WO2020049897A1 - フォークリフト用遠隔操作システム - Google Patents

フォークリフト用遠隔操作システム Download PDF

Info

Publication number
WO2020049897A1
WO2020049897A1 PCT/JP2019/029699 JP2019029699W WO2020049897A1 WO 2020049897 A1 WO2020049897 A1 WO 2020049897A1 JP 2019029699 W JP2019029699 W JP 2019029699W WO 2020049897 A1 WO2020049897 A1 WO 2020049897A1
Authority
WO
WIPO (PCT)
Prior art keywords
forklift
turning
trajectory
display unit
reach
Prior art date
Application number
PCT/JP2019/029699
Other languages
English (en)
French (fr)
Inventor
神谷知典
比嘉孝治
小野琢磨
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020049897A1 publication Critical patent/WO2020049897A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a forklift remote control system.
  • a turning center of a vehicle body is obtained based on a steering angle of a rear wheel, and a traveling locus of left and right rear wheels is calculated based on data of the turning center.
  • a bird's-eye view image having a rear image portion, a left image portion, and a right image portion arranged corresponding to the periphery of the vehicle body image is formed from the captured image data.
  • the traveling trajectory is superimposed on the bird's-eye view image to create a composite image, and the back-around monitor device arranged in the cockpit displays the composite image as enlarged images of the left and right rear wheels.
  • An object of the present invention is to provide a remote control system for a forklift, which makes it easier to understand the relationship with an interference object when the forklift turns.
  • a forklift remote control system for solving the above-mentioned problems includes a forklift including a cargo handling device on a machine base and a vehicle communication unit, and an operation device communication unit for performing wireless communication with the vehicle communication unit.
  • a remote control device for remotely controlling travel of the cargo handling and cargo handling by the cargo handling device, a remote control system for a forklift, which is mounted on the forklift and captures an image of a periphery of the forklift,
  • a display unit provided on a remote control device, for displaying an image captured by the camera, and, prior to the turning of the forklift, a rear corner of the machine base opposite to the turning direction based on the current steering angle.
  • a trajectory superimposing unit for generating an expected trajectory, superimposing the predicted trajectory on an image captured by the camera, and displaying the predicted trajectory on the display unit. It is the gist of.
  • an expected trajectory of the rear corner of the machine on the opposite side to the turning direction is generated based on the current steering angle, and is superimposed on the image captured by the camera, and is displayed on the display unit. Is displayed. Therefore, it is possible to easily understand the relationship with the interference target when the forklift turns.
  • the trajectory superimposing unit may be configured such that, prior to the turning of the forklift, the tip or turning direction of the fork on the opposite side to the turning direction of the pair of left and right forks based on the current steering angle. It is preferable to further generate an expected trajectory of the front corner of the pallet on the opposite side and superimpose the trajectory on the image captured by the camera, and display it on the display unit.
  • the trajectory superimposing unit predicts a pallet front corner on the opposite side to the turning direction based on the current steering angle prior to turning of the forklift. It is preferable that a trajectory is further generated and superimposed on an image captured by the camera and displayed on the display unit.
  • the forklift is a reach-type forklift
  • the trajectory superimposing unit includes a pair of right and left reach legs arranged on the front side of the machine based on a current steering angle prior to turning of the forklift.
  • the expected trajectory of the front corner of the reach leg opposite to the turning direction, or the axial center of the front wheel opposite to the turning direction among the left and right front wheels provided on the pair of left and right reach legs arranged on the front of the machine May be further generated and superimposed on an image captured by the camera and displayed on the display unit.
  • the trajectory superimposition unit may include an area between the predicted trajectory of the front corner of the pallet in the turning direction and the predicted trajectory of the rear corner of the machine opposite to the turning direction, It is preferable that the information is displayed on the display unit so as to be distinguished from other areas.
  • the trajectory superimposing portion includes an expected trajectory of a front corner portion in a reach leg in a turning direction or an expected trajectory of an axial center of a front wheel in a turning direction, and a machine rear angle opposite to the turning direction.
  • the region sandwiched between the predicted trajectory of the unit and the other region may be displayed on the display unit so as to be distinguished from other regions.
  • the forklift is a counter-type forklift
  • the trajectory superimposing portion is opposite to the turning direction of the left and right front wheels based on a current steering angle prior to the turning of the forklift. It is preferable to further generate an expected trajectory of the front wheel axis center and superimpose it on an image captured by the camera and display the trajectory on the display unit.
  • FIG. 2 is a block diagram showing an electric configuration of a forklift remote control system.
  • FIG. 1 is a schematic perspective view showing a part of a reach type forklift in a cutaway manner.
  • 5 is a flowchart according to the first embodiment.
  • the top view which shows a reach type forklift typically.
  • the top view which shows a reach type forklift typically.
  • 7A and 7B are diagrams showing display contents on a display unit.
  • (A) is a plan view schematically showing a reach-type forklift
  • (b) is a plan view schematically showing a reach-type forklift
  • (c) is a view showing display contents on a display unit.
  • 9 is a flowchart according to the second embodiment.
  • the top view which shows a reach type forklift typically.
  • the top view which shows a reach type forklift typically.
  • (A), (b), (c) is a figure which shows the display content on a display part.
  • (A) is a plan view schematically showing a reach-type forklift
  • (b) is a plan view schematically showing a reach-type forklift
  • (c) is a view showing display contents on a display unit.
  • the top view which shows the reach type forklift and its periphery typically.
  • the top view which shows the reach type forklift and its periphery typically.
  • (A), (b) is a top view which shows typically the reach type forklift in 3rd Embodiment.
  • (A), (b), (c) is a figure which shows the display content on a display part.
  • (A) is a plan view schematically showing a reach-type forklift
  • (b) is a plan view schematically showing a reach-type forklift
  • (c) is a view showing display contents on a display unit.
  • the top view which shows the reach type forklift and its periphery typically.
  • the top view which shows the reach type forklift and its periphery typically.
  • the top view which shows a counter type forklift typically.
  • the remote control system 10 for a forklift includes a reach type forklift 20 and a remote control device 40 used to remotely control the traveling of the reach type forklift 20 and cargo handling by the loading / unloading device. .
  • the reach type forklift 20 is arranged in a work place. Then, the reach type forklift 20 in the work place can be remotely controlled from the operation room using the remote control device 40.
  • a reach type forklift 20 is located at a place away from a pallet or the like in a work place. From this state, the operator remotely operates the reach-type forklift 20 to bring the reach-type forklift 20 closer to a pallet or the like and to perform an operation of inserting a fork into a pallet hole.
  • the reach type forklift 20 includes a machine base 21.
  • a pair of left and right reach legs 22a and 22b are arranged on the front side of the machine base 21, and the reach legs 22a and 22b extend forward.
  • the reach leg 22a is provided on the right side in the traveling direction
  • the reach leg 22b is provided on the left side in the traveling direction.
  • Front wheels 23a and 23b are provided in front of the reach legs 22a and 22b.
  • the right front wheel 23a is provided on the right reach leg 22a in the traveling direction
  • the left front wheel 23b is provided on the left reach leg 22b in the traveling direction.
  • a pair of left and right front wheels 23a and 23b is provided on the front side of the machine base 21.
  • Rear wheels 24 and caster wheels (auxiliary wheels) 25 are arranged at the rear of the machine stand 21.
  • the rear wheel 24 is provided on the left side of the machine base 21, and the caster wheel 25 is provided on the right side of the machine body 21.
  • the rear wheels 24 are driving wheels and steering wheels.
  • the reach type forklift 20 runs on three wheels, ie, two front wheels 23a and 23b and one rear wheel 24.
  • the machine base 21 is mounted with a traveling motor 26 serving as a driving source of the reach type forklift 20 and a battery 27 serving as a power source of the traveling motor 26. Then, the rear wheel 24 is driven to rotate by the traveling motor 26.
  • the reach-type forklift 20 includes a cargo handling device 28 in front of the machine base 21.
  • the cargo handling device 28 includes a mast 29 that moves back and forth along each of the reach legs 22a and 22b by driving a reach cylinder (not shown).
  • a pair of left and right forks 30a, 30b is provided via a lift bracket 31. The forks 30a and 30b move up and down along the mast 29.
  • the reach type forklift 20 of the present embodiment is configured so that a driver can sit and operate it. Note that an unmanned reach type forklift having no driver's seat may be used.
  • the reach type forklift 20 includes a driver's cab 32 of a standing type at a rear portion of the machine base 21.
  • steering tables 33a and 33b are provided in front of and in the left of the cab 32.
  • a steering table 33a located in front of the cab 32 is provided with a direction lever 34 for operating the reach type forklift 20 and a plurality of cargo handling levers 35 for operating the cargo handling device 28.
  • the direction lever 34 is operated to drive the rear wheel 24 to rotate and drive the vehicle.
  • a steering wheel 36 for steering the rear wheels 24 is provided on a steering table 33b located to the left of the cab 32.
  • a brake pedal 37 is provided on the floor of the cab 32.
  • the cab 32 is surrounded by two pillars 38 erected on the machine base 21 and a head guard 39 fixed to an upper end of the pillar 38.
  • the reach type forklift 20 includes a controller 51 as a forklift mounted device 50, a wireless unit 52 as a vehicle communication unit, an image processing unit 53, a wireless device 54 as a vehicle communication unit, and a camera. 71, 72 and 73.
  • the remote control device 40 includes a controller 61, an operation unit 62, a display unit (monitor) 63, and wireless devices 64 and 65 as operation device communication units.
  • the remote control device 40 includes a controller 61, an operation unit 62, and a display unit (monitor) 63 as the operation room side device 60.
  • the wireless device 64 of the remote control device 40 is located at the work place. Further, the wireless device 65 of the remote control device 40 is arranged at the work place.
  • the controller 61 arranged in the operation room is connected to a wireless device 64 arranged in the work place by a wire L1.
  • the controller 61 is connected by a wire L2 to a wireless device 65 arranged in the work place.
  • the wireless device 64 of the remote control device 40 and the wireless unit 52 of the forklift-equipped device 50 can perform two-way wireless communication.
  • the wireless device 54 of the forklift-mounted device 50 can wirelessly communicate with the wireless device 65 of the remote control device 40.
  • the reach type forklift 20 has the wireless unit 52 and the wireless device 54
  • the remote control device 40 has the wireless devices 64 and 65 that perform wireless communication with the wireless unit 52 and the wireless device 54.
  • the controller 61 of the remote control device 40 is connected to the operation unit 62 and the display unit (monitor) 63.
  • the operation unit 62 is for remotely controlling the reach type forklift 20 by an operator.
  • the operation contents of the reach type forklift 20 (lift, reach, tilt operation command values, speed, acceleration, steering, etc.) Angle operation command value, etc.) is sent to the controller 61.
  • the controller 61 wirelessly transmits lift, reach, and tilt operation command values and vehicle control signals such as speed, acceleration, and steering angle operation command values to the wireless unit 52 of the forklift-mounted device 50 via the wireless device 64. I do.
  • the controller 51 In the forklift mounted device 50, the controller 51, the wireless unit 52, and the image processing unit 53 are connected so as to be able to communicate with each other (for example, CAN communication).
  • the controller 51 can drive a travel system actuator (the travel motor 26, a steering motor (not shown), etc.) and a cargo handling actuator (a lift cylinder, a reach cylinder, a tilt cylinder, etc., not shown) according to an instruction from the remote control device 40 side.
  • the wireless unit 52 wirelessly transmits vehicle information such as the vehicle speed of the reach type forklift 20 and abnormality information (obstacle detection information and the like) to the controller 61 via the wireless device 64.
  • the controller 61 can remotely control the traveling of the reach-type forklift 20 and the cargo handling by the cargo handling device 28 via the wireless device 64, the wireless unit 52, and the controller 51. That is, instead of the operation units (the direction lever 34, the cargo handling lever 35, the handle 36, the brake pedal 37, and the like) in FIG.
  • the operation content is transmitted by the controller 61 to the reach type forklift 20 via the wireless device 64.
  • the operation content from the remote control device 40 is received by the wireless unit 52, and the controller 51 drives the actuator unit to execute a desired operation.
  • the reach type forklift 20 has a right rear corner P1 and a left rear corner P2 in the machine base 21.
  • a camera 71 is attached to the front part of the head guard 39 of the reach type forklift 20 so as to face forward and downward.
  • the camera 71 captures an image around the reach type forklift 20.
  • the camera 71 captures an image of a floor surface ahead of the reach type forklift 20 in the traveling direction.
  • a camera 72 is attached to the right rear portion of the head guard 39 of the reach type forklift 20 so as to face downward.
  • the camera 72 captures an image around the reach type forklift 20. Specifically, the camera 72 images the vicinity of the right rear corner P1 of the machine base 21 from above.
  • a camera 73 is attached to the left rear portion of the head guard 39 so as to face downward, and the camera 73 captures an image around the reach type forklift 20. Specifically, the camera 73 images the vicinity of the left rear corner P2 of the machine base 21 from above.
  • images captured by the cameras 71, 72, and 73 are sent to the remote control device 40 by the controller 51 via the image processing unit 53 and the wireless device 54.
  • a camera image from the reach type forklift 20 is received by the wireless device 65 and displayed on the display unit 63 by the controller 61.
  • the display unit 63 is, for example, a desktop type display.
  • the images captured by the cameras 71, 72, and 73 are displayed on the display unit 63 provided in the remote control device 40.
  • the operator operates while viewing the images of the cameras 71, 72, and 73 on the display unit 63.
  • step S101 when turning at the maximum steering wheel angle (when turning on the spot) in step S101, the controller 61, as shown in FIG. Circles C1 and C2 as predicted trajectories to pass are represented in a world coordinate system.
  • the turning radius when turning right is based on the right front wheel 23a.
  • the turning radius when turning left is based on the left front wheel 23b.
  • the circle having the largest turning radius is the circle drawn by the rear corners P1 and P2, which are the outermost rear portions of the reach of the reach type forklift.
  • step S102 in FIG. 5 the controller 61 detects the relative positions of the circles C1, C2 in step S101 and the cameras 71, 72, 73 as shown in FIG. 7, and converts the circles C1, C2 in step S101 into a world coordinate system. Is converted to the camera coordinate system.
  • step S103 of FIG. 5 the controller 61 converts the coordinates of the circles C1 and C2 in step S102 from the camera coordinate system to the monitor coordinate system.
  • step S104 of FIG. 5 the controller 61 superimposes the circles C1 and C2 of step S103 on the camera image, and displays the machine rear corner P1 and P1 on the display unit 63 as shown in FIGS. Display around P2.
  • the circle C1 passing through the rear corner P1 of the machine is expressed in a world coordinate system, and as shown in FIG. 9B.
  • the relative position between the circle C1 and the cameras 71, 72, 73 is detected, and the circle C1 is coordinate-transformed from the world coordinate system to the camera coordinate system.
  • the circle C1 is coordinate-transformed from the camera coordinate system to the monitor coordinate system, the circle C1 is superimposed on the camera image, and further displayed on the display unit 63 as shown in FIG. 9C. That is, a circle C1 is generated and displayed as an expected trajectory of the machine rear corner P1 on the opposite side to the turning direction in which there is a possibility of interference when turning left. This makes it easier for the operator to determine whether or not interference occurs.
  • the circle C2 passing through the rear corner P2 of the machine is expressed in the world coordinate system, the relative positions of the circle C2 and the cameras 71, 72, 73 are detected, and the circle C2 is defined in the world coordinate system.
  • the circle C2 is further converted from the camera coordinate system to the monitor coordinate system, and the circle C2 is superimposed on the camera image and displayed on the display unit 63. That is, a circle C2 is generated and displayed as an expected trajectory of the machine rear corner P2 on the opposite side to the turning direction in which there is a possibility of interference when turning right. This makes it easier for the operator to determine whether or not interference occurs.
  • the controller 61 determines the circles (C1, C2) as the expected trajectory of the machine rear corners (P1, P2) on the opposite side to the turning direction based on the current steering angle. ). Then, the controller 61 causes the display unit 63 to display the image superimposed on the images captured by the cameras 71, 72, and 73.
  • the controller 61 as a trajectory superimposing unit prior to the in-place turn of the reach type forklift 20 turning at the maximum steering wheel angle, based on the current steering angle, the machine rear corner (P1, The circle (C1, C2) as the predicted trajectory of P2) is generated and superimposed on the images captured by the cameras 71, 72, 73 and displayed on the display unit 63.
  • Circles C1 and C2 as predicted trajectories of the rear corners P1 and P2 of the machine are superimposed and displayed on the camera image.
  • the reach-type forklift 20 is often used in a relatively narrow place because of a small turning radius in rear wheel steering. Therefore, if the turning radius is not correctly predicted and judged, there is a possibility that the turning object may come into contact with a surrounding object at the time of turning. In particular, when operating the reach-type forklift 20 by remote operation, the operator must predict and judge the turning radius of the reach-type forklift 20 from the camera image, and it is difficult to make a correct judgment as compared with the manned operation. .
  • the machine platform 21 is provided with the cargo handling device 28 and the reach type forklift 20 is provided with the wireless unit 52 and the wireless device 54 as a vehicle communication unit.
  • wireless devices 64 and 65 as operating device communication units that perform wireless communication with the wireless unit 52 and the wireless device 54 as a vehicle communication unit, and remotely operate the traveling of the reach-type forklift 20 and cargo handling by the cargo handling device 28.
  • a remote control device 40 used for Cameras 71, 72, 73 mounted on the reach-type forklift 20 to capture images around the reach-type forklift 20, and provided on the remote control device 40 for displaying images captured by the cameras 71, 72, 73.
  • the display unit 63 is provided. Prior to the turn of the reach type forklift 20, circles (C1, C2) are generated as expected trajectories of the rear corners (P1, P2) of the machine opposite to the turning direction based on the current steering angle, and the camera (71). , 72, 73) is provided with a controller 61 as a trajectory superimposing unit to be superimposed on the image picked up by the display unit 63 and displayed on the display unit 63. Therefore, when turning the reach type forklift 20, it is possible to easily understand the relationship with the interference target (such as an obstacle).
  • the interference target such as an obstacle
  • the reach type forklift 20 has a tip P11 of a right fork 30a and a tip P12 of a left fork 30b.
  • step S201 when turning at the maximum steering wheel angle (when turning on the spot), the controller 61 passes through the machine rear corners P1 and P2 as shown in FIG.
  • the circles C1 and C2 as the expected trajectories and the circles C11 and C12 as the expected trajectories through which the fork tips P11 and P12 pass are expressed in the world coordinate system.
  • the turning radius when turning right is based on the right front wheel 23a.
  • the turning radius when turning left is based on the left front wheel 23b.
  • the circles C11 and C12 through which the fork tips P11 and P12 pass vary depending on the in-out state of the reach (position in the front-rear direction of the mast 29).
  • the controller 61 detects the relative positions of the circles C1, C2, C11, and C12 in Step S201 and the cameras 71, 72, and 73 in Step S202 in FIG. , C11, C12 from the world coordinate system to the camera coordinate system.
  • step S203 the controller 61 converts the coordinates of the circles C1, C2, C11, and C12 in step S202 from the camera coordinate system to the monitor coordinate system.
  • step S204 the controller 61 superimposes the circles C1, C2, C11, and C12 in step S203 on the camera image, and displays the machine image on the display unit 63 as shown in FIGS. 13A, 13B, and 13C. The front and the vicinity of the rear corners P1, P2 of the machine are displayed.
  • a circle C1 passing through the rear corner P1 of the machine and a circle C11 passing through the tip P11 of the fork are expressed in the world coordinate system.
  • the relative positions of the circles C1, C11 and the cameras 71, 72, 73 are detected, and the coordinates of the circles C1, C11 are transformed from the world coordinate system to the camera coordinate system.
  • the circles C1 and C11 are coordinate-transformed from the camera coordinate system to the monitor coordinate system, and the circles C1 and C11 are superimposed on the camera image and displayed on the display unit 63 as shown in FIG.
  • the circles C2 and C12 through which the machine rear corner P2 and the fork tip P12 pass are represented in the world coordinate system, and the relative positions of the circles C2 and C12 and the cameras 71, 72 and 73 are determined.
  • the circles C2 and C12 are detected and coordinate-transformed from the world coordinate system to the camera coordinate system. Further, the coordinates of the circles C2 and C12 are converted from the camera coordinate system to the monitor coordinate system, and the circles C2 and C12 are superimposed on the camera image and displayed on the display unit 63.
  • the guide display of the machine turning range in the present embodiment will be described with reference to FIGS.
  • the circle passing through the rear corners P1, P2 of the machine stand and the tip ends P11, P12 of the fork is superimposed on the camera image as a guide display. indicate. That is, the turning radius of the turning radius at the time of turning left (based on the front left wheel) and the turning radius at the time of turning right (based on the front right wheel) is the largest at the rear corner P1 which is the outermost rear portion of the forklift. , P2.
  • the turning radius (circle C1) of the machine rear corner P1 and the turning radius (circle C11) of the fork tip P11 are displayed.
  • the clearance of the fork tip P11 is reduced. It is sufficient if there is a clearance corresponding to the turning radius (circle C11).
  • the turning radius is the largest at the rear corner P1 of the machine, so that the machine is located in the area where the rear corner P1 of the machine passes.
  • a clearance is required for the turning radius (circle C1) of the rear corner P1.
  • the predicted turning trajectory (circles C1, C11) of the machine base rear corner P1 and the fork tip P11 is displayed.
  • the controller 61 as a trajectory superimposing unit uses the tip of the fork (P11) of the pair of left and right forks 30a, 30b opposite to the turning direction based on the current steering angle.
  • P12) are further generated as circles (C11, C12) as predicted trajectories, and are superimposed on images captured by the cameras (71, 72, 73) and displayed on the display unit 63. Therefore, the circles C11 and C12 are displayed as the predicted trajectories of the tips P11 and P12 of the forks 30a and 30b, so that the relationship with the interference object can be more easily understood when the reach type forklift 20 turns. .
  • the controller 61 determines a circle as an expected trajectory of the machine rear corner P1 on the opposite side to the turning direction based on the current steering angle.
  • a circle C51 as an expected trajectory of C1 and the reach leg front corner P51 (or the center of the front wheel axis) is generated. Then, the controller 61 superimposes the images captured by the cameras 71, 72, 73 on the display unit.
  • FIG. 18A when the front wheels 23a and 23b do not protrude from the reach legs 22a and 22b, circles C51 and C52 are displayed as predicted turning trajectories of the reach leg front corners P51 and P52.
  • FIG. 18B when the front wheels 23a, 23b are protruding from the reach legs 22a, 22b, circles C61, C62 are displayed as predicted turning trajectories of the front wheel axis centers P61, P62.
  • the turning radius is the largest at the machine rear corner P1 and the machine rear corner P1
  • the circle C1 is displayed as the expected turning trajectory of the vehicle.
  • the controller 61 serving as a trajectory superimposing unit is a side opposite to the turning direction of the pair of left and right reach legs 22a and 22b arranged on the front side of the machine based on the current steering angle.
  • the controller 61 serving as a trajectory superimposing unit is a side opposite to the turning direction of the pair of left and right reach legs 22a and 22b arranged on the front side of the machine based on the current steering angle.
  • the circle (C51, C52) as the expected trajectory of the front corners (P51, P52) of the reach leg or the left and right front wheels 23a, 23b provided on the pair of left and right reach legs 22a, 22b arranged on the front side of the machine base.
  • a circle (C61, C62) is further generated as an expected trajectory of the axis center (P61, P62) of the front wheel on the side opposite to the turning direction, and is superimposed on an image captured by the camera (71, 72, 73). It is displayed on the display unit 63. Therefore, the predicted trajectory of the reach legs 22a and 22b or the predicted trajectory of the front wheels 23a and 23b is displayed, so that the relationship with the interference object can be more easily understood when the reach type forklift 20 turns.
  • the lift bracket 31 is provided with a pallet sensor Sp for detecting the pallet 80 (see FIG. 19).
  • the pallet sensor Sp detects that the forks 30a, 30b are inserted into the pallet 80 (see FIG. 19).
  • a contact sensor that is turned on when the pallet comes into contact can be used.
  • the controller 61 controls the circles C1, C2 through which the machine rear corners P1, P2 pass and the front corner of the pallet 80. Circles C21 and C22 as predicted trajectories through which P21 and P22 pass are expressed in a world coordinate system.
  • the controller 61 detects the relative positions of the circles C1, C2, C21, C22 and the cameras 71, 72, 73, and converts the coordinates of the circles C1, C2, C21, C22 from the world coordinate system to the camera coordinate system.
  • the controller 61 converts the coordinates of the circles C1, C2, C21, and C22 from the camera coordinate system to the monitor coordinate system.
  • the controller 61 superimposes the circles C1, C2, C21, and C22 on the camera image, and displays the front and the rear corners of the machine on the display unit 63 as shown in FIGS. The vicinity of P1 and P2 is displayed.
  • FIG. 21A a circle C1 passing through the rear corner P1 of the machine base and a circle C21 passing through the front corner P21 of the pallet 80 are represented in the world coordinate system.
  • FIG. 21 (b) the relative positions of the circles C1, C21 and the cameras 71, 72, 73 are detected, and the circles C1, C21 are coordinate-transformed from the world coordinate system to the camera coordinate system, and the circle C1 is detected.
  • C21 are converted from the camera coordinate system to the monitor coordinate system, and the circles C1 and C21 are superimposed on the camera image and displayed on the display unit 63 as shown in FIG.
  • the circles C2 and C22 passing through the rear corner P2 of the machine and the front corner P22 of the pallet are represented in the world coordinate system, and the relative positions of the circles C2 and C22 and the cameras 71, 72 and 73 are determined. Is detected, and the coordinates of the circles C2 and C22 are converted from the world coordinate system to the camera coordinate system. Then, the coordinates of the circles C2 and C22 are converted from the camera coordinate system to the monitor coordinate system, and the circles C2 and C22 are superimposed on the camera image and displayed on the display unit 63.
  • the circles C21 and C22 that the pallet front corners P21 and P22 pass at the time of turning instead of the fork tips P11 and P12 are displayed as guides.
  • the presence or absence of the pallet 80 is confirmed by the pallet sensor Sp at the root of the forks 30a, 30b. Since the size of the pallet 80 is determined by JIS (Japanese Standard), the turning radii of the front corners P21 and P22 of the pallet can be calculated. It is also assumed that the forks 30a, 30b have been inserted into the pallet 80 up to the root. Therefore, the turning radius can be easily recognized even during pallet conveyance. Even if the pallet is out of standard, the circles C21 and C22 can be generated and displayed if the size is known in advance.
  • the turning radius is the largest at the machine rear corner P1, and the machine rear corner P1 A circle C1 is displayed as a predicted turning trajectory.
  • a tangent Lg to a position Pm where the rear corner of the machine swells most in a locus (C1 in FIG. 22) through which the rear corner of the machine passes is displayed. Is also good.
  • the turning radius (circle C1) is the largest at the rear corner P1 of the machine, so that the machine rear angle. In the area where the portion P1 passes, clearance is required by the turning radius (C1) of the machine rear corner P1. On the other hand, in an area where the rear corner P1 of the machine does not pass, it is sufficient if there is a clearance corresponding to the turning radius (circle C21) of the front corner P21 of the pallet. In this way, the circles C1 and C21 are displayed as predicted turning trajectories of the machine base rear corner P1 and the pallet front corner P21. By performing the guide display in this way, it is possible to easily determine whether or not facing is possible without interference (contact) with an obstacle.
  • the controller 61 as a track superimposing unit determines a circle (P21, P22) as a predicted track of the pallet front corners (P21, P22) on the opposite side to the turning direction based on the current steering angle.
  • C21, C22) are further generated and superimposed on the images captured by the cameras (71, 72, 73) and displayed on the display unit 63. Therefore, since the circles C21 and C22 are displayed as the predicted trajectories of the pallet front corners P21 and P22, the relationship with the interference object can be more easily understood when the reach type forklift 20 turns.
  • the controller 61 serving as the trajectory superimposing unit precedes the turning of the reach-type forklift 20 and, based on the current steering angle, the front of the pallet opposite to the turning direction.
  • Circles (C21, C22) as predicted trajectories of the corners (P21, P22) are further generated, and are superimposed on images captured by the cameras (71, 72, 73) and displayed on the display unit 63. Therefore, when the pallet 80 is detected as the forks 30a, 30b are inserted into the pallet 80, circles C21, C22 are displayed as the expected trajectories of the pallet front corners P21, P22. It is possible to make the relationship with the object easier to understand.
  • the controller 61 controls the rear of the machine on the opposite side to the turning direction according to a turn (steering angle) command value.
  • a circle (C1, C2) is generated as an expected trajectory of the corner (P1, P2).
  • the controller 61 generates circles (C51, C52) as predicted trajectories of the front corners (P51, P52) of the reach legs in the turning direction in the pair of left and right reach legs 22a, 22b arranged on the front side of the machine base 21.
  • the controller 61 causes the display unit 63 to display the image superimposed on the images captured by the cameras 71, 72, and 73.
  • the turning radius becomes the largest at the machine rear corners (P1, P2) on the opposite side to the turning direction and the turning radius becomes the smallest.
  • the front corners (P51, P52) of the reach leg in the turning direction, or the front wheels see FIGS. 18A and 18B.
  • An expected turning trajectory of the rear corners of the machine (P1, P2) opposite to the turning direction and the front corners (P51, P52) of the reach leg in the turning direction or the axis center of the front wheel is generated and displayed.
  • the circles C51, C52 (or circles C61, C62) as the expected turning trajectories of the reach leg front corners P51, P52 (or the front wheel shaft centers P61, P62) and the estimated turning trajectories of the machine rear corners P1, P2.
  • the region Z1 sandwiched between the circles C1 and C2 is displayed on the display unit 63 so as to be distinguished from other regions. For example, by giving the area Z1 a different color than the other areas or adding a different shade to the other areas, the area Z1 is an area through which the machine passes, and the determination of interference (contact) with an obstacle is made. Make it easier to do.
  • the turning radius is maximum at the machine rear corners (P1, P2) opposite to the turning direction, and the turning radius is minimum at the turning direction. It is a pallet front corner (P21, P22).
  • the controller 61 predicts the turning trajectory of the machine rear corners (P1, P2) opposite to the turning direction and the pallet front corners (P21, P22) in the turning direction according to the turning (steering angle) command value. Circles C1, C2, C21, and C22 are generated and displayed.
  • An area Z2 sandwiched between circles C21 and C22 as predicted turning trajectories of pallet front corners P21 and P22 and circles C1 and C2 as predicted turning trajectories of machine rear corners P1 and P2 is different from other areas.
  • the information is displayed on the display unit 63 so as to be distinguished. For example, by giving a different color to the area Z2 than to the other areas, or by adding a shade to the other areas, the area Z2 is an area through which the machine passes, and the determination of interference (contact) with an obstacle is made. Make it easier to do.
  • the controller 61 as the trajectory superimposing unit includes the circle (C21, C22) as the predicted turning trajectory of the pallet front corners (P21, P22) in the turning direction, and the turning direction.
  • the area Z2 sandwiched between the circles (C1, C2) as the expected trajectory of the rear corners (P1, P2) of the machine on the opposite side is displayed on the display unit 63 so as to be distinguished from other areas. Therefore, when the reach type forklift 20 turns, the relationship with the interference target can be more easily understood.
  • the controller 61 serving as the trajectory superimposing unit determines the circles (C51, C52) as the predicted trajectories of the front corners (P51, P52) in the reach legs (22a, 22b) in the turning direction.
  • the region Z1 sandwiched between the circles (C1, C2) as the expected trajectory is displayed on the display unit 63 so as to be distinguished from other regions. Therefore, when the reach type forklift 20 turns, the relationship with the interference target can be more easily understood.
  • the trajectory superimposition unit determines whether the tip or the turning direction of the fork on the opposite side of the turning direction of the pair of left and right forks is based on the current steering angle. May be generated by further generating an expected trajectory of the front corner of the pallet on the opposite side and superimposing the trajectory on the image captured by the camera, and displaying the same on the display unit.
  • the forklift is a reach type forklift, but is not limited thereto, and may be a forklift other than the reach type forklift.
  • the forklift since there is no reach leg, an expected turning trajectory around the front wheel axis is always displayed.
  • the counter-type forklift 90 includes a machine base 91 and a cargo handling device 92.
  • the counter type forklift 90 includes a right front wheel 93a, a left front wheel 93b, a right rear wheel 94a, and a left rear wheel 94b.
  • the right front wheel 93a has an axial center P71.
  • the left front wheel 93b has an axial center P72.
  • the controller 61 as a trajectory superimposing unit determines, based on the current steering angle, a circle as an expected trajectory of the axial center of the front wheel of the left and right front wheels 93a and 93b that is opposite to the turning direction.
  • C71, C72) may be further generated and superimposed on the images captured by the cameras 71, 72, 73 and displayed on the display unit 63.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

リーチ式フォークリフト(20)に搭載され、リーチ式フォークリフト(20)の周囲を撮像するカメラ(71,72,73)と、遠隔操作装置(40)に設けられ、カメラ(71,72,73)にて撮像された画像を表示するための表示部(63)と、リーチ式フォークリフト(20)の旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部の予想軌跡を生成してカメラ(71,72,73)にて撮像された画像に重畳して表示部(63)で表示させるコントローラ(61)と、を備える。

Description

フォークリフト用遠隔操作システム
 本発明は、フォークリフト用遠隔操作システムに関するものである。
 特許文献1に開示の作業車両の後方周辺監視装置においては、後輪の操舵角に基づいて車両本体の旋回中心を求め、旋回中心のデータに基づいて左右の後輪の進行軌跡を演算し、撮像された撮像データにより車体画像の周囲に対応して配置された後方画像部、左側方画像部および右側方画像部を有する俯瞰画像を形成する。そして、進行軌跡を俯瞰画像に重畳表示して合成画像を作成して、操縦席に配置されたバックアラウンドモニタ装置において合成画像を左右の後輪の拡大画像にして表示する。
特開2014-239357号公報
 ところで、フォークリフト用遠隔操作システムにおいて、特許文献1の技術を用いた場合、所定距離だけ進んだ位置の後輪の進行軌跡を重畳するだけでは構造物(障害物)との干渉が分かりにくい。
 本発明の目的は、フォークリフトの旋回の際に干渉対象物との関係を分かりやすくすることができるフォークリフト用遠隔操作システムを提供することにある。
 上記問題点を解決するためのフォークリフト用遠隔操作システムは、機台に荷役装置を備えるとともに車両通信部を有するフォークリフトと、前記車両通信部と無線通信を行う操作装置通信部を有し、前記フォークリフトの走行および前記荷役装置による荷役を遠隔操作するのに用いられる遠隔操作装置と、を備えたフォークリフト用遠隔操作システムであって、前記フォークリフトに搭載され、前記フォークリフトの周囲を撮像するカメラと、前記遠隔操作装置に設けられ、前記カメラにて撮像された画像を表示するための表示部と、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部の予想軌跡を生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させる軌跡重畳部と、を備えることを要旨とする。
 これによれば、フォークリフトの旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部の予想軌跡が生成され、カメラにて撮像された画像に重畳して表示部で表示される。よって、フォークリフトの旋回の際に干渉対象物との関係を分かりやすくすることができる。
 また、フォークリフト用遠隔操作システムについて、前記軌跡重畳部は、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき左右一対のフォークのうちの旋回方向とは逆側のフォークの先端部または旋回方向とは逆側のパレット前角部の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させるとよい。
 また、フォークリフト用遠隔操作システムについて、前記軌跡重畳部は、パレットセンサがフォークにパレットを検出すると前記フォークリフトの旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側のパレット前角部の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させるとよい。
 また、フォークリフト用遠隔操作システムについて、前記フォークリフトは、リーチ式フォークリフトであり、前記軌跡重畳部は、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき機台前側に配した左右一対のリーチレグのうちの旋回方向とは逆側のリーチレグの前側角部の予想軌跡または機台前側に配した左右一対のリーチレグに設けられた左右の前輪のうちの旋回方向とは逆側の前輪の軸中心の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させるとよい。
 また、フォークリフト用遠隔操作システムについて、前記軌跡重畳部は、旋回方向のパレット前角部の予想軌跡と、旋回方向とは逆側の機台後角部の予想軌跡とで挟まれた領域を、他の領域と区別するように前記表示部で表示させるとよい。
 また、フォークリフト用遠隔操作システムについて、前記軌跡重畳部は、旋回方向のリーチレグにおける前側角部の予想軌跡または旋回方向の前輪の軸中心の予想軌跡と、旋回方向とは逆側の機台後角部の予想軌跡とで挟まれた領域を、他の領域と区別するように前記表示部で表示させるとよい。
 また、フォークリフト用遠隔操作システムについて、前記フォークリフトは、カウンタ式フォークリフトであり、前記軌跡重畳部は、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき左右の前輪のうちの旋回方向とは逆側の前輪の軸中心の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させるとよい。
 本発明によれば、フォークリフトの旋回の際に干渉対象物との関係を分かりやすくすることができる。
フォークリフト用遠隔操作システムの電気的構成を示すブロック図。 リーチ式フォークリフトを示す概略側面図。 リーチ式フォークリフトの一部を破断して示す概略斜視図。 リーチ式フォークリフトを模式的に示す平面図。 第1の実施形態でのフローチャート。 リーチ式フォークリフトを模式的に示す平面図。 リーチ式フォークリフトを模式的に示す平面図。 (a),(b)は表示部での表示内容を示す図。 (a)はリーチ式フォークリフトを模式的に示す平面図、(b)はリーチ式フォークリフトを模式的に示す平面図、(c)は表示部での表示内容を示す図。 第2の実施形態でのフローチャート。 リーチ式フォークリフトを模式的に示す平面図。 リーチ式フォークリフトを模式的に示す平面図。 (a),(b),(c)は表示部での表示内容を示す図。 (a)はリーチ式フォークリフトを模式的に示す平面図、(b)はリーチ式フォークリフトを模式的に示す平面図、(c)は表示部での表示内容を示す図。 リーチ式フォークリフトおよびその周辺を模式的に示す平面図。 リーチ式フォークリフトおよびその周辺を模式的に示す平面図。 第3の実施形態でのリーチ式フォークリフトおよびその周辺を模式的に示す平面図。 (a),(b)は第3の実施形態でのリーチ式フォークリフトを模式的に示す平面図。 第4の実施形態でのリーチ式フォークリフトを模式的に示す平面図。 (a),(b),(c)は表示部での表示内容を示す図。 (a)はリーチ式フォークリフトを模式的に示す平面図、(b)はリーチ式フォークリフトを模式的に示す平面図、(c)は表示部での表示内容を示す図。 リーチ式フォークリフトおよびその周辺を模式的に示す平面図。 リーチ式フォークリフトおよびその周辺を模式的に示す平面図。 第5の実施形態でのリーチ式フォークリフトおよびその周辺を模式的に示す平面図。 第5の実施形態でのリーチ式フォークリフトおよびその周辺を模式的に示す平面図。 別例のカウンタ式フォークリフトを示す概略側面図。 カウンタ式フォークリフトを模式的に示す平面図。
第1の実施形態
 以下、本発明を具体化した一実施形態を図面に従って説明する。
 図1に示すように、フォークリフト用遠隔操作システム10は、リーチ式フォークリフト20と、リーチ式フォークリフト20の走行および荷役装置による荷役を遠隔操作するのに用いられる遠隔操作装置40と、を備えている。リーチ式フォークリフト20は作業場に配置される。そして、遠隔操作装置40を用いて操作室から作業場のリーチ式フォークリフト20を遠隔操作することができるようになっている。
 作業場においてパレット等から離れた場所にリーチ式フォークリフト20が位置している。この状態から、操作者はリーチ式フォークリフト20を遠隔操作して、リーチ式フォークリフト20をパレット等に近づけてフォークをパレット穴に差し込む動作等を行わせる。
 図2、図3に示すように、リーチ式フォークリフト20は機台21を備える。機台21の前側には左右一対のリーチレグ22a,22bが配置され、リーチレグ22a,22bは前方に向かって延びている。詳しくは、リーチレグ22aは進行方向右側に設けられ、リーチレグ22bは進行方向左側に設けられている。リーチレグ22a,22bの前部には前輪23a,23bが配設されている。詳しくは、右前輪23aは進行方向右側のリーチレグ22aに設けられ、左前輪23bは進行方向左側のリーチレグ22bに設けられている。このように、機台21の前側に左右一対の前輪23a,23bが設けられている。
 機台21の後部には、後輪24とキャスタホイール(補助輪)25が配設されている。後輪24は機台21の左方に設けられており、キャスタホイール25は機台21の右方に設けられている。後輪24は、駆動輪および操舵輪である。
 図2に示すように、リーチ式フォークリフト20は、2つの前輪23a,23b、および、1つの後輪24の3つの車輪で走行する。機台21には、リーチ式フォークリフト20の駆動源となる走行モータ26と、走行モータ26の電力源となるバッテリ27が搭載されている。そして、後輪24が走行モータ26により回転駆動される。
 リーチ式フォークリフト20は、機台21の前方に、荷役装置28を備える。荷役装置28は、リーチシリンダ(図示せず)の駆動により、各リーチレグ22a,22bに沿って前後動作するマスト29を備える。マスト29の前方には、左右一対のフォーク30a,30bがリフトブラケット31を介して設けられている。フォーク30a,30bは、マスト29に沿って昇降する。
 本実施形態のリーチ式フォークリフト20は、運転者が着座して操作することが可能に構成されている。なお、運転席の無い無人リーチ式フォークリフトであってもよい。
 図3に示すように、リーチ式フォークリフト20は、立席タイプの運転室32を機台21の後部に備える。運転室32の前方および左方には、ステアリングテーブル33a,33bが設けられている。運転室32の前方に位置するステアリングテーブル33aには、リーチ式フォークリフト20を走行動作させるディレクションレバー34、荷役装置28を動作させる複数の荷役レバー35が設けられている。ディレクションレバー34は、後輪24を回転駆動させて車両を走行させるべく操作される。運転室32の左方に位置するステアリングテーブル33bには、後輪24の操舵を行うハンドル36が設けられている。また、運転室32の床面にはブレーキペダル37が備えられている。
 運転室32は、機台21において立設された2本のピラー38と、ピラー38の上端に固定されたヘッドガード39とにより囲まれている。
 図1に示すように、リーチ式フォークリフト20は、フォークリフト搭載機器50として、コントローラ51と、車両通信部としての無線ユニット52と、画像処理部53と、車両通信部としての無線機54と、カメラ71,72,73を有する。
 遠隔操作装置40は、コントローラ61と、操作部62と、表示部(モニタ)63と、操作装置通信部としての無線機64,65を有する。遠隔操作装置40において、操作室側機器60として、コントローラ61と操作部62と表示部(モニタ)63を備える。
 遠隔操作装置40の無線機64は作業場に配置されている。また、遠隔操作装置40の無線機65は作業場に配置されている。操作室に配置されるコントローラ61は有線L1により作業場に配置した無線機64と接続されている。コントローラ61は有線L2により作業場に配置した無線機65と接続されている。
 作業場において、遠隔操作装置40の無線機64とフォークリフト搭載機器50の無線ユニット52とは双方向に無線通信できる。また、作業場において、フォークリフト搭載機器50の無線機54から遠隔操作装置40の無線機65に無線で通信できる。
 このようにして、リーチ式フォークリフト20は無線ユニット52および無線機54を有し、遠隔操作装置40は、無線ユニット52および無線機54と無線通信を行う無線機64,65を有する。
 遠隔操作装置40のコントローラ61は操作部62および表示部(モニタ)63と接続されている。操作部62は、操作者によりリーチ式フォークリフト20を遠隔操作するためのものであり、操作者によるリーチ式フォークリフト20の操作内容(リフト、リーチ、ティルトの操作指令値、および、速度、加速度、操舵角の操作指令値等)がコントローラ61に送られる。コントローラ61は、リフト、リーチ、ティルトの操作指令値、および、速度、加速度、操舵角の操作指令値等の車両制御信号を、無線機64を介してフォークリフト搭載機器50の無線ユニット52に無線送信する。
 フォークリフト搭載機器50において、コントローラ51と無線ユニット52と画像処理部53とは、それぞれ相互に通信(例えばCAN通信)可能に接続されている。コントローラ51は遠隔操作装置40側からの指示により走行系アクチュエータ(走行モータ26、図示しない操舵モータ等)および荷役系アクチュエータ(図示しないリフトシリンダ、リーチシリンダ、ティルトシリンダ等)を駆動することができる。
 無線ユニット52は、リーチ式フォークリフト20の車速等の車両情報、異常情報(障害物検知情報等)を、無線機64を介してコントローラ61に無線送信する。
 図1において、コントローラ61は、無線機64、無線ユニット52およびコントローラ51を介してリーチ式フォークリフト20の走行および荷役装置28による荷役を遠隔操作することができるようになっている。つまり、図3での操作部(ディレクションレバー34、荷役レバー35、ハンドル36、ブレーキペダル37等)に代わり遠隔操作装置40の操作部62により遠隔操作することができるようになっている。
 そして、遠隔操作装置40において、操作部62を用いて操作者が所望の操作を行うとコントローラ61により操作内容が無線機64を介してリーチ式フォークリフト20側に送られる。リーチ式フォークリフト20において、無線ユニット52で遠隔操作装置40からの操作内容が受信され、コントローラ51によりアクチュエータ部が駆動されて所望の動作が実行される。
 図4に示すように、リーチ式フォークリフト20は、機台21において右の後角部P1および左の後角部P2を有する。
 図2および図4に示すように、リーチ式フォークリフト20においてヘッドガード39の前部にカメラ71が前方下方を向くように取り付けられており、カメラ71は、リーチ式フォークリフト20の周囲を撮像する。具体的には、カメラ71は、リーチ式フォークリフト20の進行方向前方の床面を撮像する。また、リーチ式フォークリフト20においてヘッドガード39の右側後部にカメラ72が下方を向くように取り付けられており、カメラ72は、リーチ式フォークリフト20の周囲を撮像する。具体的には、カメラ72は、機台21の右の後角部P1付近を上から撮像する。リーチ式フォークリフト20においてヘッドガード39の左側後部にカメラ73が下方を向くように取り付けられており、カメラ73は、リーチ式フォークリフト20の周囲を撮像する。具体的には、カメラ73は、機台21の左の後角部P2付近を上から撮像する。
 図1に示すように、リーチ式フォークリフト20において、カメラ71,72,73により撮像された画像はコントローラ51により画像処理部53および無線機54を介して遠隔操作装置40側に送られる。遠隔操作装置40において、無線機65でリーチ式フォークリフト20からのカメラ画像が受信されてコントローラ61により表示部63で表示される。表示部63は、例えばディスクトップ型ディスプレイである。
 遠隔操作装置40に設けられる表示部63において、カメラ71,72,73にて撮像された画像が表示される。操作者は表示部63におけるカメラ71,72,73の画像を見ながら操作することになる。
 次に、作用について説明する。
 図5に示すように、コントローラ61は、ステップS101において、最大ハンドル角で旋回する際に(その場旋回する際に)、図6で示すように、機台21の後角部P1,P2が通過する予想軌跡としての円C1,C2をワールド座標系で表現する。右旋回時の旋回半径は右前輪23aが基準となる。左旋回時の旋回半径は左前輪23bが基準となる。また、旋回半径が最大となるのはリーチ式フォークリフトの機台後方部の一番外側である後角部P1,P2が描く円である。
 コントローラ61は、図5のステップS102において、図7に示すように、ステップS101の円C1,C2とカメラ71,72,73の相対位置を検出し、ステップS101の円C1,C2をワールド座標系からカメラ座標系に座標変換する。コントローラ61は、図5のステップS103において、ステップS102の円C1,C2をカメラ座標系からモニタ座標系に座標変換する。コントローラ61は、図5のステップS104において、カメラ画像にステップS103の円C1,C2を重畳して、図8(a),(b)に示すように表示部63で機台後角部P1,P2付近を表示させる。
 より具体的には、左旋回時においては、図9(a)に示すように、機台後角部P1が通過する円C1をワールド座標系で表現し、図9(b)に示すように、円C1とカメラ71,72,73の相対位置を検出し、円C1をワールド座標系からカメラ座標系に座標変換する。さらに、円C1をカメラ座標系からモニタ座標系に座標変換してカメラ画像に円C1を重畳し、さらに、図9(c)に示すように表示部63で表示させる。即ち、左旋回する時に干渉の可能性がある旋回方向とは逆側の機台後角部P1の予想軌跡としての円C1を生成
して表示する。これにより操作者は干渉するか否かを判断しやすい。
 一方、右旋回時においては、機台後角部P2が通過する円C2をワールド座標系で表現し、円C2とカメラ71,72,73の相対位置を検出し、円C2をワールド座標系からカメラ座標系に座標変換し、さらに、円C2をカメラ座標系からモニタ座標系に座標変換してカメラ画像に円C2を重畳して表示部63で表示させる。即ち、右旋回する時に干渉の可能性がある旋回方向とは逆側の機台後角部P2の予想軌跡としての円C2を生成して表示する。これにより操作者は干渉するか否かを判断しやすい。
 このように、コントローラ61は、リーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部(P1,P2)の予想軌跡としての円(C1,C2)を生成する。そして、コントローラ61は、カメラ71,72,73にて撮像された画像に重畳して表示部63で表示させる。
 詳しくは、軌跡重畳部としてのコントローラ61は、最大ハンドル角で旋回するリーチ式フォークリフト20のその場旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部(P1,P2)の予想軌跡としての円(C1,C2)を生成してカメラ71,72,73にて撮像された画像に重畳して表示部63で表示させる。
 以下、詳しく説明する。
 機台後角部P1,P2の予想軌跡としての円C1,C2をカメラ画像に重畳して表示する。リーチ式フォークリフト20は、後輪操舵で旋回半径が小さいことから、比較的狭い場所で使用されることが多い。そのため、旋回半径を正しく予想・判断しないと旋回時に周囲の物に接触する可能性がある。特に遠隔操作でリーチ式フォークリフト20を操作する場合、操作者はカメラ画像からリーチ式フォークリフト20の旋回半径を予想・判断しなければならず、有人操作時と比較して、正しい判断が困難となる。そこで、現在地から最大ハンドル角でリーチ式フォークリフト20を旋回する、いわゆる、その場旋回を行う際に、機台後角部P1,P2が通過する円C1,C2をガイド表示としてカメラ画像に重畳して表示する。
 このようにして、現在地から最大ハンドル角でリーチ式フォークリフトを旋回する際、即ち、その場旋回する際に、機台後角部P1,P2が通過する予想軌跡としての円C1,C2をガイド表示としてカメラ画像に重畳して表示する。よって、機台後角部P1,P2の予想軌跡としての円C1,C2(旋回半径)の認識が容易となり、遠隔操作による旋回時の安全性が向上する。
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)フォークリフト用遠隔操作システム10の構成として、機台21に荷役装置28を備えるとともに車両通信部としての無線ユニット52および無線機54を有するリーチ式フォークリフト20を備える。また、車両通信部としての無線ユニット52および無線機54と無線通信を行う操作装置通信部としての無線機64,65を有し、リーチ式フォークリフト20の走行および荷役装置28による荷役を遠隔操作するのに用いられる遠隔操作装置40を備える。リーチ式フォークリフト20に搭載され、リーチ式フォークリフト20の周囲を撮像するカメラ71,72,73と、遠隔操作装置40に設けられ、カメラ71,72,73にて撮像された画像を表示するための表示部63を備える。リーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部(P1,P2)の予想軌跡としての円(C1,C2)を生成してカメラ(71,72,73)にて撮像された画像に重畳して表示部63で表示させる軌跡重畳部としてのコントローラ61を備える。よって、リーチ式フォークリフト20の旋回の際に干渉対象物(障害物等)との関係を分かりやすくすることができる。
 (2)リーチ式フォークリフト20の旋回は、その場旋回である。よって、その場旋回に先立ち、機台後角部P1,P2の予想軌跡としての円C1,C2が表示されるので、リーチ式フォークリフト20のその場旋回の際に干渉対象物との関係を分かりやすくすることができる。
第2の実施形態
 次に、第2の実施形態を、第1の実施形態との相違点を中心に説明する。
 図4に示すように、リーチ式フォークリフト20は、右のフォーク30aの先端部P11および左のフォーク30bの先端部P12を有する。
 図10に示すように、コントローラ61は、ステップS201において、最大ハンドル角で旋回する際に(その場旋回する際に)、図11で示すように、機台後角部P1,P2が通過する予想軌跡としての円C1,C2およびフォークの先端部P11,P12が通過する予想軌跡としての円C11,C12をワールド座標系で表現する。右旋回時の旋回半径は右前輪23aが基準となる。左旋回時の旋回半径は左前輪23bが基準となる。また、フォーク先端部P11,P12が通過する円C11,C12はリーチのイン・アウトの状態(マスト29の前後方向での位置)で変化する。
 コントローラ61は、図10のステップS202において、図12に示すように、ステップS201の円C1,C2,C11,C12とカメラ71,72,73の相対位置を検出し、ステップS201の円C1,C2,C11,C12をワールド座標系からカメラ座標系に座標変換する。コントローラ61は、ステップS203において、ステップS202の円C1,C2,C11,C12をカメラ座標系からモニタ座標系に座標変換する。コントローラ61は、ステップS204において、カメラ画像にステップS203の円C1,C2,C11,C12を重畳して、図13(a),(b),(c)に示すように表示部63で機台前方、機台後角部P1,P2付近を表示させる。
 より具体的には、左旋回時においては、図14(a)に示すように、機台後角部P1が通過する円C1およびフォークの先端部P11が通過する円C11をワールド座標系で表現し、図14(b)に示すように、円C1,C11とカメラ71,72,73の相対位置を検出し、円C1,C11をワールド座標系からカメラ座標系に座標変換する。さらに、円C1,C11をカメラ座標系からモニタ座標系に座標変換してカメラ画像に円C1,C11を重畳して、図14(c)に示すように表示部63で表示させる。一方、右旋回時においては、機台後角部P2およびフォーク先端部P12が通過する円C2,C12をワールド座標系で表現し、円C2,C12とカメラ71,72,73の相対位置を検出し、円C2,C12をワールド座標系からカメラ座標系に座標変換する。さらに、円C2,C12をカメラ座標系からモニタ座標系に座標変換してカメラ画像に円C2,C12を重畳して表示部63で表示させる。
 本実施形態での機台旋回範囲のガイド表示について図15および図16を用いて説明する。
 現在地から最大ハンドル角でフォークリフトを旋回する際に(その場旋回する際に)、機台後角部P1,P2およびフォーク先端部P11,P12が通過する円をガイド表示としてカメラ画像に重畳して表示する。つまり、左折時の旋回半径(左前輪を基準)および右折時の旋回半径(右前輪を基準)について、旋回半径が最大となるのはフォークリフトの機台後部の一番外側である後角部P1,P2が描く円となる。
 機台を360度旋回させる場合は、機台後角部P1,P2の旋回半径の分だけ、機台周囲の障害物とのクリアランスが必要となる。一方、それ以外の場合(例えば機台を90度旋回させる場合)は、必ずしも機台後角部P1,P2の旋回半径分のクリアランスが必要となる訳ではなく、機台後角部P1,P2が通過しないエリアではフォーク先端部P11,P12の旋回半径分のクリアランスがあれば問題ない。よって、機台後角部P1,P2が通過する円だけでなく、フォーク先端部P11,P12が通過する円もガイド表示される。
 図15に示すように、360度左旋回時においては、機台後角部P1の旋回半径(円C1)が表示され、機台の全方向で機台後角部P1の旋回半径分だけ周囲の障害物とのクリアランスが必要となる。
 図16に示すように、90度左旋回時においては、機台後角部P1の旋回半径(円C1)およびフォーク先端部P11の旋回半径(円C11)が表示される。機台後角部P1が通過するエリアでは、機台後角部P1の旋回半径(円C1)分だけ周囲の障害物とのクリアランスが必要であるが、通過しないエリアでは、フォーク先端部P11の旋回半径(円C11)分のクリアランスがあればよい。
 つまり、90度その場旋回してパレットの配置位置へ正対させる際に、旋回半径が最大となるのは機台後角部P1のため、機台後角部P1が通過するエリアでは機台後角部P1の旋回半径(円C1)分だけクリアランスが必要である。一方、機台後角部P1が通過しないエリアではフォーク先端部P11の旋回半径(円C11)分だけクリアランスがあればよい。このように機台後角部P1とフォーク先端部P11の旋回予想軌跡(円C1,C11)が表示される。このようにしてガイド表示することにより障害物に干渉(接触)せずに正対可能かどうかの判断を容易にすることができる。
 本実施形態によれば、上記(1)に加えて、以下のような効果を得ることができる。
 (3)軌跡重畳部としてのコントローラ61は、リーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき左右一対のフォーク30a,30bのうちの旋回方向とは逆側のフォークの先端部(P11,P12)の予想軌跡としての円(C11,C12)を更に生成してカメラ(71,72,73)にて撮像された画像に重畳して表示部63で表示させる。よって、フォーク30a,30bの先端部P11,P12の予想軌跡としての円C11,C12が表示されるので、リーチ式フォークリフト20の旋回の際に干渉対象物との関係をより分かりやすくすることができる。
第3の実施形態
 次に、第3の実施形態を、第2の実施形態との相違点を中心に説明する。
 本実施形態では、図17に示すように、コントローラ61は、リーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部P1の予想軌跡としての円C1およびリーチレグ前側角部P51(若しくは前輪軸中心)の予想軌跡としての円C51を生成する。そして、コントローラ61は、カメラ71,72,73にて撮像された画像に重畳して表示部で表示させる。
 ここで、図18(a)では前輪23a,23bがリーチレグ22a,22bからはみ出していない場合はリーチレグ前側角部P51,P52の旋回予想軌跡としての円C51,C52を表示する。一方、図18(b)に示すように、前輪23a,23bがリーチレグ22a,22bからはみ出している場合は、前輪軸中心P61,P62の旋回予想軌跡としての円C61,C62を表示する。
 具体的には、例えば、図17に示すように、180度その場旋回して方向転換する際に、旋回半径が最大となるのは機台後角部P1であり、機台後角部P1の旋回予想軌跡としての円C1を表示する。このようにガイド表示することにより、障害物に干渉(接触)せずに方向転換可能かどうかの判断を容易にすることができる。
 本実施形態によれば、上記(1)に加えて、以下のような効果を得ることができる。
 (4)軌跡重畳部としてのコントローラ61は、リーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき機台前側に配した左右一対のリーチレグ22a,22bのうちの旋回方向とは逆側のリーチレグの前側角部(P51,P52)の予想軌跡としての円(C51,C52)または機台前側に配した左右一対のリーチレグ22a,22bに設けられた左右の前輪23a,23bのうちの旋回方向とは逆側の前輪の軸中心(P61,P62)の予想軌跡としての円(C61,C62)を更に生成してカメラ(71,72,73)にて撮像された画像に重畳して表示部63で表示させる。よって、リーチレグ22a,22bの予想軌跡または前輪23a,23bの軸中心の予想軌跡が表示されるので、リーチ式フォークリフト20の旋回の際に干渉対象物との関係をより分かりやすくすることができる。
第4の実施形態
 次に、第4の実施形態を、第2の実施形態との相違点を中心に説明する。
 図2に示すように、リフトブラケット31にパレット80(図19参照)を検出するパレットセンサSpが設けられている。コントローラ61において、パレットセンサSpによりフォーク30a,30bがパレット80(図19参照)に差し込まれていることが検知される。パレットセンサSpとして、例えば、パレットが接触するとオンする接触式センサを用いることができる。
 図19に示すように、コントローラ61は、最大ハンドル角で旋回する際に(その場旋回する際に)、機台後角部P1,P2が通過する円C1,C2およびパレット80の前角部P21,P22が通過する予想軌跡としての円C21,C22をワールド座標系で表現する。コントローラ61は、円C1,C2,C21,C22とカメラ71,72,73の相対位置を検出し、円C1,C2,C21,C22をワールド座標系からカメラ座標系に座標変換する。コントローラ61は、円C1,C2,C21,C22をカメラ座標系からモニタ座標系に座標変換する。コントローラ61は、カメラ画像に円C1,C2,C21,C22を重畳して、図20(a),(b),(c)に示すように表示部63で機台前方、機台後角部P1,P2付近を表示させる。
 より具体的には、左旋回時においては、図21(a)に示すように、機台後角部P1が通過する円C1およびパレット80の前角部P21が通過する円C21をワールド座標系で表現する。そして、図21(b)に示すように、円C1,C21とカメラ71,72,73の相対位置を検出し、円C1,C21をワールド座標系からカメラ座標系に座標変換して、円C1,C21をカメラ座標系からモニタ座標系に座標変換し、さらに、カメラ画像に円C1,C21を重畳して、図21(c)に示すように表示部63で表示させる。一方、右旋回時においては、機台後角部P2およびパレット前角部P22が通過する円C2,C22をワールド座標系で表現し、円C2,C22とカメラ71,72,73の相対位置を検出し、円C2,C22をワールド座標系からカメラ座標系に座標変換する。そして、円C2,C22をカメラ座標系からモニタ座標系に座標変換し、さらに、カメラ画像に円C2,C22を重畳して表示部63で表示させる。
 このように、パレット80を搬送している場合は、フォークの先端部P11,P12の代わりにパレット前角部P21,P22が旋回時に通過する円C21,C22をガイド表示する。パレット80の有無はフォーク30a,30bの根元のパレットセンサSpで確認する。パレット80の大きさはJIS(日本標準規格)によって決められているため、パレット前角部P21,P22の旋回半径は算出可能である。また、フォーク30a,30bを根元までパレット80に差し込んでいるものとする。よって、パレット搬送時も旋回半径を容易に認識できる。パレットは規格外のものが用いられても予めサイズが分かっていれば円C21,C22を生成して表示することができる。
 具体的に説明すると、図22に示すように、180度その場旋回して方向転換する際に、旋回半径が最大となるのは機台後角部P1であり、機台後角部P1の旋回予想軌跡としての円C1を表示する。このようにガイド表示することにより、障害物に干渉(接触)せずに方向転換可能かどうかの判断を容易にすることができる。
 ここで、図22において破線で示すように、ガイド表示として、機台後角部が通過する軌跡(図22ではC1)における、機台後角部が最も膨らむ位置Pmの接線Lgを表示してもよい。
 図23に示すように、90度その場旋回してパレットの配置位置へ正対させる際に、旋回半径(円C1)が最大となるのは機台後角部P1のため、機台後角部P1が通過するエリアでは機台後角部P1の旋回半径(C1)だけクリアランスが必要である。一方、機台後角部P1が通過しないエリアではパレット前角部P21の旋回半径(円C21)分だけクリアランスがあればよい。このように機台後角部P1とパレット前角部P21の旋回予想軌跡としての円C1,C21が表示される。このようにしてガイド表示することにより障害物に干渉(接触)せずに正対可能かどうかの判断を容易にすることができる。
 本実施形態によれば、上記(1)に加えて、以下のような効果を得ることができる。
 (5)軌跡重畳部としてのコントローラ61は、リーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側のパレット前角部(P21,P22)の予想軌跡としての円(C21,C22)を更に生成してカメラ(71,72,73)にて撮像された画像に重畳して表示部63で表示させる。よって、パレット前角部P21,P22の予想軌跡としての円C21,C22が表示されるので、リーチ式フォークリフト20の旋回の際に干渉対象物との関係をより分かりやすくすることができる。
 (6)軌跡重畳部としてのコントローラ61は、パレットセンサSpがフォーク30a,30bにパレット80を検出するとリーチ式フォークリフト20の旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側のパレット前角部(P21,P22)の予想軌跡としての円(C21,C22)を更に生成してカメラ(71,72,73)にて撮像された画像に重畳して表示部63で表示させる。よって、フォーク30a,30bのパレット80への差し込みに伴いパレット80を検出するとパレット前角部P21,P22の予想軌跡としての円C21,C22が表示され、リーチ式フォークリフト20の旋回の際に干渉対象物との関係をより分かりやすくすることができる。
第5の実施形態
 次に、第5の実施形態を、第1~第4の実施形態との相違点を中心に説明する。
 走行しながら操舵する時、例えば、緩やかな旋回を行う際において、旋回(操舵角)の指令値に応じて、図24に示すように、コントローラ61は、旋回方向とは逆側の機台後角部(P1,P2)の予想軌跡としての円(C1,C2)を生成する。また、コントローラ61は、機台21の前側に配した左右一対のリーチレグ22a,22bにおける旋回方向のリーチレグの前側角部(P51,P52)の予想軌跡としての円(C51,C52)を生成する。そして、コントローラ61は、カメラ71,72,73にて撮像された画像に重畳して表示部63で表示させる。
 つまり、障害物Mを回避すべく緩やかな旋回を行う際に旋回半径が最大となるのは旋回方向とは逆側の機台後角部(P1,P2)であるとともに旋回半径が最小となるのは旋回方向のリーチレグ前側角部(P51,P52)、若しくは前輪である(図18(a),(b)参照)。旋回方向とは逆側の機台後角部(P1,P2)と旋回方向のリーチレグ前側角部(P51,P52)若しくは前輪の軸中心の旋回予想軌跡を生成して表示させる。
 また、リーチレグ前側角部P51,P52(若しくは前輪の軸中心P61,P62)の旋回予想軌跡としての円C51,C52(若しくは円C61,C62)と機台後角部P1,P2の旋回予想軌跡としての円C1,C2とで挟まれた領域Z1は他の領域と区別するように表示部63で表示する。例えば、領域Z1に他の領域に比べて異なる色を付けたり他の領域に比べ濃淡を付けることにより、領域Z1は機台が通過する領域であり、障害物
との干渉(接触)の判断をより行いやすくする。
 このようにガイド表示することにより、現在の操舵角で障害物に干渉(接触)せずに進行可能かどうかの判断を容易にすることができる。
 同様に、図25に示すように、旋回半径が最大となるのは旋回方向とは逆側の機台後角部(P1,P2)であるとともに、旋回半径が最小となるのは旋回方向のパレット前角部(P21,P22)である。コントローラ61は、旋回(操舵角)の指令値に応じて、旋回方向とは逆側の機台後角部(P1,P2)と旋回方向のパレット前角部(P21,P22)の旋回予想軌跡としての円C1,C2,C21,C22を生成して表示させる。
 また、パレット前角部P21,P22の旋回予想軌跡としての円C21,C22と機台後角部P1,P2の旋回予想軌跡としての円C1,C2とで挟まれた領域Z2は他の領域と区別するように表示部63で表示する。例えば、領域Z2に他の領域に比べて異なる色を付けたり他の領域に比べ濃淡を付けることにより、領域Z2は機台が通過する領域であり、障害物との干渉(接触)の判断をより行いやすくする。
 本実施形態によれば、上記(2)に代わり、以下のような効果を得ることができる。
 (7)図25を用いて説明したように、軌跡重畳部としてのコントローラ61は、旋回方向のパレット前角部(P21,P22)の旋回予想軌跡としての円(C21,C22)と、旋回方向とは逆側の機台後角部(P1,P2)の予想軌跡としての円(C1,C2)とで挟まれた領域Z2を、他の領域と区別するように表示部63で表示させる。よって、リーチ式フォークリフト20の旋回の際に干渉対象物との関係をより分かりやすくすることができる。
 (8)図24を用いて説明したように、軌跡重畳部としてのコントローラ61は、旋回方向のリーチレグ(22a,22b)における前側角部(P51,P52)の予想軌跡としての円(C51,C52)または旋回方向の前輪(23a,23b)の軸中心(P61,P62)の予想軌跡としての円(C61,C62)と、旋回方向とは逆側の機台後角部(P1,P2)の予想軌跡としての円(C1,C2)とで挟まれた領域Z1を、他の領域と区別するように表示部63で表示させる。よって、リーチ式フォークリフト20の旋回の際に干渉対象物との関係をより分かりやすくすることができる。
 実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
 ○ 上記(3),(5)について、軌跡重畳部は、フォークリフトの旋回に先立ち、現在の操舵角に基づき左右一対のフォークのうちの旋回方向とは逆側のフォークの先端部または旋回方向とは逆側のパレット前角部の予想軌跡を更に生成してカメラにて撮像された画像に重畳して前記表示部で表示させればよい。
 ○ カメラの台数は問わない。
 ○ フォークリフトはリーチ式フォークリフトであったが、これに限るものではなく、リーチ式フォークリフト以外のフォークリフトであってもよい。例えば、カウンタ式フォークリフトの場合、リーチレグが無いため、常に前輪軸中心の旋回予想軌跡を表示する。
 つまり、図26に示すように、カウンタ式フォークリフト90は、機台91に荷役装置92を備える。また、カウンタ式フォークリフト90は、右前輪93aと左前輪93bと右後輪94aと左後輪94bを備える。図27に示すように、右前輪93aは軸中心P71を有する。左前輪93bは軸中心P72を有する。そして、軌跡重畳部としてのコントローラ61は、フォークリフトの旋回に先立ち、現在の操舵角に基づき左右の前輪93a,93bのうちの旋回方向とは逆側の前輪の軸中心の予想軌跡としての円(C71,C72)を更に生成してカメラ71,72,73にて撮像された画像に重畳して表示部63で表示させるようにしてもよい。
 10  フォークリフト用遠隔操作システム
 20  リーチ式フォークリフト
 21  機台
 22a,22b  リーチレグ
 23a,23b  前輪
 28  荷役装置
 30a,30b  フォーク
 40  遠隔操作装置
 52  無線ユニット
 54  無線機
 61  コントローラ
 63  表示部
 64,65  無線機
 71,72,73  カメラ
 80  パレット
 90  カウンタ式フォークリフト
 91  機台
 92  荷役装置
 93a,93b  前輪
 C1,C2,C11,C12,C21,C22,C51,C52,C61,C62,C71,C72  円
 P1,P2  機台後角部
 P11,P12  フォーク先端部
 P21,P22  パレット前角部
 P51,P52  リーチレグ前側角部
 P61,P62  軸中心
 P71,P72  軸中心
 Sp  パレットセンサ
 Z1,Z2  領域

 
 

Claims (7)

  1.  機台に荷役装置を備えるとともに車両通信部を有するフォークリフトと、
     前記車両通信部と無線通信を行う操作装置通信部を有し、前記フォークリフトの走行および前記荷役装置による荷役を遠隔操作するのに用いられる遠隔操作装置と、
    を備えたフォークリフト用遠隔操作システムであって、
     前記フォークリフトに搭載され、前記フォークリフトの周囲を撮像するカメラと、
     前記遠隔操作装置に設けられ、前記カメラにて撮像された画像を表示するための表示部と、
     前記フォークリフトの旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側の機台後角部の予想軌跡を生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させる軌跡重畳部と、
    を備えることを特徴とするフォークリフト用遠隔操作システム。
  2.  前記軌跡重畳部は、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき左右一対のフォークのうちの旋回方向とは逆側のフォークの先端部または旋回方向とは逆側のパレット前角部の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させることを特徴とする請求項1に記載のフォークリフト用遠隔操作システム。
  3.  前記軌跡重畳部は、パレットセンサがフォークにパレットを検出すると前記フォークリフトの旋回に先立ち、現在の操舵角に基づき旋回方向とは逆側のパレット前角部の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させることを特徴とする請求項1に記載のフォークリフト用遠隔操作システム。
  4.  前記フォークリフトは、リーチ式フォークリフトであり、
     前記軌跡重畳部は、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき機台前側に配した左右一対のリーチレグのうちの旋回方向とは逆側のリーチレグの前側角部の予想軌跡または機台前側に配した左右一対のリーチレグに設けられた左右の前輪のうちの旋回方向とは逆側の前輪の軸中心の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させることを特徴とする請求項1~3のいずれか1項に記載のフォークリフト用遠隔操作システム。
  5.  前記軌跡重畳部は、旋回方向のパレット前角部の予想軌跡と、旋回方向とは逆側の機台後角部の予想軌跡とで挟まれた領域を、他の領域と区別するように前記表示部で表示させることを特徴とする請求項3に記載のフォークリフト用遠隔操作システム。
  6.  前記軌跡重畳部は、旋回方向のリーチレグにおける前側角部の予想軌跡または旋回方向の前輪の軸中心の予想軌跡と、旋回方向とは逆側の機台後角部の予想軌跡とで挟まれた領域を、他の領域と区別するように前記表示部で表示させることを特徴とする請求項4に記載のフォークリフト用遠隔操作システム。
  7.  前記フォークリフトは、カウンタ式フォークリフトであり、
     前記軌跡重畳部は、前記フォークリフトの旋回に先立ち、現在の操舵角に基づき左右の前輪のうちの旋回方向とは逆側の前輪の軸中心の予想軌跡を更に生成して前記カメラにて撮像された画像に重畳して前記表示部で表示させることを特徴とする請求項1~3のいずれか1項に記載のフォークリフト用遠隔操作システム。

     
PCT/JP2019/029699 2018-09-06 2019-07-29 フォークリフト用遠隔操作システム WO2020049897A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018166742A JP7119795B2 (ja) 2018-09-06 2018-09-06 フォークリフト用遠隔操作システム
JP2018-166742 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020049897A1 true WO2020049897A1 (ja) 2020-03-12

Family

ID=69722859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029699 WO2020049897A1 (ja) 2018-09-06 2019-07-29 フォークリフト用遠隔操作システム

Country Status (2)

Country Link
JP (1) JP7119795B2 (ja)
WO (1) WO2020049897A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736604A (zh) * 2020-06-24 2020-10-02 中国第一汽车股份有限公司 一种远程驾驶控制方法、装置、设备及存储介质
US20220281728A1 (en) * 2021-03-04 2022-09-08 The Raymond Corporation Assistance Systems and Methods for a Material Handling Vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159888A (ja) * 1985-01-07 1986-07-19 Nec Corp 無人搬送信号伝送方式
JP2006096457A (ja) * 2004-09-28 2006-04-13 Toyota Industries Corp フォークリフトの作業支援装置
JP2009248765A (ja) * 2008-04-07 2009-10-29 Nissan Motor Co Ltd 駐車支援装置および駐車支援方法
JP2012066615A (ja) * 2010-09-21 2012-04-05 Aisin Seiki Co Ltd 運転支援装置
JP2014239357A (ja) * 2013-06-10 2014-12-18 ユニキャリア株式会社 作業車両の後方周辺監視装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159888A (ja) * 1985-01-07 1986-07-19 Nec Corp 無人搬送信号伝送方式
JP2006096457A (ja) * 2004-09-28 2006-04-13 Toyota Industries Corp フォークリフトの作業支援装置
JP2009248765A (ja) * 2008-04-07 2009-10-29 Nissan Motor Co Ltd 駐車支援装置および駐車支援方法
JP2012066615A (ja) * 2010-09-21 2012-04-05 Aisin Seiki Co Ltd 運転支援装置
JP2014239357A (ja) * 2013-06-10 2014-12-18 ユニキャリア株式会社 作業車両の後方周辺監視装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736604A (zh) * 2020-06-24 2020-10-02 中国第一汽车股份有限公司 一种远程驾驶控制方法、装置、设备及存储介质
CN111736604B (zh) * 2020-06-24 2023-02-21 中国第一汽车股份有限公司 一种远程驾驶控制方法、装置、设备及存储介质
US20220281728A1 (en) * 2021-03-04 2022-09-08 The Raymond Corporation Assistance Systems and Methods for a Material Handling Vehicle

Also Published As

Publication number Publication date
JP7119795B2 (ja) 2022-08-17
JP2020043382A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
JP7213428B2 (ja) 産業車両用走行支援装置
JP6230280B2 (ja) 作業車両の後方周辺監視装置
JP2015170284A (ja) フォークリフト型無人搬送車、その制御方法および制御装置
JPH10120393A (ja) フロアー運搬機
WO2020049897A1 (ja) フォークリフト用遠隔操作システム
JP2014011518A (ja) 無線操作式車両の遠隔操作システム
JP2019202877A (ja) 産業車両用遠隔操作システム
JP7247812B2 (ja) 荷役車両の操作支援装置
WO2020170747A1 (ja) 産業車両用走行支援装置
JP7124675B2 (ja) フォークリフト用運転支援装置
WO2010044277A1 (ja) 移動体ナビゲーション装置
WO2021075541A1 (ja) 荷役車両の荷役作業支援装置
WO2021066138A1 (ja) 荷役車両の操作支援装置
WO2019225390A1 (ja) フォークリフト用遠隔操作システム
JPH10219728A (ja) 建設機械の干渉防止装置
JP7063283B2 (ja) リーチ式フォークリフト用荷役作業支援装置
JP7107078B2 (ja) リーチ式フォークリフト用荷役作業支援装置
JP6959532B2 (ja) 産業車両用遠隔操作システム
WO2020049924A1 (ja) 産業車両用運転支援装置
JP7342602B2 (ja) 荷役車両の正対方法
WO2020008992A1 (ja) フォークリフト用遠隔操作システム
JP7135629B2 (ja) フォークリフト用操作支援装置
JP7200682B2 (ja) 車両用撮像装置
WO2020049925A1 (ja) フォークリフト用運転支援装置
JP2021147155A (ja) 産業車両の作業支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856783

Country of ref document: EP

Kind code of ref document: A1