流体作用于阀片120的力可能不足以使阀片120稳固地保持在远离阀座110的打开位置,由此使得阀片120发生晃动,产生工作噪音并降低了涡旋压缩机工作可靠性,特别是在低频变速涡旋压缩机或质量流量较低的情况下更是如此。
为了解决上述问题,本发明人构想出了一种改进的单向阀结构,其包括导流件,使得在流体流动通过单向阀的过程中,该导流件能够对流体的流动方向进行引导控制,使得流体至少部分地沿期望的方向对阀片施加作用力,从而缩短单向阀的响应时间。由此,达到降噪、提高涡旋压缩机效率以及工作可靠性的目的。
下面就结合图4至图10(b)对根据本公开的单向阀结构做进一步详细的说明。
图4示意性地示出了根据本公开的第一实施方式的单向阀200的分解立体 图。图5示意性地示出了应用有根据本公开的第一实施方式的单向阀200的涡旋压缩机的局部剖视图。如图4所示,根据本公开的一个实施方式的单向阀200可以包括阀座210、阀片220以及阀挡230。根据本实施方式的阀座210、阀片220以及阀挡230的结构可以与图1所示的单向阀100的相应部件的结构类似,在此不再赘述。
与图1所示的单向阀100的结构的不同的是,图4所示实施方式的单向阀200可以包括围绕阀座210设置的导流件240。在图5所示的实施方式中,导流件240通过过盈配合固定至阀座210,当然,也可采用例如螺纹连接、焊接等任何其他适当的固定方式。导流件240可以形成为围绕阀座210的圆筒形。当然,导流件240可以不限于所示的形状,而是可以呈椭圆形筒、矩形筒、三角形筒、等任何适当的其他形状。在涡旋压缩机工作时,由于导流件240的约束作用,使得从阀孔216排出的压缩后的流体能够集中作用于阀片220的区域,从而增大对阀片220施加的升力,缩短单向阀200的响应时间,并能够将阀片220牢固地保持在远离阀座210的打开位置,以减小工作噪声、提高涡旋压缩机的工作可靠性。
如图5所示,导流件240可以从第一端部242沿竖向方向向上延伸至第二端部244。在此,第一端部242示例性地示出为设置在阀座210上表面的下方并且设置在隔板30上,但本公开不限于此,第一端部242也可以设置成位于阀座210上表面下方的其他位置。导流件240的第二端部244可以设置成与阀挡230的止挡部234的下表面齐平。更优选地,如图5所示,导流件240的第二端部244可以设置成与止挡部234的上表面齐平,或者第二端部244可以设置成位于止挡部234的上表面的上方,在此情况下,当涡旋压缩机停机时,如图5中箭头B所示,来自排气端口34的回流流体被导流件240引导而流动至止挡部234的上方,然后穿过止挡部234的通孔235向下流动,从而使得流体对阀片220施加向下的压力。由此使得阀片220能够快速向下移动至阀座210以封闭阀孔216,从而达到降低噪音以及提高涡旋压缩机工作效率的目的。尽管在图5中示出了阀片220与阀挡230的止挡部234的尺寸基本对应,但是本领域技术人员应当理解的是止挡部234的尺寸也可以形成为比阀片220的尺寸更大或更小。在止挡部234的尺寸小于阀片220的尺寸的情况下,回流流体可以在阀片220的外边缘上不穿过通孔235直接作用于阀片220。
优选地,导流件240可以与止挡部234之间设置有间隙,使得在涡旋压缩机工作的情况下,压缩后的流体可以穿过该间隙排出,从而增大流体的流通面积,避免产生过大的压降损失而降低涡旋压缩机的工作效率。虽然在本示例性实施方式中,示出了止挡部234中形成有4个通孔235,但是本领域技术人员应当理解的是止挡部234也可以形成有更多或更少个通孔216。优选地,通孔235关于引导部236对称地布置,使得流体的作用力对称地施加在阀片220上,从而提高阀片220运动的稳定性和可靠性。类似地,阀座210也可以形成有至少一个的任意数量的阀孔235。并且,阀座210、阀片220、阀挡230不限于所示的形状,而是可以呈截面为方形、矩形等任何适当的其他形状。
可选地,导流件240可以仅设置在阀座210的一侧,即,部分地围绕阀座210设置。例如,在图5所示的涡旋压缩机中,导流件240可以仅形成在阀座210的右侧,即,排气端口34所位于的一侧。
图6示意性地示出了应用有根据本公开的第二实施方式的单向阀300的涡旋压缩机的局部剖视图。如图6所示,根据本公开的第二实施方式的单向阀300可以包括阀座310、阀片320、阀挡330以及导流件340。根据本实施方式的阀座310、阀片320、阀挡330以及导流件340的结构可以与图5所示的单向阀200的相应部件的结构类似,在此不再赘述。与图5所示的单向阀200的结构的不同的是,图6所示实施方式的单向阀300的导流件340固定在隔板30上,而非固定至阀座310。导流件340例如可以通过焊接固定在隔板30上。在本实施方式中,导流件340可以与阀座310的外边缘间隔开,从而增大了导流件340与阀挡330之间的间隙,由此,根据本实施方式的单向阀300可以在不影响导流件340对流体引导的情况下,增大流体穿过单向阀300的流通面积,由此进一步防止过大的压降损失。
图7示意性地示出了应用有根据本公开的第三实施方式的单向阀400的涡旋压缩机的局部剖视图。根据本实施方式的阀片420和阀挡430的结构可以与图5和图6所示的单向阀200和300的相应部件的结构类似,在此不再赘述。与图5和图6所示的单向阀200和300的结构的不同的是,图7所示实施方式的单向阀400的导流件440结合在阀座410上,从而形成为一体件。应当理解的是,本文中的术语“一体件”指的是一体形成的部件,而非机械上相互连接或固定的两个单独的部件。图8示意性地示出了根据本公开的第三实施方式的 单向阀400的由导流件440和阀座410形成的一体件的立体图。如图8所示,导流件440可以从阀座410的上表面向上延伸以环绕阀挡430,在此情况下,导流件440的第一端部442设置成与阀座410的上表面齐平。可选地,导流件440可以沿着阀座410的上表面的外边缘向上延伸,以在能够引导流体的流动方向的情况下,与阀挡430和阀片420隔开充分的间隙,从而便于单向阀400的组装和使用,并且避免过大的压降损失。
图9示意性地示出了应用有根据本公开的第四实施方式的单向阀500的涡旋压缩机的局部剖视图。根据本实施方式的阀座510和阀片520的结构可以与图5和图6所示的单向阀200和300的相应部件的结构类似,在此不再赘述。与图5和图6所示的单向阀200和300的结构的不同的是,图9所示实施方式的单向阀500的导流件540结合在阀挡530上,从而形成为一体件。图10(a)和图10(b)示意性地示出了根据本公开的第四实施方式的单向阀500的由导流件540和阀挡530形成的一体件的立体图。如图10(a)和10(b)所示,阀挡530可以形成有从止挡部534向外延伸的延伸部532,导流件540可以从延伸部532的外边缘向下延伸。并且如图9所示,导流件540可以从第一端部542沿竖向方向向下延伸到第二端部544,尽管图9示例性地示出了第一端部542设置成与止挡部534的上表面齐平并且第二端部544设置成与阀座510的上表面齐平,但是本领域技术人员应理解的是,第一端部542也可以设置成位于止挡部534的上方并且第二端部544也可以设置成位于阀座510的上表面下方。在本实施方式中,可以在相邻的延伸部532与导流件540之间形成有孔口538,从而增加流体的流通面积。多个孔口538可以对称地布置在一体件上,以使得流体施加的力分布均匀,从而使得阀片520能够稳定地运动,提高单向阀以及涡旋压缩机的稳定可靠性。虽然在本实施方式中示出了形成的一体件的导流件540和止挡部534之间设置有四个延伸部532,但是可以构想的是,一体件可以形成有更多个或更少个延伸部532。此外,图10(a)中示出的阀挡530的通孔535的数量也仅为示例性的。尽管在此具体描述了导流件540与阀挡530形成一体件的实施方式,但是导流件通过过盈配合等其他方式固定至阀挡的构型显然也包含在本公开的范围内。
图11(a)-(d)示出了在涡旋压缩机停机时单向阀阀片的上下两侧所受的压力随时间的变化图,由于阀片在出现明显的压力差时向下移位以封闭阀 孔,因此可以将出现明显压差的时间作为单向阀响应涡旋压缩机停机的响应时间。图11(a)和11(b)示出了在压差较大的工况下工作的压缩机中的单向阀的压力变化,其中,图11(a)示出如图1所示的比较示例的单向阀的压力变化,而图11(b)示出具有根据本公开的实施方式的导流件的单向阀的压力变化。此外,图11(c)和11(d)表示在压差较小的工况下工作的压缩机中的单向阀的压力变化,其中,图11(c)示出了如图1所示的比较示例的单向阀的压力变化,而图11(d)示出了具有根据本公开的实施方式的导流件的单向阀的压力变化。通过比较图11(a)和11(b)可以看出,在涡旋压缩机在压差较大的工况下停机时,未设置导流件的比较示例的单向阀需要0.2s的响应时间,而设置有根据本公开的导流件的单向阀需要0.1s的响应时间,即,响应时间被缩短。而当涡旋压缩机在压差较小的工况下停机时,如图11(c)所示未设置导流件的比较示例的单向阀需要长达0.5s的响应时间,而如图11(d)所示设置有根据本公开的导流件的单向阀仅需要0.2s的响应时间,相对于比较示例的单向阀,缩短响应时间的效果很显著。由此可以看出,根据本公开的单向阀结构具有缩短响应时间,从而有利于降低涡旋压缩机的噪音水平。同时,由于单向阀快速地封闭阀孔,防止流体回流至涡旋压缩机构,避免压缩机内部零件因为高速反转而损坏。
本领域技术人员应该理解,关于本发明的一个方面描述的特征同样适用于本发明的其他方面。尽管在此详细描述了本公开的各种实施方式,但是应该理解,本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (12)

  1. 一种单向阀(200,300,400,500),所述单向阀包括:
    阀座(210,310,410,510),所述阀座中形成有用于流体通过的阀孔(216,316,416,516);
    阀片(220,320,420,520),所述阀片设置在所述阀座(210,310,410,510)上方并且构造成选择性地打开或封闭所述阀孔(216,316,416,516);
    阀挡(230,330,430,530),所述阀挡设置在所述阀片上方,并固定连接至所述阀座,所述阀挡包括限制所述阀片的最大位移范围的止挡部(234,334,434,534)和用于引导所述阀片运动的引导部(236,336,436,536);以及
    导流件(240,340,440,540),所述导流件构造成对流动通过所述单向阀(200,300,400,500)的流体进行引导,从而控制所述流体施加至所述阀片(220,320,420,520)的力。
  2. 根据权利要求1所述的单向阀,其中,
    所述导流件(240,340,440,540)构造成在所述止挡部(234,334,434,534)的外侧围绕所述止挡部,并且所述导流件沿竖向方向至少在所述阀座(210,310,410,510)与所述止挡部之间延伸。
  3. 根据权利要求2所述的单向阀,其中,
    所述导流件(240,340,440,540)构造成中空的筒式结构。
  4. 根据权利要求2所述的单向阀,其中,
    所述导流件(240,340,440)从第一端部沿竖向方向向上延伸至第二端部,其中,所述第一端部在竖向方向上与所述阀座的上表面齐平或位于所述上表面的下方,并且所述第二端部在竖向方向上与所述止挡部齐平或位于所述止挡部的上方。
  5. 根据权利要求4所述的单向阀,其中,
    所述导流件(240)通过过盈配合固定至所述阀座(210)的外周面,或者所述导流件(440)与所述阀座(410)形成为一体件。
  6. 根据权利要求2所述的单向阀,其中,
    所述导流件(540)从第一端部沿竖向方向向下延伸至第二端部,其中,所述第一端部在竖向方向上与所述止挡部齐平或位于所述止挡部的上方,并且所述第二端部在竖向方向上与所述阀座的上表面齐平或位于所述上表面的下方。
  7. 根据权利要求6所述的单向阀,其中,
    所述导流件(540)与所述阀挡(530)形成为一体件或者所述导流件通过过盈配合固定至所述阀挡的外周面。
  8. 根据权利要求1-7中的任一项所述的单向阀,其中,
    所述导流件(240,340,440,540)与所述止挡部之间形成有允许流体流动通过的间隙。
  9. 根据权利要求1-7中的任一项所述的单向阀,其中,所述引导部(236,336,436,536)插入穿过所述阀片(220,320,420,520)的中央孔并且固定连接在所述阀座(220,320,420,520)中,所述阀片(220,320,420,520)能够沿着所述引导部(236,336,436,536)移动。
  10. 一种涡旋压缩机,所述涡旋压缩机包括根据权利要求1-9中的任一项所述的单向阀。
  11. 一种涡旋压缩机,所述涡旋压缩机包括将所述涡旋压缩机分隔为吸气侧和排气侧的隔板(30),所述隔板具有与所述涡旋压缩机的涡旋压缩机构的 排气口流体连通的开口(32),并且所述涡旋压缩机在所述开口(32)处设置有单向阀(300),所述单向阀包括:
    阀座(310),所述阀座中形成有用于流体通过的阀孔(316);
    阀片(320),所述阀片设置在所述阀座(310)上方并且构造成选择性地打开或封闭所述阀孔(316);
    阀挡(330),所述阀挡设置在所述阀片上方,并固定连接至所述阀座,所述阀挡包括限制所述阀片的最大位移范围的止挡部(334)和用于引导所述阀片运动的引导部(336);以及
    导流件(340),所述导流件(340)固定在所述隔板(30)上,所述导流件构造成对流动通过所述单向阀(300)的流体进行引导,从而控制所述流体施加至所述阀片(320)的力。
  12. 根据权利要求11所述的涡旋压缩机,其中,
    所述导流件(340)与所述阀座(310)之间形成有间隙。
PCT/CN2019/099969 2018-09-14 2019-08-09 单向阀及涡旋压缩机 WO2020052390A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217010133A KR20210055745A (ko) 2018-09-14 2019-08-09 일-방향 밸브 및 스크롤 압축기
EP19859796.5A EP3851675A4 (en) 2018-09-14 2019-08-09 ONE-WAY VALVE AND SCROLL COMPRESSOR
KR1020237040374A KR20230166142A (ko) 2018-09-14 2019-08-09 일-방향 밸브 및 스크롤 압축기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821509943.7U CN208966580U (zh) 2018-09-14 2018-09-14 单向阀及涡旋压缩机
CN201811074864.2A CN110905803A (zh) 2018-09-14 2018-09-14 单向阀及涡旋压缩机
CN201821509943.7 2018-09-14
CN201811074864.2 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052390A1 true WO2020052390A1 (zh) 2020-03-19

Family

ID=69776928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099969 WO2020052390A1 (zh) 2018-09-14 2019-08-09 单向阀及涡旋压缩机

Country Status (3)

Country Link
EP (1) EP3851675A4 (zh)
KR (2) KR20210055745A (zh)
WO (1) WO2020052390A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166488A (ja) * 1997-10-25 1999-06-22 Samsung Electron Co Ltd スクロール圧縮機
EP1291529A2 (en) * 2001-09-05 2003-03-12 Copeland Corporation Compressor discharge valve
CN102116291A (zh) * 2010-01-05 2011-07-06 美的集团有限公司 一种涡旋压缩机的逆止阀装置
CN102121472A (zh) * 2010-01-07 2011-07-13 美的集团有限公司 一种涡旋压缩机的止回阀装置
CN202926643U (zh) * 2012-10-30 2013-05-08 艾默生环境优化技术(苏州)有限公司 压缩机
WO2018036380A1 (zh) * 2016-08-26 2018-03-01 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
KR20180058514A (ko) * 2016-11-24 2018-06-01 엘지전자 주식회사 밀폐형 압축기
CN207795587U (zh) * 2018-01-05 2018-08-31 艾默生环境优化技术(苏州)有限公司 压缩机
CN208966580U (zh) * 2018-09-14 2019-06-11 艾默生环境优化技术(苏州)有限公司 单向阀及涡旋压缩机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800141A (en) * 1996-11-21 1998-09-01 Copeland Corporation Scroll machine with reverse rotation protection
US20080101972A1 (en) * 2006-10-27 2008-05-01 Guang-Der Tarng Single-Way Valve For Scroll Compressor
FR2960948B1 (fr) * 2010-06-02 2015-08-14 Danfoss Commercial Compressors Compresseur frigorifique a spirales
DE102012022615B4 (de) * 2011-11-30 2023-11-02 Danfoss Commercial Compressors Scroll-Kälteverdichter
JP5870056B2 (ja) * 2013-03-19 2016-02-24 日立アプライアンス株式会社 スクロール圧縮機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166488A (ja) * 1997-10-25 1999-06-22 Samsung Electron Co Ltd スクロール圧縮機
EP1291529A2 (en) * 2001-09-05 2003-03-12 Copeland Corporation Compressor discharge valve
CN102116291A (zh) * 2010-01-05 2011-07-06 美的集团有限公司 一种涡旋压缩机的逆止阀装置
CN102121472A (zh) * 2010-01-07 2011-07-13 美的集团有限公司 一种涡旋压缩机的止回阀装置
CN202926643U (zh) * 2012-10-30 2013-05-08 艾默生环境优化技术(苏州)有限公司 压缩机
WO2018036380A1 (zh) * 2016-08-26 2018-03-01 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
KR20180058514A (ko) * 2016-11-24 2018-06-01 엘지전자 주식회사 밀폐형 압축기
CN207795587U (zh) * 2018-01-05 2018-08-31 艾默生环境优化技术(苏州)有限公司 压缩机
CN208966580U (zh) * 2018-09-14 2019-06-11 艾默生环境优化技术(苏州)有限公司 单向阀及涡旋压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851675A4

Also Published As

Publication number Publication date
KR20230166142A (ko) 2023-12-06
EP3851675A1 (en) 2021-07-21
KR20210055745A (ko) 2021-05-17
EP3851675A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
KR101671967B1 (ko) 쇽업소버의 피스톤 어셈블리
JP2006300051A (ja) スクロール式圧縮機用の吐出弁
US9863421B2 (en) Pulsation dampening assembly
RU2012130173A (ru) Клапанный узел
WO2014017081A1 (ja) 圧縮機
WO2007046379A1 (ja) ケージ弁
JP6493060B2 (ja) Pcvバルブ
CN110905803A (zh) 单向阀及涡旋压缩机
KR20200060427A (ko) 트윈-스크류 압축기용 슬라이드 밸브
WO2020052390A1 (zh) 单向阀及涡旋压缩机
KR100461231B1 (ko) 왕복동식 압축기의 흡입 머플러
KR102038096B1 (ko) 수두손실 저감형 글로브 밸브
CN208966580U (zh) 单向阀及涡旋压缩机
CN111472977A (zh) 阀组件及压缩机
KR100874069B1 (ko) 밀폐형 컴프레서
KR20040107824A (ko) 밀폐형 압축기
JP2016173099A (ja) 圧縮機用の吸気調整弁
CN205479528U (zh) 一种阻尼缓冲式单向阀
KR200382966Y1 (ko) 밀폐형 압축기의 토출밸브장치
JP6855005B2 (ja) エナーシャポンプ
KR102529520B1 (ko) 차량용 진공펌프
CN220850016U (zh) 涡旋压缩机
JP2017096129A (ja) オイルセパレータ
US11396873B2 (en) Scroll compressor comprising a valve provided on a fixed scroll that opens at a certain pressure
KR20130020157A (ko) 틸팅체크밸브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010133

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019859796

Country of ref document: EP

Effective date: 20210414