WO2020052311A1 - 含氟的稀土矿物颗粒的处理方法 - Google Patents

含氟的稀土矿物颗粒的处理方法 Download PDF

Info

Publication number
WO2020052311A1
WO2020052311A1 PCT/CN2019/092296 CN2019092296W WO2020052311A1 WO 2020052311 A1 WO2020052311 A1 WO 2020052311A1 CN 2019092296 W CN2019092296 W CN 2019092296W WO 2020052311 A1 WO2020052311 A1 WO 2020052311A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
sulfuric acid
fluorine
mineral particles
acid
Prior art date
Application number
PCT/CN2019/092296
Other languages
English (en)
French (fr)
Inventor
崔建国
王哲
侯睿恩
李冬
徐萌
高婷
郝肖丽
李波
张洋
Original Assignee
包头稀土研究院
瑞科稀土冶金及功能材料国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 包头稀土研究院, 瑞科稀土冶金及功能材料国家工程研究中心有限公司 filed Critical 包头稀土研究院
Priority to US16/630,311 priority Critical patent/US11427884B2/en
Priority to EP19823875.0A priority patent/EP3663421B1/en
Priority to JP2020500133A priority patent/JP6896139B2/ja
Publication of WO2020052311A1 publication Critical patent/WO2020052311A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof

Definitions

  • the invention relates to a method for processing fluorine-containing rare earth mineral particles, in particular to a method for processing rare-earth mineral particles containing fluorocarbaceous ore.
  • Rare earth minerals mainly exist in the form of fluorocarbon cerium ore, mixed rare earth concentrates (fluorocarbon cerite and monazite), seashore sand ore (monazite), and weathered crust deposition type rare earth ore.
  • the fluorocarbon cerium ore is represented by the Mountain Pass mine in the United States, Mianning rare earth mine in Sichuan, China, and the Weishanhu mine in Shandong.
  • the typical representative of mixed rare earth minerals is the Baiyun Ebo rare earth minerals in Baotou, Mongolia, China. Therefore, it is of great significance to study the smelting and separation technology of bastnasite minerals. At present, more and more attention has been paid to the smelting technology of fluorocarbon cerium in fluorocarbon ceria or mixed rare earth minerals.
  • rare earth resources can be extracted by air oxidation roasting decomposition-hydrochloric acid dissolution technology.
  • the fluorocarbon cerium mineral is decomposed into fluorinated rare earth and oxidized rare earth by oxidizing roasting.
  • the hydrochloric acid is preferentially dissolved in the roasting ore, the concentration of hydrochloric acid and the adding process are controlled to realize the extraction of trivalent rare earth and preliminary separation from tetravalent cerium.
  • the residual residues of cerium fluoride, cerium dioxide and other components it can be used to prepare low-grade ferrosilicon alloys, and tetravalent cerium can be continuously extracted with concentrated hydrochloric acid under the action of thiourea reducing agent.
  • This process is widely used in the treatment of Mianning, Sichuan province, and can be used to recover valuable rare earths at a low cost.
  • the problems with the above scheme are that the fluorine resources are not effectively used, and the extraction of rare earth resources is incomplete.
  • CN1683568A discloses a fluorocarbon cerium ore and a method for separating cerium. First, the fluorocarbon cerium ore concentrate is oxidized and roasted at 300 to 1000 ° C to obtain a fluorocarbon cerium ore calcined sand; Then, through the separation and reduction process of the coordination precipitating agent, the trivalent rare earth element and the tetravalent rare earth element, and the tetravalent elements cerium and thorium are separated.
  • the problem with the above scheme is that the fluorocarbon ceria concentrate needs to be roasted at a high temperature and the steps are too complicated.
  • mixed rare-earth minerals also contain a large amount of fluorocarbon ceria, of which 90% of the mixed rare-earth minerals use concentrated sulfuric acid high-temperature roasting decomposition process.
  • the mixed rare-earth mineral and concentrated sulfuric acid are roasted at a high temperature of 500 to 1000 ° C.
  • the solid-liquid mixed phase quickly changes to a solid phase, and the reaction efficiency is extremely high.
  • the reaction rate will decrease or terminate rapidly after the surface layer reaction is completed.
  • fluorine, silicon in the mineral and sulfur oxides decomposed by sulfuric acid enter the tail gas system, which makes it difficult to recycle the fluorine resources.
  • CN106978532A discloses a method for extracting rare earth, fluorine and thorium in a fluorine-containing rare earth mineral by concentrated sulfuric acid, comprising: mixing a fluorine-containing rare earth mineral with concentrated sulfuric acid; a single fluorine-containing rare earth mineral or a mixed rare earth concentrate containing a rare earth oxide mass fraction 50 to 70%, H 2 SO 4 mass fraction of concentrated sulfuric acid> 90%, fluorine-containing rare earth mineral and concentrated sulfuric acid in a weight ratio of 1: 0.6 to 1.0; the mixture is fired at 120 to 180 ° C for 120 to 300 min After the burning reaction product is immersed in water, the water immersion solution is neutralized to a pH value of 3.5 to 4.5 to form a rare-earth sulfate solution and an iron hafnium enrichment.
  • the above scheme realizes the transition from solid-liquid phase to solid-solid phase under the conditions of extremely low acid ore ratio (acid ore ratio 0.6-1.0: 1) and extremely low reaction temperature (temperature 120-180 ° C), which prolongs the reaction time. Achieved the preferential decomposition of fluorocarbon cerium mineral.
  • the above scheme still has the following problems: First, it is difficult to control the end point of the solid-solid phase reaction in the reaction process, and the decomposition rate of the rare earth mineral must be ensured by recovering the undecomposed minerals; the second is the improper control, when the residual acidity in the roasting ore is very high The reaction was terminated, and the water leaching process needed to consume a large amount of neutralizing agent, which caused waste of sulfuric acid.
  • CN102534269A discloses a method for comprehensively recovering and utilizing various rare earths from fluorine-containing rare earth materials, including the following steps: a. Mixing the fluorine-containing rare earth materials with sulfuric acid, and the hydrofluoric acid gas formed during the mixing process is used for preparation Cryolite or hydrofluoric acid; b. The mixed materials are immersed in water to obtain a rare earth sulfate solution.
  • the sulfuric acid described in step a is sulfuric acid with a concentration greater than 98%; the weight ratio of rare earth oxide to sulfuric acid in the fluorine-containing rare earth material is 1: 1.5 to 2; and the amount of water added during the water immersion in step b is controlled so that The concentration of rare earth in the solution after leaching is controlled to 90-110g / L; due to the violent reaction and exothermicity of the fluorine-containing rare earth material and sulfuric acid during the mixing process, the material has been in a semi-dry form.
  • the above scheme still has the following problems: First, the sulfuric acid concentration is too high, and the concentrated sulfuric acid reacts strongly with fluorocarbon cerium, the reaction rate changes greatly, and the reaction is difficult to control; the second is that the rare earth material containing fluorine and sulfuric acid are mixed into a semi-dry state. Sulfuric acid is not easy to recycle; the third is that it can only process the activated fluorocarbon cerium ore after roasting or other reactions, and it cannot handle unactivated fluorocarbon cerium ore or mixed rare earth concentrates.
  • the object of the present invention is to provide a method for processing fluorine-containing rare earth mineral particles, which uses an absolute excess of a lower concentration sulfuric acid solution and decomposes fluorine-containing rare earth by a liquid-solid phase mixing reaction at a lower temperature.
  • Mineral particles to achieve rapid decomposition of fluorine-containing rare earth mineral particles, the reaction is easy to control, and at the same time to achieve the recycling of residual acid resources.
  • the present invention adopts the following technical solutions to achieve the foregoing objectives.
  • the invention provides a method for processing fluorine-containing rare earth mineral particles, which includes the following steps:
  • the first fluorine-containing rare earth mineral particles and the first sulfuric acid solution are mixed according to a weight ratio of sulfuric acid to the first fluorine-containing rare earth mineral particles of 2 to 10: 1, and then heated and maintained for liquid-solid reaction, and the steam passes through the tail gas.
  • System condensation absorption wherein the sulfuric acid concentration of the first sulfuric acid solution is 40 to 85% by weight;
  • the first fluorine-containing rare earth mineral particles and the i-th fluorine-containing rare earth mineral particles are both rare earth mineral particles that have not been subjected to roasting and decomposition treatment.
  • step (1) the liquid-solid reaction is performed under continuous stirring, the reaction temperature is 100-180 ° C, and the reaction time is 0.5-5 hours.
  • step (1) the liquid-solid reaction is performed under continuous stirring, the reaction temperature is 120-180 ° C, and the reaction time is 0.5-2 hours.
  • the weight ratio of sulfuric acid to the first fluorine-containing rare earth mineral particles is 3 to 8: 1.
  • the fluorine-containing rare earth mineral particles are selected from one or two of the following: (A) fluorocarbon cerium ore, (B) a mixed type rare earth fine of fluore cerite and monazite mine.
  • the particle diameter of the fluorine-containing rare earth mineral particles is less than 150 mesh.
  • the particle diameter of the fluorine-containing rare earth mineral particles is less than 200 mesh.
  • the sulfuric acid concentration of the first sulfuric acid solution is 50 to 85% by weight; and in step (4), the second sulfuric acid solution is supplemented to the acid filtrate so that the acid filtrate The sulfuric acid concentration of the acid filtrate is 50 to 85% by weight.
  • the sulfuric acid concentration of the first sulfuric acid solution is 60 to 75% by weight; and in step (4), the second sulfuric acid solution is supplemented to the acid filtrate so that the acid filtrate The sulfuric acid concentration of the acid filtrate is 60 to 75% by weight.
  • the concentration of the rare-earth sulfate in the rare-earth sulfate aqueous leaching solution as a rare-earth oxide REO is 20 to 45 g / L.
  • the invention adopts an absolute excess of a lower concentration sulfuric acid solution to decompose fluorine-containing rare earth mineral particles through a liquid-solid phase mixing reaction at a lower temperature, thereby realizing rapid decomposition of fluorine-containing rare earth mineral particles, the reaction is easy to control, and simultaneously realizes Recycling of residual acid resources.
  • the invention uses liquid-solid reaction to directly decompose unactivated fluorocarbon cerium ore or mixed rare earth concentrates, and significantly reduces the cost of rare earth extraction.
  • the weight ratio of sulfuric acid to fluorine-containing rare earth mineral particles is 3 to 5: 1, and an absolute excess of a lower concentration sulfuric acid solution is used to solve the large change in the reaction rate of concentrated sulfuric acid and fluorocarbon ceria. And difficult-to-control technical issues.
  • selected from refers to a selection of individual components or a combination of two (or more) components.
  • the method for processing fluorine-containing rare earth mineral particles of the present invention includes the following steps: (1) performing a liquid-solid reaction on the first fluorine-containing rare earth mineral particles and a first sulfuric acid solution; (2) solid-liquid separation to obtain an acid filtrate and an acid filter residue ; (3) treatment of acid filter residue; (4) after adding the second sulfuric acid solution to the acid filtrate, according to steps (1) to (3), the i-th fluorine-containing rare earth mineral particles are cyclically processed; i is 2 or more Natural number.
  • the first fluorine-containing rare earth mineral particles and the i-th fluorine-containing rare earth mineral particles are each selected from one or two of the following: (A) fluorocarbaceous ore, (B) fluorine A mixed rare earth concentrate of cerium and monazite.
  • the first fluorine-containing rare earth mineral particles and the i-th fluorine-containing rare earth mineral particles are both rare earth mineral particles that have not been subjected to roasting and decomposition treatment.
  • the method of the present invention is suitable for fluorine-containing rare earth mineral particles that have not been subjected to roasting decomposition treatment, so that the cost of rare earth extraction can be significantly reduced.
  • the mixed raw materials are the first fluorine-containing rare earth mineral particles and the first sulfuric acid solution.
  • the sulfuric acid concentration of the first sulfuric acid solution is 40 to 85% by weight; preferably, the sulfuric acid concentration of the first sulfuric acid solution is 50 to 85% by weight; more preferably, the sulfuric acid concentration of the first sulfuric acid solution is 60 to 75% by weight.
  • the mixing ratio is that the weight ratio of sulfuric acid (ie, solute) of the first sulfuric acid solution to the first fluorine-containing rare earth mineral particles is 2 to 10: 1; preferably, the sulfuric acid of the first sulfuric acid solution and the first fluorine-containing rare earth mineral are weighted.
  • the weight ratio of the particles is 3 to 8: 1; more preferably, the weight ratio of the sulfuric acid of the first sulfuric acid solution to the first fluorine-containing rare earth mineral particles is 3 to 5: 1.
  • the weight ratio of sulfuric acid to Sichuan Mianning fluorocarbon cerium ore is 3.4 to 3.8: 1.
  • the weight ratio of sulfuric acid to Baiyun Ebo mixed rare earth concentrate is 4 to 5: 1.
  • the liquid-solid reaction is performed under continuous stirring, and general mechanical stirring can be selected.
  • the temperature of the liquid-solid reaction is 100-180 ° C; preferably, the temperature of the liquid-solid reaction is 120-180 ° C; more preferably, the temperature of the liquid-solid reaction is 130-180 ° C.
  • the time for the liquid-solid reaction is 0.5 to 5 hours; preferably, the time for the liquid-solid reaction is 0.5 to 3 hours; more preferably, the time for the liquid-solid reaction is 0.5 to 2 hours.
  • Steam is generated during the liquid-solid reaction.
  • the steam contains a large amount of hydrofluoric acid gas.
  • the hydrofluoric acid gas is condensed and absorbed by the tail gas system to obtain a hydrofluoric acid product.
  • the temperature of the liquid-solid reaction is 140 to 150 ° C, and the reaction time is 1 to 1.5 hours.
  • the liquid-solid reaction temperature of the first batch of Baiyun Ebo mixed rare earth concentrates is 170-180 ° C, and the reaction time is 0.5-1 hour;
  • the solid reaction temperature is 150-160 ° C, and the reaction time is 1-1.5 hours.
  • the liquid-solid reaction temperature of the third batch of Baiyun Ebo mixed rare earth concentrate is 130-135 ° C, and the reaction time is 1.5-2 hours.
  • the next 15 rounds In the cyclic treatment the temperature of the liquid-solid reaction in each cycle is 130 to 135 ° C, and the reaction time is 1.5 to 2 hours.
  • step (2) of the present invention after the liquid-solid reaction is completed, the solid-liquid separation is performed to obtain an acid filtrate and an acid residue.
  • the acid residue can be processed to obtain rare earth products.
  • the liquid-solid reaction uses an absolute excess of a lower concentration sulfuric acid solution.
  • the sulfuric acid solution is greatly excessive.
  • the sulfuric acid solution completely immerses the fluorine-containing rare earth mineral particles.
  • the sulfuric acid solution remains large.
  • the remaining sulfuric acid solution (acid filtrate) can be recycled.
  • solid-liquid separation is performed to obtain a first batch of acid filtrate and a first batch of acid residue.
  • solid-liquid separation is performed to obtain the first batch of acid filtrate and the first batch of acid residue.
  • the acid filter residue is leached with water to obtain a rare-earth sulfate aqueous leaching solution and a water leaching residue.
  • the fluorine-containing rare-earth mineral particles are fluoracerite, the decomposition rate of fluorocarbon-cerium ore is greater than or equal to 95% based on the rare earth oxide REO in the water leached slag; For rare earth concentrates, based on the F content in the water leaching slag, the decomposition rate of fluorocarbon ceria is ⁇ 95%.
  • the fluorine-containing rare earth mineral particles are Sichuan Mianning fluorocarbon cerium ore.
  • the decomposition rate of fluorocarbon cerium ore in multiple rounds of circulating treatment is ⁇ 96%.
  • the fluorine-containing rare earth mineral particles are Baiyun Ebo mixed rare earth concentrates. Based on the F content in the water leaching slag, the decomposition rate of fluorocarbon cerium ore in multiple rounds of circulating treatment is ⁇ 96%.
  • step (3) of the present invention when the acid filter residue is leached with water, the amount of water used is 10 to 50 times the weight of the first fluorine-containing rare earth mineral particles; preferably, the amount of water used is the first fluorine-containing rare earth 10 to 35 times the weight of the mineral particles; more preferably, the amount of water is 15 to 25 times the weight of the first fluorine-containing rare earth mineral particles.
  • the liquid-solid reaction cycle decomposes Sichuan Mianning fluorocarbon cerium ore.
  • the first batch of acid filter residue is leached with 1500-2000 ml of water, and the amount of water used is 15 ⁇ 20 times.
  • the liquid-solid reaction cycle decomposes the Baiyun Ebo mixed rare earth concentrate.
  • the first batch of acid filter residue is leached with 1500 to 2000 ml of water, and the amount of water is 15% of the weight of the first Baiyun Ebo mixed rare earth concentrate. ⁇ 20 times.
  • the concentration of the rare-earth sulfate as a rare-earth oxide REO is 20 to 45 g / L; preferably 25 to 40 g / L; and more preferably 30 to 35 g / L.
  • the liquid-solid reaction cycle decomposes Mianning, Sichuan, and the first batch of acid filter residue is leached with 1500 to 2000 ml of water.
  • the concentration of salt is 25.0 ⁇ 26.7g / L; the second batch of acid filter residue is leached with 1500 ⁇ 2000ml of water, and the concentration of rare earth sulfate in REO water leaching solution is 28.0 ⁇ 30.2g / L; The third batch of acid filter residue was leached with 1500 to 2000 ml of water. The concentration of rare earth sulfate in the rare earth sulfate REO solution was 32 to 34.7 g / L. The fourth batch of acid filter residue was 1500 to 2000 ml of water.
  • the concentration of rare-earth sulfate in the rare-earth sulfate REO water leaching solution is 32 to 33.6 g / L; in the subsequent 4 to 10 cycles of treatment, the rare-earth oxide REO-based rare earth in the rare-earth sulfate water leaching solution The concentration of sulfate is 32.5 to 33 g / L.
  • the liquid-solid reaction cycle decomposes the Baiyun Ebo mixed rare earth concentrate.
  • the first batch of acid filter residue is leached with 1500 to 2000 ml of water.
  • the concentration of salt is 22 ⁇ 23.3g / L; the second batch of acid filter residue is leached with 1500 ⁇ 2000ml of water, and the concentration of rare earth sulfate in REO water leaching solution is 28.0 ⁇ 30.7g / L; The third batch of acid filter residue was leached with 1500 to 2000 ml of water.
  • the concentration of rare earth sulfate in the rare earth sulfate REO leaching solution was 32 to 34.5 g / L; in the subsequent 15 to 18 cycles of treatment, rare earth sulfate water In the immersion solution, the concentration of the rare earth sulfate as a rare earth oxide REO is 32.5 to 33 g / L.
  • step (4) of the present invention after the second sulfuric acid solution is replenished to the acid filtrate, the i-th fluorine-containing rare earth mineral particles are cyclically processed according to steps (1) to (3).
  • i is a natural number greater than or equal to 2, for example, 2, 3, 4, 5, 6, 7, 8, ....
  • the initial mass fraction of sulfuric acid solution is 40-85 wt%; preferably, before each round of liquid-solid reaction, the initial mass fraction of sulfuric acid solution is 50-85 wt%; more preferably, each Before a round of liquid-solid reaction, the initial mass fraction of the sulfuric acid solution is 60 to 75% by weight.
  • the amount of the second sulfuric acid solution is supplemented according to the actual consumption of sulfuric acid in the previous liquid-solid reaction.
  • the sulfuric acid concentration of the second sulfuric acid solution is ⁇ 90 wt%; preferably, the sulfuric acid concentration of the second sulfuric acid solution is ⁇ 95 wt%; more preferably, the sulfuric acid concentration of the second sulfuric acid solution is ⁇ 98 wt%.
  • the first batch of acidic filtrate is supplemented with 60-72 g of 98% by weight concentrated sulfuric acid based on 100 g of the second batch of fluorocarbon cerium ore in a cyclic treatment.
  • the second batch of acid filtrate was supplemented with 60-68 g of 98% by weight concentrated sulfuric acid based on the 100 g of the third batch of fluorocarbon ceria.
  • the third batch of acid filtrate was supplemented with 65-72 g of 98% by weight concentrated sulfuric acid.
  • Subsequent 4 to 8 rounds of cyclic treatment based on the cyclic treatment of 100 g of the i batch of fluorocarbon cerium ore, 53 to 55 g of 98% by weight concentrated sulfuric acid was added to the acid filtrate from the previous round.
  • the temperature of the liquid-solid reaction in each cycle of the treatment is 100 to 180 ° C; preferably 120 to 180 ° C; and more preferably 130 to 180 ° C.
  • the time for the liquid-solid reaction in each cycle of the treatment is 0.5 to 5 hours; preferably 0.5 to 3 hours; more preferably 0.5 to 2 hours.
  • Steam is generated during the liquid-solid reaction in each cycle of the treatment.
  • the steam contains a large amount of hydrofluoric acid gas, which is condensed and absorbed by the tail gas system to obtain a hydrofluoric acid product.
  • the solid-liquid separation is performed to obtain an acid filtrate and an acid residue.
  • the acid residue can be processed to obtain rare earth products.
  • the method for treating fluorine-containing rare earth mineral particles of the present invention further includes pulverizing the fluorine-containing rare earth mineral particles.
  • the fluorine-containing rare earth mineral particles are pulverized to a particle size of less than 150 mesh; preferably, the fluorine-containing rare earth mineral particles are pulverized to a particle size of less than 200 mesh. This can accelerate the decomposition of fluorine-containing rare earth mineral particles. If the particle diameter of the fluorine-containing rare earth mineral particles is less than 150 mesh, the pulverization step can be omitted without pulverization treatment. According to a specific embodiment of the present invention, the fluorocarbon cerium ore is pulverized to a particle size of less than 150 mesh to obtain fluorocarbon cerium ore particles. According to another specific embodiment of the present invention, the particle size of the mixed rare earth concentrate of fluorocarbon cerium ore and monazite is less than 200 mesh.
  • Mianning fluorite in Sichuan (REO content: 68.2 wt%) is pulverized to a particle size of less than 150 mesh to obtain fluorite particles.
  • the first batch of acid filter residue was leached with 2000 ml of water, and the concentration of REE in the water leaching solution was 26.7 g / L in terms of REO to obtain an aqueous solution of rare earth sulfate and a water leaching residue. Based on the REO in the water leaching slag, the decomposition rate of fluoracerite was 98.2%.
  • the first batch of acid filtrate was supplemented with 72 g of 98% by weight concentrated sulfuric acid under stirring to a sulfuric acid concentration of 70% by weight.
  • 100 g of the second batch of Sichuan Mianning fluorocarbon cerium ore (reo content of 68.2 wt%) was cyclically processed.
  • the acid amount, the initial concentration of sulfuric acid, the reaction temperature, and the reaction time were kept consistent with the treatment conditions of the first batch of Sichuan Mianning fluorocarbon cerium ore.
  • solid-liquid separation was performed to obtain a second batch of acid filtrate and a second batch of acid filter residue.
  • the second batch of acid filter residue was leached with 2000 ml of water, and the concentration of the rare earth sulfate in the water leaching solution based on REO was 30.2 g / L to obtain a rare earth sulfate water leaching solution and a water leaching residue. Based on the calculation of REO in water leaching slag, the decomposition rate of fluoracerite was 96.7%.
  • the second batch of acid filtrate was supplemented with 68 g of 98% by weight concentrated sulfuric acid under stirring, to a sulfuric acid concentration of 70% by weight.
  • the third batch of Sichuan Mianning fluorocarbon cerium ore (REO content of 68.2 wt%) was cyclically processed.
  • the acid amount, the initial concentration of sulfuric acid, the reaction temperature, and the reaction time were kept in accordance with the treatment conditions of the first batch of Sichuan Mianning fluorocarbon cerium ore.
  • solid-liquid separation was performed to obtain a third batch of acid filtrate and a third batch of acid filtrate.
  • the third batch of acid filter residue was leached with 2000 ml of water, and the concentration of the rare earth sulfate in the water leaching solution based on REO was 34.7 g / L to obtain a rare earth sulfate leaching solution and a water leaching residue.
  • the decomposition rate of bastnasite was 96.3%.
  • the third batch of acid filtrate was supplemented with 72 g of 98% by weight concentrated sulfuric acid under stirring, to a sulfuric acid concentration of 70% by weight.
  • the fourth batch of Sichuan Mianning fluorocarbon cerium ore (REO content of 68.2 wt%) was cyclically processed.
  • the acid amount, the initial concentration of sulfuric acid, the reaction temperature, and the reaction time were kept consistent with the treatment conditions of the first batch of Sichuan Mianning fluorocarbon cerium ore.
  • solid-liquid separation was performed to obtain a fourth batch of acid filtrate and a fourth batch of acid filter residue.
  • the fourth batch of acid filter residue was leached with 2000 ml of water, and the concentration of the rare earth sulfate in the water leaching solution in terms of REO was 33.6 g / L to obtain a rare earth sulfate water leaching solution and a water leaching residue.
  • the decomposition rate of fluorocarbon ceria is 96.5%.
  • each cycle of treatment is in accordance with the following processing conditions: the supplemental amount of 98% by weight concentrated sulfuric acid is 53-55g, the initial concentration of sulfuric acid is 70% by weight, the reaction temperature is 140 ° C, and the reaction time is 1 hour.
  • the REO concentration in the water leaching solution is 32.5-33 g / L.
  • Baiyun Ebo mixed rare earth concentrate has a REO content of 61.9 wt% and a particle size of less than 200 mesh. Baiyun Ebo mixed rare earth concentrate is a mixed rare earth concentrate of fluorocarbon cerium and monazite.
  • Baiyun Ebo mixed rare earth concentrate (not roasted and decomposed) is mixed with 590g of 85% by weight sulfuric acid solution (weight ratio of sulfuric acid and Baiyun Ebo mixed rare earth concentrate is 5: 1); stirring and heating, 180 ° C reaction 0.5 Hours, the steam is condensed and absorbed by the exhaust system to obtain hydrofluoric acid product.
  • solid-liquid separation was performed to obtain the first batch of acid filtrate and the first batch of acid filter residue.
  • the first batch of acid filter residue was leached with 2000 ml of water, and the concentration of REE in the water leaching solution was 23.3 g / L in terms of REO to obtain a rare earth sulfate leaching solution and a water leaching residue.
  • the decomposition rate of fluoracerite was 97.5%.
  • the first batch of acid filtrate was cyclically treated with 100 g of the second batch of Baiyun Ebo mixed rare earth concentrate (REO content: 61.9 wt%) under stirring.
  • the initial sulfuric acid concentration was 73% by weight
  • the reaction temperature was 150 ° C
  • the reaction time was 1 hour.
  • solid-liquid separation was performed to obtain a second batch of acid filtrate and a second batch of acid filter residue.
  • the second batch of acid leaching residue was leached with 2000 ml of water, and the concentration of REE in the water leaching solution was 30.7 g / L in terms of REO to obtain an aqueous leaching solution of rare earth sulfate and water leaching residue. Calculated based on the F content in the water leaching slag, the decomposition rate of fluoracerite was 96.2%.
  • the second batch of acid filtrate was cyclically treated with 100 g of the third batch of Baiyun Ebo mixed rare earth concentrate (REO content: 61.9 wt%) under stirring.
  • the initial sulfuric acid concentration was 64% by weight
  • the reaction temperature was 130 ° C
  • the reaction time was 2 hours.
  • solid-liquid separation was performed to obtain a third batch of acid filtrate and a third batch of acid filtrate.
  • the third batch of acid leaching residue was leached with 2000 ml of water, and the REO concentration of the rare earth sulfate in the water leaching solution based on REO was 34.5 g / L to obtain a rare earth sulfate leaching solution and a water leaching residue.
  • the decomposition rate of fluoracerite was 97.7%.
  • each cycle of treatment is in accordance with the following processing conditions: 98% by weight of concentrated sulfuric acid is 53-55g, the initial concentration of sulfuric acid is 62% by weight, the reaction temperature is 130 ° C, and the reaction time is 2 hours.
  • the weight ratio of sulfuric acid to Baiyun Ebo mixed rare earth concentrate is 2.5: 1.
  • the REO concentration in the water leaching solution is 32.5-33 g / L. Calculated based on the F content in the water leaching slag, the decomposition rate of fluorocarbon ceria is 96-98%, and the REO decomposition rate in Baiyun Ebo mixed rare earth concentrate is 58-60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种含氟的稀土矿物颗粒的处理方法,其包括以下步骤:(1)将第一含氟的稀土矿物颗粒与第一硫酸溶液按照硫酸与第一含氟的稀土矿物颗粒的重量比为2~10:1混合,然后加热保温进行液固反应,蒸汽经尾气系统冷凝吸收;其中,第一硫酸溶液的硫酸浓度为40~85wt%;(2)反应结束后,固液分离,得到酸滤液与酸滤渣;(3)将所述酸滤渣用水进行浸出,得到硫酸稀土水浸液和水浸渣;(4)将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为40~85wt%;按照步骤(1)~(3)循环处理第i含氟的稀土矿物颗粒。本发明的方法实现含氟的稀土矿物颗粒的快速分解,反应易于控制,并同时实现余酸资源循环利用。

Description

含氟的稀土矿物颗粒的处理方法 技术领域
本发明涉及一种含氟的稀土矿物颗粒的处理方法,尤其涉及一种含氟碳铈矿的稀土矿物颗粒的处理方法。
背景技术
稀土矿物主要以氟碳铈矿、混合型稀土精矿(氟碳铈矿与独居石)、海滨砂矿(独居石)以及风化壳淋积型稀土矿等形式存在。氟碳铈矿以美国芒廷帕斯矿、中国四川冕宁稀土矿、山东微山湖矿等为代表,混合型稀土矿物的典型代表是我国内蒙古包头地区的白云鄂博稀土矿物。因此,研究氟碳铈矿矿物的冶炼分离技术具有重要意义。目前,氟碳铈矿或混合型稀土矿物中氟碳铈矿的冶炼技术受到越来越多的关注。
一方面,可以采用空气氧化焙烧分解-盐酸溶解技术提取稀土资源。氟碳铈矿矿物经氧化焙烧分解为氟化稀土与氧化稀土,焙烧矿用盐酸优先溶解时,控制盐酸浓度与加入过程,实现三价稀土提取并与四价铈初步分离。氟化铈、二氧化铈等成分残留渣中,可用于制备低级硅铁合金,也可在硫脲还原剂作用下用浓盐酸继续提取四价铈。该工艺被广泛应用于四川冕宁氟碳铈矿的处理,可以简单的低成本的回收有价稀土。上述方案存在的问题是没有有效利用氟资源,且稀土资源提取不彻底。
另一方面,可以采用空气氧化焙烧分解-硫酸溶解技术提取稀土资源。CN1683568A公开了一种氟碳铈矿和分离铈的方法,首先将氟碳铈矿精矿在300~1000℃氧化焙烧获得氟碳铈矿焙砂;然后通过硫酸浸出氟碳铈矿焙砂中稀土,再经配位沉淀剂分离和还原过程,实现三价 稀土元素与四价稀土元素以及四价元素铈和钍的分离。上述方案存在的问题是氟碳铈矿精矿需经高温氧化焙烧,步骤太繁琐。
此外,混合型稀土矿物中也蕴含大量的氟碳铈矿,其中90%的混合型稀土矿物采用浓硫酸高温焙烧分解工艺。混合型稀土矿物与浓硫酸经过500~1000℃高温焙烧,稀土矿物与浓硫酸在接触反应过程中,由固液混合相很快变为固相,反应效率极高,因此反应对矿物原料的粒径提出了很高的要求,当矿物粒径大于200目时,表层反应结束后,反应速率会快速下降或终止。同时,反应过程中,矿物中氟、硅元素以及硫酸分解后的硫氧化物进入尾气系统,给氟资源的回收利用带来难度。
CN106978532A公开了一种浓硫酸提取含氟稀土矿物中稀土、氟和钍的方法,包括:将含氟稀土矿物与浓硫酸混合;单一含氟稀土矿物或混合稀土精矿含有稀土氧化物的质量分数为50~70%,浓硫酸的H 2SO 4质量分数>90%,含氟稀土矿物与浓硫酸按照重量比为1:0.6~1.0;混合物在120~180℃条件下灼烧反应120~300min;灼烧后的反应产物水浸后,水浸液中和至pH值为3.5~4.5,形成硫酸稀土溶液和铁钍富集物。上述方案在极低酸矿比(酸矿比为0.6~1.0:1)和极低反应温度(温度为120~180℃)条件下实现从固液相到固固相转变,延长了反应时间,实现了氟碳铈矿物的优先分解。但是上述方案仍然存在以下问题:一是反应过程中固固相反应终点控制难度大,必须通过回收未分解矿物来保证稀土矿物分解率;二是控制不当时,焙烧矿中余酸酸度很大时便终止了反应,水浸除杂过程需要消耗大量中和剂,同时造成硫酸浪费。
CN102534269A公开了一种从含氟的稀土物料中综合回收利用各种稀土的方法,包括以下步骤:a、将含氟的稀土物料与硫酸拌合,拌合过程的形成氢氟酸气体用于制备冰晶石或氢氟酸;b、拌合后的物 料通过水浸得到了硫酸稀土溶液。上述方案中,步骤a所述硫酸是浓度大于98%的硫酸;含氟的稀土物料中稀土氧化物与硫酸的重量比为1∶1.5~2;步骤b水浸时水的加入量控制在使浸出后的溶液中稀土浓度控制在90~110g/L;由于含氟的稀土物料和硫酸在拌合过程中通过剧烈反应和放热,物料已呈半干剂状。上述方案仍然存在以下问题:一是硫酸浓度过高,浓硫酸与氟碳铈矿通过拌合剧烈反应,反应速率变化大,反应难以控制;二是含氟的稀土物料与硫酸混合成半干状,硫酸不容易回收利用;三是仅能处理通过焙烧或其他反应后的已经活化的氟碳铈矿,不能处理未活化的氟碳铈矿或混合型稀土精矿。
鉴于现有技术的缺陷,开发一种含氟的稀土矿物颗粒的处理方法,采用较低浓度的硫酸溶液,在较低温度下通过液固相混合反应分解含氟的稀土矿物颗粒,实现含氟的稀土矿物颗粒的快速分解,反应易于控制,并同时实现余酸资源循环利用,这是十分必要的。
发明内容
有鉴于此,本发明的目的在于提供一种含氟的稀土矿物颗粒的处理方法,其采用绝对过量的较低浓度的硫酸溶液,在较低温度下通过液固相混合反应分解含氟的稀土矿物颗粒,实现含氟的稀土矿物颗粒的快速分解,反应易于控制,并同时实现余酸资源循环利用。
本发明采用如下技术方案实现上述目的。
本发明提供一种含氟的稀土矿物颗粒的处理方法,其包括以下步骤:
(1)将第一含氟的稀土矿物颗粒与第一硫酸溶液按照硫酸与第一含氟的稀土矿物颗粒的重量比为2~10:1混合,然后加热保温进行液固反应,蒸汽经尾气系统冷凝吸收;其中,第一硫酸溶液的硫酸浓度为40~85wt%;
(2)反应结束后,固液分离,得到酸滤液与酸滤渣;
(3)将所述酸滤渣用水进行浸出,得到硫酸稀土水浸液和水浸渣;
(4)将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为40~85wt%;按照步骤(1)~(3)循环处理第i含氟的稀土矿物颗粒;i为大于等于2的自然数;
其中,第一含氟的稀土矿物颗粒和第i含氟的稀土矿物颗粒均为未进行焙烧分解处理的稀土矿物颗粒。
根据本发明的方法,优选地,步骤(1)中,所述液固反应在持续搅拌作用下进行,反应温度为100~180℃,反应时间为0.5~5小时。
根据本发明的方法,优选地,步骤(1)中,所述液固反应在持续搅拌作用下进行,反应温度为120~180℃,反应时间为0.5~2小时。
根据本发明的方法,优选地,步骤(1)中,硫酸与第一含氟的稀土矿物颗粒的重量比为3~8:1。
根据本发明的方法,优选地,所述含氟的稀土矿物颗粒选自以下的一种或两种:(A)氟碳铈矿、(B)氟碳铈矿与独居石的混合型稀土精矿。
根据本发明的方法,优选地,所述含氟的稀土矿物颗粒的粒径小于150目。
根据本发明的方法,优选地,所述含氟的稀土矿物颗粒的粒径小于200目。
根据本发明的方法,优选地,步骤(1)中,第一硫酸溶液的硫酸浓度为50~85wt%;和步骤(4)中,将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为50~85wt%。
根据本发明的方法,优选地,步骤(1)中,第一硫酸溶液的硫 酸浓度为60~75wt%;和步骤(4)中,将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为60~75wt%。
根据本发明的方法,优选地,步骤(3)中,所述硫酸稀土水浸液中,以稀土氧化物REO计的稀土硫酸盐的浓度为20~45g/L。
本发明采用绝对过量的较低浓度的硫酸溶液,在较低温度下通过液固相混合反应分解含氟的稀土矿物颗粒,实现含氟的稀土矿物颗粒的快速分解,反应易于控制,并同时实现余酸资源循环利用。本发明采用液固反应直接循环分解未活化的氟碳铈矿或混合型稀土精矿,显著降低稀土提取成本。根据本发明优选的技术方案,硫酸与含氟的稀土矿物颗粒的重量比为3~5:1,采用绝对过量的较低浓度的硫酸溶液,解决了浓硫酸与氟碳铈矿反应速率变化大及难以控制的技术问题。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
在本发明中,“选自”或“选自于”是指单独组分的选择或两种(或更多种)组分的组合。
本发明的含氟的稀土矿物颗粒的处理方法包括如下步骤:(1)将第一含氟的稀土矿物颗粒与第一硫酸溶液进行液固反应;(2)固液分离得到酸滤液与酸滤渣;(3)酸滤渣的处理;(4)将第二硫酸溶液补充至所述酸滤液后,按照步骤(1)~(3)循环处理第i含氟的稀土矿物颗粒;i为大于等于2的自然数。
在本发明的步骤(1)中,第一含氟的稀土矿物颗粒和第i含氟的稀土矿物颗粒均选自以下的一种或两种:(A)氟碳铈矿、(B)氟碳铈矿与独居石的混合型稀土精矿。第一含氟的稀土矿物颗粒和第i含氟的稀土矿物颗粒均为未进行焙烧分解处理的稀土矿物颗粒。本发明的 方法适合于未进行焙烧分解处理的含氟的稀土矿物颗粒,从而可以显著降低稀土提取成本。
在本发明的步骤(1)中,混合原料为第一含氟的稀土矿物颗粒与第一硫酸溶液。第一硫酸溶液的硫酸浓度为40~85wt%;优选地,第一硫酸溶液的硫酸浓度为50~85wt%;更优选地,第一硫酸溶液的硫酸浓度为60~75wt%。混合比例为第一硫酸溶液的硫酸(亦即溶质)与第一含氟的稀土矿物颗粒的重量比为2~10:1;优选地,第一硫酸溶液的硫酸与第一含氟的稀土矿物颗粒的重量比为3~8:1;更优选地,第一硫酸溶液的硫酸与第一含氟的稀土矿物颗粒的重量比为3~5:1。根据本发明的一个具体实施方式,硫酸与四川冕宁氟碳铈矿的重量比为3.4~3.8:1。根据本发明的另一个具体实施方式,硫酸与白云鄂博混合稀土精矿的重量比为4~5:1。
在本发明的步骤(1)中,液固反应在持续搅拌作用下进行,可以选用通用机械搅拌。液固反应的温度为100~180℃;优选地,液固反应的温度为120~180℃;更优选地,液固反应的温度为130~180℃。液固反应的时间为0.5~5小时;优选地,液固反应的时间为0.5~3小时;更优选地,液固反应的时间为0.5~2小时。液固反应过程中会产生蒸汽,蒸汽中含有大量氢氟酸气体,氢氟酸气体经尾气系统冷凝吸收,得到氢氟酸产品。根据本发明的一个具体实施方式,液固反应的温度为140~150℃,反应时间为1~1.5小时。根据本发明的另一个具体实施方式,第一批白云鄂博混合稀土精矿的液固反应的温度为170~180℃,反应时间为0.5~1小时;第二批白云鄂博混合稀土精矿的液固反应的温度为150~160℃,反应时间为1~1.5小时;第三批白云鄂博混合稀土精矿的液固反应的温度为130~135℃,反应时间为1.5~2小时;后续15轮循环处理,每轮循环处理的液固反应的温度为130~135℃,反应时间为1.5~2小时。
在本发明的步骤(2)中,液固反应结束后,固液分离,得到酸滤液与酸滤渣。酸滤渣经过处理可以获得稀土产品。液固反应采用绝对过量的较低浓度的硫酸溶液,硫酸溶液大大过量,硫酸溶液完全浸没含氟的稀土矿物颗粒,反应结束后硫酸溶液剩余较多,剩余的硫酸溶液(酸滤液)可以循环利用。根据本发明的一个具体实施方式,第一批四川冕宁氟碳铈矿的处理中反应结束后,固液分离,得到第一批酸滤液与第一批酸滤渣。根据本发明的另一个具体实施方式,第一批白云鄂博混合稀土精矿的处理中反应结束后,固液分离,得到第一批酸滤液与第一批酸滤渣。
在本发明的步骤(3)中,将酸滤渣用水进行浸出,得到硫酸稀土水浸液和水浸渣。含氟的稀土矿物颗粒为氟碳铈矿时,以水浸渣中稀土氧化物REO计算,氟碳铈矿分解率≥95%;含氟的稀土矿物颗粒为氟碳铈矿与独居石的混合型稀土精矿时,以水浸渣中F含量计算,氟碳铈矿分解率≥95%。根据本发明的一个具体实施方式,含氟的稀土矿物颗粒为四川冕宁氟碳铈矿,以水浸渣中稀土氧化物REO计算,多轮循环处理中氟碳铈矿分解率≥96%。根据本发明的另一个具体实施方式,含氟的稀土矿物颗粒为白云鄂博混合稀土精矿,以水浸渣中F含量计算,多轮循环处理中氟碳铈矿分解率≥96%。
在本发明的步骤(3)中,将酸滤渣用水进行浸出时,水的用量为第一含氟的稀土矿物颗粒重量的10~50倍;优选地,水的用量为第一含氟的稀土矿物颗粒重量的10~35倍;更优选地,水的用量为第一含氟的稀土矿物颗粒重量的15~25倍。根据本发明的一个具体实施方式,液固反应循环分解四川冕宁氟碳铈矿,第一批酸滤渣用1500~2000ml水进行浸出,水的用量为四川冕宁氟碳铈矿重量的15~20倍。根据本发明的另一个具体实施方式,液固反应循环分解白云鄂博混合稀土精矿,第一批酸滤渣用1500~2000ml水进行浸出,水的 用量为第一白云鄂博混合稀土精矿重量的15~20倍。
在硫酸稀土水浸液中,以稀土氧化物REO计的稀土硫酸盐的浓度为20~45g/L;优选为25~40g/L;更优选为30~35g/L。根据本发明的一个具体实施方式,液固反应循环分解四川冕宁氟碳铈矿,第一批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为25.0~26.7g/L;第二批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为28.0~30.2g/L;第三批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为32~34.7g/L;第四批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为32~33.6g/L;后续4~10轮循环处理,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为32.5~33g/L。根据本发明的另一个具体实施方式,液固反应循环分解白云鄂博混合稀土精矿,第一批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为22~23.3g/L;第二批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为28.0~30.7g/L;第三批酸滤渣用1500~2000ml水进行浸出,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为32~34.5g/L;后续15~18轮循环处理,硫酸稀土水浸液中,稀土氧化物REO计的稀土硫酸盐的浓度为32.5~33g/L。
在本发明的步骤(4)中,将第二硫酸溶液补充至所述酸滤液后,按照步骤(1)~(3)循环处理第i含氟的稀土矿物颗粒。i为大于等于2的自然数,例如,2,3,4,5,6,7,8……。每一轮液固反应前,硫酸溶液的起始质量分数为40~85wt%;优选地,每一轮液固反应前,硫酸溶液的起始质量分数为50~85wt%;更优选地,每一轮液 固反应前,硫酸溶液的起始质量分数为60~75wt%。补充第二硫酸溶液时,第二硫酸溶液补充量按照前一轮液固反应中硫酸实际消耗量补充。第二硫酸溶液的硫酸浓度≥90wt%;优选地,第二硫酸溶液的硫酸浓度≥95wt%;更优选地,第二硫酸溶液的硫酸浓度≥98wt%。根据本发明的一个具体实施方式,以循环处理100g第二批氟碳铈矿计,第一批酸滤液补充60~72g的98wt%的浓硫酸。以循环处理100g第三批氟碳铈矿计,第二批酸滤液补充60~68g的98wt%的浓硫酸。以循环处理100g第四批氟碳铈矿计,第三批酸滤液补充65~72g的98wt%的浓硫酸。后续4~8轮循环处理,以循环处理100g第i批氟碳铈矿计,每轮向上一轮的酸滤液补充53~55g的98wt%的浓硫酸。
在本发明的步骤(4)中,每轮循环处理中液固反应的温度为100~180℃;优选为120~180℃;更优选为130~180℃。每轮循环处理中液固反应的时间为0.5~5小时;优选为0.5~3小时;更优选为0.5~2小时。每轮循环处理中液固反应过程中会产生蒸汽,蒸汽中含有大量氢氟酸气体,氢氟酸气体经尾气系统冷凝吸收,得到氢氟酸产品。每轮循环处理中液固反应结束后,固液分离,得到酸滤液与酸滤渣。酸滤渣经过处理可以获得稀土产品。
本发明的含氟的稀土矿物颗粒的处理方法还包括含氟的稀土矿物颗粒的粉碎。
在含氟的稀土矿物颗粒的粉碎步骤中,将含氟的稀土矿物颗粒粉碎至粒径小于150目;优选地,将含氟的稀土矿物颗粒粉碎至粒径小于200目。这样可以加快含氟的稀土矿物颗粒的分解。若含氟的稀土矿物颗粒的粒径小于150目,可以不用粉碎处理,直接省略该粉碎步骤。根据本发明的一个具体实施方式,将氟碳铈矿粉碎至粒径小于150目,得到氟碳铈矿颗粒。根据本发明的另一个具体实施方式,氟碳铈 矿与独居石的混合型稀土精矿的颗粒粒径小于200目。
实施例1
四川冕宁氟碳铈矿的粉碎:将四川冕宁氟碳铈矿(REO含量为68.2wt%)粉碎至粒径小于150目,得到氟碳铈矿颗粒。
(1)第一批四川冕宁氟碳铈矿的处理
将100g粉碎后的四川冕宁氟碳铈矿(未经焙烧分解处理)与485g的70wt%的硫酸溶液混合(硫酸与氟碳铈矿的重量比为3.4:1);搅拌加热保温,140℃反应1小时,蒸汽经尾气系统冷凝吸收得到氢氟酸产品。反应结束后,固液分离,得到第一批酸滤液与第一批酸滤渣。第一批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的浓度为26.7g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中REO计算,氟碳铈矿分解率为98.2%。
(2)第二批氟碳铈矿的处理
第一批酸滤液在搅拌状态下补充72g的98wt%的浓硫酸,至硫酸浓度为70wt%。循环处理100g第二批四川冕宁氟碳铈矿(REO含量为68.2wt%)。保持酸量、硫酸起始浓度、反应温度、反应时间分别与第一批四川冕宁氟碳铈矿的处理条件一致。反应结束后,固液分离,得到第二批酸滤液与第二批酸滤渣。第二批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的浓度为30.2g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中REO计算,氟碳铈矿分解率为96.7%。
(3)第三批氟碳铈矿的处理
第二批酸滤液在搅拌状态下补充68g的98wt%的浓硫酸,至硫酸浓度为70wt%。循环处理第三批四川冕宁氟碳铈矿(REO含量为68.2wt%)。保持酸量、硫酸起始浓度、反应温度、反应时间分别与第 一批四川冕宁氟碳铈矿的处理条件一致。反应结束后,固液分离,得到第三批酸滤液与第三批酸滤渣。第三批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的浓度为34.7g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中REO计算,氟碳铈矿分解率为96.3%。
(4)第四批氟碳铈矿的处理
第三批酸滤液在搅拌状态下补充72g的98wt%的浓硫酸,至硫酸浓度为70wt%。循环处理第四批四川冕宁氟碳铈矿(REO含量为68.2wt%)。保持酸量、硫酸起始浓度、反应温度、反应时间分别与第一批四川冕宁氟碳铈矿的处理条件一致。反应结束后,固液分离,得到第四批酸滤液与第四批酸滤渣。第四批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的浓度为33.6g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中REO计算,氟碳铈矿分解率为96.5%。
(5)第i批循环处理
再经过4轮循环处理,每轮循环处理均按照以下处理条件:98wt%的浓硫酸的补充量为53~55g,硫酸起始浓度为70wt%,反应温度为140℃,反应时间为1小时。水浸出液中稀土硫酸盐以REO计的浓度为32.5~33g/L。
实施例2
白云鄂博混合稀土精矿:白云鄂博混合稀土精矿的REO含量为61.9wt%,粒径小于200目。白云鄂博混合稀土精矿是氟碳铈矿与独居石的混合型稀土精矿。
(1)第一批白云鄂博混合稀土精矿的处理
将100g白云鄂博混合稀土精矿(未经焙烧分解处理)与590g的85wt%的硫酸溶液混合(硫酸与白云鄂博混合稀土精矿的重量比为5:1);搅拌加热保温,180℃反应0.5小时,蒸汽经尾气系统冷凝吸收 得到氢氟酸产品。反应结束后,固液分离,得到第一批酸滤液与第一批酸滤渣。第一批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的浓度为23.3g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中F含量计算,氟碳铈矿分解率为97.5%。
(2)第二批白云鄂博混合稀土精矿的处理
第一批酸滤液在搅拌状态下循环处理100g第二批白云鄂博混合稀土精矿(REO含量为61.9wt%)。硫酸初始浓度为73wt%,反应温度为150℃,反应时间为1小时。反应结束后,固液分离,得到第二批酸滤液与第二批酸滤渣。第二批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的浓度为30.7g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中F含量计算,氟碳铈矿分解率为96.2%。
(3)第三批白云鄂博混合稀土精矿的处理
第二批酸滤液在搅拌状态下循环处理100g第三批白云鄂博混合稀土精矿(REO含量为61.9wt%)。硫酸初始浓度为64wt%,反应温度为130℃,反应时间为2小时。反应结束后,固液分离,得到第三批酸滤液与第三批酸滤渣。第三批酸滤渣用2000ml水进行浸出,水浸出液中稀土硫酸盐以REO计的REO浓度为34.5g/L,得到硫酸稀土水浸液和水浸渣。以水浸渣中F含量计算,氟碳铈矿分解率为97.7%。
(4)第i批循环处理
再经过15轮循环处理,每轮循环处理均按照以下处理条件:98wt%的浓硫酸的补充量为53~55g,硫酸起始浓度为62wt%,反应温度为130℃,反应时间为2小时,硫酸与白云鄂博混合稀土精矿的重量比为2.5:1。水浸出液中稀土硫酸盐以REO计的浓度为32.5~33g/L。以水浸渣中F含量计算,氟碳铈矿分解率为96~98%,白云鄂博混合稀土精矿中REO分解率为58~60%。
本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

Claims (10)

  1. 一种含氟的稀土矿物颗粒的处理方法,其特征在于,包括以下步骤:
    (1)将第一含氟的稀土矿物颗粒与第一硫酸溶液按照硫酸与第一含氟的稀土矿物颗粒的重量比为2~10:1混合,然后加热保温进行液固反应,蒸汽经尾气系统冷凝吸收;其中,第一硫酸溶液的硫酸浓度为40~85wt%;
    (2)反应结束后,固液分离,得到酸滤液与酸滤渣;
    (3)将所述酸滤渣用水进行浸出,得到硫酸稀土水浸液和水浸渣;
    (4)将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为40~85wt%;按照步骤(1)~(3)循环处理第i含氟的稀土矿物颗粒;i为大于等于2的自然数;
    其中,第一含氟的稀土矿物颗粒和第i含氟的稀土矿物颗粒均为未进行焙烧分解处理的稀土矿物颗粒。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述液固反应在持续搅拌作用下进行,反应温度为100~180℃,反应时间为0.5~5小时。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述液固反应在持续搅拌作用下进行,反应温度为120~180℃,反应时间为0.5~2小时。
  4. 根据权利要求1所述的方法,其特征在于,步骤(1)中,硫酸与第一含氟的稀土矿物颗粒的重量比为3~8:1。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述含氟的稀土矿物颗粒选自以下的一种或两种:(A)氟碳铈矿、(B)氟碳铈矿与独居石的混合型稀土精矿。
  6. 根据权利要求5所述的方法,其特征在于,所述含氟的稀土矿物颗粒的粒径小于150目。
  7. 根据权利要求5所述的方法,其特征在于,所述含氟的稀土矿物颗粒的粒径小于200目。
  8. 根据权利要求1所述的方法,其特征在于:
    步骤(1)中,第一硫酸溶液的硫酸浓度为50~85wt%;和
    步骤(4)中,将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为50~85wt%。
  9. 根据权利要求1所述的方法,其特征在于:
    步骤(1)中,第一硫酸溶液的硫酸浓度为60~75wt%;和
    步骤(4)中,将第二硫酸溶液补充至所述酸滤液以使得所述酸滤液的硫酸浓度为60~75wt%。
  10. 根据权利要求8或9所述的方法,其特征在于,步骤(3)中,所述硫酸稀土水浸液中,以稀土氧化物REO计的稀土硫酸盐的浓度为20~45g/L。
PCT/CN2019/092296 2018-09-14 2019-06-21 含氟的稀土矿物颗粒的处理方法 WO2020052311A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/630,311 US11427884B2 (en) 2018-09-14 2019-06-21 Method for treating fluorine-containing rare earth mineral particles
EP19823875.0A EP3663421B1 (en) 2018-09-14 2019-06-21 Method for processing fluorine-containing rare earth mineral particles
JP2020500133A JP6896139B2 (ja) 2018-09-14 2019-06-21 フッ素含有希土類鉱物粒子の処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811072801.3A CN109022838B (zh) 2018-09-14 2018-09-14 含氟的稀土矿物颗粒的处理方法
CN201811072801.3 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052311A1 true WO2020052311A1 (zh) 2020-03-19

Family

ID=64621614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092296 WO2020052311A1 (zh) 2018-09-14 2019-06-21 含氟的稀土矿物颗粒的处理方法

Country Status (5)

Country Link
US (1) US11427884B2 (zh)
EP (1) EP3663421B1 (zh)
JP (1) JP6896139B2 (zh)
CN (1) CN109022838B (zh)
WO (1) WO2020052311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080654A (zh) * 2020-09-25 2020-12-15 贵州省地质矿产中心实验室(贵州省矿产品黄金宝石制品质量检验站) 一种磷稀土化学精矿浸出液中回收酸和硅的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022838B (zh) * 2018-09-14 2020-03-06 包头稀土研究院 含氟的稀土矿物颗粒的处理方法
CN109487089A (zh) * 2019-01-07 2019-03-19 江西理工大学 一种氟化稀土熔盐电解渣处理的方法
CN111270092B (zh) * 2020-02-07 2022-08-05 包头稀土研究院 分解混合稀土矿的方法
CN111187905A (zh) * 2020-02-11 2020-05-22 包头稀土研究院 分解含稀土磷酸盐的矿物的方法
CN111334662B (zh) * 2020-04-10 2021-12-14 包头稀土研究院 稀土精矿的分解方法
CN115057445B (zh) * 2022-07-22 2023-11-24 包头稀土研究院 硅氟氢酸的生产方法及混合稀土精矿的处理工艺
CN115744951A (zh) * 2022-11-15 2023-03-07 江西理工大学 一种稀土熔盐电解渣中氟的资源化利用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405337A (zh) * 2002-09-25 2003-03-26 包头稀土研究院 稀土精矿浓硫酸低温焙烧分解工艺
CN1667139A (zh) * 2004-03-08 2005-09-14 中国有色工程设计研究总院 一种混合型稀土精矿分解方法
CN1683568A (zh) 2004-04-14 2005-10-19 北京方正稀土科技研究所有限公司 硫酸法处理氟碳铈矿和分离提纯铈的方法
CN102534269A (zh) 2012-03-26 2012-07-04 乐山盛和稀土股份有限公司 从含氟的稀土物料中综合回收利用各种稀土的方法
US20150252449A1 (en) * 2012-09-29 2015-09-10 Grirem Advanced Materials Co., Ltd. Method for comprehensively recovering rare earth elements and fluorine element in a bastnaesite treatment process
CN104946887A (zh) * 2015-07-22 2015-09-30 中国恩菲工程技术有限公司 氟碳铈精矿的处理方法
WO2017100933A1 (en) * 2015-12-16 2017-06-22 Quest Rare Minerals Ltd. Rare earth ore processing methods by acid mixing, sulphating and decomposing
CN106978532A (zh) 2017-03-15 2017-07-25 包头稀土研究院 浓硫酸提取含氟稀土矿物中稀土、氟和钍的方法
CN107475542A (zh) * 2017-07-17 2017-12-15 中国恩菲工程技术有限公司 处理稀土精矿的方法
CN109022838A (zh) * 2018-09-14 2018-12-18 包头稀土研究院 含氟的稀土矿物颗粒的处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090823A (ja) 1983-10-24 1985-05-22 Asahi Chem Ind Co Ltd 希土類硫酸塩を回収する方法
FR2651797A1 (fr) 1989-09-13 1991-03-15 Rhone Poulenc Chimie Procede de traitement de minerais contenant des terres rares.
CN1847419A (zh) * 2005-04-05 2006-10-18 内蒙古包钢稀土高科技股份有限公司 分步法硫酸稀土焙烧分解包头稀土精矿
CN101633980A (zh) * 2008-07-23 2010-01-27 甘肃稀土新材料股份有限公司 一种稀土矿硫酸焙烧工艺
CN106978531B (zh) * 2017-03-15 2018-12-14 包头稀土研究院 酸碱联合分解混合型稀土精矿的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405337A (zh) * 2002-09-25 2003-03-26 包头稀土研究院 稀土精矿浓硫酸低温焙烧分解工艺
CN1667139A (zh) * 2004-03-08 2005-09-14 中国有色工程设计研究总院 一种混合型稀土精矿分解方法
CN1683568A (zh) 2004-04-14 2005-10-19 北京方正稀土科技研究所有限公司 硫酸法处理氟碳铈矿和分离提纯铈的方法
CN102534269A (zh) 2012-03-26 2012-07-04 乐山盛和稀土股份有限公司 从含氟的稀土物料中综合回收利用各种稀土的方法
US20150252449A1 (en) * 2012-09-29 2015-09-10 Grirem Advanced Materials Co., Ltd. Method for comprehensively recovering rare earth elements and fluorine element in a bastnaesite treatment process
CN104946887A (zh) * 2015-07-22 2015-09-30 中国恩菲工程技术有限公司 氟碳铈精矿的处理方法
WO2017100933A1 (en) * 2015-12-16 2017-06-22 Quest Rare Minerals Ltd. Rare earth ore processing methods by acid mixing, sulphating and decomposing
CN106978532A (zh) 2017-03-15 2017-07-25 包头稀土研究院 浓硫酸提取含氟稀土矿物中稀土、氟和钍的方法
CN107475542A (zh) * 2017-07-17 2017-12-15 中国恩菲工程技术有限公司 处理稀土精矿的方法
CN109022838A (zh) * 2018-09-14 2018-12-18 包头稀土研究院 含氟的稀土矿物颗粒的处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3663421A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080654A (zh) * 2020-09-25 2020-12-15 贵州省地质矿产中心实验室(贵州省矿产品黄金宝石制品质量检验站) 一种磷稀土化学精矿浸出液中回收酸和硅的方法

Also Published As

Publication number Publication date
CN109022838A (zh) 2018-12-18
JP2021501828A (ja) 2021-01-21
US11427884B2 (en) 2022-08-30
CN109022838B (zh) 2020-03-06
US20210062295A1 (en) 2021-03-04
JP6896139B2 (ja) 2021-06-30
EP3663421A1 (en) 2020-06-10
EP3663421A4 (en) 2020-12-02
EP3663421B1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
WO2020052311A1 (zh) 含氟的稀土矿物颗粒的处理方法
Peelman et al. Leaching of rare earth elements: review of past and present technologies
Biswas et al. Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst
JP5894262B2 (ja) 種々の鉱石から希土類元素を回収する方法
Liu et al. High-efficiency simultaneous extraction of rare earth elements and iron from NdFeB waste by oxalic acid leaching
JP2014508863A (ja) アルミニウム含有材料から希土類元素を回収する方法
WO2014048385A1 (zh) 一种氟碳铈矿处理过程中综合回收稀土和氟的方法
JP6105053B2 (ja) 希土類抽出のシステムおよび方法
CN111394571B (zh) 提高稀土矿物与硫酸分解效率的方法
US20200087152A1 (en) Process for recovering ammonia from vanadium preparation for ammonium preparation and recycling wastewater
JP6707466B2 (ja) 硫黄回収を伴う選択的な希土類抽出を行う系および方法
CN104372173B (zh) 一种从含氟失效铂催化剂中富集铂的方法
JPS5827940A (ja) 亜鉛の回収方法
Hu et al. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by nitration
CN108118143B (zh) 两段氯化焙烧-碱液浸出法从锂云母中提锂制备碳酸锂的方法
CN109022834A (zh) 一种混合稀土矿的焙烧分解方法
CN109777961B (zh) 一种从锗氯化蒸馏钙渣中浸出锗的方法
RU2606813C1 (ru) Способ переработки ванадийсодержащего железотитанового концентрата
CN108950187A (zh) 一种碳酸钠焙烧分解混合稀土矿的方法
Borra et al. A brief review on recovery of cerium from glass polishing waste
CN103627902A (zh) 一种从失效贵金属催化剂中回收铑的方法
CN110079680B (zh) 一种多种铜赋存状态的复杂氧化铜矿的提铜方法
US1727073A (en) Process for the recovery of zinc from slags
Wang et al. A novel technology of vanadium extraction from stone coal
RU2780207C1 (ru) Способ переработки полиметаллического шлака

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020500133

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019823875

Country of ref document: EP

Effective date: 20191231

NENP Non-entry into the national phase

Ref country code: DE