WO2022036882A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2022036882A1
WO2022036882A1 PCT/CN2020/128003 CN2020128003W WO2022036882A1 WO 2022036882 A1 WO2022036882 A1 WO 2022036882A1 CN 2020128003 W CN2020128003 W CN 2020128003W WO 2022036882 A1 WO2022036882 A1 WO 2022036882A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
scroll
exhaust hole
scroll compressor
end plate
Prior art date
Application number
PCT/CN2020/128003
Other languages
English (en)
French (fr)
Inventor
刘轩
房元灿
周启明
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021717862.3U external-priority patent/CN212774773U/zh
Priority claimed from CN202010826671.9A external-priority patent/CN114076101A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2022036882A1 publication Critical patent/WO2022036882A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a scroll compressor, and in particular, to a scroll compressor having a check valve built into a stationary scroll end plate.
  • a scroll compressor includes components such as movable scroll, fixed scroll, drive shaft, bearing housing and housing.
  • Components such as movable scroll, stationary scroll, drive shaft and bearing seat are generally arranged in the housing.
  • the orbiting scroll and the stationary scroll constitute the compression mechanism and both have wraps and end plates.
  • the orbiting scroll and the stationary scroll cooperate to form a compression chamber that compresses the working fluid.
  • the drive shaft drives the movable scroll to perform translational motion relative to the stationary scroll, and compresses the working fluid in the compression chamber through the relative motion between the scroll of the movable scroll and the scroll of the stationary scroll.
  • the working fluid here is usually a gas.
  • the compressed high pressure gas is discharged through exhaust holes provided in the end plates of the scroll. In order to prevent the exhausted high-pressure gas from flowing back to the exhaust hole, a check valve is usually installed on the exhaust hole.
  • Figure 1 shows a prior art stationary scroll 100' with a check valve 20'.
  • the check valve 20' includes a valve plate 21' and a valve body 22'.
  • the valve body 22' of the check valve 20' is fixed on the end plate of the stationary scroll 100' by connecting with screws 26'.
  • the check valve plate 21' is pushed upwards under the action of the exhaust pressure of the compressed gas, thereby opening the exhaust hole 102' and discharging the compressed gas in the compression chamber to the compressor casing
  • the valve plate is pressed against the exhaust hole, thereby preventing the high-pressure exhaust gas from the upper side of the check valve from flowing back into the compression chamber.
  • the valve body 22' of the check valve 20' has two legs.
  • the inner side of the leg is designed as an inner cylindrical surface 221'.
  • the outer circumference of the valve plate 21' of the check valve is in contact with the cylindrical surface.
  • the check valve plate moves up and down, the part of the cylindrical surface in contact with the check valve plate plays a guiding role.
  • the check valve plate is in contact with the inner cylindrical surface of the check valve body only at two narrower portions. Therefore, the guiding effect of the valve body is poor.
  • the compressed gas is discharged from the exhaust hole in the form of high-frequency high-speed pulsed gas flow.
  • the check valve can provide a stable guide for the valve plate, so as to reduce the failure of the check valve caused by the deflection or jamming of the valve plate during the opening and closing process of the check valve, and can reduce the check valve failure.
  • the chattering phenomenon of the valve plate of the valve is provided while ensuring the stability of the guide of the check valve.
  • a gas flow channel conforming to the gas flow characteristics is provided to reduce the flow resistance of the exhaust gas and improve the flow efficiency of the gas.
  • the scroll compressor includes: a movable scroll; a stationary scroll, and the stationary scroll cooperates with the movable scroll to form a compression chamber for compressing the working fluid.
  • the stationary scroll includes stationary scroll end plates.
  • An exhaust hole is arranged on the end plate of the stationary scroll, and the compressed working fluid is discharged from the compression chamber through the exhaust hole.
  • a check valve is provided above the exhaust hole. The check valve prevents backflow of the working fluid discharged through the vent hole to the compression chamber.
  • the check valve includes: a valve seat, the valve seat is a stepped portion arranged above the exhaust hole; a valve wall, the valve seat is located at the bottom end of the valve wall; a valve plate, the valve plate can be directed towards or away from the valve seat under the guidance of the valve wall move to press against the valve seat or away from the valve seat to close or open the vent.
  • a plurality of guide grooves are arranged on the end plate of the stationary scroll. The guide grooves extend outwardly from the valve wall in radial and circumferential directions. When the valve plate opens the exhaust hole, the guide groove communicates with the exhaust hole.
  • the guide groove is a groove formed concavely in the stationary scroll end plate from the top surface of the stationary scroll end plate.
  • the guide groove has an inlet end and a tail.
  • the angle between the tangent at the inlet end and the tangent at the tail is less than or equal to 90°.
  • the tail of the diversion groove is provided with a diversion slope.
  • the guide slope extends obliquely axially upward from the bottom of the guide groove to the top surface of the fixed scroll end plate.
  • the diversion slope is a plane, and the slope angle of the diversion slope is less than 40°.
  • the diversion slope is a circular arc surface.
  • the guide groove extends to 1/3 to 2/3 of the radius of the stationary scroll end plate.
  • the fixed scroll end plate includes: a plurality of passages connecting different compression chambers to the high pressure side in the casing of the scroll compressor; and a plurality of variable volume ratio valves, the Each of the plurality of variable volume ratio valves is provided on the corresponding passage to close or open the passage.
  • the diversion grooves are distributed according to the plurality of variable volume ratio valves.
  • the sum of the flow area of the plurality of guide grooves is greater than the cross-sectional area of the exhaust hole.
  • the part of the outer periphery of the valve sheet in contact with the valve wall is greater than or equal to half of the outer periphery of the valve sheet.
  • the scroll compressor with the above structure ensures that the outer periphery of the valve plate of the check valve is in contact with the valve wall at multiple locations, improves the stability of the valve wall guiding the valve plate, and can prevent the valve plate of the check valve from being damaged. Deflects when opening and closing the check valve while eliminating check valve flap chatter.
  • a plurality of guide grooves are provided around the valve wall of the check valve and at the tail of the guide groove A flow guide slope structure is provided, and this structure reduces the flow resistance of the gas discharged from the compression chamber. By making the sum of the flow area of each guide groove larger than the cross-sectional area of the exhaust hole, the throttling effect is reduced, thereby further improving the flow efficiency of the gas.
  • FIG. 1 is a perspective view of a stationary scroll with a prior art check valve
  • FIG. 2A is a perspective view of a stationary scroll of a scroll compressor according to the present disclosure
  • 2B is a cross-sectional view of the stationary scroll with the valve plate and stopper of the check valve removed;
  • 2C is a top view of the stationary scroll with the valve plate and stopper of the check valve removed;
  • Figure 2D is a top view of the stationary scroll of Figure 2A;
  • 3A is a top view of a stationary scroll of a scroll compressor according to another embodiment
  • FIG. 3B is a partial perspective view of the scroll compressor having the fixed scroll shown in FIG. 3A;
  • FIG. 4A is a perspective view of a fixed scroll of a scroll compressor according to another embodiment
  • FIG. 4B is a top view of the stationary scroll shown in FIG. 4A with the valve plate and stop of the check valve removed;
  • FIG. 5 is a partial perspective view of the scroll compressor with the discharge port provided at the top of the casing.
  • the check valve of the prior art is provided on the outside of the fixed scroll end plate.
  • the portion of the outer circumference of the valve plate in contact with the guide surface is less than half of the outer circumference of the valve plate.
  • the scroll compressor according to the present disclosure includes an orbiting scroll and a fixed scroll that cooperate to form a compression chamber that compresses gas (working fluid).
  • the orbiting and stationary scrolls have end plates and wraps, respectively.
  • the compressed high-pressure gas is discharged from the compression chamber to the high-pressure side in the compressor casing through the exhaust holes provided on the fixed scroll end plate.
  • the stationary scroll 100 includes a stationary scroll end plate 101 and a stationary scroll wrap 102 .
  • the non-return valve 2 is provided on the fixed scroll end plate 101 .
  • the check valve includes a valve plate 21 , a stopper 22 , a valve wall 241 and a valve seat 242 .
  • the valve plate 21 is a disc-shaped part.
  • the valve wall 241 is a cylindrical circumferential wall.
  • the valve seat 242 is a stepped portion located at the bottom end of the circumferential wall.
  • the valve wall 241 and the valve seat 242 are disposed above the exhaust hole 105 .
  • the diameter of the valve wall 241 is the same as the diameter of the valve plate 21 .
  • valve plate When the valve plate is assembled in the valve wall, the radially outer periphery of the valve plate is in contact with the valve wall and the valve wall provides a guide for the valve plate.
  • the valve plate can slide in the axial direction under the guidance of the valve wall, so that the valve plate can be pressed against the valve seat or away from the valve seat, so that the exhaust hole 105 can be closed or opened.
  • the outer peripheral edge of the valve plate of the check valve and the valve wall are in contact with each other at multiple positions in the circumferential direction, and the part of the outer peripheral edge of the valve plate of the check valve in contact with the valve wall is greater than or equal to the valve plate of the check valve. Half of the entire outer perimeter, thus improving the stability of the guide.
  • the inner diameter of the valve seat 242 is smaller than the diameter of the valve plate 21, and the valve seat can provide support for the valve plate when the valve plate is assembled in the valve wall.
  • the stopper 22 is fixed to the fixed scroll end plate 101 by fixing members such as screws 23 .
  • the stopper 22 prevents the valve plate from leaving the fixed scroll end plate.
  • recesses 222 for mounting the stopper 22 are provided on the stationary scroll end plate.
  • the concave portion 222 is provided with a threaded hole 223 for mating with the screw 23 .
  • a plurality of guide grooves 25 extending outward from the valve wall in the radial direction are provided on the fixed scroll end plate.
  • the guide groove 25 is a groove formed concavely from the top surface 111 of the fixed scroll end plate into the fixed scroll end plate. When the valve plate opens the exhaust hole, the guide groove 25 communicates with the exhaust hole 105 .
  • the guide groove has a bottom surface 251 and two side surfaces 253 .
  • the end of the guide groove close to the exhaust hole 105 is the inlet end 258 of the guide groove, and the end of the guide groove away from the inlet end is its tail 259 .
  • the two side surfaces 253 are shown extending parallel to each other and perpendicular to the bottom surface 251 .
  • the side surfaces 253 may extend in an inclined manner relative to the bottom surface 251, and the side surfaces may not be parallel to each other.
  • a guide slope 252 is provided at the tail of the guide groove.
  • the guide slope 252 extends obliquely upward from the bottom surface 251 to the top of the guide groove, that is, to the top surface 111 of the stationary scroll end plate.
  • This guide slope structure prevents the gas from directly hitting the vertical wall, thereby avoiding the flow dead zone of the gas flow, and further reducing the pressure loss of the gas flow.
  • the guide slope 252 is a plane, and the angle between the guide slope and the bottom 251 of the guide groove—ie, the slope angle ⁇ —is generally less than 40°.
  • the diversion ramp can be a curved surface, eg a circular arc surface or an involute curved surface.
  • the number and distribution of the guide grooves 25 can be set according to the flow characteristics of the exhaust air flow, the position of the exhaust port 301 on the casing 300 of the scroll compressor, and the like.
  • each flow guide slot may be configured to direct the flow of working fluid toward the discharge port of the scroll compressor.
  • the plurality of guide grooves may be arranged to flow the working fluid in a swirling flow to the discharge port of the scroll compressor.
  • the fixed scroll end plate 101 is provided with a plurality of passages (not shown) that communicate different compression chambers to the high pressure side in the casing, and a plurality of variable volume ratios provided on each passage to control the closing or opening of the passages valve.
  • a plurality of variable volume ratio valves form a variable volume ratio valve group (VVR valve group) 106, and the distribution of the guide grooves can be appropriately adjusted according to the settings of the VVR valve group.
  • VVR valve group variable volume ratio valve group
  • the guide grooves when viewed in the axial direction, extend outward from the valve wall in a curved shape in the radial and circumferential directions.
  • the guide grooves extend outwardly from the valve wall in radial and circumferential directions along a smooth curve. Wherein, the entire guide groove is bent toward the same circumferential direction. The included angle between the tangent of the inlet end of the diversion groove and the tangent of the tail is less than or equal to 90°.
  • the entire guide groove is curved in an arc shape, the entire arc of the guide groove does not exceed 90°.
  • the guide grooves can also extend, for example, in the shape of an involute.
  • FIG. 2C shows a plurality of guide grooves that are all curved in a counterclockwise direction, and the plurality of guide grooves are roughly formed in a shape similar to a fan blade.
  • each of the guide grooves may also be bent in a clockwise direction.
  • the plurality of guide grooves can be evenly distributed around the valve wall, or can be adjusted to be unevenly distributed around the valve wall according to actual conditions.
  • the tail portion 259 of the guide groove is located approximately at 1/3-2/3 of the outer radius of the stationary scroll end plate. That is, the guide groove extends outward from the valve wall in the radial direction to a position of 1/3-2/3 of the radius of the fixed scroll end plate.
  • Each guide groove is distributed in the gap of the VVR valve block. This arrangement of the guide grooves is suitable for the case where the discharge port 301 on the scroll compressor casing 300 is located at the top center of the casing as shown in FIG. 5 .
  • This guide groove can control the air flow to discharge to the top outlet in a spiral shape, so as to optimize the flow efficiency and reduce the pressure loss.
  • the sum of the flow area of each guide groove is greater than the cross-sectional area of the exhaust hole.
  • the passage area here refers to the cross-sectional area of the inlet end of the guide groove that communicates with the inside of the check valve when the check valve is opened.
  • the flow area of the guide groove is the product of the depth h and the width d of the guide groove.
  • This arrangement of the guide grooves reduces the throttling effect.
  • the depth h of the guide groove may be smaller than the diameter of the check valve disc, so as to avoid the problem that the valve disc is too large to cause a reset delay.
  • the depth h of the guide groove refers to the depth in the axial direction. The arrangement of the guide groove can improve the gas flow efficiency and reduce the pressure loss.
  • FIG. 3A is a top view of a fixed scroll of a scroll compressor according to another embodiment.
  • the difference between this embodiment and the embodiment shown in FIG. 2A lies in the distribution and bending of the guide grooves.
  • This arrangement of the guide grooves is suitable for the case where the discharge port 301 on the scroll compressor casing 300 is located at the side of the casing as shown in FIG. 3B .
  • the center of the projection of the discharge port 301 of the scroll compressor on the top surface 111 of the fixed scroll end plate 101 and the center of the projection of the discharge hole on the top surface The connecting line between them forms the axis of symmetry O.
  • the guide grooves 25 are arranged approximately symmetrically with respect to the symmetry axis O, and each guide groove 25 is curved toward the orientation where the exhaust port 301 is located, that is, each guide groove is curved toward the same end side of the symmetry axis O. This arrangement of the guide grooves is adapted to direct the exhaust gas directly towards the exhaust port 301, shortening the airflow path and reducing airflow resistance.
  • FIG. 4A is a perspective view of a fixed scroll of a scroll compressor according to yet another embodiment.
  • 4B is a top view of the stationary scroll shown in FIG. 4A with the valve plate and stop of the check valve removed.
  • the difference between this embodiment and the embodiment shown in FIG. 2A lies in the distribution and bending of the guide grooves.
  • FIGS. 4A and 4B in the case where multiple VVR valves are provided, in order to avoid the VVR valves, the distribution and bending direction of the guide grooves can be adjusted appropriately to suit the specific compressor structure.
  • This arrangement of the guide grooves is suitable for the case where the discharge port 301 on the casing of the scroll compressor is located at the top of the casing 300 as shown in FIG. 5 .
  • the scroll compressor of the present disclosure by incorporating the check valve in the fixed scroll end plate, it is ensured that the valve plate of the check valve is in contact with the valve wall at a plurality of positions on the outer circumference thereof, and the contact portion is greater than or equal to Half of the outer circumference of the valve plate, thus improving the stability of the valve wall to the valve plate guide.
  • This construction prevents deflection of the check valve plate as it opens and closes, while eliminating the risk of check valve plate chattering.
  • a guide groove is provided around the check valve and a guide slope is provided at the tail of the guide groove.
  • This structure reduces the flow resistance of the gas discharged from the compression chamber, makes the flow of the discharged gas smoother, and further reduces the vibration of the check valve caused by the poor gas flow.
  • the fixed scroll with this structure can be formed by casting according to the specific implementation process, so that the manufacturing cost can be saved.
  • this structure can also be manufactured in machined form.
  • the radial direction in the above refers to the radial direction of the stationary scroll of the compressor
  • the axial direction refers to the direction perpendicular to the radial direction
  • the circumferential direction refers to the circumferential axial direction direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种涡旋压缩机,其包括动涡旋和静涡旋(100)。静涡旋(100)与动涡旋配合以形成对工作流体进行压缩的压缩腔。静涡旋(100)包括静涡旋端板(101)。静涡旋端板(101)上设置有排气孔(105)。经压缩的工作流体通过排气孔(105)排出压缩腔。在排气孔(105)上方设置有止回阀(2)。止回阀(2)防止经由排气孔(105)排出的工作流体回流至压缩腔。止回阀(2)包括:阀座(242),阀座(242)为设置在排气孔(105)上方的台阶部;阀壁(241),阀座(242)位于阀壁(241)的底端;阀片(21),阀片(21)能够在阀壁(241)的引导下朝向或者远离阀座(242)移动,以压靠在阀座(242)上或远离阀座(242),从而关闭或打开所述排气孔(105)。在静涡旋端板(101)上设置有多个导流槽(25)。导流槽(25)从阀壁(241)沿径向方向和周向方向向外延伸,当阀片(21)打开排气孔(105)时,导流槽(25)与排气孔(105)连通。

Description

涡旋压缩机
本申请要求以下中国专利申请的优先权:于2020年8月17日提交中国专利局的申请号为202010826671.9、发明创造名称为“涡旋压缩机”的中国专利申请以及于2020年8月17日提交中国专利局的申请号为202021717862.3、发明创造名称为“涡旋压缩机”的中国专利申请。以上专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种涡旋压缩机,具体地涉及一种具有内置在静涡旋端板中的止回阀的涡旋压缩机。
背景技术
通常,涡旋压缩机包括动涡旋、静涡旋、驱动轴、轴承座和壳体等部件。动涡旋、静涡旋、驱动轴和轴承座等部件一般均设置在壳体内。动涡旋和静涡旋构成压缩机构并且均具有涡卷和端板。动涡旋和静涡旋配合以形成对工作流体进行压缩的压缩腔。驱动轴驱动动涡旋相对于静涡旋进行平动运动,通过动涡旋的涡卷与静涡旋的涡卷之间的相对运动对压缩腔内的工作流体进行压缩。这里工作流体通常为气体。经压缩的高压气体通过设置在涡旋的端板上的排气孔排出。为了防止已排出的高压气体回流至排气孔,通常在排气孔上安装止回阀。
图1示出了现有技术的具有止回阀20’的静涡旋100’。止回阀20’包括阀片21’和阀体22’。止回阀20’的阀体22’通过螺钉26’连接的形式固定在静涡旋100’的端板上。在排气周期时,在压缩气体的排气压力的作用下将止回阀阀片21’向上推开,从而打开排气孔102’,将压缩腔内的经压缩的气体排出至压缩机壳体内的高压侧;当排气结束时,压缩机构的压缩腔中的压力显著减小并且小于止回阀上侧(排气侧)的气体压力,故在压力差的作用下,止回阀的阀片被压在排气孔上,从而阻止止回阀上侧的高压排出气体回流至压缩腔。
根据现有技术的止回阀20’的阀体22’具有两个支腿。支腿的内侧设计为内圆柱面221’。止回阀的阀片21’的外圆周与圆柱面接触。在止回阀阀片上下 运动时,该圆柱面与止回阀阀片接触的部分起到导向作用。在这种结构中,止回阀阀片与止回阀阀体的内圆柱面仅在较窄的两个部分处接触。因此,阀体的导向作用较差。通常,压缩气体是以高频高速脉冲气流的流动形式从排气孔排出的。作用在止回阀阀片上的气体作用力很难均匀地分布在阀片上,这就很容易导致如下两个问题:(1)止回阀阀片在受力不均匀的情况下很容易发生偏转,卡死在止回阀阀体上,使止回阀失效,从而导致压缩机工作故障;(2)约束止回阀阀片的限位面积过少,易导致止回阀阀片和脉冲气流发生喘振,导致止回阀阀片出现振颤现象,使得压缩机噪声异常。因此,需要设计能够克服上述技术问题的新型的止回阀。此外,从压缩腔排出的压缩气体的流动通路上阻力是设计止回阀时需要考虑的重要方面之一。应当尽可能地减小气体的流动阻力,以提高气体的流动效率。
发明内容
本公开的目的是提供一种具有内置在静涡旋端板中的止回阀的涡旋压缩机。其中,这种止回阀能够为阀片提供稳定的导向,以减小止回阀在打开和关闭过程中阀片发生偏转或卡死而造成止回阀失效的情况,并且能够减小止回阀的阀片的振颤现象。此外,在确保止回阀的导向的稳定性的同时,设置符合气体流动特性的气体流动通道,以减小排出气体流动阻力,提高气体的流动效率。
具体地,根据本公开的涡旋压缩机包括:动涡旋;静涡旋,静涡旋与动涡旋配合以形成对工作流体进行压缩的压缩腔。静涡旋包括静涡旋端板。静涡旋端板上设置有排气孔,经压缩的工作流体通过排气孔排出压缩腔。在排气孔上方设置有止回阀。止回阀防止经由排气孔排出的工作流体回流至压缩腔。止回阀包括:阀座,阀座为设置在排气孔上方的台阶部;阀壁,阀座位于阀壁的底端;阀片,阀片能够在阀壁的引导下朝向或者远离阀座移动,以压靠在所述阀座上或远离所述阀座,从而关闭或打开所述排气孔。在静涡旋端板上设置有多个导流槽。导流槽沿径向方向和周向方向从阀壁向外延伸。当阀片打开排气孔时,导流槽与排气孔连通。
其中,导流槽为从静涡旋端板的顶面向静涡旋端板内凹入地形成的凹槽。
其中,导流槽具有入口端与尾部。沿轴向方向观察时,入口端的切线与尾部的切线的夹角小于等于90°。
其中,导流槽的尾部设置有导流坡。导流坡从导流槽的底部倾斜地轴向向上延伸至静涡旋端板的顶面。
其中,导流坡是平面,导流坡的坡角小于40°。
其中,导流坡是圆弧面。
其中,导流槽延伸至静涡旋端板的半径的1/3至2/3处。
其中,所述静涡旋端板包括:多个通道,所述多个通道将不同压缩腔连通至所述涡旋压缩机的壳体内的高压侧;以及多个可变容积比阀,所述多个可变容积比阀中的每一者设置在相应的通道上以关闭或打开该通道。所述导流槽根据所述多个可变容积比阀进行分布。
其中,多个导流槽的通流面积之和大于排气孔的横截面积。
其中,阀片的外周缘与阀壁接触的部分大于等于阀片的外周缘的二分之一。
具有上述结构的涡旋压缩机,确保了止回阀的阀片外周缘在多个部位处与阀壁接触,提高了阀壁对阀片导向的稳定性,进而能够防止止回阀的阀片在打开和关闭止回阀时发出偏转,同时消除了止回阀阀片的振颤。此外,根据排出的压缩气体的流动特性以及涡旋压缩机的壳体上的压缩气体的排出端口的设置,在止回阀的阀壁周围设置有多个导流槽并且在导流槽的尾部设置有导流坡结构,这种结构减小了从压缩腔排出的气体的流动阻力。通过使得各个导流槽的通流面积之和大于排气孔的横截面积,减小了节流效应,从而进一步提高了气体的流动效率。
附图说明
图1是具有现有技术的止回阀的静涡旋的立体图;
图2A是根据本公开的涡旋压缩机的静涡旋的立体图;
图2B是移除了止回阀的阀片和止挡件的静涡旋的剖视图;
图2C是移除了止回阀的阀片和止挡件的静涡旋的俯视图;
图2D是图2A的静涡旋的俯视图;
图3A是根据另一实施方式的涡旋压缩机的静涡旋的俯视图;
图3B是具有图3A所示的静涡旋的涡旋压缩机的局部立体图;
图4A是根据另一实施方式的涡旋压缩机的静涡旋的立体图;
图4B是移除了止回阀的阀片和止挡件的图4A所示的静涡旋的俯视图;以及
图5是排气端口设置在壳体顶部的涡旋压缩机的局部立体图。
具体实施方式
下面结合附图,对根据本公开的涡旋压缩机进行详细的介绍。在附图中,相同功能的部件具有相同的附图标记。
如背景技术中所述的,现有技术的止回阀设置在静涡旋端板的外侧。阀片的外圆周与导向表面接触的部分小于阀片外圆周的一半。在压缩机排气时,当高压气体作用在止回阀阀片上的冲击力不均匀时,阀片容易偏转、卡死,从而造成止回阀失效,并且容易造成阀片震颤,从而使得压缩机噪音较大。为了解决上述问题,提高止回阀的稳定性,本公开提供了一种具有新型的止回阀的涡旋压缩机。这种新型的止回阀内置在静涡旋端板内,以增强止回阀对阀片的导向性能。并且在阀壁周围设置有导流槽,以减小排出的高压气体的流动阻力,从而提高压缩机的性能。
根据本公开的涡旋压缩机包括动涡旋和静涡旋,动涡旋和静涡旋配合以形成对气体(工作流体)进行压缩的压缩腔。动涡旋和静涡旋分别具有端板和涡卷。经压缩的高压气体通过设置在静涡旋端板上的排气孔从压缩腔排出至压缩机壳体内的高压侧。为了更清楚地示出根据本公开的涡旋压缩机的内置的止回阀,在视图中仅示出了涡旋压缩机的设置有止回阀的静涡旋,省略了其他部件。下面结合附图具体介绍根据本公开的涡旋压缩机。
如图2A-2D所示,静涡旋100包括静涡旋端板101和静涡旋涡卷102。在静涡旋端板101上设置有止回阀2。止回阀包括阀片21、止挡件22阀壁241以及阀座242。在所示出的示例性实施方式中,阀片21是圆片形部件。阀壁241为圆筒形的周向壁。阀座242为位于周向壁底端的台阶部。阀壁241和阀座242设置在排气孔105上方。阀壁241直径与阀片21的直径一致。在将阀片装配在阀壁中时,阀片的径向外周缘与阀壁接触并且阀壁为阀片提供导向。阀片能够在阀壁的引导下沿轴向方向滑动,使得阀片能够压靠在阀座上或者远离阀座,从而能够关闭或打开排气孔105。止回阀的阀片的外周缘与阀壁在沿周向方向的多个位置处相互接触,并且止回阀的阀片的外周缘与阀壁接触的部 分大于等于止回阀的阀片的整个外周缘的一半,从而提高了导向的稳定性。
阀座242的内直径小于阀片21的直径,在阀片装配在阀壁中时,阀座能够为阀片提供支撑。在止回阀关闭时,阀片能够压靠在阀座上,从而能够关闭排气孔105。止挡件22通过诸如螺钉23之类的固定件固定至静涡旋端板101。在止回阀打开时,止挡件22阻止阀片离开静涡旋端板。如图2B和图2C所详细地示出的,在静涡旋端板上设置有用于安装止挡件22的凹部222。凹部222中设置有用于与螺钉23配合的螺纹孔223。
为了在止回阀打开时,引导气流离开排气孔105,在静涡旋端板上设置有从阀壁沿径向方向向外延伸的多个导流槽25。
导流槽25为从静涡旋端板的顶面111向静涡旋端板内凹入地形成的凹槽。当阀片打开排气孔时,导流槽25与排气孔105连通。如图2B所示,导流槽具有底面251和两个侧面253。导流槽的靠近排气孔105的端部为导流槽的入口端258,导流槽的远离其入口端的端部为其尾部259。两个侧面253示出为相互平行且垂直于底面251延伸。可选地,侧面253能够以相对于底面251倾斜的方式延伸,侧面可以不相互平行。此外,为了减小气体在导流槽内流动时的阻力,导流槽的尾部处设置有导流坡252。导流坡252从底面251斜向上延伸至导流槽的顶部,即,延伸至静涡旋端板的顶面111。气流在导流槽内流动时沿倾斜的导流坡流出导流槽。这种导流坡结构避免了气体直接撞击竖直的壁,从而避免了气体流动的流动死区,进一步降低了气流的压力损失。在所示出的示例性实施方式中,导流坡252为平面,导流坡与导流槽的底部251之间的夹角——即,坡角α——一般小于40°。可选地,导流坡能够为曲面,例如,圆弧面或渐开线型的曲面。
导流槽25的数量和分布可以根据排出气流的流动特性以及涡旋压缩机的壳体300上的排气端口301的位置等进行设定。例如,每个导流槽可以构造成引导工作流体朝向涡旋压缩机的排气端口流动。多个导流槽可以布置成使工作流体以旋流的形式流向涡旋压缩机的排气端口。在静涡旋端板101上设置有将不同压缩腔连通至壳体内的高压侧的多个通道(未示出)以及设置在各个通道上以控制通道的关闭或打开的多个可变容积比阀。多个可变容积比阀形成可变容积比阀组(VVR阀组)106,可以根据VVR阀组的设置,对导流槽的分布进行适当的调整。
如图2C和2D所示,沿轴向方向观察时,导流槽沿径向方向和周向方向以弯曲的形状从阀壁向外延伸。根据示例性的实施方式,导流槽沿平滑的曲线从阀壁沿径向方向和周向方向向外侧延伸。其中,整个导流槽朝向同一周向方向弯曲。导流槽的入口端的切线与尾部的切线之间的夹角小于等于90°。在导流槽整体以圆弧状弯曲的情况下,导流槽的整体弧度不超过90°。可选地,导流槽也可以以例如渐开线的形状延伸。沿轴向方向观察时,各个导流槽以相同的方式弯曲。图2C示出了沿均逆时针方向弯曲的多个导流槽,多个导流槽大致形成类似风扇扇叶的形状。可选地,各个导流槽也可以均沿顺时针方向弯曲。多个导流槽可以围绕阀壁均匀地分布,也可以根据实际情况调整为围绕阀壁非均匀地分布。导流槽的尾部259大致位于静涡旋端板的外圆半径的1/3-2/3处。即,导流槽从阀壁沿径向方向向外延伸至静涡旋端板的半径的1/3-2/3的位置处。各个导流槽分布于VVR阀组的空隙中。导流槽的这种布置适用于如图5所示的涡旋压缩机壳体300上的排气端口301位于壳体的顶部中央的情况。这种导流槽能够控制气流以螺旋状向顶部出口排出,从而能够优化流动效率,减少压力损失。
根据本公开,各个导流槽的通流面积之和大于排气孔的横截面积。这里的通流面积是指在止回阀打开时与止回阀内部连通的导流槽的入口端的横截面积。在矩形导流槽的情况下,导流槽的通流面积是指导流槽的深度h和宽度d之积。导流槽的这种设置降低了节流效应。导流槽的深度h可以小于止回阀阀片的直径,从而能够避免阀片行程过大导致复位延迟的问题。导流槽的深度h是指沿轴向方向的深度。导流槽的这种设置能够提高气体流动效率,减少压力损失。
图3A是根据另一实施方式的涡旋压缩机的静涡旋的俯视图。该实施方式与图2A所示的实施方式的区别在于导流槽的分布和弯曲方式不同。导流槽的这种布置适用于如图3B所示的涡旋压缩机壳体300上的排气端口301位于壳体侧部的情况。根据该实施方式,沿轴向方向观察,,涡旋压缩机的排气端口301在述静涡旋端板101的顶面111上的投影的中心与排气孔在顶面上的投影的中心之间的连线形成对称轴线O。各个导流槽25关于对称轴线O大致对称地设置,并且各个导流槽25均朝向排气端口301所处的方位弯曲,即各个导流槽均朝向对称轴线O的同一端部侧弯曲。导流槽的这种布置适于将排出气 体直接朝向排出端口301引导,缩短了气流路径并且减小了气流阻力。
图4A是根据又一实施方式的涡旋压缩机的静涡旋的立体图。图4B是移除了止回阀的阀片和止挡件的图4A所示的静涡旋的俯视图。该实施方式与图2A所示的实施方式的区别在于导流槽的分布和弯曲方式不同。如图4A和4B所示,在设置有多个VVR阀的情况了,为了避开VVR阀,可以对导流槽的分布和弯曲方向进行适当地调整,以适应具体的压缩机结构。导流槽的这种布置适用于如图5所示的涡旋压缩机壳体上的排气端口301位于壳体300顶部的情况。
根据本公开的涡旋压缩机,通过将止回阀内置在静涡旋端板内,确保了止回阀的阀片在其外圆周的多个部位处与阀壁接触,并且接触部分大于等于阀片外周缘的一半,从而提高了阀壁对阀片导向的稳定性。这种结构既可以防止止回阀阀片在打开和关闭时发出偏转,同时又消除了止回阀阀片的振颤风险。根据本公开的涡旋压缩机,在止回阀的周围设置有导流槽并且在导流槽的尾部设置有导流坡。这种结构减小了从压缩腔排出的气体的流动阻力,使得排出气体的流动更通畅,进一步减小了由于气流不畅造成的止回阀的振颤。此外,具有这种结构的静涡旋可以根据具体实施过程采用铸造成型,从而能够节约制造成本。当然,这种结构也能够通过机加工的形式制造。
此外,应当说明的是,上文中的径向方向指的是压缩机的静涡旋的径向方向,轴向方向指的是与径向方向垂直的方向,周向方向是指环绕轴向方向的方向。
为了详细地介绍本公开的涡旋压缩机的具体实施方式,在上文中公开了示例性的结构、部件和联接方式。然而,对于本领域的普通技术人员来说明显的是,不一定要采用上述特定细节,这些示例性的结构、部件和联接方式可以以许多不同形式来实施,并且这些特定细节和示例性的结构、部件和联接方式不应该被解释为限制本申请的范围。

Claims (10)

  1. 一种涡旋压缩机,所述涡旋压缩机包括:
    动涡旋;
    静涡旋(100),所述静涡旋与所述动涡旋配合以形成对工作流体进行压缩的压缩腔,所述静涡旋包括静涡旋端板(101),所述静涡旋端板上设置有排气孔(105),经压缩的所述工作流体通过所述排气孔(105)排出所述压缩腔,
    其中,在所述排气孔(105)上方设置有止回阀(2),所述止回阀(2)防止经由所述排气孔(105)排出的工作流体回流至所述压缩腔,
    所述止回阀(2)包括:
    阀座(242),所述阀座为设置在所述排气孔上方的台阶部;
    阀壁(241),所述阀座位于所述阀壁的底端;
    阀片(21),所述阀片能够在所述阀壁的引导下朝向或者远离所述阀座移动,以压靠在所述阀座上或远离所述阀座,从而关闭或打开所述排气孔,
    其中,在所述静涡旋端板上设置有多个导流槽(25),所述导流槽从所述阀壁沿径向方向和周向方向向外延伸,当所述阀片打开所述排气孔时,所述导流槽与所述排气孔连通。
  2. 根据权利要求1所述的涡旋压缩机,其中,所述导流槽(25)为从所述静涡旋端板(101)的顶面(111)向所述静涡旋端板内凹入地形成的凹槽。
  3. 根据权利要求2所述的涡旋压缩机,其中,所述导流槽具有入口端(258)与尾部(259),沿轴向方向观察时,所述入口端的切线与所述尾部的切线的夹角小于等于90°。
  4. 根据权利要求1所述的涡旋压缩机,其中,所述导流槽的尾部(259)设置有导流坡(252),所述导流坡从所述导流槽的底部(251)倾斜地轴向向上延伸至所述静涡旋端板的顶面(111)。
  5. 根据权利要求4所述的涡旋压缩机,其中,所述导流坡(252)是平面, 所述导流坡的坡角(α)小于40°。
  6. 根据权利要求4所述的涡旋压缩机,其中,所述导流坡(252)是圆弧面。
  7. 根据权利要求1-6中任一项所述的涡旋压缩机,其中,所述导流槽(25)延伸至所述静涡旋端板(101)的半径的1/3至2/3处。
  8. 根据权利要求1-6中任一项所述的涡旋压缩机,其中,所述静涡旋端板包括:
    多个通道,所述多个通道将不同压缩腔连通至所述涡旋压缩机的壳体内的高压侧;以及
    多个可变容积比阀,所述多个可变容积比阀中的每一者设置在相应的通道上以关闭或打开该通道,
    其中,所述导流槽根据所述多个可变容积比阀进行分布。
  9. 根据权利要求1-6中任一项所述的涡旋压缩机,其中,多个所述导流槽(25)的通流面积之和大于所述排气孔(105)的横截面积。
  10. 根据权利要求1所述的涡旋压缩机,其中,所述阀片(21)的外周缘与所述阀壁(241)接触的部分大于等于所述阀片的外周缘的二分之一。
PCT/CN2020/128003 2020-08-17 2020-11-11 涡旋压缩机 WO2022036882A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021717862.3U CN212774773U (zh) 2020-08-17 2020-08-17 涡旋压缩机
CN202010826671.9A CN114076101A (zh) 2020-08-17 2020-08-17 涡旋压缩机
CN202010826671.9 2020-08-17
CN202021717862.3 2020-08-17

Publications (1)

Publication Number Publication Date
WO2022036882A1 true WO2022036882A1 (zh) 2022-02-24

Family

ID=80323399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128003 WO2022036882A1 (zh) 2020-08-17 2020-11-11 涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2022036882A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103169A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
US5494422A (en) * 1993-09-03 1996-02-27 Mitsubishi Jukogyo Kabushiki Kaisha Scroll type compressor having a discharge valve retainer with a back pressure port
CN1215803A (zh) * 1997-10-25 1999-05-05 三星电子株式会社 具有改进的逆止阀及排放压缩气体的顶板的涡旋压缩机
CN2580147Y (zh) * 2002-11-14 2003-10-15 瑞智精密股份有限公司 具消音罩的逆止阀结构
CN1800646A (zh) * 2005-01-06 2006-07-12 Lg电子株式会社 防止涡旋式压缩机气体回流的装置
CN102116293A (zh) * 2002-10-15 2011-07-06 比泽尔制冷设备有限公司 用于制冷介质的涡旋式压缩机
CN202250877U (zh) * 2011-08-18 2012-05-30 丹佛斯(天津)有限公司 排放阀和包括该排放阀的涡旋压缩机
CN203756545U (zh) * 2014-03-17 2014-08-06 艾默生环境优化技术(苏州)有限公司 阀组件以及包括该阀组件的压缩机
CN205744466U (zh) * 2016-05-17 2016-11-30 广东美芝制冷设备有限公司 排气阀座以及具有其的旋转式压缩机
CN208236636U (zh) * 2017-12-14 2018-12-14 艾默生环境优化技术(苏州)有限公司 止回阀及涡旋压缩机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494422A (en) * 1993-09-03 1996-02-27 Mitsubishi Jukogyo Kabushiki Kaisha Scroll type compressor having a discharge valve retainer with a back pressure port
JPH07103169A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
CN1215803A (zh) * 1997-10-25 1999-05-05 三星电子株式会社 具有改进的逆止阀及排放压缩气体的顶板的涡旋压缩机
CN102116293A (zh) * 2002-10-15 2011-07-06 比泽尔制冷设备有限公司 用于制冷介质的涡旋式压缩机
CN2580147Y (zh) * 2002-11-14 2003-10-15 瑞智精密股份有限公司 具消音罩的逆止阀结构
CN1800646A (zh) * 2005-01-06 2006-07-12 Lg电子株式会社 防止涡旋式压缩机气体回流的装置
CN202250877U (zh) * 2011-08-18 2012-05-30 丹佛斯(天津)有限公司 排放阀和包括该排放阀的涡旋压缩机
CN203756545U (zh) * 2014-03-17 2014-08-06 艾默生环境优化技术(苏州)有限公司 阀组件以及包括该阀组件的压缩机
CN205744466U (zh) * 2016-05-17 2016-11-30 广东美芝制冷设备有限公司 排气阀座以及具有其的旋转式压缩机
CN208236636U (zh) * 2017-12-14 2018-12-14 艾默生环境优化技术(苏州)有限公司 止回阀及涡旋压缩机

Similar Documents

Publication Publication Date Title
KR101253137B1 (ko) 용량 조절 어셈블리를 가진 압축기
CN104838143B (zh) 具有容量调节和可变容积比的压缩机
TWI268992B (en) Scroll machine
EP1930602B1 (en) Centrifugal compressor
US9360012B2 (en) Differential pressure regulating valve and motor-driven compressor having differential pressure regulating valve
WO2014040449A1 (zh) 排气阀和包括排气阀的压缩机
WO2014017081A1 (ja) 圧縮機
JP2013133748A (ja) 遠心圧縮機
WO2022016934A1 (zh) 压缩机和空调器
WO2022036882A1 (zh) 涡旋压缩机
US6224356B1 (en) Check valve stop and ports
CN104912795B (zh) 变容量涡旋压缩机
CN111963429B (zh) 泵体组件、压缩机和空调器
CN108240337B (zh) 阀组件和涡旋压缩机
WO2023202674A1 (zh) 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机
CN212774773U (zh) 涡旋压缩机
CN114076101A (zh) 涡旋压缩机
CN206487627U (zh) 阀组件和涡旋压缩机
JP6475749B2 (ja) 遠心式圧縮機及びそれを備えた遠心機ユニット
WO2021203639A1 (zh) 压缩机构及涡旋压缩机
EP3816450B1 (en) Damping apparatus for exhaust valve in compressor, exhaust valve assembly, and compressor
KR102239814B1 (ko) 터보 압축기
CN110657097A (zh) 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机
CN107489614B (zh) 涡旋压缩机
CN113494451A (zh) 压缩机构及涡旋压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950085

Country of ref document: EP

Kind code of ref document: A1