WO2014040449A1 - 排气阀和包括排气阀的压缩机 - Google Patents

排气阀和包括排气阀的压缩机 Download PDF

Info

Publication number
WO2014040449A1
WO2014040449A1 PCT/CN2013/078898 CN2013078898W WO2014040449A1 WO 2014040449 A1 WO2014040449 A1 WO 2014040449A1 CN 2013078898 W CN2013078898 W CN 2013078898W WO 2014040449 A1 WO2014040449 A1 WO 2014040449A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
compressor
exhaust valve
fluid
degrees
Prior art date
Application number
PCT/CN2013/078898
Other languages
English (en)
French (fr)
Inventor
佩列沃兹奇科夫•迈克尔•M
霍达普•托马斯•R
方志刚
刘强
李洪山
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210341677.2A external-priority patent/CN103671125B/zh
Priority claimed from CN 201220470547 external-priority patent/CN202789552U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to US14/427,128 priority Critical patent/US9926932B2/en
Publication of WO2014040449A1 publication Critical patent/WO2014040449A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to an exhaust valve and a compressor including the same. Background technique
  • a conventional scroll compressor 100 generally includes a housing 110, a top cover 112 disposed at the end of the housing 110, a bottom cover 114 disposed at the other end of the housing 110, and a top cover Between 112 and the housing 110 is partitioned into a partition 116 of the high pressure side and the low pressure side. A high pressure side is formed between the partition 116 and the top cover 112, and a low pressure side is formed between the partition 116, the casing 110 and the bottom cover 114. An intake joint (not shown) for sucking in fluid is disposed on the low pressure side, and an exhaust joint 119 for discharging the compressed fluid is disposed on the high pressure side.
  • a motor 120 composed of a stator 122 and a rotor 124 is disposed in the housing 110.
  • a drive shaft 130 is disposed in the rotor 124 to drive a compression mechanism comprised of the fixed scroll 150 and the movable scroll 160.
  • the movable scroll 160 includes an end plate 164, a hub portion 162 formed on one side of the end plate, and a spiral blade 166 formed on the other side of the end plate.
  • the fixed scroll 150 includes an end plate 154, a spiral blade 156 formed on one side of the end plate, and an exhaust port 152 formed at a substantially central position of the end plate.
  • One side of the movable scroll 160 is supported by the main bearing housing 140, and one end of the drive shaft 130 is also supported by the main bearing housing 140.
  • One end of the drive shaft 130 is provided with an eccentric crank pin 132, and an unloading bushing 142 is disposed between the eccentric crank pin 132 and the hub 162 of the movable scroll 160.
  • the movable scroll 160 will rotate relative to the fixed scroll 150 (i.e., the central axis of the movable scroll 160 rotates about the central axis of the fixed scroll 150, but the movable scroll 160 itself does not wrap around itself.
  • the central axis is rotated) to achieve fluid compression.
  • the fluid compressed by the fixed scroll 150 and the movable scroll 160 is discharged to the high pressure side through the exhaust port 152.
  • a one-way is provided at the exhaust port 152.
  • Fig. 2 shows an exploded perspective view of a conventional exhaust valve 170.
  • the exhaust valve 170 includes a substantially annular valve seat 172 (a valve port 175 is disposed in the valve seat 172), and at least one valve piece 174 disposed on the valve seat 172 to open or close the valve port, A valve stop 176 that prevents excessive deformation of the valve plate and a pin 179 that secures the above components together.
  • the exhaust valve 170 having the above configuration is fixed to the hub portion 153 (see Fig. 4) around the exhaust port 152 of the fixed scroll 150 by the retainer 178 (see Fig. 4).
  • Fig. 3A shows the exhaust valve 170 in a closed state
  • Fig. 3B shows the exhaust valve 170 in an open state.
  • One object of one or more embodiments of the present invention is to provide an exhaust valve capable of reducing flow resistance.
  • Another object of one or more embodiments of the present invention is to provide an exhaust valve that is less expensive and simpler in construction.
  • an exhaust valve comprising: a valve body, a first end of the valve body being provided with a fluid inlet, wherein the valve Provided on the side wall of the body with at least one fluid outlet in fluid communication with the fluid inlet and a valve plate for opening or closing the fluid outlet, wherein the axial direction of the fluid outlet is relative to the axial direction of the fluid inlet tilt.
  • the angle between the axial direction of the fluid outlet and the axial direction of the fluid inlet is greater than 0 degrees and less than or equal to 90 degrees.
  • the angle between the axial direction of the fluid outlet and the axial direction of the fluid inlet is greater than or equal to 30 degrees and less than or equal to 80 degrees.
  • the angle between the axial direction of the fluid outlet and the axial direction of the fluid inlet is 70 degrees or more and 80 degrees or less.
  • the angle between the plane in which the valve sheet is located and the axial direction of the fluid inlet when the valve piece closes the fluid outlet is greater than or equal to 0 degrees and less than 90 degrees.
  • the angle between the plane in which the valve sheet is located and the axial direction of the fluid inlet when the valve sheet closes the fluid outlet is 10 degrees or more and 60 degrees or less.
  • the angle between the plane in which the valve sheet is located and the axial direction of the fluid inlet when the valve piece closes the fluid outlet is 10 degrees or more and 20 degrees or less.
  • the fixing point of the valve piece with respect to the valve body is located between the fluid outlet and the fluid inlet in the axial direction of the valve body.
  • the exhaust valve further includes a valve stop for limiting displacement of the valve plate.
  • the fixed position of the valve stop relative to the valve body is between the fluid outlet and the fluid inlet in the axial direction of the valve body.
  • two, three or four of said fluid outlets are provided, and said valve plate is provided on each fluid outlet.
  • the fluid outlets are arranged centrally symmetrically at equal angular intervals about the axial direction of the fluid inlet.
  • the fluid outlets are arranged in the same direction along the axial direction of the fluid inlet Height.
  • the second end of the valve body comprises a piston.
  • the vent valve further includes a sleeve that mates with the valve body, the fluid outlet being located within a cavity of the sleeve.
  • At least one opening is formed in a side wall of the sleeve.
  • a compressor comprising the exhaust valve as described above.
  • the compressor is a scroll compressor
  • the scroll compressor includes a fixed scroll and an orbiting scroll, and a first end of the valve body of the exhaust valve is fixed to the fixed vortex Rotate the exhaust port.
  • the first end of the valve body is fixed to the exhaust port by a threaded fit or press fit.
  • the compressor further includes a capacity modulation mechanism for modulating a compressor capacity by adjusting an axial displacement of the fixed scroll, the valve body of the exhaust valve constituting the capacity modulation mechanism portion.
  • the capacity modulation mechanism further includes a volume modulation cylinder, the piston on the valve body of the exhaust valve being configured to be movable within the volume modulation cylinder.
  • the compressor further includes a capacity modulation mechanism for modulating a compressor capacity by adjusting an axial displacement of the fixed scroll, the sleeve of the exhaust valve constituting the capacity modulation mechanism portion.
  • the capacity modulation mechanism further includes a volume modulation cylinder, the piston on the sleeve of the exhaust valve being configured to be movable within the volume modulation cylinder.
  • the volume modulation cylinder is in fluid communication with an external source of pressure through a solenoid valve.
  • the compressor is one of a scroll compressor, a piston compressor, a screw compressor, a centrifugal compressor, and a rotor compressor.
  • the valve body includes a fluid inlet and at least one fluid outlet, and an axial direction of the fluid outlet is inclined with respect to an axial direction of the fluid inlet.
  • the axial direction of such a fluid outlet according to an embodiment of the present invention is inclined relative to the axial direction of the fluid inlet, compared to an exhaust valve (shown in Figures 2-4) that overlaps or is parallel to the axis of the conventional fluid inlet and fluid outlet.
  • the exhaust valve according to the embodiment of the present invention can have a very simple structure, thus reducing the manufacturing cost.
  • an angle between an axial direction of the fluid outlet and an axial direction of the fluid inlet may be greater than 0 degrees and less than or equal to 90 degrees, preferably greater than or equal to 30 degrees and less than It is equal to 80 degrees, more preferably 70 degrees or more and 80 degrees or less.
  • the angle between the plane in which the valve sheet is located and the axial direction of the fluid inlet when the valve piece closes the fluid outlet may be greater than or equal to 0 degrees and less than 90 degrees, preferably greater than or equal to 10 degrees and less than or equal to 60 degrees, It is preferably 10 degrees or more and 20 degrees or less.
  • An exhaust valve constructed using the above-described angular range, particularly a more preferable angular range, is significantly improved in compressor operating efficiency due to a decrease in flow resistance as compared with the conventional exhaust valve shown in Figs. 2-4. After actual testing, the compressor operating efficiency can be increased by more than 3% to 6% under different working conditions.
  • a fixed point of the valve plate with respect to the valve body is located between the fluid outlet and the fluid inlet.
  • the opening direction of the valve piece is set in a direction capable of minimizing the flow resistance of the fluid.
  • the exhaust valve may further include a valve stop for restricting displacement of the valve plate. Therefore, the possibility of plastic deformation of the valve sheet and the possibility of fatigue fracture can be reduced, and the reliability of the exhaust valve is increased.
  • the fixed point of the valve stop relative to the valve body is also located between the fluid outlet and the fluid inlet, i.e., the valve stop can be fixed to the valve body at the same position as the valve plate. Thereby, an increase in flow resistance due to the presence of the valve stop is reduced.
  • the first end of the valve body may be fixed at the exhaust port of the compression mechanism of the compressor by screwing or press-fitting. Due to the valve body It can be directly fixed to the exhaust port, so that the retainer for fixing the conventional exhaust valve shown in Figs. 2-4 is omitted, and thus the increase in flow resistance due to the retainer is further reduced.
  • two, three or four fluid outlets may be provided, and the valve plate is provided on each fluid outlet.
  • the fluid outlets may be centrally symmetrically arranged at equal angular intervals around the axial direction of the fluid inlet.
  • these fluid outlets may also be arranged at the same height along the axial direction of the fluid inlet.
  • the compressor may be a scroll compressor, and the scroll compressor may include a fixed scroll and an orbiting scroll, and the exhaust valve is fixed in the row of the fixed scroll At the mouth.
  • the compressor when the compressor is a variable capacity compressor, the compressor may further include a volume modulation mechanism for modulating the capacity of the compressor by adjusting the axial displacement of the fixed scroll, the valve body of the exhaust valve or the valve The body-fitted sleeve can form part of a volume modulation mechanism.
  • the capacity modulation mechanism may include a volume modulation cylinder, and the second end of the valve body of the exhaust valve or the sleeve of the exhaust valve may include a piston that is movable within the volume modulation cylinder. Since the first end of the valve body is fixedly connected with the exhaust port of the fixed scroll, the piston on the second end of the valve body or the piston on the sleeve can move axially in the capacity modulation cylinder, thereby realizing the control capacity adjustment The capacity modulation function of the compressor. Since the exhaust valve and the member for controlling the capacity of the compressor (e.g., the piston) are integrally constructed, the number of components is reduced and the assembly process of the compressor is simplified, thereby reducing the manufacturing cost of the compressor.
  • the exhaust valve and the member for controlling the capacity of the compressor e.g., the piston
  • the compressor may be one of a scroll compressor, a piston compressor, a screw compressor, a centrifugal compressor, and a rotor compressor.
  • the exhaust valve according to the embodiment of the present invention can be applied to various compressors with good versatility.
  • Figure 1 is a longitudinal sectional view of a conventional scroll compressor; 148] Figure 2 is a perspective view of the conventional exhaust valve of Figure 1;
  • Figures 3A and 3B are schematic views of the exhaust valve of Figure 2 in a closed state and an open state, respectively;
  • Figure 4 is an enlarged view showing the vicinity of an exhaust port of a fixed scroll of the scroll compressor shown in Figure 1;
  • Figure 5 shows a scroll compressor longitudinally according to an embodiment of the present invention.
  • Figure 6 shows a perspective view of an exhaust valve according to a first embodiment of the present invention;
  • Figure 7 is a cross-sectional view showing an exhaust valve according to a first embodiment of the present invention.
  • 8A and 8B are respectively a front view and a bottom view of an exhaust valve according to a second embodiment of the present invention.
  • 9A and 9B are respectively a front view and a bottom view of an exhaust valve according to a third embodiment of the present invention.
  • FIGS. 10A and 10B are respectively an exploded perspective view and an assembled perspective view of an exhaust valve according to a fourth embodiment of the present invention.
  • Figure 11 is a longitudinal sectional view of an exhaust valve according to a fifth embodiment of the present invention. detailed description
  • FIG. 5 shows a scroll machine 100A in accordance with an embodiment of the present invention.
  • the scroll compressor 100A of the present invention employs the various exhaust valves 10A, 10B, 10C and 10D shown in Figs. 6-10B in place of the conventional exhaust valve 170 shown in Fig. 1.
  • the same reference numerals as in Fig. 1 are used in Fig. 5 to denote the same components as those in Fig. 1, and the construction of these components will not be repeated.
  • a scroll compressor 100A includes a housing 110, A top cover 112 disposed at one end of the housing 110, a bottom cover 114 disposed at the other end of the housing 110, and a cover disposed between the top cover 112 and the housing 110 to partition the internal space of the compressor into a high pressure side and a low pressure side Board 116.
  • a high pressure side is formed between the partition 116 and the top cover 112
  • a low pressure side is formed between the partition 116, the housing 110 and the bottom cover 114.
  • An intake joint 118 for sucking a fluid is provided on the low pressure side
  • an exhaust joint 119 for discharging the compressed fluid is provided on the high pressure side.
  • an exhaust valve 10A is provided at the exhaust port 152 of the fixed scroll 150.
  • the vent valve 10A can include: a valve body 12, the first end 14 of the valve body 12 can be fixed (e.g., by screwing or press-fitting) to a fixed scroll 150 of the compressor 100A.
  • the first end of the valve body 12 is provided with a fluid inlet 15 aligned with the exhaust port 152.
  • At least one fluid outlet 17 in fluid communication with the fluid inlet 15 is provided on the side wall of the valve body 12 (the number of fluid outlets 17 is two in the example shown in Figures 6 and 7) and for opening or closing the fluid outlet valve Slice 20.
  • the number of fluid outlets 17 is two in the example shown in Figures 6 and 7
  • valve sheets 20 may be two, but it will be understood by those skilled in the art that the number of the valve sheets 20 may be one or more.
  • the axial direction X2 of each fluid outlet 17 is inclined with respect to the axial direction XI of the fluid inlet 15.
  • the axial direction XI of the fluid inlet 15 is not perpendicular to the plane X3 at which the valve plate 20 closes the fluid outlet 17.
  • the flow direction of the fluid is not deflected at a right angle (90 degrees). Therefore, the flow resistance of the exhaust valve 10A can be reduced, so that the pressure drop caused by the exhaust valve can be reduced.
  • the angle ? between the axial direction X2 of the fluid outlet 17 and the axial direction XI of the fluid inlet 15 is set to be 70 degrees or more and 80 degrees or less.
  • the angle ? between the plane ⁇ 3 where the valve sheet 20 is located and the axial direction XI of the fluid inlet 15 when the valve piece 20 closes the fluid outlet 17 is set to be 10 degrees or more and 20 degrees or less.
  • the exhaust valve 10A may further include a valve stop 22 for restricting displacement of the valve plate 20.
  • the valve plate 20 and the valve stop 22 can be secured by fasteners such as screws 24 Go to the valve body 12.
  • the pin 26 can also be used to achieve further positioning.
  • the fixed point of the valve plate 20 with respect to the valve body 12 may be disposed between the fluid outlet 17 and the fluid inlet 15 in the axial direction of the valve body.
  • the opening direction of the valve piece 20 is set in a direction capable of minimizing the flow resistance of the fluid. This configuration can further reduce the flow resistance in the exhaust valve 10A.
  • the fixing point of the valve block 22 with respect to the valve body 12 e.g., the position of the screw 24
  • the exhaust valve according to the present invention performs four sets of tests under different operating conditions (see test numbers 1-2 and 5-6), which are different for the conventional exhaust valve shown in FIG. Two sets of tests were performed under working conditions (see test number 3-4).
  • the EER of the compressor provided with the exhaust valve according to the present invention and the compressor not provided with any type of exhaust valve were calculated with reference to the EER of the compressor provided with the conventional exhaust valve shown in Fig. 2.
  • the scroll compressor 100A may be a variable capacity compressor. Therefore, the scroll compressor 100A further includes a capacity modulation mechanism 180.
  • the capacity modulation mechanism 180 modulates the capacity of the compressor by adjusting the axial displacement of the fixed scroll 150 (i.e., the axial distance between the fixed scroll 150 and the movable scroll 160).
  • the valve body 12 of the vent valve 10A may form part of the volume modulation mechanism 180.
  • the volume modulation mechanism 180 further includes a volume modulation cylinder 182
  • the second end 16 of the valve body 12 of the exhaust valve 10A can include a piston 18 that is movable within the volume modulation cylinder 182.
  • the volume modulated cylinder 182 is in fluid communication with an external source of pressure via a connecting tube 184.
  • a solenoid valve may be provided in the line of the connecting pipe 184 to control the pressure in the capacity modulation cylinder 182.
  • the solenoid valve in the line of the connecting tube 184 is controlled to increase the pressure in the volume modulating cylinder 182 such that the piston 18 of the second end 16 of the exhaust valve 10A will Move down. Therefore, the fixed scroll 150 will be pressed downward to close the gap between the fixed scroll 150 and the movable scroll 160, thereby increasing the capacity of the compressor.
  • FIGS. 8A and 8B are a front view and a bottom view, respectively, of an exhaust valve 10B according to a second embodiment of the present invention.
  • three fluid outlets 17 and three sets of the valve plates 20 and the valve block 22 are provided in the exhaust valve 10B of the second embodiment of the present invention. Further, these fluid outlets 17 may be arranged symmetrically about the axis of the fluid inlet 15 at equal angular intervals. Further, these fluid outlets 17 may be arranged at the same height along the axial direction of the fluid inlet 15.
  • FIGS. 9A and 9B are a front view and a bottom view, respectively, of an exhaust valve 10C according to a third embodiment of the present invention.
  • Four fluid outlets 17 and four sets of valve plates 20 and valve stops 22 are provided in the exhaust valve 10C.
  • these fluid outlets 17 can be arranged centrally symmetrically at equal angular intervals around the axial direction of the fluid inlet 15. Additionally, these fluid outlets 17 may be arranged at the same height along the axial direction of the fluid inlet 15.
  • FIGS. 10A and 10B are respectively an exploded perspective view and an assembled perspective view of an exhaust valve 10D according to a fourth embodiment of the present invention.
  • the exhaust valve 10D according to the fourth embodiment of the present invention is not provided with a piston for capacity modulation, so that the structure is simpler and can be used for a fixed-volume vortex.
  • a rotary compressor or a scroll compressor that achieves capacity adjustment in other ways.
  • Fig. 11 shows an exhaust valve 10E according to a fifth embodiment of the present invention.
  • the configuration and relationship of the valve body 12, the fluid inlet 15, the fluid outlet 17, the valve plate 20, and the like of the exhaust valve 10E shown in Fig. 11 are similar to those of the embodiment shown in Figs. 10A-10B and will not be described here. It is particularly noted that the valve piece 20 shown in Fig. 11 is in an open state.
  • the exhaust valve 10E further includes a sleeve 30 that cooperates with the valve body 12, and the fluid outlet 17 is located within the cavity of the sleeve 30.
  • the sleeve 30 can be fixedly coupled to the valve body 12, for example, by press fitting, screwing, welding, or the like.
  • At least one opening 32 may be formed in the side wall of the sleeve 30.
  • One end of the sleeve 30 can form a piston 18.
  • the exhaust valve 10E shown in Fig. 11 can also be applied to the scroll compressor having the capacity modulation function shown in Fig. 5. More specifically, the sleeve 30 or the valve body 12 can be fixed to the exhaust port 152 of the fixed scroll 150, and the piston 18 on the sleeve 30 can be fitted in the capacity modulation cylinder 182.
  • the scroll compressor using the exhaust valve 10E of this embodiment can perform capacity modulation as described above.
  • the angle ⁇ is set to be 70 degrees or more and 80 degrees or less (or the angle ⁇ is set to be 10 degrees or more and 20 degrees or less).
  • the present invention is not limited thereto, and the above ranges of the angles ⁇ and ⁇ may also select other values to achieve a effect that may be slightly worse than the above preferred range but still higher than that of the conventional exhaust valve.
  • the angle ⁇ between the axial direction ⁇ 2 of the fluid outlet 17 and the axial direction XI of the fluid inlet 15 may be 30 degrees or more and 80 degrees or less.
  • the angle ⁇ between the plane ⁇ 3 where the valve sheet 20 is located and the axial direction X of the fluid inlet 15 when the valve piece 20 closes the fluid outlet port 17 may be 10 degrees or more and 60 degrees or less.
  • the angle ⁇ between the axial direction ⁇ 2 of the fluid outlet 17 and the axial direction XI of the fluid inlet 15 may be greater than 0 degrees and less than or equal to 90 degrees. Or in other words, when the valve plate 20 closes the fluid outlet 17, the plane ⁇ 3 where the valve plate 20 is located and the axial direction XI of the fluid inlet 15 The angle ⁇ between may be greater than or equal to 0 degrees and less than 90 degrees.
  • fluid inlet and the fluid outlet are shown as being circular in the above-described embodiments described with reference to the drawings, those skilled in the art will appreciate that the fluid inlet and the fluid outlet may have any shape other than a circular shape.
  • the valve piece may be a single valve piece or a stack of two or more. Set the valve.
  • the fourth and fifth embodiments shown in Figs. 10A-10B and Fig. 11 can also be modified to include a plurality of fluid outlets.
  • the exhaust valve of the embodiment of the present invention is described with reference to a scroll compressor, but those skilled in the art should understand that the exhaust valve of the present invention can also be applied to other types of compressors, including but not It is limited to piston compressors, screw compressors, centrifugal compressors, and rotor compressors to achieve the effect of reducing the pressure drop caused by the exhaust valve and increasing the operating efficiency of the compressor. Further, those skilled in the art will appreciate that the vent valve of the present invention can also be applied to other machines that require control of fluid discharge, such as pumps and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种排气阀(10A,10B,IOC,10D,10E),包括阀体(12),阀体的第一端设置有流体入口(15),阀体的侧壁上设置有与流体入口(15)流体连通的至少一个流体出口(17)以及用于打开或关闭所述流体出口的阀片(20),流体出口(17)的轴线方向相对于流体入口(15)的轴线方向倾斜。还涉及一种包括上述排气阀的压缩机。所述排气阀具有较低的流体阻力,并且能够显著降低压缩机中由于排气阀导致的压力降,从而提高了压缩机的运行效率。

Description

排气阀和包括排气阀的压缩机 相关申请的交叉引用
【01】本申请要求于 2012 年 9 月 14 日提交中国专利局、 申请号为 201210341677.2、 发明名称为 "排气岡和包括排气阀的压缩机" 的中国 专利申请以及于 2012 年 9 月 14 提交中国专利局、 申请号为 201220470547.4、 发明名称为 "排气岡和包括排气阀的压缩机" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
【02】本发明涉及一种排气阀和包括该排气阀的压缩机。 背景技术
【03】如图 1所述, 常规的涡旋压缩机 100—般包括壳体 110、 设置在壳 体 110—端的顶盖 112、 设置在壳体 110另一端的底盖 114以及设置在 顶盖 112和壳体 110之间以将压缩机的内部空间分隔成高压侧和低压侧 的隔板 116。 隔板 116和顶盖 112之间构成高压侧, 而隔板 116、 壳体 110和底盖 114之间构成低压侧。 在低压侧设置有用于吸入流体的进气 接头(未示出),在高压侧设置有用于排出压缩后的流体的排气接头 119。 壳体 110中设置有由定子 122和转子 124构成的电机 120。 转子 124中 设置有驱动轴 130以驱动由定涡旋 150和动涡旋 160构成的压缩机构。 动涡旋 160包括端板 164、 形成在端板一侧的毂部 162和形成在端板另 一侧的螺旋状的叶片 166。 定涡旋 150包括端板 154、 形成在端板一侧 的螺旋状的叶片 156和形成在端板的大致中央位置处的排气口 152。 动 涡旋 160的一侧由主轴承座 140支撑, 并且驱动轴 130的一端也由主轴 承座 140支撑。 驱动轴 130的一端设置有偏心曲柄销 132, 在偏心曲柄 销 132和动涡旋 160的毂部 162之间设置有卸载衬套 142。通过电机 140 的驱动, 动涡旋 160将相对于定涡旋 150平动转动(即, 动涡旋 160的 中心轴线绕定涡旋 150的中心轴线旋转,但是动涡旋 160本身不会绕自 身的中心轴线旋转) 以实现流体的压缩。 经过定涡旋 150和动涡旋 160 压缩后的流体通过排气口 152排出到高压侧。为了防止高压侧的流体在 特定情况下经由排气口 152回流到低压侧,在排气口 152处设置有单向 阀或 气阀 170
【04】图 2示出了常见的一种排气阀 170的分解立体图。 如图 2所示, 排 气阀 170包括大致圆环形的阀座 172 (阀座 172中设置有阀口 175 )、 设 置在阀座 172上以打开或关闭阀口的至少一个阀片 174、 防止阀片过度 变形的阀挡 176以及将上述部件固定在一起的销 179。 具有上述构造的 排气阀 170通过保持器 178 (见图 4 ) 固定在定涡旋 150的排气口 152 周围的毂部 153 (见图 4 ) 中。 图 3A示出了排气阀 170处于关闭状态, 而图 3B示出了排气阀 170处于打开状态。
【05】在图 2-4中示出的常规的排气阀 170中, 由于阀座 172、 阀挡 176 和保持器 178相对于定涡旋 150的排气口 152的特定位置关系, 当压缩 后的流体从排气口 152排出到高压侧时流体的流动方向要在图 4中所示 的 、 B、 C和 D处进行四次大致 90度的转向。 具体地, 由于阀座 172 的上表面垂直于排气口 152 (或阀座 172上的阀口 175 ) 的轴线方向, 在阀片 174打开时, 流体不得不进行大致 90度的转向(位置 A处)。接 下来, 由于阀挡 176中的流动通道的轴线方向大致平行于排气口 152的 轴线方向, 所以大致沿水平方向从阀片 174流出的流体不得不再次进行 大致 90度的转向 (位置 B处)。 最后, 沿着大致竖直方向从阀挡 176 的流动通道流出的流体受到保持器 178的导向并且趋向于朝向压力最小 的区域流动, 因此, 流体在大致 C和 D的位置处还将进行两次大致 90 度的转向。 这些转向显著增加了流体的流动阻力。 因此, 从排气口 152 到高压侧产生了明显的压力降。 这种压力降会导致压缩机的效率降低, 并且增加压缩机的能耗。 06】因此, 需要一种能够有效降低流动阻力的排气阀。 发明内容
107】本发明的一个或多个实施方式的一个目的是提供一种能够降低流 动阻力的排气阀。
[08]本发明的一个或多个实施方式的另一个目的是提供一种成本较低、 结构较简单的排气阀。
【09】本发明的一个或多个实施方式的又一个目的是提供一种运行效率 较高的压缩机。 【10】为了实现上述目的中的一个或多个, 根据本发明一个方面, 提供了 一种排气阀, 包括: 阀体, 所述阀体的第一端设置有流体入口, 其中所 述阀体的侧壁上设置有与所述流体入口流体连通的至少一个流体出口 以及用于打开或关闭所述流体出口的阀片,其中所述流体出口的轴线方 向相对于所述流体入口的轴线方向倾斜。
【11〗优选地, 所述流体出口的轴线方向与所述流体入口的轴线方向之间 的角度大于 0度并且小于等于 90度。
【12】优选地, 所述流体出口的轴线方向与所述流体入口的轴线方向之间 的角度大于等于 30度并且小于等于 80度。
【13〗优选地, 所述流体出口的轴线方向与所述流体入口的轴线方向之间 的角度大于等于 70度并且小于等于 80度。
[14]优选地, 当所述阀片关闭所述流体出口时所述阀片所处的平面与所 述流体入口的轴线方向之间的角度大于等于 0度并且小于 90度。
[15]优选地, 当所述阀片关闭所述流体出口时所述阀片所处的平面与所 述流体入口的轴线方向之间的角度大于等于 10度并且小于等于 60度。
[16]优选地, 当所述阀片关闭所述流体出口时所述阀片所处的平面与所 述流体入口的轴线方向之间的角度大于等于 10度并且小于等于 20度。
!17!优选地, 所述阀片的相对于所述阀体的固定点在所述阀体的轴向上 位于所述流体出口和所述流体入口之间。
【18】优选地, 所述排气阀进一步包括用于限制所述阀片的位移的阀挡。
【19】优选地, 所述阀挡相对于所述阀体的固定点在所述阀体的轴向上位 于所述流体出口和所述流体入口之间。
【20】优选地, 设置有 2个、 3个或 4个所述流体出口, 并且每个流体出 口上都设置有所述阀片。
[21】优选地, 所述流体出口围绕所述流体入口的轴线方向以相等的角度 间隔中心对称地布置。
122】优选地, 所述流体出口沿着所述流体入口的轴线方向布置在相同的 高度。
23】优选地, 所述阀体的第二端包括活塞。
124】优选地, 所述排气阀进一步包括与所述阀体配合的套筒, 所述流体出 口位于所述套筒的空腔内。
『25】优选地, 所述套筒的侧壁上形成有至少一个开口。
Figure imgf000006_0001
【27】根据本发明另一个方面, 提供了一种压缩机, 包括如上所述的排气 阀。
【28】优选地, 所述压缩机为涡旋压缩机, 并且所述涡旋压缩机包括定涡 旋和动涡旋,所述排气阀的阀体的第一端固定在所述定涡旋的排气口处。
【29】优选地, 所述阀体的第一端通过螺纹配合或压配固定在所述排气口 处。
【30】优选地, 所述压缩机进一步包括用于通过调节所述定涡旋的轴向位 移来调制压缩机容量的容量调制机构,所述排气阀的阀体构成所述容量 调制机构的一部分。
131】优选地, 所述容量调制机构进一步包括容量调制缸体, 所述排气阀 的阀体上的活塞构造成能够在所述容量调制缸体内运动。
[32]优选地, 所述压缩机进一步包括用于通过调节所述定涡旋的轴向位移 来调制压缩机容量的容量调制机构, 所述排气阀的套筒构成所述容量调制 机构的一部分。
『33〗优选地, 所述容量调制机构进一步包括容量调制缸体, 所述排气阀的 套筒上的活塞构造成能够在所述容量调制缸体内运动。
[34]优选地, 所述容量调制缸体通过电磁阀与外部压力源流体连通。
【35】优选地, 所述压缩机是涡旋压缩机、 活塞压缩机、 螺杆压缩机、 离 心压缩机和转子压缩机中的一种。
【36】根据本发明的一种或几种实施方式的排气阀和压缩机的优点在于: 【37】在根据本发明一种实施方式的排气阀中, 阀体包括流体入口和至少 一个流体出口, 流体出口的轴线方向相对于流体入口的轴线方向倾斜。 与常规的流体入口和流体出口的轴线重叠或平行的排气阀 (如图 2-4所 示)相比, 根据本发明实施方式的这种流体出口的轴线方向相对于流体 入口的轴线方向倾斜(这里的倾斜包括二者相互垂直的情形) 的构造, 由于流体在流动过程中其流动方向无需以 90度的角度多次转向, 所以 能够降低流体的流动阻力,从而减小由排气阀造成的压力降。另一方面, 由于仅在阀体上设置了流体入口和流体出口并且在流体出口上设置了 阀片, 所以根据本发明实施方式的排气阀可以具有非常简单的结构, 因 此降低了制造成本。
【38】在根据本发明进一步的实施方式的排气阀中, 流体出口的轴线方向 与流体入口的轴线方向之间的角度可以大于 0度并且小于等于 90度, 优选地大于等于 30度并且小于等于 80度, 更优选地大于等于 70度并 且小于等于 80度。 或者, 换言之, 当阀片关闭流体出口时阀片所处的 平面与流体入口的轴线方向之间的角度可以大于等于 0度并且小于 90 度, 优选地大于等于 10度并且小于等于 60度, 更优选地大于等于 10 度并且小于等于 20度。 采用上述角度范围特别是更加优选的角度范围 构造的排气阀, 与图 2-4所示的常规排气阀相比, 由于流动阻力降低而 带来的压缩机运行效率的提高是显著的。 经实际测试, 压缩机运行效率 的提高在不同工况下可超过 3%至 6%。
[39]在根据本发明进一步的实施方式的排气阀中, 阀片的相对于阀体的 固定点位于流体出口和流体入口之间。 换言之, 阀片的打开方向设置在 能够使得流体的流动阻力最小化的方向上。 从而, 能够进一步降低排气 阀中的流动阻力。
[40]在根据本发明进一步的实施方式的排气阀中, 排气阀还可以进一步 包括用于限制阀片的位移的阀挡。 因此, 能够降低阀片塑性变形的可能 性和疲劳破坏的可能性, 增加了排气阀的可靠性。 此外, 阀挡相对于阀 体的固定点也位于流体出口和流体入口之间, 即阀挡可以在与阀片相同 的位置处固定到阀体上。 从而, 降低了由于阀挡的存在而带来的流动阻 力的增加。
【41】在根据本发明进一步的实施方式的排气阀中, 阀体的第一端可以通 过螺紋配合或压配固定在所述压缩机的压缩机构的排气口处。 由于阀体 可以直接固定到排气口处, 所以省去了用于固定图 2-4所示的常规排气 阀的保持器, 并且因此进一步降低了由于保持器所造成的流动阻力的增 加。
【42】在根据本发明进一步的实施方式的排气阀中, 可以设置 2个、 3个 或 4个流体出口,并且在每个流体出口上都设置有所述阀片。进一步地, 这些流体出口可以围绕流体入口的轴线方向以相等的角度间隔中心对 称地布置。 另外, 这些流体出口还可以沿着流体入口的轴线方向布置在 相同的高度。 采用这种构造, 可以增加流体出口的总横截面积以进一步 避免压力降。 另外, 由于流体出口的对称布置, 可以更加有效地实现高 压侧的压力平衡、 降低噪音和压力波动, 确保压缩机更稳定地运转。
【43】在根据本发明实施方式的压缩机中, 由于采用了上述排气阀, 所以 可以具有由排气阀带来的上述优点。
【44】在根据本发明进一步的实施方式的压缩机中, 压缩机可以为涡旋压 缩机, 并且涡旋压缩机可以包括定涡旋和动涡旋, 排气阀固定在定涡旋 的排气口处。 特别是, 当压缩机是容量可变的压缩机时, 压缩机可以进 一步包括用于通过调节定涡旋的轴向位移来调制压缩机容量的容量调 制机构,排气阀的阀体或与阀体配合的套筒可以构成容量调制机构的一 部分。 更具体地, 容量调制机构可以包括容量调制缸体, 排气阀的阀体 的第二端或排气阀的套筒可以包括能够在容量调制缸体内运动的活塞。 由于阀体的第一端与定涡旋的排气口固定连接, 阀体的第二端上的活塞 或套筒上的活塞能够在容量调制缸体中轴向运动, 因此通过控制容量调 实现压缩机的容量调制功能。 由于排气阀和控制压缩机容量的构件(例 如活塞)构造成一体, 不但减小了部件数量而且简化了压缩机的装配工 艺, 从而降低了压缩机的制造成本。
[45]在根据本发明进一步的实施方式的压缩机中, 压缩机可以是涡旋压 缩机、 活塞压缩机、 螺杆压缩机、 离心压缩机和转子压缩机中的一种。 换 言之, 根据本发明实施方式的排气阀可以应用于各种压缩机, 具有良好的 通用性。 附图说明
【46】通过以下参照附图的描述, 本发明的一个或几个实施方式的特征和 优点将变得更加容易理解, 其中:
[47]图 1是常规的涡旋压缩机的纵剖视图; 148】图 2是图 1中的常规排气阀的立体图;
【49】图 3A和 3B分别是图 2所示排气阀处于关闭状态和打开状态的示意 图;
【50】图 4是示出图 1所示涡旋压缩机的定涡旋的排气口附近的放大图; [51 ]图 5示出了根据本发明一种实施方式的涡旋压缩机纵剖视图; [52!图 6示出了根据本发明第一实施方式的排气阀的立体图;
[53]图 7示出了根据本发明第一实施方式的排气阀的剖视图;
[54]图 8A和 8B分别是根据本发明第二实施方式的排气阀的主视图和仰 视图;
[55]图 9A和 9B分别是根据本发明第三实施方式的排气阀的主视图和仰 视图;
156!图 10A和 10B分别是根据本发明第四实施方式的排气阀的分解立体 图和组装立体图; 以及
[57]图 11是根据本发明第五实施方式的排气阀的纵剖视图。 具体实施方式
[58]下面对优选实施方式的描述仅仅是示范性的, 而绝不是对本发明及其 应用或用法的限制。
[59]常规的涡^^缩机 1的基本构造和运行过程已经在背景技术部分参见 图 1-4进行了描述。 图 5示出了根据本发明实施方式的涡 缩机 100A。 在本发明的涡旋压缩机 100A采用了图 6-10B示出的各种排气阀 10A、10B、 10C和 10D来代替图 1中所示的常规排气阀 170。 特别是, 在图 5中采用 与图 1中相同的附图标记来表示与图 1所示相同的部件, 这些部件的构造 将不再重复。
[60]如图 5所示, 根据本发明实施方式的涡旋压缩机 100A包括壳体 110、 设置在壳体 110一端的顶盖 112、 设置在壳体 110另一端的底盖 114以 及设置在顶盖 112和壳体 110之间以将压缩机的内部空间分隔成高压侧 和低压侧的隔板 116。隔板 116和顶盖 112之间构成高压侧,而隔板 116、 壳体 110和底盖 114之间构成低压侧。 在低压侧设置有用于吸入流体的 进气接头 118, 在高压侧设置有用于排出压缩后的流体的排气接头 119。
[61]在定涡旋 150的排气口 152处设置有根据本发明第一实施方式的排气 阀 10A。 如图 6和 7所示, 排气阀 10A可以包括: 阀体 12, 所述阀体 12 的第一端 14可以固定(例如通过螺纹连接或压配固定)在压缩机 100A的 定涡旋 150的排气口 152处, 并且所述阀体 12的第一端设置有与排气口 152对齐的流体入口 15。 阀体 12的侧壁上设置有与流体入口 15流体连通 的至少一个流体出口 17(在图 6和 7示出的示例中流体出口 17的数量为 2 个) 以及用于打开或关闭流体出口阀片 20。 在图 6和 7中示出的示例中, 阀片 20可以为两个, 但是本领域技术人员应该理解, 阀片 20的数量也可 以为 1个或更多个。特别是, 如图 7所示,每一个流体出口 17的轴线方向 X2相对于流体入口 15的轴线方向 XI倾斜。 或者说, 流体入口 15的轴线 方向 XI与阀片 20关闭流体出口 17时所处的平面 X3是不垂直的。
【62 与图 2-4所示的流体入口和流体出口 (它们可以看做是由阀座 172 上的阀口 175的下部和上部分别构成)的轴线重叠或平行(或者换言之, 流体入口的轴线方向与阀片 174所在平面垂直)的排气阀 170相比, 根 据本发明实施方式的排气阀 10A的流体出口 17的轴线方向 X2相对于流 体入口 15的轴线方向 XI是倾斜的 (或者换言之, 流体入口 15的轴线方 向 XI与阀片 20关闭流体出口 17时所处的平面 X3是不垂直的)。因此, 在流体从流体入口 15进入阀体 12中到流体从流体出口 17经由阀片 20 排出阀体 12的过程中, 流体的流动方向并不是以直角 (90度) 的方式 转向的。 因此, 排气阀 10A的流动阻力能够被减小, 从而能够降低由排 气阀造成的压力降。
[63]在如图 6-7所示的优选示例中, 流体出口 17的轴线方向 X2与流体入 口 15的轴线方向 XI之间的角度 α设定成大于等于 70度并且小于等于 80 度。 或者, 当阀片 20关闭流体出口 17时阀片 20所处的平面 Χ3与流体入 口 15的轴线方向 XI之间的角度 β设定成大于等于 10度并且小于等于 20 度。
【64】根据本发明第一实施方式的排气阀 10A还可以包括用于限制阀片 20 的位移的阀挡 22。 阀片 20和阀挡 22可以通过诸如螺钉 24的紧固件固定 到阀体 12上。 此外, 为了便于装配和防止阀片或阀挡绕螺钉 24旋转, 还 可以采用销 26还实现进一步地定位。
【65】特别是, 阀片 20的相对于阀体 12的固定点 (例如, 螺钉 24的位置) 可以设置成在所述阀体的轴向上位于流体出口 17和流体入口 15之间。 或 者说, 阀片 20 的打开方向设置在能够使得流体的流动阻力最小化的方 向上。 这种构造能够进一步降低排气阀 10A中的流动阻力。 进一步地, 阀挡 22相对于阀体 12的固定点(例如, 螺钉 24的位置)也可以设置成在 所述阀体的轴向上位于流体出口 17和流体入口 15之间。
【66】发明 本发明的如图 6-7所示的排气阀和图 2所示的排气阀进行了
Figure imgf000011_0001
[67]发明 AJi†根据本发明的排气阀在不同的工况下做了四组测试(参见测 试序号 1-2和 5-6 ), 对图 2所示的常规排气阀在不同的工况下做了二组测 试(参见测试序号 3-4 )。 采用 EER ( =压缩机的冷量 /压缩机的功率消耗) 代表压缩机的运行效率。以设置有图 2所示的常规排气阀的压缩机的 EER 作为基准, 计算设置有根据本发明的排气阀的压缩机和不设置任何类型的 排气阀的压缩机的 EER。 结果表明, 在压缩机的吸气温度和排气温度分别 为 45T和 130T的情况下, 采用本发明的排气阀的压缩机的 EER提高了 3.84%至 4.08%, 而在压缩机的吸气温度和排气温度分别为 45T和 100T 的情况下, 采用本发明的排气阀的压缩机的 EER提高了 6.69%至 7.01%。
【68】为了验证上述测试的可靠性, 发明人还对不设置任何排气阀的压缩机 做了二组测试(参见测试序号 7-8 )。 测试结果表明, 与设置常规排气阀的 状况相比, 不设置任何排气阀的情况下的 EER 分别提高了 4.08%和 7.94%。 [69]根据上述结果, 显然设置有根据本发明的排气阀的压缩机的运行效率 显著高于设置有常规排气阀的压缩机, 并且仅稍微低于不设置排气阀的压 缩机的运行效率。 考虑到在很多情况下必须设置排气阀以防止高压流体倒 流, 所以本发明的排气阀所带来的效果相对于常规排气阀是非常显著的并 且超过了本领域技术人员的预期。
[70]此外, 如图 5所示, 根据本发明实施方式的涡旋压缩机 100A可以是 一种容量可变的压缩机。 因此, 涡旋压缩机 100A进一步包括容量调制机 构 180。容量调制机构 180通过调节定涡旋 150的轴向位移(即定涡旋 150 和动涡旋 160之间的轴向距离)来调制压缩机的容量。
[71]同时参见图 6和 7所示, 排气阀 10A的阀体 12可以构成容量调制机 构 180的一部分。具体地,容量调制机构 180进一步包括容量调制缸体 182, 排气阀 10A的阀体 12的第二端 16可以包括能够在容量调制缸体 182内运 动的活塞 18。 容量调制缸体 182经由连接管 184与外部压力源流体连通。 可以在连接管 184的管路中设置电磁阀以控制容量调制缸体 182中的压力。
『72】在实际运转中, 当需要减小涡^缩机 100A的容量时, 控制连接管 184的管路中的电磁阀以降低容量调制缸体 182中的压力,从而排气阀 10A 的第二端 16的活塞 18将向上运动。 由于排气阀 10A的第一端 14与定涡 旋 150的排气口 152固定连接, 因此定涡旋 150将被向上提起从而在定涡 旋 150的螺旋叶片 156和动涡旋 160的端板 164以及在动涡旋 160的螺旋 叶片 166和定涡旋 150的端板 154之间形成间隙, 部分压缩流体将从该间 隙泄漏到低压侧, 从而减小压缩机的容量。 相反, 当需要增加涡旋压缩机 100A的容量时, 控制连接管 184的管路中的电磁阀以增加容量调制缸体 182中的压力, 从而排气阀 10A的第二端 16的活塞 18将向下运动。 因此 定涡旋 150将被向下压从而闭合定涡旋 150和动涡旋 160之间的间隙, 从 而增加压缩机的容量。
[73]图 8A和 8B分别是根据本发明第二实施方式的排气阀 10B的主视 图和仰视图。 与本发明的第一实施方式不同, 在本发明的第二实施方式 的排气阀 10B中设置有三个流体出口 17以及三组阀片 20和阀挡 22。 此外, 这些流体出口 17可以围绕流体入口 15的轴线方向以相等的角度间 隔中心对称地布置。 另外, 这些所述流体出口 17可以沿着流体入口 15的 轴线方向布置在相同的高度。
[74]图 9A和 9B分别是根据本发明第三实施方式的排气阀 10C的主视 图和仰视图。 与本发明的第一实施方式不同, 在本发明的第三实施方式 的排气阀 10C中设置有四个流体出口 17以及四组阀片 20和阀挡 22。 此外, 这些流体出口 17可以围绕流体入口 15的轴线方向以相等的角度间 隔中心对称地布置。 另外, 这些所述流体出口 17可以沿着流体入口 15的 轴线方向布置在相同的高度。
[75]图 10A和 10B分别是根据本发明第四实施方式的排气阀 10D的分 解立体图和组装立体图。 与上述本发明的第一、 第二和第三实施方式不 同,根据本发明第四实施方式的排气阀 10D没有设置用于容量调制的活 塞, 因此结构更加简单并且可以用于容量固定的涡旋压缩机或者以其他 方式实现容量调整的涡旋压缩机。
[76]图 11示出了根据本发明的第五实施方式的排气阀 10E。 图 11所示的 排气阀 10E的阀体 12、 流体入口 15, 流体出口 17、 阀片 20等的构造和关 系与图 10A-10B所示的实施方式类似,在此不再赞述。特别需要指出的是, 图 11中示出的阀片 20处于打开状态。 然而, 与第四实施方式不同的是, 排气阀 10E进一步包括与阀体 12配合的套筒 30, 流体出口 17位于套筒 30的空腔内。 套筒 30例如可以通过压配合、 螺紋连接、 焊接等方式与阀 体 12固定连接在一起。 套筒 30的侧壁上可以形成至少一个开口 32。 套筒 30的一端可以形成活塞 18。 图 11所示的排气阀 10E也可以应用于图 5所 示的具有容量调制功能的涡旋压缩机中。 更具体地, 套筒 30或阀体 12可 以固定在定涡旋 150的排气口 152处, 而套筒 30上的活塞 18可以配合在 容量调制缸体 182中。 同理, 采用了该实施方式的排气阀 10E的涡旋压缩 机可以以如上所述的方式进行了容量调制。
[77!在上述优选实施方式中,给出了角度 α设定成大于等于 70度并且小于 等于 80度(或者角度 β设定成大于等于 10度并且小于等于 20度)的示 例。 但是, 本领域技术人员应该理解, 本发明并不局限于此, 上述角度 α 和 β的范围还可以选取其他值以实现可能与上述优选范围相比稍差但是仍 然高于常规排气阀的效果。 例如, 流体出口 17的轴线方向 Χ2与流体入口 15的轴线方向 XI之间的角度 α可以大于等于 30度并且小于等于 80度。 或者换言之, 当阀片 20关闭流体出口 17时阀片 20所处的平面 Χ3与流体 入口 15的轴线方向 X之间的角度 β可以大于等于 10度并且小于等于 60 度。
[78]进一步地, 流体出口 17的轴线方向 Χ2与流体入口 15的轴线方向 XI 之间的角度 α可以大于 0度并且小于等于 90度。 或者换言之, 当阀片 20 关闭流体出口 17时阀片 20所处的平面 Χ3与流体入口 15的轴线方向 XI 之间的角度 β可以大于等于 0度并且小于 90度。
[79]尽管在参照附图描述的上述实施方式中流体入口和流体出口示出为圆 形, 但是本领域技术人员应该理解, 流体入口和流体出口可以具有除圆形 之外的其他任何形状。
【80】与第一实施方式类似, 在图 8A-11所示的第二、 第三、 第四和第五实 施方式中, 阀片可以是单个阀片,也可以 2个或多个的叠置的阀片。此外, 与图 8Α-9Β所示的第二和第三实施方式类似, 图 10A-10B和图 11所示的 第四和第五实施方式也可以改型成包括多个流体出口。
【81】此外, 参照涡旋压缩机描述了本发明实施方式的排气阀的效果, 但是 本领域技术人员应该理解, 本发明的排气阀还可以应用于其他类型的压缩 机, 包括但不限于活塞压缩机、 螺杆压缩机、 离心压缩机和转子压缩机, 以实现降低由排气阀导致的压力降和增加压缩机的运行效率的效果。 此 外, 本领域技术人员应该理解本发明的排气阀还可以应用于其他需要对流 体排出进行控制的机械, 例如泵等。
[82〗尽管在此已详细描述本发明的各种实施方式, 但是应该理解本发明并 不局限于这里详细描述和示出的具体实施方式, 在不偏离本发明的实质和 范围的情况下可由本领域的技术人员实现其它的变型和变体。 所有这些变 型和变体都落入本发明的范围内。 而且, 所有在此描述的构件都可以由其 他技术性上等同的构件来代替。

Claims

权利要求书
1、 一种排气阀 (10A, 10B, 10C, 10D, 10E ), 包括:
阀体(12), 所述阀体(12)的第一端(14)设置有流体入口 (15), 其特征在于: 所述阀体(12)的侧壁上设置有与所述流体入口 (15) 流体连通的至少一个流体出口 ( 17 ) 以及用于打开或关闭所述流体出口的 阀片 (20),
其中所述流体出口 (17)的轴线方向相对于所述流体入口 (15)的轴 线方向倾斜。
2、如权利要求 1所述的排气阀, 其中所述流体出口(17)的轴线方向 与所述流体入口 (15)的轴线方向之间的角度大于 0度并且小于等于 90 度。
3、如权利要求 2所述的排气阀, 其中所述流体出口(17)的轴线方向 与所述流体入口( 15)的轴线方向之间的角度大于等于 30度并且小于等于 80度。
4、如权利要求 3所述的排气阀, 其中所述流体出口(17)的轴线方向 与所述流体入口( 15 )的轴线方向之间的角度大于等于 70度并且小于等于 80度。
5、如权利要求 1所述的排气阀, 其中当所述阀片 (20)关闭所述流体 出口 (17) 时所述阀片 (20)所处的平面与所述流体入口 (15)的轴线方 向之间的角度大于等于 0度并且小于 90度。
6、如权利要求 5所述的排气阀, 其中当所述阀片 (20)关闭所述流体 出口 (17) 时所述阀片 (20)所处的平面与所述流体入口 (15)的轴线方 向之间的角度大于等于 10度并且小于等于 60度。
7、如权利要求 6所述的排气阀, 其中当所述阀片 (20)关闭所述流体 出口 (17) 时所述阀片 (20)所处的平面与所述流体入口 (15)的轴线方 向之间的角度大于等于 10度并且小于等于 20度。
8、 如权利要求 1-7中任一项所述的排气阀, 其中所述阀片 (20)的相 对于所述阀体 ( 12)的固定点在所述阀体的轴向上位于所述流体出口( 17 ) 和所述流体入口 (15)之间。
9、如权利要求 8所述的排气阀,其中该排气阀进一步包括用于限制所 述阀片 (20)位移的阀挡(22)。
10、 如权利要求 9所述的排气阀, 其中所述阀挡(22)相对于所述阀 体(12) 的固定点在所述阀体的轴向上位于所述流体出口 (17)和所述流 体入口 (15)之间。
11、 如权利要求 1-7中任一项所述的排气阀, 其中设置有 2个、 3个 或 4个所述流体出口( 17 ), 并且每个流体出口( 17 )上都设置有所述阀片 (20)。
12、 如权利要求 11所述的排气阀, 其中所述流体出口 (17)围绕所述 流体入口 (15)的轴线方向以相等的角度间隔中心对称地布置。
13、 如权利要求 11所述的排气阀, 其中所述流体出口 (17)沿着所述 流体入口 (15)的轴线方向布置在相同的高度。
14、 如权利要求 1-7中任一项所述的排气阀, 其中所述阀体(12)的 第二端(16) 包括活塞(18)。
15、 如权利要求 1-7中任一项所述的排气阀, 进一步包括与所述阀体 ( 12 )配合的套筒( 30 ), 所述流体出口 ( 17 )位于所述套筒( 30 )的空腔
16、 如权利要求 15所述的排气阀, 其中所述套筒(30)的侧壁上形成 有至少一个开口 (32)。
17、 如权利要求 15所述的排气阀, 其中所述套筒(30)的一端形成有 活塞 ( 18 )。
18、 一种压缩机(100A), 包括如权利要求 1-17中任一项所述的排气 阀 (10A, 10B, IOC, 10D, 10E )。
19、如权利要求 18所述的压缩机, 其中所述压缩机为涡旋压缩机, 并 且所述涡旋压缩机包括定涡旋( 150 )和动涡旋( 160 ), 所述排气阀的阀体 的第一端(14) 固定在所述定涡旋 (150)的排气口 (152)处。
20、如权利要求 19所述的压缩机,其中所述阀体( 12 )的第一端( 14 ) 通过螺紋配合或压配固定在所述排气口 (152)处。
21、如权利要求 19所述的压缩机,进一步包括用于通过调节所述定涡 旋( 150 )的轴向位移来调制压缩机容量的容量调制机构 ( 180 ), 所述排气 阀的阀体(12)构成所述容量调制机构 (180) 的一部分。
22、 如权利要求 21所述的压缩机, 其中所述容量调制机构(180)进 一步包括容量调制缸体 ( 182 ), 所述排气阀的阀体( 12 )上的活塞( 18 ) 构造成能够在所述容量调制缸体( 182 ) 内运动。
23、如权利要求 19所述的压缩机,进一步包括用于通过调节所述定涡 旋( 150 )的轴向位移来调制压缩机容量的容量调制机构 ( 180 ), 所述排气 阀的套筒 (30)构成所述容量调制机构 (180) 的一部分。
24、 如权利要求 23所述的压缩机, 其中所述容量调制机构(180 )进 一步包括容量调制缸体 ( 182 ), 所述排气阀的套筒 ( 30 )上的活塞( 18 ) 构造成能够在所述容量调制缸体( 182 ) 内运动。
25、如权利要求 22或 24所述的压缩机,其中所述容量调制缸体( 182 ) 通过电磁阀与外部压力源流体连通。
26、如权利要求 18所述的压缩机, 其中所述压缩机是涡旋压缩机、活 塞压缩机、 螺杆压缩机、 离心压缩机和转子压缩机中的一种。
PCT/CN2013/078898 2012-09-14 2013-07-05 排气阀和包括排气阀的压缩机 WO2014040449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/427,128 US9926932B2 (en) 2012-09-14 2013-07-05 Discharge valve and compressor comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210341677.2 2012-09-14
CN201220470547.4 2012-09-14
CN201210341677.2A CN103671125B (zh) 2012-09-14 2012-09-14 排气阀和包括排气阀的压缩机
CN 201220470547 CN202789552U (zh) 2012-09-14 2012-09-14 排气阀和包括排气阀的压缩机

Publications (1)

Publication Number Publication Date
WO2014040449A1 true WO2014040449A1 (zh) 2014-03-20

Family

ID=50277578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078898 WO2014040449A1 (zh) 2012-09-14 2013-07-05 排气阀和包括排气阀的压缩机

Country Status (2)

Country Link
US (1) US9926932B2 (zh)
WO (1) WO2014040449A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988433B2 (en) 2009-04-07 2011-08-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US9651043B2 (en) 2012-11-15 2017-05-16 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9249802B2 (en) 2012-11-15 2016-02-02 Emerson Climate Technologies, Inc. Compressor
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10378542B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermal protection system
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
EP3857069A4 (en) 2018-09-28 2022-05-11 Emerson Climate Technologies, Inc. COMPRESSOR OIL MANAGEMENT SYSTEM
US11125233B2 (en) 2019-03-26 2021-09-21 Emerson Climate Technologies, Inc. Compressor having oil allocation member
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
KR102646705B1 (ko) * 2022-06-09 2024-03-13 엘지전자 주식회사 스크롤 압축기
CN115059611A (zh) * 2022-06-27 2022-09-16 上海海立新能源技术有限公司 排气阀组件及包括其的涡旋压缩机
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797992A (ja) * 1993-09-30 1995-04-11 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JPH07103169A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
CN1995756A (zh) * 1999-09-21 2007-07-11 科普兰公司 涡旋式机械
JP2009162077A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd スクロール型圧縮機
CN202789552U (zh) * 2012-09-14 2013-03-13 艾默生环境优化技术(苏州)有限公司 排气阀和包括排气阀的压缩机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4118934C2 (de) * 1991-06-08 2001-04-05 Bosch Gmbh Robert Kompressor
JP2703688B2 (ja) * 1991-12-11 1998-01-26 三菱電機株式会社 スクロール圧縮機の吐出弁装置
DE4324853C1 (de) 1993-07-23 1994-09-22 Siemens Ag Spannungserzeugungsschaltung
JPH08261186A (ja) 1995-03-20 1996-10-08 Mitsubishi Heavy Ind Ltd 圧縮機
US6672846B2 (en) 2001-04-25 2004-01-06 Copeland Corporation Capacity modulation for plural compressors
JP2002371965A (ja) * 2001-06-13 2002-12-26 Seiko Instruments Inc 気体圧縮機
KR20030039052A (ko) 2001-11-09 2003-05-17 주식회사 엘지이아이 토출밸브 조립체의 충격소음 저감 구조
JP4114532B2 (ja) 2003-04-23 2008-07-09 株式会社デンソー 圧縮機
US7429167B2 (en) 2005-04-18 2008-09-30 Emerson Climate Technologies, Inc. Scroll machine having a discharge valve assembly
JP2012117392A (ja) 2010-11-29 2012-06-21 Mitsubishi Heavy Ind Ltd スクロール圧縮機
CN202117891U (zh) 2011-05-06 2012-01-18 艾默生环境优化技术(苏州)研发有限公司 阀门组件和具有该阀门组件的压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797992A (ja) * 1993-09-30 1995-04-11 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JPH07103169A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
CN1995756A (zh) * 1999-09-21 2007-07-11 科普兰公司 涡旋式机械
JP2009162077A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd スクロール型圧縮機
CN202789552U (zh) * 2012-09-14 2013-03-13 艾默生环境优化技术(苏州)有限公司 排气阀和包括排气阀的压缩机

Also Published As

Publication number Publication date
US20160201673A1 (en) 2016-07-14
US9926932B2 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2014040449A1 (zh) 排气阀和包括排气阀的压缩机
JP4379489B2 (ja) スクロール圧縮機
JP6344574B2 (ja) スクロール圧縮機
JP5602950B2 (ja) サイドチャンネルブロワ、特に内燃機関に用いられる二次空気ブロワ
JP2007170253A (ja) スクロール圧縮機
US8905722B2 (en) Compressor
JP4005035B2 (ja) 容量可変回転圧縮機
KR20170024845A (ko) 전동 컴프레서의 급유시스템
US10851789B2 (en) Compressor having improved discharge structure including discharge inlets, communication hole, and discharge outlet
CN108240337B (zh) 阀组件和涡旋压缩机
JP7280727B2 (ja) スクロール圧縮機
US20200088194A1 (en) Scroll compressor
JP6874331B2 (ja) 圧縮機
US11174861B2 (en) Compressor with discharge valve
JP6257806B2 (ja) 多気筒密閉型圧縮機
CN206487627U (zh) 阀组件和涡旋压缩机
JP2014047708A (ja) スクリュー圧縮機
JP7417142B2 (ja) ロータリ圧縮機および冷凍装置
JP7154868B2 (ja) 圧縮機
US20230160386A1 (en) Compression mechanism and scroll compressor
WO2005064161A1 (ja) 圧縮機
WO2022036882A1 (zh) 涡旋压缩机
KR102118601B1 (ko) 압축기의 흡입 맥동 저감장치
KR20220079704A (ko) 로타리 피스톤 공기압축기
KR101962281B1 (ko) 스크롤 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427128

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837029

Country of ref document: EP

Kind code of ref document: A1