WO2020052234A1 - 一种压缩机回油的控制方法及装置 - Google Patents

一种压缩机回油的控制方法及装置 Download PDF

Info

Publication number
WO2020052234A1
WO2020052234A1 PCT/CN2019/082945 CN2019082945W WO2020052234A1 WO 2020052234 A1 WO2020052234 A1 WO 2020052234A1 CN 2019082945 W CN2019082945 W CN 2019082945W WO 2020052234 A1 WO2020052234 A1 WO 2020052234A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compressor
oil return
separator
return valve
Prior art date
Application number
PCT/CN2019/082945
Other languages
English (en)
French (fr)
Inventor
孙福涛
宋振兴
银松
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811058504.3A external-priority patent/CN109282525A/zh
Priority claimed from CN201811058215.3A external-priority patent/CN109282524B/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2020052234A1 publication Critical patent/WO2020052234A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements

Definitions

  • Embodiments of the present disclosure relate to the field of air conditioners, and in particular, to a method and device for controlling oil return from a compressor.
  • the compressor is called the heart of the refrigeration system. Its reliability and service life directly affect the refrigeration system, but poor oil return is an important factor that damages the compressor. Therefore, how to properly control the compressor oil return has become the key to protect the compressor.
  • FIG. 1 is a schematic diagram of the composition of an air conditioner provided by related technologies.
  • the air conditioner may include a controller, a compressor, an oil separator, and an oil return line.
  • An oil return capillary and a return line are installed on the oil return line.
  • Oil solenoid valve is located at the exhaust end of the compressor, and the oil return port is located at the suction end of the compressor.
  • the oil return control process is: When the controller detects that the compressor is turned on, the oil return solenoid valve is controlled to open. When the compressor is exhausted, the low-temperature and low-pressure refrigerant vapor is compressed by the compressor and becomes High-temperature, high-pressure, fast-flowing refrigerant vapor.
  • the refrigerant vapor entrains the lubricant in the compressor into the oil separator. After centrifugal force of the oil separator, the lubricant and refrigerant vapor are separated. The refrigerant vapor flows out of the oil separator, and the lubricant sinks to the oil separator. At the bottom, it flows back from the compressor suction port to the compressor through the oil return capillary and the oil return solenoid valve. And when the controller detects that the compressor is off, it controls the oil return solenoid valve to close.
  • a method for controlling oil return of a compressor is provided, which is applied to an outdoor unit of an air conditioner.
  • the outdoor unit of the air conditioner may include an oil separator and an oil return line.
  • the oil separator is disposed at an exhaust end of the compressor.
  • the circuit is located between the oil outlet of the oil separator and the suction end of the compressor.
  • An oil return valve is installed on the oil return line.
  • the method may include: determining a cumulative oil discharge amount of the compressor during a discharge time period according to a correspondence relationship between a compressor operating frequency and a compressor oil discharge amount; when the cumulative oil discharge amount reaches a preset oil discharge amount, The current operating frequency of the compressor and the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve determine the target opening degree corresponding to the current operating frequency; and determine the corresponding compression according to the target opening degree and the preset oil discharge amount Engine oil return time; control the oil return valve to open to the target opening; when the oil return valve opens to the compressor oil return time, control the oil return valve to close.
  • a method for controlling oil return of a compressor is provided.
  • the method can be applied to an outdoor unit of an air conditioner.
  • the outdoor unit of the air conditioner may include an oil separator and an oil return line.
  • a liquid level monitoring module is provided in the oil separator.
  • the separator is arranged at the exhaust end of the compressor.
  • the oil return line is located between the oil outlet end of the oil separator and the suction end of the compressor.
  • An oil return valve is installed on the oil return line.
  • the method may include: when detecting that the oil level of the oil separator is higher than the first height, determining the current operation frequency based on the current operating frequency of the compressor and the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve.
  • the target opening degree corresponding to the frequency; and controls the oil return valve to open to the target opening degree; when it is detected that the oil level of the oil separator is lower than the second height value, the oil return valve is controlled to close.
  • the second height value is smaller than the first height value.
  • a method for controlling oil return of a compressor is provided, which is applied to an outdoor unit of an air conditioner.
  • the outdoor unit of the air conditioner includes: an oil separator, a compressor, and an oil return line.
  • a liquid level monitoring module is provided in the oil separator, and the oil is separated.
  • An oil return pipe is located between the oil outlet of the oil separator and the suction end of the compressor.
  • An oil return valve is installed on the oil return pipe.
  • the method includes: obtaining oil discharged from the compressor.
  • the preset oil discharge amount of the lubricant of the separator, and the target height of the oil level of the oil separator is calculated according to the preset oil discharge amount; when the liquid level monitoring module detects that the oil level of the oil separator is higher than the target height, According to the current operating frequency of the compressor and the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve, a target opening degree corresponding to the current operating frequency is determined and the oil return valve is controlled to open to the target opening degree.
  • an air-conditioning outdoor unit in another aspect, includes: an oil separator, an oil return line, a compressor, and a controller.
  • the oil separator is disposed at the exhaust end of the compressor, and the oil return line is located at the oil separator.
  • An oil return valve is installed on the oil return pipe between the oil outlet and the suction end of the compressor.
  • an air conditioner outdoor unit in another aspect, includes: an oil separator, an oil return pipeline, a compressor, and a controller.
  • the oil separator is provided with a liquid level monitoring module, and the oil separator is provided in the compressor.
  • the air end and the oil return line are located between the oil outlet end of the oil separator and the suction end of the compressor.
  • An oil return valve is installed on the oil return line.
  • the controller When the outdoor unit of the air conditioner is running, the controller is used to: detect the oil separator When the oil level is higher than the first height value, the target opening degree corresponding to the current operating frequency is determined according to the current operating frequency of the compressor and the corresponding relationship between the operating frequency of the compressor and the opening degree of the oil return valve; control the oil return The valve is opened to the target opening degree; when it is detected that the oil level of the oil separator is lower than the second height value, the oil return valve is controlled to be closed, wherein the second height value is smaller than the first height value.
  • an air conditioner outdoor unit in another aspect, includes: an oil separator, an oil return pipeline, a compressor, and a controller.
  • the oil separator is provided with a liquid level monitoring module, and the oil separator is provided in the compressor.
  • Air end, oil return line is located between the oil outlet end of the oil separator and the suction end of the compressor.
  • An oil return valve is installed on the oil return line.
  • a further aspect is provided, providing a computer storage medium having computer-executable instructions stored thereon, which when executed by a processor, implement the steps of the method mentioned in any of the above aspects.
  • a computer program product containing instructions which, when run on a computer, causes the computer to perform the steps of the method mentioned in any of the above aspects.
  • FIG. 1 is a schematic diagram of the composition of an air conditioner
  • FIG. 2 is a schematic diagram of a compressor oil return control device provided by some embodiments of the present disclosure
  • FIG. 3 is a flowchart of a method for controlling oil return of a compressor according to some embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram of a compressor oil return control device provided by some embodiments of the present disclosure.
  • FIG. 5 is a flowchart of a method for controlling oil return of a compressor according to some embodiments of the present disclosure
  • FIG. 6 is a flowchart of a method for controlling oil return of a compressor according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram of a controller provided by some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of a controller provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a control device of a controller provided by some embodiments of the present disclosure.
  • the oil discharge volume will be different with different operating frequencies, and the oil discharge volume and the operating frequency generally follow a proportional relationship.
  • the return pipe The size of the road is designed according to the maximum oil discharge, but the compressor runs at the maximum frequency for a small amount of time during the operation. Most of the time the compressor is operated at medium or low frequency. At this time, the oil discharge is small.
  • the oil pipeline will bypass many high-temperature and high-pressure refrigerant vapors, which will reduce the refrigerant and reduce the performance of the air conditioner.
  • the compressor oil return control device may include: an oil separator 11 and an oil return line 12.
  • the oil separator is disposed at the exhaust end of the compressor, the oil return line 12 is located between the oil outlet end of the oil separator 11 and the suction end of the compressor, and an oil return valve 13 is installed on the oil return line 12,
  • the oil return valve 13 may be an electronic expansion valve.
  • some embodiments of the present disclosure also provide an air-conditioning outdoor unit.
  • the air-conditioning outdoor unit includes a compressor, an oil separator 11, an oil return line 12, and an oil return valve 13 provided on the oil return line 12.
  • the inlet of the oil separator is connected to the exhaust end of the compressor, the oil return port of the compressor is connected to one end of the oil return line, and the other end of the oil return line is connected to the suction end of the compressor.
  • the oil separator 11, the oil return line 12, and the oil return valve 13 provided on the oil return line 12 are referred to as a compressor oil return control device.
  • the compressor oil return control device further includes a controller.
  • the controller is at least electrically connected to the compressor and the oil return valve to transmit electrical signals.
  • the controller is further connected to an oil separator. Electrically connected for transmission of electrical signals.
  • FIG. 3 is a flowchart of a method for controlling oil return of a compressor provided by some embodiments of the present disclosure. As shown in FIG. 3, the method may include:
  • the compressor oil return control device can obtain the compressor type corresponding to the model of the compressor according to the model of the compressor and the correspondence between the pre-stored model of the compressor and the preset oil discharge amount after detecting that the compressor is turned on. Preset oil discharge.
  • various types of compressors and corresponding preset oil discharge amounts are prestored in the compressor oil return control device, and the control device based on the compressor oil return Compared with the pre-stored corresponding oil discharge capacity of the compressor model included, the versatility of the compressor oil return control device is improved.
  • the different types of compressors have different amounts of lubricating oil filled in the compressor.
  • the amount of lubricating oil filled in the compressor can be subtracted from the minimum amount of oil required for the normal operation of the compressor to obtain a preset oil discharge. the amount.
  • the correspondence between the model of the compressor and the preset oil discharge amount can be obtained from the compressor manufacturer and pre-stored in the compressor oil return control device.
  • the preset oil discharge amount of the compressor may be directly obtained according to the preset oil discharge amount information pre-stored in the outdoor unit of the air conditioner.
  • the oil discharge time period is a period starting from the compressor being turned on.
  • the drain time period is a period starting from the last time the oil return valve was opened.
  • the compressor oil return control device obtains the preset oil discharge volume of the compressor, it can find the pre-stored compression according to the compressor operating frequency at each moment. Correspondence between the operating frequency of the engine and the amount of oil discharged by the compressor, to obtain the amount of oil discharged at each moment, so as to determine the cumulative amount of oil discharged by the compressor during the oil discharge period.
  • the correspondence between the operating frequency of the compressor and the amount of oil discharged may be provided by the compressor manufacturer, or it may be an experiment in advance, according to the operating frequency of the compressor, the compressor ’s Flow measurement.
  • a target opening degree corresponding to the current operating frequency is determined according to the current operating frequency of the compressor and the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve.
  • the opening degree of the oil return valve refers to the percentage of the diameter of the opening of the oil return valve to the maximum opening diameter.
  • the compressor oil return control device can determine the correspondence between the pre-stored compressor operating frequency and the opening degree of the oil return valve according to the current operating frequency of the compressor when determining that the cumulative oil discharge reaches a preset oil discharge amount, and determine Target opening degree corresponding to the current operating frequency.
  • the exhaust pressure and the suction pressure on both sides of the oil return valve correspond to the exhaust pressure and the suction pressure on both sides of the electronic expansion valve of the outdoor unit.
  • the opening degree of the electronic expansion valve of the outdoor unit can ensure the smooth flow of the refrigerant. Therefore, in order to achieve a smooth oil return, the operating frequency of the compressor can be corresponding to the opening degree of the electronic expansion valve of the outdoor unit.
  • the relationship is the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve.
  • the correspondence between the operating frequency of the compressor and the opening degree of the electronic expansion valve of the outdoor unit can be measured in advance through experiments.
  • the compressor oil return control device determines the target opening degree, it can control the oil return valve to open to the target opening degree and start the compressor oil return.
  • the corresponding oil return time of the compressor may be determined according to the target opening degree and the preset oil discharge amount, so as to realize oil return on demand.
  • the compressor oil return control device may determine the current opening diameter d of the oil return valve according to the target opening degree and the maximum opening diameter of the oil return valve, and adopt the following formula: Determine the flow rate Qv of the lubricant through the return valve per unit time.
  • C is the outflow coefficient
  • is the expansion coefficient
  • is the ratio of the current opening diameter d of the oil return valve to the diameter of the oil return pipe
  • is the density of the lubricating oil
  • ⁇ P is the exhaust pressure on both sides of the oil return valve and Difference in suction pressure.
  • the compressor oil return control device can divide the preset oil discharge amount by the flow rate Qv of the oil return valve through the oil return unit time to obtain the corresponding compressor oil return time.
  • step 205 may be performed first, and then step 204 may be performed.
  • the compressor oil return control device may start timing t when the oil return valve is opened in step 204, and control the oil return valve to close when it is determined that the opening time t reaches the oil return time of the compressor.
  • an oil return valve on the oil return line, in the case that the size of the oil return line is designed according to a preset oil discharge amount, since the accumulated oil discharge amount of the compressor reaches only Only when the oil discharge amount is preset, the oil return valve is controlled to be opened, and the compressor oil return time is determined according to the target opening degree of the oil return valve and the preset oil discharge amount, so as to reach the compressor oil return time when the oil return valve is opened. Controlling the oil return valve to close at all times not only ensures that the lubricant of the compressor is within a reasonable range, but also realizes oil return on demand, avoids the bypass loss of superheated steam, and improves the unit performance of the air conditioner.
  • the target opening degree of the oil return valve is determined according to the current operating frequency of the compressor, the target opening degree can ensure the smooth flow of the lubricating oil under the pressure difference between the two sides of the oil return valve, achieving a smooth oil return and improving The reliability of the compressor.
  • the oil return valve in the interval between two oil return processes, after the last oil return, when the amount of oil in the oil separator does not reach a preset threshold, the oil return valve remains closed until the current oil return process starts.
  • the compressor oil return control device may include: an oil separator 15 and an oil return line 12.
  • the oil separator 15 is provided with a liquid level monitoring module 16.
  • the liquid level monitoring module 16 may be a liquid level monitor or a sensor for monitoring the liquid level.
  • the oil return line 12 is located at the oil outlet end of the oil separator 15.
  • An oil return valve 14 is installed on the oil return line 12 between the compressor and the suction end of the compressor. In some embodiments, the oil return valve 14 may be an electronic expansion valve.
  • FIG. 5 is a flowchart of a method for controlling oil return of a compressor provided by some embodiments of the present disclosure. As shown in FIG. 5, the method may include:
  • step 501 For the implementation manner of step 501, refer to the implementation manner of step 201 described above, and details are not described herein again.
  • the compressor oil return control device can determine the target height of the oil level in the oil separator assuming that the preset oil discharge amount is discharged into the oil separator.
  • the compressor oil return control device may first obtain the model of the oil separator, and then find the type of oil separation according to the relationship between the volume and the height of the oil separator in the pre-stored oil separator of different models. The relationship between the volume and the height of the device, and finally the target height is calculated according to the preset oil discharge amount.
  • the liquid level monitoring module is a liquid level monitor, it is controlled by the oil return in the compressor.
  • the relationship between the model of the pre-stored oil separator in the device and the volume and height relationship of the corresponding model of the oil separator to determine the target height is compared with the pre-stored target height of the oil separator model of the oil return control device for each compressor. , Improve the versatility of the compressor oil return control device.
  • the target height is stored in the outdoor unit in advance, and the target height information can be directly called.
  • the liquid level monitoring module When it is detected by the liquid level monitoring module that the oil level of the oil separator is higher than the target height, it is determined according to the current operating frequency of the compressor and the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve. Target opening corresponding to the operating frequency.
  • the opening degree of the oil return valve refers to the percentage of the diameter of the opening of the oil return valve to the maximum opening diameter.
  • the compressor oil return control device can detect the oil level of the oil separator through the liquid level monitoring module set on the oil separator. When the oil level reaches the target height of the liquid level monitoring module, the oil in the oil separator is indicated. The amount of oil reaches the preset oil discharge amount. At this time, the compressor oil return control device can obtain the current operating frequency of the compressor and determine the corresponding frequency corresponding to the current operating frequency according to the correspondence between the operating frequency and the opening degree of the oil return valve. Target opening.
  • the correspondence between the operating frequency of the compressor and the opening degree of the electronic expansion valve of the outdoor unit may be used as the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve.
  • the correspondence between the operating frequency of the compressor and the opening degree of the electronic expansion valve of the outdoor unit can be measured in advance through experiments.
  • step 504 is similar to the implementation of step 204, and details are not described herein again.
  • the oil return valve is controlled to be closed.
  • the compressor oil return control device when the compressor oil return control device detects that the oil level of the oil separator reaches the lowest end of the liquid level monitoring module, it controls the oil return valve to close and starts to repeat steps 503 to 505.
  • the compressor oil return control method includes setting a liquid level monitoring module in an oil separator and installing an oil return valve on an oil return line.
  • the size of the oil return pipeline is designed according to the preset oil discharge amount
  • the oil return valve is controlled to open to start oil return, and when it is detected that the oil level reaches the lowest end of the liquid level monitoring module, the oil return valve is closed to end the oil return, which not only ensures that the lubricant of the compressor is reasonable.
  • the target opening degree of the oil return valve is determined according to the current operating frequency of the compressor, the target opening degree can ensure the smooth flow of the lubricant oil under the pressure difference between the two sides of the oil return valve, achieving a smooth oil return and improving the compressor. Reliability.
  • FIG. 6 is a flowchart of a method for controlling oil return of a compressor provided by some embodiments of the present disclosure. As shown in FIG. 6, the method may include:
  • the liquid level monitoring module When it is detected by the liquid level monitoring module that the oil level of the oil separator is higher than the first height value, it is determined according to the current operating frequency of the compressor and the correspondence between the operating frequency of the compressor and the opening degree of the oil return valve. Target opening degree corresponding to the current operating frequency.
  • the real-time oil level in the oil separator can be determined by the liquid level monitoring module when the lubricant is discharged into the oil separator.
  • the oil level detected by the liquid level monitoring module reaches the first height value, it indicates that the cumulative oil discharge amount of the compressor reaches the preset oil discharge amount, and then the target opening degree of the oil return valve corresponding to the current operating frequency is determined.
  • the first height value may be preset in the liquid level monitoring module.
  • the liquid level monitoring module determines that the oil level height reaches the first height value, it may send a signal to the controller to indicate that the controller oil level has reached the first level.
  • a height value so that the controller determines the target opening degree corresponding to the current operating frequency.
  • the first height value may be preset in the controller, and the liquid level monitoring module transmits the oil level height to the controller in real time.
  • the value of the first height value may be the same as or different from the value of the target height.
  • step 602 is similar to the implementation of step 204, and details are not described herein again.
  • the oil return valve is controlled to be closed, and the second height value is smaller than the first height value.
  • steps 601 to 603 are repeatedly executed.
  • the liquid level monitoring module detects that the height of the oil level in the separator is lower than the second height value, the oil return is ended, which ensures that the lubricant of the compressor is returned to the oil on demand within a reasonable range.
  • the second height value may be preset in the liquid level monitoring module or preset in the controller. The second height value may indicate the lowest end of the liquid level monitoring module.
  • the compressor oil return control method includes setting a liquid level monitoring module in an oil separator and installing an oil return valve on an oil return line. Because the liquid level monitoring module detects that the oil level of the oil separator is higher than the first height value, it indicates that the cumulative oil discharge of the compressor has reached the preset oil discharge. At this time, the oil return valve is controlled to start to return oil. And when it is detected that the oil level is lower than the second height value, the oil return valve is closed and the oil return is ended. This not only ensures that the lubricant of the compressor is within a reasonable range, but also realizes oil return on demand and avoids overheating. The bypass loss of steam improves the unit performance of the air conditioner.
  • the target opening degree of the oil return valve is determined according to the current operating frequency of the compressor, the target opening degree can ensure the smooth flow of the lubricant oil under the pressure difference between the two sides of the oil return valve, achieving a smooth oil return and improving the compressor. Reliability.
  • the target opening degree of the oil return valve before determining the target opening degree of the oil return valve, it is necessary to determine whether the accumulated oil amount in the oil separator reaches a preset threshold, and then calculate / query the target of the oil return valve according to the current operating frequency of the compressor. Opening degree.
  • the calculation can be implemented by a preset formula, and the query can be performed through a preset correspondence table.
  • the preset correspondence table contains the correspondence between the current operating frequency of the compressor and the target opening of the oil return valve.
  • the corresponding relationship between the target opening degree of the oil valve and the preset threshold is used to calculate the oil return time of the oil return valve at the opening degree, and the closing time of the oil return valve is controlled according to the oil return time.
  • the cumulative oil quantity in the oil separator can be characterized by the cumulative oil discharge of the compressor, or by the height of the oil level in the oil separator.
  • the accumulated oil amount in the oil separator reaches a preset threshold corresponding to the accumulated oil discharge amount of the compressor reaches a preset oil discharge amount, and it is determined whether the accumulated oil discharge amount in the compressor reaches a preset threshold value using step 202 This is achieved by calculating the cumulative oil discharge.
  • the preset threshold may be a value representing the height of the oil level in the oil separator, and the value may be obtained through calculation in step 502, or may be directly passed through a liquid level monitoring provided on the oil separator. Module to obtain the oil level height reaches this value, when the pre-calculated oil level target height reaches this value or when the oil level height detected by the liquid level monitoring module reaches this value, then calculate / query based on the current operating frequency of the compressor Target opening of the oil return valve.
  • the calculation can be implemented by a preset formula, and the query can be performed through a preset correspondence table.
  • the preset correspondence table contains the correspondence between the current operating frequency of the compressor and the target opening of the oil return valve.
  • the corresponding relationship between the target opening degree of the oil valve and the preset threshold is used to calculate the oil return time of the oil return valve at the opening degree, and the closing time of the oil return valve is controlled according to the oil return time.
  • the closing of the oil return valve may also be controlled according to the liquid level monitoring and detecting module provided on the oil separator when it is detected that the oil level is lower than another value.
  • the level detection and detection module detects that the oil level reaches this value is achieved by the oil level reaching the first end of the level monitoring and detection module, and the liquid level detection and detection module detects that the oil level is lower than another value by The oil level is achieved by reaching the second end of the liquid level monitoring and detecting module.
  • the control device of the oil return of the compressor includes a hardware structure and / or a software module corresponding to each function.
  • some embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. A professional technician may use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the embodiments of the present disclosure.
  • the functional modules of the compressor oil return control device may be divided according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one process.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in some embodiments of the present disclosure is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 7 shows a schematic structural diagram of a controller in an outdoor unit of an air conditioner, which includes a compressor oil return control device involved in the foregoing embodiment.
  • the controller in the compressor oil return control device at least performs electrical signal transmission with the compressor and the oil return valve in the compressor oil return control device.
  • the controller It also transmits electrical signals with the oil separator. Therefore, when the air-conditioning outdoor unit is running, the controller may include: a determining unit 31 and a control unit 32.
  • the determining unit 31 is configured to support the controller to perform steps 202, 203, and 205 in the method for controlling oil return of the compressor shown in FIG. 3, and the steps in the method for controlling oil return of the compressor shown in FIG. Steps 502 and 503 are performed in step 601 in the method for controlling oil return of the compressor shown in FIG. 7.
  • the control unit 32 is configured to support the controller to execute steps 204 and 206 in the method for controlling oil return of the compressor shown in FIG. 3, and perform steps 504 and 505 in the method for controlling the oil return of the compressor shown in FIG. 5. Step 602 and step 603 in the method for controlling oil return of the compressor shown in FIG. 7.
  • controller may further include: an obtaining unit 33.
  • the obtaining unit 33 is configured to support the controller to execute step 201 in the method for controlling oil return of the compressor shown in FIG. 3 and step 501 in the method for controlling oil return of the compressor shown in FIG. 5.
  • the controller provided by some embodiments of the present disclosure is configured to execute the control method of the oil return of the compressor, and thus can achieve the same effect as the control method of the oil return of the compressor.
  • FIG. 8 shows another structural schematic diagram of a controller in an outdoor unit of an air conditioner.
  • the outdoor unit of the air conditioner includes a compressor oil return control device involved in the foregoing embodiment.
  • the controller in the compressor oil return control device at least performs electrical signal transmission with the compressor and the oil return valve in the compressor oil return control device.
  • the controller It also transmits electrical signals with the oil separator. Therefore, when the air-conditioning outdoor unit is running, the controller includes: a processing module 41, a communication module 42, and a storage module 43.
  • the processing module 41 is used to control and manage the actions of the controller.
  • the processing module 41 is used to support the controller to perform steps 201, 202, 203, 204, 204, 205, and 206 in FIG. 3 Step 501, step 502, step 503, step 504, step 505, step 601, step 602, and step 603 in FIG. 7, and / or other processes for the techniques described herein.
  • the communication module 42 is configured to support communication between the control device of the controller and the compressor for returning oil to other network entities.
  • the storage module 43 is configured to store program code and data of a control device of the controller for returning oil to the compressor.
  • the processing module 41 may be a processor. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a Digital Signal Processor (DSP) and a microprocessor, and so on.
  • the communication module 42 may be a communication interface.
  • the storage module 43 may be a memory.
  • the controller involved in some embodiments of the present disclosure may be the controller shown in FIG. 9.
  • FIG. 9 is a schematic structural diagram of another controller provided by some embodiments of the present disclosure. As shown in FIG. 9, the controller may include at least one processor 51, a memory 52, a communication interface 53, and a communication bus 54.
  • the processor 51 is a control center of a controller, and may be a processor or a collective name of multiple processing elements.
  • the processor 51 is a central processing unit (CPU), or may be a specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the processor 51 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 9. And, as an embodiment, the controller may include multiple processors, such as the processor 51 and the processor 55 shown in FIG. 9. Each of these processors can be a single-core processor (Single-CPU) or a multi-core processor (Multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the memory 52 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (Random Access Memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc (Read-Only Memory, CD-ROM) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 52 may exist independently, and is connected to the processor 51 through a communication bus 54. The memory 52 may also be integrated with the processor 51.
  • the memory 52 is configured to store data in the embodiments of the present disclosure and a software program for executing the embodiments of the present disclosure.
  • the memory 52 is used to store the correspondence between the model of the compressor and the preset oil discharge amount, the correspondence between the operating frequency of the compressor and the oil discharge amount of the compressor, the operating frequency of the compressor and the opening of the oil return electronic expansion. Degree correspondence, etc.
  • the processor 51 can execute various functions of the compressor oil return control device by running or executing a software program stored in the memory 52 and calling data stored in the memory 52.
  • the communication interface 53 uses any device such as a transceiver to communicate with other devices or communication networks, such as a Radio Access Network (RAN), a Wireless Local Area Network (WLAN), and the like.
  • the communication interface 53 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the communication bus 54 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division.
  • multiple units or components may be divided.
  • the combination can either be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the functional units in some embodiments of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present disclosure is essentially a part that contributes to related technologies or all or part of the technical solution may be embodied in the form of a software product that is stored in a storage medium. , Including a number of instructions to enable a device (which can be a single-chip microcomputer, a chip, etc.) or a processor to execute all or part of the steps of the method described in each embodiment of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种压缩机回油的控制方法及装置,压缩机回油的控制装置包括油分离器(11)以及回油管路(12),回油管路(12)上安装有回油阀(13),在压缩机开启后,根据压缩机的运转频率与压缩机的排油量的对应关系,确定排油时间段内压缩机的累积排油量,在累积排油量达到预设排油量时,根据压缩机的当前运转频率确定目标开度,控制回油阀(13)打开至目标开度,根据目标开度和预设排油量,确定对应的压缩机回油时间,在回油阀(13)的打开时间达到压缩机回油时间时,控制回油阀(13)关闭。

Description

一种压缩机回油的控制方法及装置
本申请要求于2018年09月11日提交中国专利局、申请号为201811058215.3、申请名称为“一种压缩机回油的控制方法及装置”以及2018年09月11日提交中国专利局、申请号为201811058504.3、申请名称为“一种压缩机回油的控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及空调器领域,尤其涉及一种压缩机回油的控制方法及装置。
背景技术
压缩机被称为制冷系统的心脏,其可靠性和使用寿命直接影响制冷系统,但是回油不良是损坏压缩机的一个重要因素,因此如何合理控制压缩机回油便成为保护压缩机的关键。
图1为相关技术提供的一种空调器的组成示意图,如图1所示,该空调器可以包括控制器、压缩机、油分离器以及回油管路,回油管路上安装有回油毛细管和回油电磁阀。其中,油分离器处于压缩机的排气端,回油口处于压缩机的吸气端。基于图1,回油的控制过程为:控制器在检测到压缩机开启时,控制回油电磁阀开启,当压缩机排气时,低温低压的制冷剂蒸气在经过压缩机压缩后,变成高温高压且流速很快的制冷剂蒸气。该制冷剂蒸气中会夹带压缩机中的润滑油进入油分离器,经过油分离器的离心力作用,润滑油和制冷剂蒸气分离,制冷剂蒸气向上流出油分离器,润滑油沉到油分离器的底部,经回油毛细管和回油电磁阀从压缩机吸气口流回压缩机。且控制器在检测到压缩机关闭时,控制回油电磁阀关闭。
发明内容
一方面,提供一种压缩机回油的控制方法,应用于空调室外机,空调室外机可以包括:油分离器以及回油管路,油分离器设置在压缩机的排气端,其中,回油管路位于油分离器的出油端与压缩机的吸气端之间,回油管路上安装有回油阀。该方法可以包括:根据压缩机的运转频率与压缩机的排油量的对应关系,确定排油时间段内压缩机的累积排油量;在累积排油量达到预设排油量时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度;并根据目标开度和预设排油量,确定对应的压缩机回油时间;控制回油阀打开至目标开度;在回油阀的打开时间达到压缩机回油时间时,控制回油阀关闭。
再一方面,提供一种压缩机回油的控制方法,该方法可以应用于空调室外机,空调室外机可以包括:油分离器以及回油管路,油分离器中设置有液位监测模块,油分离器设置在压缩机的排气端,回油管路位于油分离器的出油端与压缩机的吸气端之间,回油管路上安装有回油阀。该方法可以包括:在检测到油分离器的油面高度高于第一高度时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度;并控制回油阀打开至目标开度;在检测到油分离器的油面高度低于第二高度值时,控制回油阀关闭。其中,第二高度值小于第 一高度值。
又一方面,提供一种压缩机回油的控制方法,应用于空调室外机,空调室外机包括:油分离器、压缩机以及回油管路,油分离器中设置有液位监测模块,油分离器设置在压缩机的排气端,回油管路位于油分离器的出油端与压缩机的吸气端之间,回油管路上安装有回油阀,该方法包括:获取压缩机排入油分离器的润滑油的预设排油量,并根据预设排油量计算油分离器的油面的目标高度;在液位监测模块检测到油分离器的油面高度高于目标高度时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度并控制回油阀打开至目标开度。
又一方面,提供一种空调室外机,空调室外机包括:油分离器、回油管路、压缩机以及控制器,油分离器设置在压缩机的排气端,回油管路位于油分离器的出油端与压缩机的吸气端之间,回油管路上安装有回油阀,当空调室外机运行,控制器用于执行上述任一方面所述的方法。
又一方面,提供一种空调室外机,空调室外机包括:油分离器、回油管路、压缩机以及控制器,油分离器中设置有液位监测模块,油分离器设置在压缩机的排气端,回油管路位于油分离器的出油端与压缩机的吸气端之间,回油管路上安装有回油阀,当空调室外机运行,该控制器用于:在检测到油分离器的油面高度高于第一高度值时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度;控制回油阀打开至目标开度;在检测到油分离器的油面高度低于第二高度值时,控制回油阀关闭,其中,第二高度值小于第一高度值。
又一方面,提供一种空调室外机,空调室外机包括:油分离器、回油管路、压缩机以及控制器,油分离器中设置有液位监测模块,油分离器设置在压缩机的排气端,回油管路位于油分离器的出油端与压缩机的吸气端之间,回油管路上安装有回油阀,当空调室外机运行,该控制器用于执行上述任一方面所述的方法。
又一方面,提供又一方面,提供一种计算机存储介质,其上存储有计算机执行指令,指令被处理器执行时实现上述任一方面提及的方法的步骤。
又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面提及的方法的步骤。
附图说明
图1为一种空调器的组成示意图;
图2为本公开一些实施例提供的一种压缩机回油的控制装置的组成示意图;
图3为本公开一些实施例提供的一种压缩机回油的控制方法的流程图;
图4为本公开一些实施例提供的一种压缩机回油的控制装置的组成示意图;
图5为本公开一些实施例提供的一种压缩机回油的控制方法的流程图;
图6为本公开一些实施例提供的一种压缩机回油的控制方法的流程图;
图7为本公开一些实施例提供的一种控制器的组成示意图;
图8为本公开一些实施例提供的一种控制器的组成示意图;
图9为本公开一些实施例提供的一种控制器的控制装置的组成示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
在对本公开实施例进行详细的解释说明之前,先对本公开实施例涉及的应用场景予以介绍。
发明人发现空调器在运行过程中会根据负荷的变化调整压缩机的运行频率,运行频率不同,排油量也会不同,且排油量与运行频率一般遵循正比关系,为了兼顾所有情况回油管路的尺寸是根据最大排油量设计的,但是运行过程中压缩机以最大频率运行的时间很少,大多数时间压缩机是在中频或低频下运转的,此时排油量很少,回油管路会旁通许多高温高压的制冷剂蒸气,使得制冷剂减少,导致空调器的性能下降。
为了解决由于过热蒸气旁通损失导致空调器的机组性能下降的问题,本公开一些实施例提供了一种压缩机回油的控制方法,该方法可以应用于图2所示的压缩机回油的控制装置,如图2所示,该压缩机回油的控制装置可以包括:油分离器11以及回油管路12。其中,油分离器设置在压缩机的排气端,回油管路12位于油分离器11的出油端与压缩机的吸气端之间,且回油管路12上安装有回油阀13,在一些实施例中,回油阀13可以为电子膨胀阀。
在一些实施例中,本公开一些实施例还提供了一种空调室外机,空调室外机包括,压缩机,油分离器11,回油管路12,设置在回油管路12上的回油阀13,油分离器的入口和压缩机的排气端相接,压缩机的回油口和回油管路的一端相连,回油管路的另一端和压缩机的吸气端相连。在一些实施例中,油分离器11,回油管路12,设置在回油管路12上的回油阀13被称为压缩机回油控制装置。在一些实施例中,压缩机回油控制装置还包括控制器,控制器至少和压缩机和回油阀电性连接以进行电信号的传输,在一些实施例中,控制器还和油分离器电性连接以进行电信号的传输。
基于图2,图3为本公开一些实施例提供的一种压缩机回油的控制方法的流程图,如图3所示,该方法可以包括:
201、在压缩机开启后,获取压缩机的预设排油量。
其中,压缩机回油的控制装置可以在检测到压缩机开启后,根据压缩机的型号,以及预存的压缩机的型号与预设排油量的对应关系,获取与该压缩机的型号对应的预设排油量。这样,在统一生产该压缩机回油的控制装置时,通过在压缩机回油的控制装置中预存各种压缩机的型号以及对应的预设排油量,与根据压缩机回油的控制装置包括的压缩机的型号预存相应的预设排油量相比,提高了压缩机回油的控制装置的通用性。
需要说明的是,压缩机的型号不同,压缩机中充注的润滑油量便不同,可以将压缩机充注的润滑油量减去该压缩机正常工作需要的最少油量得到预设排油量。且压缩机的型号与预设排油量的对应关系可以从压缩机厂家处获得,并预存在压缩机回油的控制装置中。
在一些实施例中可以直接根据该空调室外机中预存储的预设排油量信息,获取该压缩机的预设排油量。
202、根据压缩机的运转频率与压缩机的排油量的对应关系,确定排油时间段内压缩机的累积排油量。
其中,当压缩机回油的控制装置在压缩机开启后首次执行本发明实施例的步骤时,排油时间段为以压缩机开启为起点的一段时间。其他情况下,排油时间段为以回油阀上一次打开为起点的一段时间。
由于压缩机的运转频率不同,排油量便不同,因此压缩机回油的控制装置在获取到压缩机的预设排油量之后,可以根据每一时刻压缩机的运转频率,查找预存的压缩机的运转频率与压缩机的排油量的对应关系,得到每一时刻的排油量,从而确定排油时间段内压缩机的累积排油量。
需要说明的是,在本公开一些实施例中,压缩机的运转频率与排油量的对应关系可以是由压缩机厂家提供,也可以是预先通过实验,根据压缩机的运转频率、压缩机的流量测量得到的。
203、在累积排油量达到预设排油量时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度。
其中,回油阀的开度指的是回油阀的开口直径占最大开口直径的百分比。压缩机回油的控制装置可以在确定累积排油量达到预设排油量时,根据压缩机的当前运转频率,查找预存的压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度。
需要说明的是,由于压缩机的某运转频率下,回油阀两侧的排气压力和吸气压力,与室外机电子膨胀阀两侧的排气压力和吸气压力对应相同,且在该排气压力和吸气压力下,室外机电子膨胀阀的开度能够确保制冷剂的平稳流动,因此为了实现平稳回油,可以将压缩机的运转频率与室外机电子膨胀阀的开度的对应关系作为压缩机的运转频率与回油阀的开度的对应关系。该压缩机的运转频率与室外机电子膨胀阀的开度的对应关系可以预先通过实验自行测得。
204、控制回油阀打开至目标开度。
其中,压缩机回油的控制装置在确定出目标开度之后,可以控制回油阀打开至目标开度,开始进行压缩机回油。
205、根据目标开度和预设排油量,确定对应的压缩机回油时间。
其中,压缩机回油的控制装置在步骤203确定出目标开度之后,可以根据目标开度和预设排油量,确定对应的压缩机回油时间,以实现按需回油。示例性的,压缩机回油的控制装置可以根据目标开度以及回油阀的最大开口直径,确定回油阀的当前开口直径d,并采用以下公式:
Figure PCTCN2019082945-appb-000001
确定润滑油单位时间内通过回油阀的流量Qv。其中,C为流出系数,ε为膨胀系数,β为回油阀的当前开口直径d与回油管路的直径的比值,ρ为润滑油的密度,ΔP为回油阀两侧的排气压力与吸气压力之差。最后,压缩机回油的控制装置可以将预设排油量除以润滑油单位时间内通过回油阀的流量Qv,得到对应的压缩机回油时间。
在本公开一些实施例中,也可以先执行步骤205,再执行步骤204。
206、在回油阀的打开时间达到压缩机回油时间时,控制回油阀关闭。
其中,压缩机回油的控制装置可以在步骤204打开回油阀时开始计时t,并在确定打开时间t达到压缩机回油时间时,控制回油阀关闭。
通过本公开一些实施例,可以知道,通过在回油管路上安装回油阀,这样,在回油管路的尺寸根据预设排油量设计的情况下,由于仅在压缩机的累积排油量达到预设排油量时,才控制回油阀打开,并根据回油阀的目标开度以及预设排油量确定压缩机回油时间,以在回油阀的打开时间达到压缩机回油时间时控制回油阀关闭,不仅确保了压缩机的润滑油在合理的范围内,而且实现了按需回油,避免了过热蒸气的旁通损失,提高了空调器的机组性能。进一步的,由于回油阀的目标开度是根据压缩机的当前运转频率确定的,该目标开度能够保证润滑油在回油阀两侧压差下的平稳流动,实现了平稳回油,提高了压缩机的可靠性。
在一些实施例内,两次回油过程之间的间隔中,上一次回油结束后,油分离器中的油量未达到预设阈值时,回油阀保持关闭至本次回油过程开始。
在本公开另一些实施例中,为了解决由于过热蒸气旁通损失导致空调器的机组性能下降的问题,本公开一些实施例还提供了一种压缩机回油的控制方法,该方法可以应用于图4所示的压缩机回油的控制装置,如图4所示,该压缩机回油的控制装置可以包括:油分离器15以及回油管路12。其中,油分离器15中设置有液位监测模块16,该液位监测模块16可以为液位监测仪或用于监测液位的传感器等;回油管路12位于油分离器15的出油端与压缩机的吸气端之间,且回油管路12上安装有回油阀14,在一些实施例中,回油阀14可以为电子膨胀阀。
基于图4,图5为本公开一些实施例提供的一种压缩机回油的控制方法的流程图,如图5所示,该方法可以包括:
501、在压缩机开启后,获取压缩机的预设排油量。
步骤501的实现方式可以参考上述步骤201的实现方式,此处不再赘述。
502、若预设排油量的润滑油排入油分离器,根据预设排油量计算油分离器的油面的目标高度。
其中,压缩机回油的控制装置在获取到压缩机的预设排油量之后,可以确定假设该预设排油量的润滑油排入油分离器中,油分离器中油面的目标高度。在一些实施例中,压缩机回油的控制装置可以先获取油分离器的型号,然后再根据预存的不同型号的油分离器中油分离器的体积与高度的关系,查找到该型号的油分离器的体积与高度的关系,最后根据预设排油量,计算出目标高度。
且,由于油分离器的型号不同,该目标高度便不同,而液位监测仪能够监测不同的液位高度,因此当液位监测模块为液位监测仪时,通过在压缩机回油的控制装置中预存油分离器的型号和对应型号的油分离器的体积与高度的关系,来确定目标高度,与针对每个压缩机回油的控制装置的油分离器的型号预存目标高度值相比,提高了压缩机回油的控制装置的通用性。
示例性的,假设压缩机回油的控制装置根据油分离器的型号,查找到的该型号的油分离器的体积与高度的关系为:Q=πd 2h/4,那么压缩机回油的控制装置可以根据预设排油量Q以及已知的d,计算得到目标高度h。
在一些实施例中,目标高度是预先存储在室外机内的,目标高度的信息可以被直接调用。
503、在通过液位监测模块检测到油分离器的油面高度高于目标高度时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度。
其中,回油阀的开度指的是回油阀的开口直径占最大开口直径的百分比。
压缩机回油的控制装置可以通过设置在油分离器上的液位监测模块检测油分离器的油面高度,当油面高度达到液位监测模块的目标高度时,表明油分离器中的油量达到了预设排油量,此时,压缩机回油的控制装置可以获取压缩机的当前运转频率,并根据运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度。
与步骤203中的实现类似,为了实现平稳回油,可以将压缩机的运转频率与室外机电子膨胀阀的开度的对应关系作为压缩机的运转频率与回油阀的开度的对应关系。该压缩机的运转频率与室外机电子膨胀阀的开度的对应关系可以预先通过实验自行测得。
504、控制回油阀打开至目标开度。
步骤504的实现方式与步骤204的实现类似,此处不再赘述。
505、在通过液位监测模块检测到油分离器的油面高度到达液位监测模块的最低端时,控制回油阀关闭。
其中,压缩机回油的控制装置可以检测到油分离器的油面高度到达液位监测模块的最低端时,控制回油阀关闭,并开始重复执行步骤503-步骤505。
因此,本公开一些实施例提供的压缩机回油的控制方法,通过在油分离器中设置液位监测模块,并在回油管路上安装回油阀。在回油管路的尺寸根据预设排油量设计的情况下,由于通过液位监测模块检测到油分离器的油面高度达到目标高度时,表明压缩机的累积排油量达到预设排油量,此时才控制回油阀打开开始回油,并在检测到油面到达液位监测模块的最低端时控制回油阀关闭,结束回油,这样不仅确保了压缩机的润滑油在合理的范围内,而且实现了按需回油,避免了过热蒸气的旁通损失,提高了空调器的机组性能。由于回油阀的目标开度是根据压缩机的当前运转频率确定的,该目标开度能够保证润滑油在回油阀两侧压差下的平稳流动,实现了平稳回油,提高了压缩机的可靠性。
在本申请一些实施例中,步骤501~503也可以替换为步骤601,步骤505可以替换为步骤603。因此,基于图4,图6为本公开一些实施例提供的一种压缩机回油的控制方法的流程图,如图6所示,该方法可以包括:
601、在通过液位监测模块检测到油分离器的油面高度高于第一高度值时,根据压缩机的当前运转频率以及压缩机的运转频率与回油阀的开度的对应关系,确定与当前运转频率对应的目标开度。
也就是说,可以通过液位监测模块确定润滑油排入油分离器中时,油分离器中实时的油面高度。当液位监测模块检测到的油面高度达到第一高度值时,表明压缩机的累积排油量达到预设排油量,进而确定与当前运转频率对应的回油阀的目标开度。其中,第一高度值可以是预设在液位监测模块中的,当液位监测模块确定油面高度达到 第一高度值时,可以向控制器发出信号,指示控制器油面高度已达到第一高度值,进而使得控制器确定当前运转频率对应的目标开度。或者,第一高度值可以是预设在控制器中,液位监测模块实时地将油面高度传输给控制器。第一高度值的数值可以与上述目标高度的数值相同或不同。
602、控制回油阀打开至目标开度。
步骤602的实现方式与步骤204的实现类似,此处不再赘述。
603、在通过液位监测模块检测到油分离器的油面高度低于第二高度值时,控制回油阀关闭,第二高度值小于所述第一高度值。
控制回油阀关闭后,并开始重复执行步骤601-步骤603。
也就是说,当液位监测模块监测到由分离器中的油面高度低于第二高度值时,结束回油,确保了压缩机的润滑油在合理的范围内按需回油。与第一高度值类似,第二高度值可以是预设在液位监测模块中,也可以是预设在控制器中。第二高度值可以指示上述液位监测模块的最低端。
因此,本公开一些实施例提供的压缩机回油的控制方法,通过在油分离器中设置液位监测模块,并在回油管路上安装回油阀。由于通过液位监测模块检测到油分离器的油面高度高于第一高度值时,表明压缩机的累积排油量达到预设排油量,此时才控制回油阀打开开始回油,并在检测到油面高度低于第二高度值时控制回油阀关闭,结束回油,这样不仅确保了压缩机的润滑油在合理的范围内,而且实现了按需回油,避免了过热蒸气的旁通损失,提高了空调器的机组性能。由于回油阀的目标开度是根据压缩机的当前运转频率确定的,该目标开度能够保证润滑油在回油阀两侧压差下的平稳流动,实现了平稳回油,提高了压缩机的可靠性。
在一些实施例中,在确定回油阀的目标开度之前,需要先确定油分离器中的累积油量是否达到预设阈值,然后根据压缩机的当前运转频率计算/查询回油阀的目标开度。其中计算可以通过预设公式的方式来实现,查询可以通过预置对应关系表,预置的对应关系表中包含压缩机的当前运转频率、回油阀的目标开度的对应关系,并根据回油阀的目标开度和预设阈值的对应关系来计算回油阀在该开度下的回油时间,并根据回油时间控制回油阀的关闭时刻。
油分离器中的累积油量可以用压缩机的累积排油量来表征,也可以用通过油分离器中的油面高度来表征。
在一些实施例中,油分离器中的累积油量达到预设阈值对应压缩机的累积排油量达到预设排油量,确定压缩机中的累计排油量是否达到预设阈值采用步骤202中计算累计排油量的方式来实现。
在一些实施例中,预设阈值可以是表征油分离器中油面高度的一个数值,该数值可以通过步骤502中的计算来获得,也可以直接通过的一个设置在油分离器上的液位监测模块来获得油面的高度达到该数值,在预先计算的油面目标高度达到该数值时或液位监测模块检测到的油面高度达到该数值时,然后根据压缩机的当前运转频率计算/查询回油阀的目标开度。其中计算可以通过预设公式的方式来实现,查询可以通过预置对应关系表,预置的对应关系表中包含压缩机的当前运转频率、回油阀的目标开度的对应关系,并根据回油阀的目标开度和预设阈值的对应关系来计算回油阀在该开度 下的回油时间,并根据回油时间控制回油阀的关闭时刻。
在一些实施例中还可以根据设置在油分离器上的液位监测检测模块检测到油面高度低于另一数值时控制回油阀的关闭。其中液位检测监测模块检测到油面高度达到的该数值是通过油面达到液位监测检测模块的第一端来实现的,液位监测检测模块检测到油面高度低于另一数值是通过油面达到液位监测检测模块的第二端来实现的。
上述主要从压缩机回油的控制装置的角度对本公开一些实施例提供的方案进行了介绍。可以理解的是,压缩机回油的控制装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本公开一些实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。
本公开一些实施例可以根据上述方法示例对压缩机回油的控制装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本公开一些实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了一种空调室外机中的控制器的结构示意图,该空调室外机包括上述实施例中涉及的压缩机回油的控制装置。当空调室外机运行,压缩机回油的控制装置中的控制器至少和压缩机回油的控制装置中的压缩机和回油阀电性进行电信号的传输,在一些实施例中,控制器还和油分离器进行电信号的传输。因此,当空调室外机运行时,该控制器可以包括:确定单元31和控制单元32。
其中,确定单元31,用于支持控制器执行图3所示的压缩机回油的控制方法中的步骤202、步骤203以及步骤205,图5所示的压缩机回油的控制方法中的步骤502以及步骤503,图7所示的压缩机回油的控制方法中的步骤601。
控制单元32,用于支持控制器执行图3所示的压缩机回油的控制方法中的步骤204和步骤206,图5所示的压缩机回油的控制方法中的步骤504和步骤505,图7所示的压缩机回油的控制方法中的步骤602和步骤603。
进一步的,控制器还可以包括:获取单元33。
获取单元33,用于支持控制器执行图3所示的压缩机回油的控制方法中的步骤201,图5所示的压缩机回油的控制方法中的步骤501。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本公开一些实施例提供的控制器,用于执行上述压缩机回油的控制方法,因此可以达到与上述压缩机回油的控制方法相同的效果。
在采用集成的单元的情况下,图8示出了一种空调室外机中的控制器的另一种结构示意图,该空调室外机包括上述实施例中所涉及的压缩机回油的控制装置,当空调 室外机运行,压缩机回油的控制装置中的控制器至少和压缩机回油的控制装置中的压缩机和回油阀电性进行电信号的传输,在一些实施例中,控制器还和油分离器进行电信号的传输。因此,当空调室外机运行时,该控制器包括:处理模块41、通信模块42和存储模块43。
处理模块41用于对控制器的动作进行控制管理,例如,处理模块41用于支持控制器执行图3中的步骤201、步骤202、步骤203、步骤204、步骤205、步骤206,图5中的步骤501、步骤502、步骤503、步骤504、步骤505,图7中的步骤601,步骤602和步骤603,和/或用于本文所描述的技术的其它过程。通信模块42用于支持控制器压缩机回油的控制装置与其他网络实体的通信。存储模块43,用于存储控制器压缩机回油的控制装置的程序代码和数据。
其中,处理模块41可以是处理器。其可以实现或执行结合本公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器(Digital Signal Processor,DSP)和微处理器的组合等等。通信模块42可以是通信接口。存储模块43可以是存储器。
当处理模块41为处理器,通信模块42为通信接口,存储模块43为存储器时,本公开一些实施例所涉及的控制器可以为图9所示的控制器。
图9为本公开一些实施例提供的另一种控制器的组成示意图,如图9所示,该控制器可以包括:至少一个处理器51、存储器52、通信接口53和通信总线54。
下面结合图9对控制器的各个构成部件进行具体的介绍:
其中,处理器51是控制器的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器51是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个DSP,或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
作为一种实施例,处理器51可以包括一个或多个CPU,例如图9中所示的CPU0和CPU1。且,作为一种实施例,控制器可以包括多个处理器,例如图9中所示的处理器51和处理器55。这些处理器中的每一个可以是一个单核处理器(Single-CPU),也可以是一个多核处理器(Multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器52可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器52可以是独立存在,通过通信总线54与处理器51相连接。存储器52也可以和处理器51集成在一起。
在一些实施例中,存储器52,用于存储本公开实施例中的数据和执行本公开实施 例的软件程序。例如,存储器52,用于存储压缩机的型号与预设排油量的对应关系、压缩机的运转频率与压缩机的排油量的对应关系、压缩机的运转频率与回油电子膨胀的开度的对应关系等。处理器51可以通过运行或执行存储在存储器52内的软件程序,以及调用存储在存储器52内的数据,执行压缩机回油的控制装置的各种功能。
通信接口53,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口53可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线54,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本公开实施例所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开一些实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的一些实施方式,但本公开实施例的保护范围并不局限于此,任何在本公开实施例揭露的技术范围内的变化或替换,都应涵盖在本公开实施例 的保护范围之内。因此,本公开实施例的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种压缩机回油的控制方法,应用于空调室外机,所述空调室外机包括:油分离器以及回油管路,所述油分离器设置在所述压缩机的排气端,所述回油管路位于所述油分离器的出油端与所述压缩机的吸气端之间,所述回油管路上安装有回油阀,所述方法包括:
    根据所述压缩机的运转频率与所述压缩机的排油量的对应关系,确定排油时间段内所述压缩机的累积排油量;
    在所述累积排油量达到预设排油量时,根据所述压缩机的当前运转频率以及所述压缩机的运转频率与所述回油阀的开度的对应关系,确定与所述当前运转频率对应的目标开度;并根据所述目标开度和所述预设排油量,确定对应的压缩机回油时间;
    控制所述回油阀打开至所述目标开度;
    在所述回油阀的打开时间达到所述压缩机回油时间时,控制所述回油阀关闭。
  2. 根据权利要求1所述的压缩机回油的控制方法,所述排油时间段为以所述压缩机开启为起点的一段时间,或者,所述排油时间段为以所述回油阀上一次打开为起点的一段时间。
  3. 根据权利要求1所述的压缩机回油的控制方法,在所述确定排油时间段内所述压缩机的累积排油量之前,所述方法还包括:
    获取所述压缩机的型号;
    根据压缩机的型号与预设排油量的对应关系,获取与所述压缩机的型号对应的所述预设排油量。
  4. 根据权利要求1-3中任一项所述的压缩机回油的控制方法,所述根据所述目标开度,确定对应的压缩机回油时间,包括:
    根据所述目标开度,确定所述回油阀的开口直径;
    采用公式:
    Figure PCTCN2019082945-appb-100001
    确定润滑油单位时间内通过所述回油阀的流量Qv;其中,C为流出系数,ε为膨胀系数,β为所述回油阀的开口直径d与所述回油管路的直径的比值,ρ为所述润滑油的密度,ΔP为所述回油阀两侧的排气压力与吸气压力之差;
    将所述预设排油量除以所述单位时间内通过所述回油阀的流量,得到所述压缩机回油时间。
  5. 一种压缩机回油的控制方法,应用于空调室外机,所述空调室外机包括:油分离器和回油管路,所述油分离器中设置有液位监测模块,所述油分离器设置在所述压缩机的排气端,所述回油管路位于所述油分离器的出油端与所述压缩机的吸气端之间,所述回油管路上安装有回油阀,所述方法包括:
    在检测到所述油分离器的油面高度高于第一高度值时,根据所述压缩机的当前运转频率以及所述压缩机的运转频率与所述回油阀的开度的对应关系,确定与所述当前运转频率对应的目标开度;控制所述回油阀打开至所述目标开度;
    在检测到所述油分离器的油面高度低于第二高度值时,控制所述回油阀关闭,其 中,所述第二高度值小于所述第一高度值。
  6. 一种压缩机回油的控制方法,应用于空调室外机,所述空调室外机包括:油分离器以及回油管路,所述油分离器中设置有液位监测模块,所述油分离器设置在所述压缩机的排气端,所述回油管路位于所述油分离器的出油端与所述压缩机的吸气端之间,所述回油管路上安装有回油阀,所述方法包括:
    获取压缩机排入油分离器的润滑油的预设排油量,并根据所述预设排油量计算所述油分离器的油面的目标高度;
    在液位监测模块检测到所述油分离器的油面高度高于所述目标高度时,根据所述压缩机的当前运转频率以及所述压缩机的运转频率与所述回油阀的开度的对应关系,确定与所述当前运转频率对应的目标开度并控制所述回油阀打开至所述目标开度。
  7. 根据权利要求6所述的压缩机回油的控制方法,在所述获取压缩机排入油分离器的润滑油的预设排油量,并根据所述预设排油量计算所述油分离器的油面的目标高度之前,还包括:
    获取所述压缩机的型号;
    根据压缩机的型号与预设排油量的对应关系,获取与所述压缩机的型号对应的所述预设排油量。
  8. 根据权利要求6或7所述的压缩机回油的控制方法,所述确定若所述预设排油量的润滑油排入所述油分离器,所述油分离器的油面的目标高度,包括:
    获取所述油分离器的型号;
    根据所述预设排油量,以及所述型号的油分离器中所述油分离器的体积与高度的关系,计算所述目标高度。
  9. 根据权利要求7所述的压缩机回油的控制方法,其特征在于,
    所述压缩机的运转频率与所述回油阀的开度的对应关系为所述压缩机的运转频率与室外机电子膨胀阀的开度的对应关系。
  10. 一种空调室外机,所述空调室外机包括:油分离器、回油管路、压缩机以及控制器,所述油分离器设置在所述压缩机的排气端,所述回油管路位于所述油分离器的出油端与所述压缩机的吸气端之间,所述回油管路上安装有回油阀,当所述空调室外机运行,所述控制器用于执行权1-4任意一项所述的方法。
  11. 一种空调室外机,所述空调室外机包括:油分离器、回油管路、压缩机以及控制器,所述油分离器中设置有液位监测模块,所述油分离器设置在所述压缩机的排气端,所述回油管路位于所述油分离器的出油端与所述压缩机的吸气端之间,所述回油管路上安装有回油阀,当所述空调室外机运行,所述控制器用于:
    在检测到所述油分离器的油面高度高于第一高度值时,根据所述压缩机的当前运转频率以及所述压缩机的运转频率与所述回油阀的开度的对应关系,确定与所述当前运转频率对应的目标开度;
    控制所述回油阀打开至所述目标开度;
    在检测到所述油分离器的油面高度低于第二高度值时,控制所述回油阀关闭,其中,所述第二高度值小于所述第一高度值。
  12. 一种空调室外机,所述空调室外机包括:油分离器、回油管路、压缩机以及 控制器,所述油分离器中设置有液位监测模块,所述油分离器设置在所述压缩机的排气端,所述回油管路位于所述油分离器的出油端与所述压缩机的吸气端之间,所述回油管路上安装有回油阀,当所述空调室外机运行,所述控制器用于执行权6-9任意一项所述的方法。
PCT/CN2019/082945 2018-09-11 2019-04-16 一种压缩机回油的控制方法及装置 WO2020052234A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811058504.3A CN109282525A (zh) 2018-09-11 2018-09-11 一种压缩机回油的控制方法及装置
CN201811058215.3A CN109282524B (zh) 2018-09-11 2018-09-11 一种压缩机回油的控制方法及装置
CN201811058504.3 2018-09-11
CN201811058215.3 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020052234A1 true WO2020052234A1 (zh) 2020-03-19

Family

ID=69778154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082945 WO2020052234A1 (zh) 2018-09-11 2019-04-16 一种压缩机回油的控制方法及装置

Country Status (1)

Country Link
WO (1) WO2020052234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390205A (zh) * 2021-07-07 2021-09-14 珠海格力电器股份有限公司 家用电器的回油控制方法、家用电器及计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006041A1 (en) * 2009-03-31 2012-01-12 Takashi Ikeda Refrigerating device
JP2012211763A (ja) * 2007-03-27 2012-11-01 Daikin Industries Ltd 冷凍装置
CN103486785A (zh) * 2013-09-18 2014-01-01 Tcl空调器(中山)有限公司 变频空调压缩机的回油控制方法及其装置
CN104879966A (zh) * 2015-04-29 2015-09-02 广东美的制冷设备有限公司 一种变频空调器及其控制方法
CN107940811A (zh) * 2017-12-25 2018-04-20 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
CN109282525A (zh) * 2018-09-11 2019-01-29 青岛海信日立空调系统有限公司 一种压缩机回油的控制方法及装置
CN109282524A (zh) * 2018-09-11 2019-01-29 青岛海信日立空调系统有限公司 一种压缩机回油的控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211763A (ja) * 2007-03-27 2012-11-01 Daikin Industries Ltd 冷凍装置
US20120006041A1 (en) * 2009-03-31 2012-01-12 Takashi Ikeda Refrigerating device
CN103486785A (zh) * 2013-09-18 2014-01-01 Tcl空调器(中山)有限公司 变频空调压缩机的回油控制方法及其装置
CN104879966A (zh) * 2015-04-29 2015-09-02 广东美的制冷设备有限公司 一种变频空调器及其控制方法
CN107940811A (zh) * 2017-12-25 2018-04-20 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
CN109282525A (zh) * 2018-09-11 2019-01-29 青岛海信日立空调系统有限公司 一种压缩机回油的控制方法及装置
CN109282524A (zh) * 2018-09-11 2019-01-29 青岛海信日立空调系统有限公司 一种压缩机回油的控制方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390205A (zh) * 2021-07-07 2021-09-14 珠海格力电器股份有限公司 家用电器的回油控制方法、家用电器及计算机可读存储介质
CN113390205B (zh) * 2021-07-07 2022-03-11 珠海格力电器股份有限公司 家用电器的回油控制方法、家用电器及计算机可读存储介质

Similar Documents

Publication Publication Date Title
CN109282524B (zh) 一种压缩机回油的控制方法及装置
JP3719246B2 (ja) 冷凍装置及び冷凍装置の冷媒量検出方法
CN109282525A (zh) 一种压缩机回油的控制方法及装置
CN109798634B (zh) 一种空调器的除霜方法及空调器
CN108375256B (zh) 空调自动回油控制方法及装置
CN109307384A (zh) 一种回油的控制方法及装置
CN113339946B (zh) 空调器运行控制方法、装置、空调器和计算机存储介质
CN109489199B (zh) 空调系统的控制方法、装置、系统及存储介质
CN110500702A (zh) 空调器、室内机的电子膨胀阀的控制方法及装置
WO2022111224A1 (zh) 回油控制方法、装置及多联机系统
JP2000304388A (ja) 空気調和装置
WO2023147721A1 (zh) 空调噪音的控制方法、控制系统、电子设备和储存介质
WO2020052234A1 (zh) 一种压缩机回油的控制方法及装置
EP3795915B1 (en) Malfunction diagnosis system
WO2021208522A1 (zh) 空调系统的管内自清洁控制方法
CN111121249A (zh) 一种多联机系统的控制方法、控制装置和多联机系统
CN113503620A (zh) 空调系统控制方法、装置、存储介质及空调系统
CN111023464B (zh) 空调器的换热器换热效率衰减检测方法、装置及空调器
CN114877550B (zh) 节流阀的控制方法、冷水机和计算机可读存储介质
CN112396764A (zh) 基于节流装置的多联机空调分户计量与计费方法及装置
CN112665153A (zh) 制冷系统供冷量的控制方法、装置、控制器和制冷系统
WO2024007676A1 (zh) 一种回油控制方法、装置及空调
CN108072204B (zh) 一种多联机油平衡控制方法与装置
CN110186165B (zh) 一种空调器的控制方法及装置
CN113932376B (zh) 温度调节机组控制方法、装置及温度调节机组设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861082

Country of ref document: EP

Kind code of ref document: A1