WO2018036380A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2018036380A1
WO2018036380A1 PCT/CN2017/096567 CN2017096567W WO2018036380A1 WO 2018036380 A1 WO2018036380 A1 WO 2018036380A1 CN 2017096567 W CN2017096567 W CN 2017096567W WO 2018036380 A1 WO2018036380 A1 WO 2018036380A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
pressure
recess
valve
scroll compressor
Prior art date
Application number
PCT/CN2017/096567
Other languages
English (en)
French (fr)
Inventor
于英林
王文建
李斌
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620956916.9U external-priority patent/CN206000727U/zh
Priority claimed from CN201610743277.2A external-priority patent/CN107781160A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2018036380A1 publication Critical patent/WO2018036380A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present disclosure relates to a scroll compressor.
  • Scroll compressors typically include a compression mechanism comprised of a fixed scroll member and an orbiting scroll member.
  • the fixed scroll member and the movable scroll member need to be properly lubricated.
  • the suction port of the lubricant supply passage may be located inside or outside the hub of the orbiting scroll member.
  • a portion of the lubricant delivered into the recess of the main bearing housing by the lubricant passage formed in the drive shaft is partially in a pressure difference between the pressure in the recess of the main bearing housing and the suction pressure region of the compression mechanism. It is supplied to the compression mechanism under action, and the other lubricant flows out of the recess of the main bearing housing via a gap between the main bearing housing and the drive shaft or a specially designed lubricant drain passage.
  • a variable speed compressor of a motor or drive shaft typically the oil circulation rate of the entire compressor is designed to meet the low speed operating conditions of the compressor.
  • the amount of lubricant supplied to the recess of the main bearing housing through the drive shaft is increased, and the pressure in the main bearing housing (hereinafter also referred to as back pressure) is raised.
  • back pressure the pressure in the main bearing housing
  • the amount of lubricant supplied to the compression mechanism also increases, resulting in an increase in the oil circulation rate of the entire compressor.
  • a scroll compressor including: a motor including a drive shaft; a fixed scroll member including a fixed scroll end plate and formed at a spiral fixed scroll blade on the fixed scroll end plate; an orbiting scroll member, the movable scroll member including an orbiting scroll end plate, and a spiral formed on a first side of the movable scroll end plate a movable scroll blade, a hub formed on a second side of the movable scroll end plate, the movable scroll blade and the fixed scroll blade are engaged with each other to form a series of compression chambers therebetween; a main bearing seat,
  • the main bearing housing includes a wall portion defining a recess in which the hub portion is capable of translational rotation; a lubricant supply passage configured to supply lubricant from the recess to the portion a compression chamber or a vicinity thereof; a lubricant discharge passage for selectively discharging lubricant from the recess, and a pressure limiting valve disposed in the lubric
  • the pressure limiting valve can release more pressure when the back pressure in the recess is higher, and release less pressure when the back pressure in the recess is lower, regardless of the rotational speed of the compressor motor, Both can maintain the pressure difference between the back pressure and the suction pressure region in the recess at an appropriate level, so that the amount of lubricant supplied into the compression mechanism is kept moderate, that is, the oil circulation rate of the entire compressor is properly controlled. Therefore, the present disclosure can well balance the different requirements of the compressor at low speeds and high speeds.
  • Figure 1 is a longitudinal sectional view of a conventional scroll compressor
  • FIG. 2 is a longitudinal cross-sectional view of a compression mechanism and a main bearing housing according to an example
  • 3 and 3A are respectively a side view and a partial enlarged view of a compression mechanism and a main bearing housing according to a first embodiment of the present disclosure
  • 4 and 4A are respectively a side view and a partial enlarged view of a compression mechanism and a main bearing housing according to a second embodiment of the present disclosure
  • FIG. 5 is a side view of a compression mechanism and a main bearing housing in accordance with a third embodiment of the present disclosure
  • FIG. 6 is a side view of a compression mechanism and a main bearing housing in accordance with a variation of the present disclosure.
  • a scroll compressor 100 (hereinafter sometimes referred to as a compressor) generally includes a housing 110, a top cover 112 disposed at one end of the housing 110, and a bottom cover 114 disposed at the other end of the housing 110. And a partition 116 disposed between the top cover 112 and the housing 110 to partition the internal space of the compressor into a high pressure side and a low pressure side.
  • the space between the partition 116 and the top cover 112 constitutes a high pressure side
  • the space between the partition 116, the housing 110 and the bottom cover 114 constitutes a low pressure side.
  • An intake joint 118 for sucking a fluid is provided on the low pressure side, and an exhaust joint 119 for discharging the compressed fluid is provided on the high pressure side.
  • a motor 120 composed of a stator 122 and a rotor 124 is disposed in the housing 110.
  • a drive shaft 130 is provided in the rotor 124 to drive a compression mechanism composed of the fixed scroll member 150 and the movable scroll member 160.
  • the movable scroll member 160 includes an end plate 164, a hub portion 162 formed on one side of the end plate, and a spiral blade 166 formed on the other side of the end plate.
  • the fixed scroll member 150 includes an end plate 154, a spiral blade 156 formed on one side of the end plate, and an exhaust port 152 formed at a substantially central position of the end plate.
  • a series of compression chambers C1, C2, and C3 whose volume gradually decreases from the radially outer side to the radially inner side are formed between the spiral blade 156 of the fixed scroll 150 and the spiral blade 166 of the movable scroll 160.
  • the radially outermost compression chamber C1 is at the suction pressure
  • the radially innermost compression chamber C3 is at the exhaust pressure.
  • the intermediate compression chamber C2 is between the suction pressure and the discharge pressure, and is also referred to as a medium pressure chamber.
  • One side of the movable scroll member 160 is supported by an upper portion (i.e., a support portion) of the main bearing housing 140, and one end of the drive shaft 130 is supported by a main bearing 144 provided in the main bearing housing 140.
  • One end of the drive shaft 130 is provided with an eccentric crank pin 132, and an unloading bushing 142 is disposed between the eccentric crank pin 132 and the hub portion 162 of the movable scroll member 160.
  • a back pressure chamber 158 is provided on the opposite side of the end plate 154 of the fixed scroll member 150 from the spiral blade 156.
  • a seal assembly 180 is disposed in the back pressure chamber 158, and the axial displacement of the seal assembly 180 is limited by the diaphragm 116.
  • the back pressure chamber 158 is in fluid communication with the intermediate pressure chamber C2 through an axially extending through bore (not shown) formed in the end plate 154 to form a force that urges the fixed scroll member 150 toward the orbiting scroll 160. Since one side of the movable scroll 160 is supported by the support portion of the main bearing housing 140, the fixed scroll member 150 and the movable scroll member 160 can be effectively pressed together by the pressure in the back pressure chamber 158. When the pressure in each compression chamber exceeds a set value, the resultant force generated by the pressure in these compression chambers will exceed the downward pressure provided in the back pressure chamber 158 to cause the fixed scroll member 150 to move upward.
  • the fluid in the compression chamber will pass through the gap between the tip end of the spiral blade 156 of the fixed scroll member 150 and the end plate 164 of the movable scroll member 160 and the tip end and the fixed vortex of the spiral blade 166 of the movable scroll member 160.
  • the gap between the end plates 154 of the rotary member 150 leaks to the low pressure side to effect unloading, thereby providing axial flexibility to the scroll compressor.
  • a radial seal is also required between the side surface of the spiral blade 156 of the fixed scroll member 150 and the side surface of the spiral blade 166 of the movable scroll member 160.
  • This radial sealing between the two is typically achieved by the centrifugal force of the orbiting scroll member 160 during operation and the driving force provided by the drive shaft 130.
  • the orbiting scroll member 160 will rotate in translation with respect to the fixed scroll member 150, so that the orbiting scroll member 160 will generate centrifugal force.
  • the eccentric crank pin 132 of the drive shaft 130 also generates a driving force component that contributes to the radial sealing of the fixed scroll member and the movable scroll member during the rotation.
  • the helical vanes 166 of the orbiting scroll member 160 will abut against the helical vanes 156 of the fixed scroll member 150 by means of the above-described centrifugal and driving force components, thereby achieving a radial seal therebetween.
  • an incompressible substance such as solid impurities, lubricating oil, and liquid refrigerant enters the compression chamber and is caught between the spiral blade 156 and the spiral blade 166, the spiral blade 156 and the spiral blade 166 can be temporarily separated from each other in the radial direction to allow Foreign matter passes, thus preventing The spiral blade 156 or 166 is damaged. This ability to be radially separated provides radial flexibility to the scroll compressor, increasing compressor reliability.
  • a lubricant is stored at the bottom of the compressor casing. Accordingly, a passage extending substantially in the axial direction thereof is formed in the drive shaft 130, that is, a center hole 136 formed at the lower end of the drive shaft 130 and an eccentric hole 134 extending upward from the center hole 136 to the end surface of the eccentric crank pin 132. The end of the central bore 136 is submerged in the lubricant at the bottom of the compressor housing or otherwise supplied with a lubricant.
  • a lubricant supply device such as an oil pump or oil fork 138 as shown in FIG.
  • the compressor may be provided in or near the central bore 136.
  • one end of the center hole 136 is supplied with lubricant by the lubricant supply means, and the lubricant entering the center hole 136 is pumped or plucked to the eccentric hole by the centrifugal force during the rotation of the drive shaft 130.
  • the 134 and the upward flow along the eccentric hole 134 continue until reaching the end surface of the eccentric crank pin 132.
  • the lubricant discharged from the end surface of the eccentric crank pin 132 flows downward along the gap between the unloading bush 142 and the eccentric crank pin 132 and the gap between the unloading bush 142 and the hub 162 to reach the recess 146 of the main bearing housing 140. in.
  • the translation of 160 is rotated to extend over the thrust surface between the orbiting scroll member 160 and the main bearing housing 140.
  • the lubricant supplied to the various moving parts in the compressor is scooped and splashed to form droplets or mist. These lubricant droplets or mists will mix in the working fluid (or refrigerant) drawn from the intake fitting 118. These working fluids mixed with lubricant droplets are then drawn into the compression chamber between the fixed scroll member 150 and the orbiting scroll member 160 to achieve lubrication, sealing and cooling of the interior of these scroll members. This lubrication between the orbiting scroll member and the fixed scroll member is commonly referred to as oil mist lubrication.
  • lubricating oil is supplied from the recess 146 of the main bearing housing 140 to one or more of the compression chambers between the fixed scroll member 150 and the movable scroll member 160 or the vicinity thereof.
  • the lubricant supply channel OP is supplied from the recess 146 of the main bearing housing 140 to one or more of the compression chambers between the fixed scroll member 150 and the movable scroll member 160 or the vicinity thereof.
  • the lubricant supply passage OP may be formed in the orbiting scroll end plate 164 of the orbiting scroll member 160 and may include the lubricant inlet 11 and the lubricant outlet 12, and the lubricant supply
  • the passage OP extends from the recess 46 to the outermost compression chamber C1 or its vicinity.
  • the lubricant supply passage OP extends from the recess 46 It extends to the vicinity of the outermost portion of the orbiting scroll 66 or to the vicinity of the suction port of the compression mechanism composed of the orbiting scroll member and the fixed scroll member.
  • the lubricant inlet 11 is formed radially outward of the hub portion 162 of the orbiting scroll member 160.
  • the lubricant inlet 11 and the lubricant outlet 12 may be connected by a communication passage 13 provided in the end plate 164.
  • the lubricant discharged from the eccentric hole 134 of the drive shaft 130 will collect in the recess 146 of the main bearing housing 140.
  • the hub portion 162 of the orbiting scroll member 160 rotates in translation in the recess 146
  • the lubricant in the recess 146 is subjected to centrifugal force and forms a substantially parabolic liquid level as indicated by OL in FIG.
  • the lubricant in the liquid level OL is sucked from the lubricant inlet 11 under the positive pressure generated by the centrifugal force and the pressure difference between the pressure (back pressure) in the recess 146 and the suction pressure region of the compression mechanism. It is then discharged from the lubricant outlet 12 through the communication passage 13 into or near the outermost compression chamber C1 as indicated by the arrow in FIG.
  • the lubricant inlet 11 of the lubricant supply passage OP may be disposed inside the hub 162, such as shown in FIG.
  • a part of the lubricant discharged from the eccentric hole 134 of the drive shaft 130 can also be sucked from the lubricant inlet 11 by the pressure difference between the pressure in the recess 146 and the suction pressure region of the compression mechanism. It is finally supplied to the suction pressure region of the compression mechanism.
  • a lubricant discharge passage DP is further provided in the wall portion 148 of the main bearing housing 140.
  • the lubricant discharge passage DP is for selectively discharging the lubricant from the recess 146.
  • the lubricant discharge passage DP is provided as a horizontal bore formed in the side wall of the wall portion 148.
  • the lubricant discharge passage DP may also be formed as an inclined bore according to design requirements, or may also be disposed in the bottom wall of the wall portion 148.
  • the lubricant drain passage DP may also include a tubular member or channel member that extends further from the borehole to further control the flow direction or flow path of the lubricant discharged from the recess 146.
  • a finite pressure valve V is provided in the lubricant discharge passage DP.
  • Pressure limiting valve V The resulting pressure within the recess 146 provides a small opening and provides a large opening when the pressure within the recess 146 is large.
  • the pressure limiting valve V is configured as a spring loaded valve, such as a spring ball valve.
  • the spring ball valve can be mounted directly in the lubricant discharge passage DP.
  • the spring ball valve may include a housing 10 having an opening 20 for opening and closing a valve member 30 of the opening 20 (eg, a ball, and other valve members, such as a plate, are also contemplated by those skilled in the art a member, etc., and an elastic member 40 (such as a compression spring) that applies an elastic force to the valve member 30.
  • a valve member 30 of the opening 20 eg, a ball, and other valve members, such as a plate, are also contemplated by those skilled in the art a member, etc.
  • an elastic member 40 such as a compression spring
  • the valve member 30 When the pressure in the recess 146 is large, the valve member 30 provides a large opening degree against the elastic force of a portion of the elastic member 40 under the pressure in the recess 146.
  • the opening characteristic of the pressure limiting valve V may be set to be closed when the pressure in the recess 146 is less than the first predetermined pressure, and fully open when the pressure in the recess 146 is greater than the second predetermined pressure, the second predetermined pressure being greater than The first predetermined pressure is stated.
  • the pressure limiting valve V can be set to provide linear or non-linear opening characteristics between a fully closed state and a fully open state.
  • the minimum opening of the pressure limiting valve V can be designed to meet the minimum amount of lubricant required for the compression mechanism, i.e., to provide minimal pressure relief to the pressure in the recess 146, allowing as much lubricant as possible to enter the compression mechanism.
  • the maximum opening degree of the pressure limiting valve V can be designed to satisfy the maximum allowable oil circulation rate of the scroll compressor, that is, to provide the maximum pressure relief effect on the pressure in the recess 146, so that a reasonable amount of lubricant enters the compression mechanism to ensure A suitable oil circulation rate.
  • the opening characteristic of the pressure limiting valve V may be set according to the amount of lubricant supplied into the recess 146 or according to the rotational speed of the motor or the drive shaft 130. .
  • the pressure limiting valve V may be set to be closed when the amount of lubricant supplied to the recess 146 is less than a first predetermined amount, and fully open when the amount of lubricant supplied to the recess 146 is greater than a second predetermined amount, the second predetermined amount Greater than the first predetermined amount.
  • the pressure limiting valve V may be set to be closed when the rotational speed of the drive shaft 130 is less than a first predetermined value, and fully open when the rotational speed of the drive shaft is greater than a second predetermined value, the second predetermined value being greater than the first Predetermined value.
  • the pressure limiting valve V may be configured as a reed valve.
  • the reed valve may include a valve member 50 for opening and closing the lubricant discharge passage and a valve arm portion 60 that applies an elastic force to the valve member.
  • the reed valve may be disposed outside the wall of the main bearing housing 140, and the valve arm portion 60 may have only screws or rivets, etc. Fixed to the wall of the main bearing housing 140.
  • the pressure limiting valve V may be configured as an electronically controlled valve (eg, a solenoid valve).
  • the opening characteristic of the electronically controlled valve can be designed according to the rotational speed of the drive shaft 130, or the amount of lubricant supplied into the recess 146, or the pressure in the recess 146.
  • the rotational speed of the drive shaft 130, the amount of lubricant supplied into the recess 146, or the pressure in the recess 146 may be detected by a corresponding sensor disposed in the compressor, and the detected signal may be directly or indirectly transmitted to the electronically controlled Valves provide more precise opening control for more optimized oil circulation rate control.
  • the lubricant inlet 11 of the lubricant supply passage OP is provided inside the hub portion 162 of the orbiting scroll member 160 instead of being disposed at the hub portion 162 as shown in FIG. The outside.
  • a spring ball valve, a reed valve, or an electronically controlled valve as described in the first embodiment, the second embodiment, or the third embodiment described above may be provided in the lubricant discharge passage DP in this modification, and the above-described implementation may be implemented The similar effect is similar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机,包括:马达(120);定涡旋部件(150);动涡旋部件(160);主轴承座(140),其包括壁部(148),壁部(148)限定动涡旋部件(160)的毂部(162)能够在其中平动转动的凹部(146);润滑剂供给通道(OP),其构造成将润滑剂从凹部(146)供给到由定涡旋部件(150)和动涡旋部件(160)构成的其中一个压缩腔(C1)或其附近;润滑剂排放通道(DP),其用于从凹部(146)选择性地排出润滑剂,以及设置在润滑剂排放通道(DP)中的限压阀(V),限压阀(V)构造成在凹部(146)内的压力小时提供小的开度并且在凹部(146)内的压力大时提供大的开度。该压缩机可以合理控制油循环率,满足马达不同转速的要求。

Description

涡旋压缩机
本公开要求于2016年8月26日提交中国专利局、申请号分别为CN201610743277.2和CN201620956916.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种涡旋压缩机。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
涡旋压缩机通常包括由定涡旋部件和动涡旋部件构成的压缩机构。为了保证压缩机构的正常工作,定涡旋部件和动涡旋部件需要合适地润滑。在一种形式中,已知在动涡旋部件的端板中设置有从动涡旋部件的径向内侧延伸到压缩机构的其中一个或多个吸气压力区域的润滑剂供给通道。润滑剂供给通道的吸入口可以位于动涡旋部件的毂部的内侧或外侧。由此,通过形成在驱动轴中的润滑剂通路输送到主轴承座的凹部中的一部分润滑剂部分地在主轴承座的凹部内的压力与压缩机构的吸气压力区域之间的压力差的作用下供给到压缩机构内,其他的润滑剂经由主轴承座与驱动轴之间的间隙或者专门设计的润滑剂排泄通道流出主轴承座的凹部。
在马达或驱动轴的转速可变的压缩机(例如,变频压缩机)中,通常整个压缩机的油循环率要设计成满足压缩机的低速运转工况。然而,在这种情况下,当压缩机高速运转时,通过驱动轴供给到主轴承座的凹部的润滑剂量增加,并且主轴承座内的压力(下文中也称之为背压)升高。由于所述背压与吸气压力区域之间的压力差增大,供给到压缩机构中的润滑剂量也会增大,从而导致整个压缩机的油循环率增大。为了应对这种油循环率的增大,需要在压缩机中或者整个制冷系统中设置油分离器,增加了成本。
发明内容
本公开的目的是提供一种油循环率能够得到合理控制的压缩机。
根据本公开实施方式的一个方面,提供了一种涡旋压缩机,其包括:马达,所述马达包括驱动轴;定涡旋部件,所述定涡旋部件包括定涡旋端板和形成在所述定涡旋端板上的螺旋状的定涡旋叶片;动涡旋部件,所述动涡旋部件包括动涡旋端板、形成在所述动涡旋端板第一侧的螺旋状的动涡旋叶片、形成在所述动涡旋端板第二侧的毂部,所述动涡旋叶片和所述定涡旋叶片彼此接合以在其间形成一系列压缩腔;主轴承座,所述主轴承座包括壁部,所述壁部限定所述毂部能够在其中平动转动的凹部;润滑剂供给通道,所述润滑剂供给通道构造成将润滑剂从所述凹部供给到其中一个压缩腔或其附近;润滑剂排放通道,所述润滑剂排放通道用于从所述凹部选择性地排出润滑剂,以及设置在所述润滑剂排放通道中的限压阀,所述限压阀构造成在所述凹部内的压力小时提供小的开度并且在所述凹部内的压力大时提供大的开度。
采用本公开,由于限压阀可以在凹部内的背压较高时释放较多的压力,而在凹部内的背压较低时释放较少的压力,所以不管压缩机的马达的转速如何,都能够使得凹部内的背压和吸气压力区域之间的压力差保持在合适的水平,从而使得供给到压缩机构内的润滑剂量保持适度,亦即合理控制了整个压缩机的油循环率。因此,本公开可以很好地平衡压缩机在低速及高速的不同要求。
附图说明
通过以下参照附图的描述,本公开的一个或几个实施方式的特征和优点将变得更加容易理解,其中:
图1是常规的涡旋压缩机的纵剖视图;
图2是根据一种示例的压缩机构和主轴承座的纵剖视图;
图3和3A分别是根据本公开第一实施方式的压缩机构和主轴承座的侧视图和局部放大图;
图4和4A分别是根据本公开第二实施方式的压缩机构和主轴承座的侧视图和局部放大图;
图5是根据本公开第三实施方式的压缩机构和主轴承座的侧视图;以及
图6是根据本公开的一种变型的压缩机构和主轴承座的侧视图。
具体实施方式
下面对本公开各种实施方式的描述仅仅是示范性的,而绝不是对本公开及其应用或用法的限制。在各个附图中采用相同的附图标记来表示相同的部件,因此相同部件的构造将不再重复描述。
首先将参照图1描述涡旋压缩机的总体构造和运行原理。如图1所示,涡旋压缩机100(下文中有时也会称为压缩机)一般包括壳体110、设置在壳体110一端的顶盖112、设置在壳体110另一端的底盖114以及设置在顶盖112和壳体110之间以将压缩机的内部空间分隔成高压侧和低压侧的隔板116。隔板116和顶盖112之间的空间构成高压侧,而隔板116、壳体110和底盖114之间的空间构成低压侧。在低压侧设置有用于吸入流体的进气接头118,在高压侧设置有用于排出压缩后的流体的排气接头119。壳体110中设置有由定子122和转子124构成的马达120。转子124中设置有驱动轴130以驱动由定涡旋部件150和动涡旋部件160构成的压缩机构。动涡旋部件160包括端板164、形成在端板一侧的毂部162和形成在端板另一侧的螺旋状的叶片166。定涡旋部件150包括端板154、形成在端板一侧的螺旋状的叶片156和形成在端板的大致中央位置处的排气口152。在定涡旋150的螺旋叶片156和动涡旋160的螺旋叶片166之间形成一系列体积在从径向外侧向径向内侧逐渐减小的压缩腔C1、C2和C3。其中,径向最外侧的压缩腔C1处于吸气压力,径向最内侧的压缩腔C3处于排气压力。中间的压缩腔C2处于吸气压力和排气压力之间,从而也被称之为中压腔。
动涡旋部件160的一侧由主轴承座140的上部(即支撑部)支撑,驱动轴130的一端由设置在主轴承座140中的主轴承144支撑。驱动轴130的一端设置有偏心曲柄销132,在偏心曲柄销132和动涡旋部件160的毂部162之间设置有卸载衬套142。通过马达120的驱动,动涡旋部件160将相对于定涡旋部件150平动转动(即,动涡旋部件160的中心轴线绕定涡旋部件150的中心轴线旋转,但是动涡旋部件160本身不会绕自身的中心轴线旋转)以实现流体的压缩。上述平动转动通过定涡旋部件150和动涡旋部件160之间设置的十字滑环190来实现。经过定涡 旋部件150和动涡旋部件160压缩后的流体通过排气口152排出到高压侧。为了防止高压侧的流体在特定情况下经由排气口152回流到低压侧,可以在排气口152处设置单向阀或排气阀170。
为了实现流体的压缩,定涡旋部件150和动涡旋部件160之间需要有效密封。
一方面,定涡旋部件150的螺旋叶片156的顶端与动涡旋部件160的端板164之间以及动涡旋部件160的螺旋叶片166的顶端与定涡旋部件150的端板154之间需要轴向密封。通常,在定涡旋部件150的端板154的与螺旋叶片156相反的一侧设置有背压腔158。背压腔158中设置有密封组件180,密封组件180的轴向位移受到隔板116的限制。背压腔158通过端板154中形成的轴向延伸的通孔(未示出)与中压腔C2流体连通从而形成将定涡旋部件150朝向动涡旋160压的力。由于动涡旋160的一侧由主轴承座140的支撑部支撑,所以利用背压腔158中的压力可以有效地将定涡旋部件150和动涡旋部件160压在一起。当各个压缩腔中的压力超过设定值时,这些压缩腔中的压力所产生的合力将超过背压腔158中提供的下压力从而使得定涡旋部件150向上运动。此时,压缩腔中的流体将通过定涡旋部件150的螺旋叶片156的顶端与动涡旋部件160的端板164之间的间隙以及动涡旋部件160的螺旋叶片166的顶端与定涡旋部件150的端板154之间的间隙泄漏到低压侧以实现卸载,从而为涡旋压缩机提供了轴向柔性。
另一方面,定涡旋部件150的螺旋叶片156的侧表面与动涡旋部件160的螺旋叶片166的侧表面之间也需要径向密封。二者之间的这种径向密封通常借助于动涡旋部件160在运转过程中的离心力以及驱动轴130提供的驱动力来实现。具体地,在运转过程中,通过马达120的驱动,动涡旋部件160将相对于定涡旋部件150平动转动,从而动涡旋部件160将产生离心力。另一方面,驱动轴130的偏心曲柄销132在旋转过程中也会产生有助于实现定涡旋部件和动涡旋部件径向密封的驱动力分量。动涡旋部件160的螺旋叶片166将借助于上述离心力和驱动力分量贴靠在定涡旋部件150的螺旋叶片156上,从而实现二者之间的径向密封。当不可压缩物质(诸如固体杂质、润滑油以及液态制冷剂)进入压缩腔中而卡在螺旋叶片156和螺旋叶片166之间时,螺旋叶片156和螺旋叶片166能够暂时沿径向彼此分开以允许异物通过,因此防止了 螺旋叶片156或166损坏。这种能够径向分开的能力为涡旋压缩机提供了径向柔性,提高了压缩机的可靠性。
下面将描述压缩机中各部件的润滑过程。在图1所示的立式涡旋压缩机的示例中,在压缩机壳体的底部存储有润滑剂。相应地,在驱动轴130中形成有大致沿其轴向延伸的通道,即形成在驱动轴130下端的中心孔136和从中心孔136向上延伸到偏心曲柄销132端面的偏心孔134。中心孔136的端部浸没在压缩机壳体底部的润滑剂中或者以其他方式被供给有润滑剂。在一种示例中,可以在该中心孔136中或其附近设置润滑剂供给装置,例如如图1所示的油泵或油叉138等。在压缩机的运转过程中,中心孔136的一端被润滑剂供给装置供给有润滑剂,进入中心孔136的润滑剂在驱动轴130旋转过程中受到离心力的作用而被泵送或甩到偏心孔134中并且沿着偏心孔134向上流动一直到达偏心曲柄销132的端面。从偏心曲柄销132的端面排出的润滑剂沿着卸载衬套142与偏心曲柄销132之间的间隙以及卸载衬套142与毂部162之间的间隙向下流动到达主轴承座140的凹部146中。聚集在凹部146中的一部分润滑剂流动穿过主轴承144向下流动,一部分润滑剂被毂部162搅动而向上运动到达动涡旋部件160的端板164的下侧并随着动涡旋部件160的平动转动而遍布动涡旋部件160和主轴承座140之间的止推表面。
在压缩机的运转过程中,供给到压缩机中的各种活动部件上的润滑剂被甩出和飞溅以形成液滴或雾。这些润滑剂液滴或雾将混合在从进气接头118吸入的工作流体(或者制冷剂)中。随后这些混合有润滑剂液滴的工作流体被吸入到定涡旋部件150和动涡旋部件160之间的压缩腔中以实现这些涡旋部件内部的润滑、密封和冷却。动涡旋部件和定涡旋部件之间的这种润滑通常称之为油雾润滑。
然而,在某些特定工况下,这种油雾润滑无法向动涡旋部件和定涡旋部件供给足够的润滑剂,这会增大动涡旋部件和定涡旋部件的磨损并且会影响二者之间的密封效果,从而导致整个压缩机的性能下降。为此,在图2所示的示例中,设置了从主轴承座140的凹部146向定涡旋部件150和动涡旋部件160之间的其中一个或多个压缩腔或其附近供给润滑油的润滑剂供给通道OP。具体地,在图2所示的示例中,润滑剂供给通道OP可以形成在动涡旋部件160的动涡旋端板164中并且可以包括润滑剂入口11和润滑剂出口12,并且润滑剂供给通道OP从凹部46延伸到最外侧的压缩腔C1或其附近。或者说,润滑剂供给通道OP从凹部46延 伸到动涡旋叶片66的最外侧部分的附近,或延伸到由动涡旋部件和定涡旋部件构成的压缩机构的吸气口附近。润滑剂入口11形成在动涡旋部件160的毂部162的径向外侧。润滑剂入口11和润滑剂出口12可以由设置在端板164中的连通通道13连接。
如图2所示,从驱动轴130的偏心孔134排出的润滑剂将聚集在主轴承座140的凹部146中。随着动涡旋部件160的毂部162在凹部146中的平动转动,凹部146中的润滑剂受到离心力的作用并形成如图2中由OL指示的大致抛物线状的液面。该液面OL内的润滑剂在离心力产生的正压下以及在凹部146内的压力(背压)与压缩机构的吸气压力区域之间的压力差的作用下从润滑剂入口11被吸入,然后经过连通通道13从润滑剂出口12排出到最外侧压缩腔C1中或其附近,如图2中的箭头所示。
在另一种示例中,润滑剂供给通道OP的润滑剂入口11可以设置在毂部162的内侧,例如如图6所示。在这种情况下,从驱动轴130的偏心孔134排出的部分润滑剂也可以在凹部146内的压力与压缩机构的吸气压力区域之间的压力差的作用下从润滑剂入口11被吸入,最终供给到压缩机构的吸气压力区域中。
如上所述,当压缩机的驱动轴130的转速增大时,供给到凹部146中的润滑剂量增加并且凹部146中的背压增加,由此供给到压缩机构中的润滑剂量增加,这也进一步导致整个压缩机或制冷系统的油循环率增大。
为此,在如图3和3A所示的根据本公开的第一实施方式中,在主轴承座140的壁部148中进一步设置了润滑剂排放通道DP。润滑剂排放通道DP用于从凹部146选择性地排出润滑剂。在图中所示的示例中,润滑剂排放通道DP设置成形成在所述壁部148的侧壁中的水平钻孔。但是,本领域技术人员应该理解,润滑剂排放通道DP也可以根据设计需要形成为倾斜的钻孔,或者也可以设置在壁部148的底壁中。在其他示例中,润滑剂排放通道DP还可以包括从上述钻孔进一步延伸的管构件或通道构件,以进一步控制从凹部146中排出的润滑剂的流动方向或流动路径。
进一步地,在润滑剂排放通道DP中设置有限压阀V。限压阀V构 造成在凹部146内的压力小时提供小的开度并且在凹部146内的压力大时提供大的开度。在图3A所示的示例中,限压阀V构造成弹簧加载的阀,例如弹簧球阀。该弹簧球阀可以直接安装在润滑剂排放通道DP中。作为非限制性的示例,该弹簧球阀可以包括具有开口20的壳体10,用于打开和关闭所述开口20的阀构件30(例如滚珠,本领域技术人员也可以设想其他阀构件,例如板状件等),以及对所述阀构件30施加弹性力的弹性构件40(如压缩弹簧)。利用如此设计的限压阀V,当凹部146内的压力小时,阀构件30在弹性构件40的作用下抵靠开口20,从而提供小的开度(开度的最小值可以设定为零)。当凹部146中的压力较大时,阀构件30在凹部146中的压力的作用下克服一部分弹性构件40的弹性力而提供较大的开度。换言之,限压阀V的开度特性可以设定成当凹部146内的压力小于第一预定压力时关闭,以及当凹部146内的压力大于第二预定压力时完全打开,第二预定压力大于所述第一预定压力。限压阀V在完全关闭的状态与完全打开的状态之间可以设定为提供线性地或非线性地开度特性。
限压阀V的最小开度可以设计成满足压缩机构所需的最小润滑剂量,亦即对凹部146中的压力提供最小的泄压效果,使得尽可能多的润滑剂进入压缩机构中。限压阀V的最大开度可以设计成满足涡旋压缩机的最大容许油循环率,亦即对凹部146中的压力提供最大的泄压效果,使得合理量的润滑剂进入压缩机构中而保证合适的油循环率。
除了参照凹部146中的压力来设定限压阀V的开度特性,还可以根据供给到凹部146中的润滑剂量或者根据马达或驱动轴130的转速来设定限压阀V的开度特性。例如,限压阀V可以设定成当供给到凹部146的润滑剂量小于第一预定量时关闭,以及当供给到凹部146的润滑剂量大于第二预定量时完全打开,所述第二预定量大于所述第一预定量。或者,限压阀V可以设定成在驱动轴130的转速小于第一预定值时关闭,以及在驱动轴的转速大于第二预定值时完全打开,所述第二预定值大于所述第一预定值。
在图4和4A所示的根据本公开的第二实施方式中,限压阀V可以构造成簧片阀。具体地,该簧片阀可以包括用于打开和关闭润滑剂排放通道的阀构件50以及对阀构件施加弹性力的阀臂部60。簧片阀可以设置在主轴承座140的壁部外侧,并且阀臂部60可以仅有螺钉或铆钉等 固定到主轴承座140的壁部。
在图5所示的根据本公开的第三实施方式中,限压阀V可以构造成电子控制的阀(例如电磁阀)。该电子控制的阀的开度特性可以根据驱动轴130的转速、或供给到凹部146中的润滑剂量、或凹部146中的压力而设计。驱动轴130的转速、供给到凹部146中的润滑剂量或凹部146中的压力可以通过设置在压缩机中的相应的传感器来检测,并且检测到的信号可以直接或间接地传输到上述电子控制的阀以提供更精确的开度控制,从而实现更加优化的油循环率控制。
在图6所示的根据本公开的变型中,润滑剂供给通道OP的润滑剂入口11设置在动涡旋部件160的毂部162的内侧,而不是像图3所示的设置在毂部162的外侧。在该变型中的润滑剂排放通道DP中可以设置如上述第一实施方式、第二实施方式或第三实施方式所述的弹簧球阀、簧片阀或者电子控制的阀,并且可以实现如上述实施方式类似的有益效果。
尽管在此已详细描述本公开的各种实施方式,但是应该理解本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (12)

  1. 一种涡旋压缩机,包括:
    马达(120),所述马达包括驱动轴(130);
    定涡旋部件(150),所述定涡旋部件包括定涡旋端板(154)和形成在所述定涡旋端板上的螺旋状的定涡旋叶片(156);
    动涡旋部件(160),所述动涡旋部件包括动涡旋端板(164)、形成在所述动涡旋端板第一侧的螺旋状的动涡旋叶片(166)、形成在所述动涡旋端板第二侧的毂部(162),所述动涡旋叶片(166)和所述定涡旋叶片(156)彼此接合以在其间形成一系列压缩腔(C1、C2、C3);
    主轴承座(140),所述主轴承座包括壁部(148),所述壁部(148)限定所述毂部(162)能够在其中平动转动的凹部(146);
    润滑剂供给通道(OP),所述润滑剂供给通道构造成将润滑剂从所述凹部(146)供给到其中一个压缩腔(C1)或其附近;
    润滑剂排放通道(DP),所述润滑剂排放通道用于从所述凹部(146)选择性地排出润滑剂,以及
    设置在所述润滑剂排放通道(DP)中的限压阀(V),所述限压阀构造成在所述凹部(146)内的压力小时提供小的开度并且在所述凹部(146)内的压力大时提供大的开度。
  2. 如权利要求1所述的涡旋压缩机,其中所述限压阀(V)设定成当所述凹部(146)内压力小于第一预定压力时关闭,以及当所述凹部(146)内的压力大于第二预定压力时完全打开,所述第二预定压力大于所述第一预定压力。
  3. 如权利要求1所述的涡旋压缩机,其中所述限压阀(V)设定成当供给到所述凹部(146)的润滑剂量小于第一预定量时关闭,以及当供给到所述凹部(146)的润滑剂量大于第二预定量时完全打开,所述第二预定量大于所述第一预定量。
  4. 如权利要求1所述的涡旋压缩机,其中所述限压阀(V)设定成在所述驱动轴(130)的转速小于第一预定值时关闭,以及在所述驱动轴的转速大于第二预定值时完全打开,所述第二预定值大于所述第一预定值。
  5. 如权利要求1所述的涡旋压缩机,其中所述限压阀(V)的最大开度设计成满足所述涡旋压缩机的最大容许油循环率。
  6. 如权利要求1所述的涡旋压缩机,其中润滑剂供给通道(OP)设置在所述动涡旋端板(164)中并且包括设置在所述毂部内侧或外侧的润滑剂入口(11)以及设置在所述其中一个压缩腔(C1)或其附近的润滑剂出口(12)。
  7. 如权利要求1-6中任一项所述的涡旋压缩机,其中所述限压阀是弹簧加载的阀。
  8. 如权利要求7所述的涡旋压缩机,其中所述限压阀包括:具有开口(20)的壳体(10),用于打开和关闭所述开口的阀构件(30),以及对所述阀构件施加弹性力的弹性构件(40)。
  9. 如权利要求8所述的涡旋压缩机,其中所述润滑剂排放通道(DP)设置在所述主轴承座(140)的壁部(148)中,所述限压阀(V)设置在所述润滑剂排放通道中。
  10. 如权利要求7所述的涡旋压缩机,其中所述限压阀包括用于打开和关闭所述润滑剂排放通道的阀构件(50)以及对所述阀构件施加弹性力的阀臂部(60)。
  11. 如权利要求10所述的涡旋压缩机,所述限压阀设置在所述主轴承座(140)的壁部(148)外侧,并且所述阀臂部(60)固定到所述壁部。
  12. 如权利要求1所述的涡旋压缩机,其中所述限压阀是电子控制的阀,所述电子控制的阀的开度响应于所述驱动轴(130)的转速、或供给到所述凹部(146)中的润滑剂量、或所述凹部(146)中的压力而受到控制。
PCT/CN2017/096567 2016-08-26 2017-08-09 涡旋压缩机 WO2018036380A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620956916.9 2016-08-26
CN201610743277.2 2016-08-26
CN201620956916.9U CN206000727U (zh) 2016-08-26 2016-08-26 涡旋压缩机
CN201610743277.2A CN107781160A (zh) 2016-08-26 2016-08-26 涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2018036380A1 true WO2018036380A1 (zh) 2018-03-01

Family

ID=61245456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096567 WO2018036380A1 (zh) 2016-08-26 2017-08-09 涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2018036380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020052390A1 (zh) * 2018-09-14 2020-03-19 艾默生环境优化技术(苏州)有限公司 单向阀及涡旋压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040203A (ko) * 2002-11-06 2004-05-12 엘지전자 주식회사 오일조절기능을 구비한 스크롤 압축기
KR20120045958A (ko) * 2010-11-01 2012-05-09 엘지전자 주식회사 압축기
CN102588275A (zh) * 2011-01-07 2012-07-18 三星电子株式会社 具有背压调节装置的涡旋式压缩机
CN102966549A (zh) * 2011-08-31 2013-03-13 三洋电机株式会社 涡旋压缩装置
CN206000727U (zh) * 2016-08-26 2017-03-08 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040203A (ko) * 2002-11-06 2004-05-12 엘지전자 주식회사 오일조절기능을 구비한 스크롤 압축기
KR20120045958A (ko) * 2010-11-01 2012-05-09 엘지전자 주식회사 압축기
CN102588275A (zh) * 2011-01-07 2012-07-18 三星电子株式会社 具有背压调节装置的涡旋式压缩机
CN102966549A (zh) * 2011-08-31 2013-03-13 三洋电机株式会社 涡旋压缩装置
CN206000727U (zh) * 2016-08-26 2017-03-08 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020052390A1 (zh) * 2018-09-14 2020-03-19 艾默生环境优化技术(苏州)有限公司 单向阀及涡旋压缩机

Similar Documents

Publication Publication Date Title
CN103807166B (zh) 涡旋压缩机
JP4286175B2 (ja) 圧縮機
JP5408073B2 (ja) 圧縮機
JP6300829B2 (ja) 回転式圧縮機
JP6955087B2 (ja) ロータリ圧縮機
US5688109A (en) Oil-level controller for compressor
US7281913B2 (en) Compressor including integrally formed separation tube and seal bolt
US2654532A (en) Rotary compressor
WO2007077856A1 (ja) 圧縮機
US6755632B1 (en) Scroll-type compressor having an oil communication path in the fixed scroll
US20200003199A1 (en) Compressor
CN107401509B (zh) 用于压缩机的供油装置及压缩机
WO2018036380A1 (zh) 涡旋压缩机
CN107781160A (zh) 涡旋压缩机
JP4754847B2 (ja) 圧縮機
US9897088B2 (en) Scroll compressor with back pressure chamber having leakage channel
KR20100030634A (ko) 탠덤 컴프레서 시스템 및 방법
CN206000727U (zh) 涡旋压缩机
EP2653649A2 (en) Scroll compressor
JP7057532B2 (ja) スクロール圧縮機
JP2006144660A (ja) 圧縮機
US20090116977A1 (en) Compressor With Muffler
JP2017015054A (ja) シングルスクリュー圧縮機
CN103939338B (zh) 涡旋压缩机
JP2005201171A (ja) 圧縮機の潤滑機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842803

Country of ref document: EP

Kind code of ref document: A1