WO2020048352A1 - Tof摄像模组和电子设备以及组装方法 - Google Patents

Tof摄像模组和电子设备以及组装方法 Download PDF

Info

Publication number
WO2020048352A1
WO2020048352A1 PCT/CN2019/102788 CN2019102788W WO2020048352A1 WO 2020048352 A1 WO2020048352 A1 WO 2020048352A1 CN 2019102788 W CN2019102788 W CN 2019102788W WO 2020048352 A1 WO2020048352 A1 WO 2020048352A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
module
tof camera
camera module
receiving module
Prior art date
Application number
PCT/CN2019/102788
Other languages
English (en)
French (fr)
Inventor
陈飞帆
魏罕钢
戴蓓蓓
王晓锋
俞勤文
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811027311.1A external-priority patent/CN110876003A/zh
Priority claimed from CN201821444740.4U external-priority patent/CN208956152U/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to US17/273,079 priority Critical patent/US20210195076A1/en
Priority to JP2021512491A priority patent/JP7122463B2/ja
Priority to EP19856963.4A priority patent/EP3840354A4/en
Publication of WO2020048352A1 publication Critical patent/WO2020048352A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to the field of depth information camera modules, and in particular, to a TOF camera module, an electronic device, and an assembly method.
  • TOF camera module that is, Time of Flight
  • Time of Flight refers to the use of a sensor to emit modulated light, and then after the object reflects, the sensor calculates the time difference or phase difference between the emitted light and the light received from the object A depth information about the object.
  • the TOF camera module itself occupies more space than a single camera, because for a single TOF camera module, it includes a A flood light and a receiving module, wherein the flood light is used to emit light, the receiving module is used to receive light, and the size of the receiving module is similar to that of a normal camera.
  • the lamp further occupies at least part of the installation space of the electronic device.
  • An object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein the TOF camera module has a smaller area size to reduce the space occupied during installation.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein a first circuit board of the TOF camera module has a smaller area size.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method.
  • the TOF camera module includes a flood light module and a receiving module.
  • the second circuit board has a smaller area size.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein the first circuit board of the receiving module has a smaller area size.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein at least one electronic component of the TOF camera module is disposed on a back surface of a first circuit board to reduce the TOF camera.
  • the area size of the module is to reduce the TOF camera.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein at least one of the electronic components of the floodlight is disposed on a back surface of the circuit board of the receiving module. To reduce the area size of the TOF camera module.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein at least one of the electronic components of the receiving module is disposed on a back surface of the circuit board of the receiving module. To reduce the area size of the TOF camera module.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein the TOF camera module can be mounted with more of the electronic components on the premise of maintaining a certain area size.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein the TOF camera module can be smaller in size while maintaining a certain number of the electronic components.
  • Another object of the present invention is to provide a TOF camera module, an electronic device, and an assembly method, wherein a photosensitive element of the receiving module can be designed to be larger while maintaining a certain area size of the TOF camera module. size.
  • the present invention provides a TOF camera module, wherein the TOF camera module includes:
  • a flood light module
  • a receiving module and
  • a plurality of electronic components wherein the receiving module includes a first lens component, a first photosensitive element, and a first circuit board, and the first lens component provides an optical path for light to pass through to the first lens component.
  • a photosensitive element performs photoelectric conversion, the first photosensitive element is connectably connected to the first circuit board, and the flood light module is connectably connected to the receiving module.
  • the first circuit board has a front surface and a back surface, wherein the first photosensitive element is located on the front surface of the first circuit board, and at least a part of the plurality of electronic components is located on the receiving module. The back surface of the first circuit board.
  • At least a part of the electronic components located on the back surface of the first circuit board is connectably connected to the receiving module body.
  • At least a part of the electronic components on the back surface of the first circuit board is connectably connected to the floodlight module.
  • At least a part of the electronic components located on the back surface of the first circuit board is connectably connected to the receiving module body, and is located on the first circuit board. At least a part of the electronic components on the back surface is connectably connected to the floodlight module.
  • the flood light module includes a light emitting element, a bracket, and a second circuit board, wherein the light emitting element is connectably connected to the second circuit board, and The bracket is supported on the second circuit board and surrounds the light emitting element, wherein the flood light module is supported on the first circuit board of the receiving module.
  • the second circuit board of the flood light module is directly conductively connected to the first circuit board of the receiving module.
  • the present invention further comprising a flexible connector, wherein the first circuit board of the floodlight module is connectably connected to the receiving module via the flexible connector.
  • the first circuit board is described.
  • the bracket of the floodlight module is integrally formed on the second circuit board by a ceramic sintering process.
  • At least part of the second circuit board of the flood light module is located above the first circuit board.
  • the flood light module includes a light emitting element, a bracket, and a second circuit board, wherein the light emitting element is connectably connected to the light emitting element.
  • a second circuit board, the bracket is supported on the second circuit board and surrounds the light emitting element, wherein the support seat is located between the second circuit board and the first circuit board, and the flood light
  • the lamp module is supported on the first circuit board through the support base.
  • a conductive member is further included, wherein the conductive member is located on the support base, and the conductive member conducts the first circuit board and the second circuit board.
  • the support base has an upper surface, wherein the second circuit board is supported on the upper surface, the support base has a groove, and the groove is formed in the groove.
  • the conductive member is wrapped in the support base.
  • the present invention further comprising a flexible connecting member, wherein the first circuit board is connectably connected to the second circuit board through the flexible connecting member, and is located on the first circuit board. At least a part of the electronic components on the back surface is connectably connected to the second circuit board through the flexible connecting member.
  • the support base is integrally formed on the second circuit board of the floodlight module through a ceramic sintering process.
  • the support base is integrally formed on the second circuit board of the floodlight module through a ceramic sintering process.
  • the support base, the bracket and the second circuit board are integrally formed by a ceramic sintering process.
  • a protection member is further included, wherein the protection member is located on the back surface of the first circuit board, and the protection member forms a protection cavity, wherein the protection member is located on the first circuit board.
  • the electronic components on the back side are housed in the protective cavity.
  • the protection member is a surrounding wall.
  • a protection layer is further included, wherein the protection layer is located in the protection cavity and covers the electronic component.
  • the protection member includes a surrounding wall and a bottom wall, wherein the bottom wall covers an opening of the protection cavity.
  • the protection member is integrally formed on the first circuit board by a molding process.
  • a height of the protection member is 0.35 mm to 0.5 mm.
  • a height of the flood light module is not greater than 4.5 mm.
  • an area size range of the TOF camera module is not greater than 10.5 mm * 6.6 mm.
  • an area size of the TOF camera module is not greater than 12 mm * 7 mm.
  • the floodlight module and the receiving module have a height difference, and the range of the height difference does not exceed 0.15 mm.
  • the present invention provides an electronic device including:
  • the TOF camera module is disposed on the electronic device body.
  • FIG. 1A is a schematic perspective view of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an electronic device according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 4A is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 4B is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 5A is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • 5B is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 6A is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 6B is a schematic diagram of a TOF camera module according to a preferred embodiment of the present invention.
  • FIG. 7A is a schematic diagram of a flood light module according to a preferred embodiment of the present invention.
  • FIG. 7B is a schematic diagram of a flood light module according to a preferred embodiment of the present invention.
  • FIG. 1A and 1B illustrate a TOF camera module 1 according to a preferred embodiment of the present invention
  • FIG. 2 illustrates an electronic device 1000 with the TOF camera module 1.
  • the electronic device 1000 includes an electronic device body 2 and the TOF camera module 1.
  • the TOF camera module 1 is disposed on the electronic device body 2.
  • the electronic device 1000 may further include at least one camera module, such as a telephoto camera module, a middle focus camera module, and a wide-angle camera module.
  • the TOF camera module 1 has a smaller area size, so that the electronic device body 2 reserves more installation space for installing the camera module or other components.
  • the TOF camera module 1 includes a floodlight module 100 and a receiving module module 200, wherein the floodlight module 100 is connectably connected to the receiving module module 200, so
  • the floodlight assembly 100 is configured to emit light, and the light is reflected by at least one object.
  • the receiving module assembly 200 receives the reflected light, so as to obtain information based on a time difference or a phase difference between the emitted light and the reflected light. A depth information of the object.
  • the TOF camera module 1 includes a flood light module 10, a receiving module 20, and at least one electronic component 30. At least one of the electronic components 30 is connected to the flood light in a conductive manner. Module 10, at least one of the electronic components 30 is connectably connected to the receiving module 20, and the electronic component 30 is connected can be understood as at least a part of the electronic components 30 is used for Support the corresponding flood light assembly 100 or / and the receiving module assembly 200 to work.
  • the flood light assembly 100 includes the flood light module 10 and at least one of the electronic components 30, wherein the electronic components 30 are connectably connected to the flood light module.
  • the receiving module assembly 200 includes the receiving module 20 and at least one of the electronic components 30, wherein the electronic components 30 are connected to the receiving module 20 in a conductive manner.
  • the receiving module 20 includes a first lens assembly 21, a first photosensitive element 22, and a first circuit board 23.
  • the first lens assembly 21 provides an optical path for light to pass through to reach the first photosensitive element.
  • the element 22 performs photoelectric conversion, and the first photosensitive element 22 is connectably connected to the first circuit board 23.
  • the first lens assembly 21 includes a first lens 211 and a base 212, wherein a light window is formed around the base 212, and the first lens 211 is supported by the base 212 and held at the base.
  • a light sensing path of the first photosensitive element 22 is provided so that light passes through the first lens 211 and passes through the light window to reach the first photosensitive element 22.
  • the flood light module 10 includes a projection module 11 and a second circuit board 12, wherein the projection module 11 is connectably connected to the second circuit board 12, and the second circuit board 12 is The first circuit board 23 is connectably connected to the receiving module 20.
  • the second circuit board 12 may be a ceramic substrate, a rigid-flexible board, or a circuit board.
  • at least part of the second circuit board 12 of the flood light module 10 is located above the first circuit board 23, that is, the second circuit board 12 is orthographically projected onto the When the first circuit board 23 is described, at least part of it is located within the range of the first circuit board 23, that is, when the second circuit board 12 is projected with respect to the first circuit board 23, it is at least partially located in the first circuit. ⁇ 23 ⁇ Plate 23 inside.
  • the projection assembly 11 further includes a light-emitting element 111 and a bracket 112, wherein the light-emitting element 111 is conductively supported on the second circuit board 12, and the bracket 112 is supported on the second circuit board. 12 and the bracket 112 forms a receiving cavity, wherein the light emitting element 111 is received in the receiving cavity.
  • the projection assembly 11 may further include an optical auxiliary element 113, wherein the optical auxiliary element 113 is supported by the bracket 112 and held in a light emitting path of the light emitting element 111, and emits light at the light emitting element 111. After that, the light passes through the optical auxiliary element 113 and then radiates outward.
  • the optical auxiliary element 113 may be an optical diffraction element.
  • the optical auxiliary element 113 is used to assist the light emitting element 111 to radiate light outward.
  • the type of the optical auxiliary element 113 does not limit the present invention.
  • the bracket 112 is formed on the second circuit board 12 by integral molding, such as ceramic sintering and integral molding, or molding and integral molding.
  • the bracket 112 may be mounted on the second circuit board 12 in an assembly manner.
  • the bracket 112 and the second circuit board 12 are integrally formed by ceramic sintering.
  • the second circuit board 12 includes a conductive portion 121 and an insulating portion 122, wherein the insulating portion 122 is connected to the conductive portion 121, and the insulating portion 122 may be integrated with the bracket 112. Molded on the conductive portion 121, for example, molded integrally.
  • the manufacturing materials of the bracket 112 of the floodlight module 10 and the insulating portion 122 of the second circuit board 12 may be the same or different.
  • the heat dissipation performance of the material of the second circuit board 12 of the floodlight module 10 may be better than or close to that of the bracket 112.
  • the second circuit board 12 and the bracket 112 may be integrally formed, or the bracket 112 may be attached to the second circuit board 12. How the two are formed does not limit the present invention.
  • the height of the flood light module 10 is generally lower than the height of the receiving module 20.
  • the height can be adjusted by the height of the bracket 112. The higher the height of the bracket 112, the higher the height of the flood light module 10, and the lower the height of the bracket 112, the flood light module. The lower the height of 10.
  • the height of the flood light module 10 is within 4.5 mm. In some examples of the present invention, the height of the flood light module 10 is between 4 mm.
  • the second circuit board 12 of the flood light module 10 is directly conductively connected to the first circuit board 23 of the receiving module 20.
  • the second circuit board 12 has a front surface and a back surface, wherein the front surface of the second circuit board 12 is used to support the light-emitting element 111, and the light-emitting element 111 is conductively connected to the first circuit board 12.
  • Two circuit boards 12, the back surface of the second circuit board 12 is used to contact the first circuit board 23, and the second circuit board 12 is connectably connected to the first circuit board 23.
  • the first circuit board 23 has a front surface and a back surface, wherein the front surface of the first circuit board 23 is connectably connected to the first photosensitive element 22, and the first circuit board 23 The front surface and the back surface of the second circuit board 12 are oppositely disposed.
  • the second circuit board 12 is provided with at least a first conductive end 1210 and at least a second conductive end 1220, wherein the first conductive end 1210 is located on the front surface of the second circuit board 12, and the first Two conductive ends 1220 are located on the back surface of the second circuit board 12.
  • the first conductive end 1210 and the second conductive end 1220 can be electrically connected to each other and the first conductive end 1210 is directly connectable. In contact with the light emitting element 111.
  • the second conductive end 1220 can be electrically connected to the first circuit board 23. It may be that the second conductive end 1220 may be directly connected to a conductive end of the first circuit board 23.
  • part of the electronic component 30 is connectably connected to the first circuit board 23 of the receiving module 20, and part of the electronic component 30 is connectably connected to the flood light.
  • At least a part of the electronic component 30 is disposed on the back surface of the first circuit board 23 of the receiving module 20.
  • at least a part of the electronic component 30 of the floodlight assembly 100 is disposed on the back surface of the first circuit board 23 of the receiving module 20, for example, the electronic component 30 is
  • a driver implemented as the light emitting element 111 of the floodlight module 10 may also be a capacitor, a resistor, or other devices.
  • the part of the electronic component 30 disposed on the back surface of the first circuit board 23 is the electronic component 30 of the receiving module assembly 200, that is, used to support the electronic component 30.
  • the receiving module 20 works.
  • some of the electronic components 30 provided on the back surface of the first circuit board 23 are used to support the operation of the flood light module 10, and other parts It is used to support the receiving module 20 to work.
  • the back surface of the first circuit board 23 of the receiving module 20 may be a flat surface, and the electronic components 30 may be disposed on the first circuit board 23 by mounting.
  • a groove may be formed on the back surface of the first circuit board 23 of the receiving module 20, and the electronic component 30 may be mounted on the groove position, thereby lowering the first circuit board 23.
  • the electronic component device 30 The electronic component 30 may be provided on the first circuit board 23 in such a manner as to be at least partially covered on the first circuit board 23. Those skilled in the art can understand that the foregoing manner does not limit the connection manner between the electronic component 30 and the first circuit board 23.
  • the size of the second circuit board 12 of the flood light module 10 can be reduced because the second circuit board 12 of the flood light module 10 is the electronic component.
  • the installation space reserved can be reduced, so that an area size of the entire flood light module 10 can be reduced, and the electronic device body 2 provides a size of installation space for the TOF camera module 1 Requirements can be reduced.
  • the electronic device body 2 can accommodate more functional modules, such as a flash, different types of camera modules, and the like.
  • the electronic component 30 of the floodlight assembly 100 may be partially disposed on the back surface of the first circuit board 23 of the receiving module assembly 200, that is, the The electronic component 30 of the flood light assembly 100 may also be partially disposed on the front surface of the second circuit board 12 of the flood light module 10. Regardless of whether the electronic component 30 of the floodlight module 100 is located on the second circuit board 12 of the floodlight module 10 or the first circuit board 23 of the receiving module assembly 200, The electronic component 30 of the floodlight module 100 is connected to the second circuit board 12 of the floodlight module 10 so as to make the floodlight module 100 work.
  • the electronic components 30 of the flood light module 10 located on the first circuit board 23 of the receiving module assembly 200 are accessible through the first circuit board 23 of the receiving module assembly 200.
  • the electronic component 30 is directly conductively contacted with the second circuit board 12.
  • the electronic component 30 of the receiving module assembly 200 is disposed on the front surface of the first circuit board 23 of the receiving module assembly 200 and is located around the first photosensitive element 22 And are respectively connected to the first circuit board 23 in a conductive manner.
  • the electronic components 30 of the receiving module assembly 200 may be partially disposed on the back surface of the first circuit board 23 of the receiving module assembly 200, thereby facilitating the receiving module assembly 200.
  • the size of the first circuit board 23 can be reduced because the installation space reserved for the electronic components 30 of the receiving module assembly 200 by the first circuit board 23 of the receiving module 200 can be reduced. small.
  • the electronic components 30 of the receiving module assembly 200 located on the back of the first circuit board 23 of the receiving module assembly 200 are connected to the first circuit board 23 in an electrically conductive manner.
  • the receiving module 20 further includes a protection member 24, wherein the protection member 24 is located below the first circuit board 23, and the protection member 24 forms a protection cavity 240, which is located on the first circuit board 23.
  • the electronic components 30 on the rear surface are received in the protective cavity 240.
  • the protection member 24 is a surrounding wall, the protection member 24 extends downward from the first circuit board 12, and the cavity opening of the protection cavity 240 is exposed to the outside.
  • the electronic components 30 mounted on the back surface of the first circuit board 12 can be directly observed on the back side of a circuit board 12. In this way, on the one hand, it is possible to avoid contact with pollutants such as dust.
  • the protective member 24 makes the electronic component 30 in a relatively suspended state, wherein the protective member is preferably The height of 24 is higher than the height of the electronic component 30, so that when the TOF camera module 1 is mounted on the electronic device body 2, the TOF camera module 1 is supported by the protective member 24 at The electronic device body 2 is described so as to prevent the electronic component 30 from being squeezed during the installation process, so that the electronic component 30 can be in a suspended state relative to the protection member 24, that is, the electronic component The back side of 30 may not be the same as the Sub contacting apparatus body 2, or the electronic component 30 does not have to bear a greater extrusion.
  • the electronic component 30 and the protective member 24 are disposed on the back of the first circuit board 23, and the electronic component 30 is housed in the protective cavity surrounded by the protective member 24. 240.
  • the height of the electronic component 30 is preferably lower than the height of the protection member 24.
  • the protection member 24 is disposed on the back surface of the first circuit board 23 of the receiving module 20 and the receiving module 20 further includes a A protective layer 25, wherein the protective layer 25 is located in the protective cavity 240 and is formed by a protective material.
  • the protective material may be a protective material such as glue.
  • the protective layer 25 can seal the electronic element to some extent
  • the device 30, for example, the electronic component 30 is polluted by water or other substances, thereby affecting the normal operation of the electronic component 30.
  • the electronic components 30 located on the first circuit board 23 of the receiving module assembly 200 may be mounted on the back surface of the first circuit board 23 or may be at least partially covered on the back surface. Inside the first circuit board 23.
  • connection manner between the electronic component 30 and the first circuit board 23 of the first circuit board 23 of the receiving module assembly 200 here is here They are examples only and are not limiting.
  • the protection member 24 may be mounted on the back surface of the first circuit board 23, or may be integrally formed with the first circuit board 23.
  • the height of the protection member 24 ranges from 0.35 mm to 0.5 mm. In some examples of the present invention, the height of the protection member 24 is 0.45 mm.
  • the area size of the TOF camera module 1 is within 10.5 mm * 6.6 mm. In some examples of the present invention, the area size of the TOF camera module 1 is within 10 mm * 6.1 mm.
  • the TOF camera module includes a cover body 70, wherein the cover body 70 is mounted on the flood light module 10 to protect the flood light module 10, and simultaneously The light radiated by the light-emitting element 111 can pass through the cover body 70 to propagate outward.
  • the floodlight module 10 and the receiving module 20 of the TOF camera module have a height difference, and the range of the height difference does not exceed 0.15mm, that is, the floodlight module 10 and the receiving module 20 have a height difference.
  • the height difference range of the upper surface of the receiving module 20 is not more than 0.15 mm.
  • the height of the flood light module 10 may be slightly higher than the height of the receiving module 20, or the height of the flood light module 10. Slightly lower than the receiving module 20.
  • FIG. 3 shows a TOF camera module 1 according to another preferred embodiment of the present invention.
  • the TOF camera module 1 includes a floodlight module 100 and a receiving module module 200, wherein the floodlight module 100 is connectably connected to the receiving module module 200, so
  • the floodlight assembly 100 is configured to emit light, and the light is reflected by at least one object.
  • the receiving module assembly 200 receives the reflected light, so as to obtain information based on a time difference or a phase difference between the emitted light and the reflected light. A depth information of the object.
  • the TOF camera module 1 includes a flood light module 10, a receiving module 20, and at least one electronic component 30. At least one of the electronic components 30 is connected to the flood light in a conductive manner. In the module 10, at least one of the electronic components 30 is connectably connected to the receiving module 20.
  • the flood light assembly 100 includes the flood light module 10 and at least one of the electronic components 30, wherein the electronic components 30 are connectably connected to the flood light module. 10.
  • the receiving module assembly 200 includes the receiving module 20 and at least one of the electronic components 30, wherein the electronic component 30 is connected to the receiving module 20 in a conductive manner.
  • the TOF camera module 1 further includes a flexible connecting member 40, wherein the flexible connecting member 40 is connected to the floodlight module 10 and the receiving module 20, respectively.
  • the flood light module 10 is connectably connected to the receiving module 20 through the flexible connecting member 40, and the receiving module 20 is connectably connected to the receiving module 20 through the flexible connecting member 40.
  • the receiving module 20 includes a first lens assembly 21, a first photosensitive element 22, and a first circuit board 23.
  • the first lens assembly 21 provides an optical path for light to pass through to reach the first photosensitive element.
  • the element 22 performs photoelectric conversion, and the first photosensitive element 22 is connectably connected to the first circuit board 23.
  • the first lens assembly 21 includes a first lens 211 and a base 212, wherein a light window is formed around the base 212, and the first lens 211 is supported by the base 212 and held at the base.
  • a light sensing path of the first photosensitive element 22 is provided so that light passes through the first lens 211 and passes through the light window to reach the first photosensitive element 22.
  • the flood light module 10 includes a projection module 11 and a second circuit board 12, wherein the projection module 11 is connectably connected to the second circuit board 12, and the second circuit board 12 is The first circuit board 23 is connectably connected to the receiving module 20. Specifically, the second circuit board 12 of the flood light module 10 is connectably connected to the first circuit board 23 of the receiving module through the flexible connecting member 40.
  • the projection assembly 11 further includes a light-emitting element 111 and a bracket 112, wherein the light-emitting element 111 is conductively supported on the second circuit board 12, and the bracket 112 is supported on the second circuit board. 12 and the bracket 112 forms a receiving cavity, wherein the light emitting element 111 is received in the receiving cavity.
  • the projection assembly 11 may further include an optical auxiliary element 113, wherein the optical auxiliary element 113 is supported by the bracket 112 and held in a light emitting path of the light emitting element 111, and emits light at the light emitting element 111. After that, the light passes through the optical auxiliary element 113 and then radiates outward.
  • the optical auxiliary element 113 may be an optical diffraction element.
  • the optical auxiliary element 113 is used to assist the light emitting element 111 to radiate light outward.
  • the type of the optical auxiliary element 113 does not limit the present invention.
  • the bracket 112 is formed on the second circuit board 12 by integral molding, such as ceramic sintering and integral molding, or molding and integral molding.
  • the bracket 112 may be mounted on the second circuit board 12 by assembling.
  • the bracket 112 is integrally formed on the second circuit board 12 by ceramic sintering.
  • the second circuit board 12 includes a conductive portion 121 and an insulating portion 122, wherein the insulating portion 122 is connected to the conductive portion 121, and the insulating portion 122 may be integrated with the bracket 112.
  • the conductive part 121 is molded, for example, integrally molded, or it may be formed by ceramic sintering.
  • the manufacturing materials of the bracket 112 of the floodlight module 10 and the insulating portion 122 of the second circuit board 12 may be the same or different.
  • the heat dissipation performance of the material of the second circuit board 12 of the floodlight module 10 may be better than or close to that of the bracket 112.
  • the height of the flood light module 10 is generally lower than the height of the receiving module assembly 200.
  • Its height can be adjusted by the height of the bracket 112. The higher the height of the bracket 112, the higher the height of the floodlight module 10, and the lower the height of the bracket 112, the floodlight module. The lower the height of the group 10.
  • the height of the flood light module 10 is within 4.5 mm. In some examples of the present invention, the height of the flood light module 10 is between 4 mm.
  • the thickness of the first circuit board 23 of the receiving module 20 is within 0.4 mm, and may be 0.35 mm.
  • the number of layers of the first circuit board 23 may be 3 to 7, for example, 6 layers.
  • the second circuit board 12 of the flood light module 10 is connected to the first circuit board 23 of the receiving module 20 via the flexible connecting member 40.
  • the second circuit board 12 has a front surface and a back surface, wherein the front surface of the second circuit board 12 is used to support the light emitting element 111, and the light emitting element 111 is connected to the first circuit ⁇ ⁇ ⁇ 12 ⁇ Two circuit boards 12.
  • the first circuit board 23 has a front surface and a back surface, wherein the front surface of the first circuit board 23 is connectably connected to the first photosensitive element 22, and the first circuit board 23 The front surface and the back surface of the second circuit board 12 are oppositely disposed.
  • the second circuit board 12 is provided with at least a first conductive end 1210 and at least a second conductive end 1220, wherein the first conductive end 1210 is located on the front surface of the second circuit board 12, and the first Two conductive ends 1220 are located on one side of the second circuit board 12.
  • the first conductive end 1210 and the second conductive end 1220 can be electrically connected to each other and the first conductive end 1210 is directly contactable. ⁇ mentioned light-emitting element 111.
  • the first conductive end 1210 is formed on an upper surface of the conductive portion 121
  • the second conductive end 1220 is formed on a side of the conductive portion 121.
  • the second conductive end 1220 can be electrically connected to the first circuit board 23.
  • the second conductive end 1220 is electrically connected to the first circuit board 23 through the flexible connecting member 40.
  • the second conductive end 1220 may be located on the back surface or a side surface of the second circuit board 12.
  • the floodlight module 10 is still installed on the first circuit board 23 of the receiving module 20, but the body of the floodlight module 10 and the receiving module 20 pass
  • the flexible connecting members 40 are electrically connected to each other, such as a flexible board.
  • part of the electronic component 30 is connectably connected to the first circuit board 23 of the receiving module 20, and part of the electronic component 30 is connectably connected to the flood light.
  • the second circuit board 12 of the lamp module 10. At least a part of the electronic component 30 which is connected to the flood light module 10 in a conductive manner is disposed on the back surface of the first circuit board 23 of the receiving module 20. In this way, the size of the second circuit board 12 of the flood light module 10 can be reduced because the second circuit board 12 of the flood light module 10 is the electronic component.
  • the installation space reserved can be reduced, so that an area size of the entire flood light module 10 can be reduced, and the electronic device body 2 provides a size of installation space for the TOF camera module 1 Requirements can be reduced. In other words, the electronic device body 2 can accommodate more functional modules, such as a flash, different types of camera modules, and the like.
  • the electronic component 30 of the floodlight assembly 100 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 29, that is, the floodlight
  • the electronic component 30 of the light lamp assembly 100 may also be partially disposed on the front surface of the second circuit board 12 of the flood light module 10. Regardless of whether the electronic component 30 of the floodlight 10 is located on the second circuit board 12 of the floodlight module 10 or the first circuit board 23 of the receiving module 20, the The electronic component 30 of the floodlight module 100 is connected to the second circuit board 12 of the floodlight module 10 in an electrically conductive manner.
  • the electronic components 30 of the flood light module 10 located on the first circuit board 23 of the receiving module 20 can be conducted through the first circuit board 23 of the receiving module 20
  • the second circuit board 12, which is grounded to the floodlight module 10 is located in the electronic component of the floodlight module 100 of the second circuit board 12 of the floodlight module 10.
  • the device 30 is directly conductively contacted with the second circuit board 12.
  • the electronic component 30 of the receiving module assembly 200 is disposed on the front surface of the first circuit board 23 of the receiving module 20 and is located around the first photosensitive element 22, And they are respectively connected to the first circuit board 23 in a conductive manner.
  • the electronic components 30 of the receiving module assembly 200 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, thereby facilitating the receiving module 20
  • the size of the first circuit board 23 can be reduced because the installation space reserved by the first circuit board 23 of the receiving module 20 for the electronic components 30 of the receiving module assembly 200 can be reduced.
  • the electronic components 30 of the receiving module assembly 200 located on the back of the first circuit board 23 of the receiving module 20 are connected to the first circuit board 23 in an electrically conductive manner.
  • the receiving module 20 further includes a protection member 24, wherein the protection member 24 is located below the first circuit board 23, and the protection member 24 forms a protection cavity 240, which is located on the first circuit board 23.
  • the electronic components 30 on the rear surface are received in the protective cavity 240.
  • the protective member 24 makes the electronic component 30 In a floating state.
  • the protection member 24 includes a protection enclosure wall 241 and a protection bottom wall 242.
  • the protection enclosure wall 241 surrounds the protection cavity 240, and the protection bottom wall 242 is closed.
  • the protection bottom wall 242 is connected to the protection enclosure wall 241, so that pollutants cannot enter the protection cavity 240 from a bottom surface upwards and cause damage to the electronic components 30 Pollution.
  • the electronic components 30 on the first circuit board 23 of the receiving module 20 may be mounted on the back surface of the first circuit board 23 or may be at least partially covered on the first circuit board 23. Inside a circuit board 23.
  • Those skilled in the art can understand that the connection manner between the electronic component 30 and the first circuit board 23 of the first circuit board 23 of the receiving module 20 here is only here By way of example, it does not impose restrictions.
  • the protection member 24 may be mounted on the back surface of the first circuit board 23, or may be integrally formed with the first circuit board 23.
  • the protection member 24 can be made of a metal material, so that the TOF camera module 1 can be grounded through the protection member 24, and further provide the grounding performance of the TOF camera module 1, and
  • the protective member 24 made of a metal material can also enhance the heat dissipation performance at this position, on the one hand, it can help the first circuit board 23 to dissipate heat, and on the other hand, it can also help the front circuit board 23, or The electronic component 30, which is the back surface of the first circuit board 23, dissipates heat.
  • the TOF camera module includes a cover body 70, wherein the cover body 70 is mounted on the flood light module 10 to protect the flood light module 10, and simultaneously The light radiated by the light-emitting element 111 can pass through the cover body 70 to propagate outward.
  • FIG. 4A and FIG. 4B respectively show a modified embodiment of the TOF camera module 1 in the above-mentioned preferred embodiment.
  • the protection member 24 is integrally formed in all parts.
  • the first circuit board 23 of the receiving module 20 is located on the back surface of the first circuit board 23.
  • the first circuit board 23 of the receiving module 20 is connectably connected to the second circuit board 12 of the floodlight module 10 through the flexible connecting member 40.
  • the electronic component 30 located on the first circuit board 23 of the receiving module 20 is covered with the protective member 24 during the integral molding of the protective member 24. In this way, not only the electronic component 30 can be protected, but also a flat surface can be provided.
  • the bottom surface of the protective member 24 is the lower surface of the TOF camera module 1, so that the lower surface of the TOF camera module 1 formed by the molding process may be a flat surface, which is convenient for subsequent use. The installation of TOF camera module 1 and other equipment will be described.
  • the protection member 24 may be integrally formed on the back surface of the first circuit board 23 by molding.
  • the protection member 24 formed by the molding process has an inclination, and the inclination is favorable for demolding the upper and lower molds during the molding process.
  • bracket 112 and the second circuit board 12 are separately formed, that is, the bracket 112 is mounted on the second circuit board 12, and can be attached by, for example, the way.
  • the protection member 24 is disposed on the back surface of the first circuit board 23 of the receiving module 20.
  • the second circuit board 12 of the flood light module 10 is directly conductively connected to the first circuit board 23 of the receiving module 20.
  • the receiving module 20 further includes a protective layer 25, wherein the protective layer 25 fills the position of the protective cavity 240 and is formed by a protective material.
  • the protective material may be a protective material such as glue.
  • the protective layer 25 can seal the electronic component 30 to a certain extent, for example, the electronic component 30 is polluted by water or other substances, thereby affecting the normal operation of the electronic component 30.
  • the thickness of the protective layer 25 may be higher or lower than the height of the protective member 24, and may also be equal to the height of the protective member 24.
  • FIG. 5A shows a TOF camera module 1 according to a preferred embodiment of the present invention.
  • the TOF camera module 1 includes a floodlight module 100 and a receiving module module 200, wherein the floodlight module 100 is connectably connected to the receiving module module 200, so
  • the floodlight assembly 100 is configured to emit light, and the light is reflected by at least one object.
  • the receiving module assembly 200 receives the reflected light, so as to obtain information based on a time difference or a phase difference between the emitted light and the reflected light. A depth information of the object.
  • the TOF camera module 1 includes a flood light module 10, a receiving module 20, and at least one electronic component 30. At least one of the electronic components 30 is connected to the flood light in a conductive manner. In the module 10, at least one of the electronic components 30 is connectably connected to the receiving module 20.
  • the flood light assembly 100 includes the flood light module 10 and at least one of the electronic components 30, wherein the electronic components 30 are connectably connected to the flood light module.
  • the receiving module assembly 200 includes the receiving module 20 and at least one of the electronic components 30, wherein the electronic component 30 is connected to the receiving module 20 in a conductive manner.
  • At least one of the electronic components 30 is disposed on the back of the second circuit board 12 of the floodlight module 10.
  • the TOF camera module 1 further includes a flexible connecting member 40, wherein the flexible connecting member 40 is connected to the floodlight module 10 and the receiving module 20, respectively.
  • the flood light module 10 is connectably connected to the receiving module 20 through the flexible connecting member 40, and the receiving module 20 is connectably connected to the receiving module 20 through the flexible connecting member 40.
  • the TOF camera module 1 further includes a support base 50, wherein the support base 50 supports the flood light module 10 on the receiving module 20, and the flood light module 10 and the receiving The modules 20 are connected to each other through the support base 50.
  • the support base 50 is a hollow structure.
  • the receiving module 20 includes a first lens assembly 21, a first photosensitive element 22, and a first circuit board 23.
  • the first lens assembly 21 provides an optical path for light to pass through to reach the first photosensitive element.
  • the element 22 performs photoelectric conversion, and the first photosensitive element 22 is connectably connected to the first circuit board 23.
  • the first lens assembly 21 includes a first lens 211 and a base 212, wherein a light window is formed around the base 212, and the first lens 211 is supported by the base 212 and held at the base.
  • a light sensing path of the first photosensitive element 22 is provided so that light passes through the first lens 211 and passes through the light window to reach the first photosensitive element 22.
  • the flood light module 10 includes a projection module 11 and a second circuit board 12, wherein the projection module 11 is connectably connected to the second circuit board 12, and the second circuit board 12 is The first circuit board 23 is connectably connected to the receiving module 20.
  • the second circuit board 12 may be a ceramic substrate, a rigid-flexible board, or a circuit board.
  • the projection assembly 11 further includes a light-emitting element 111 and a bracket 112, wherein the light-emitting element 111 is conductively supported on the second circuit board 12, and the bracket 112 is supported on the second circuit board. 12 and the bracket 112 forms a receiving cavity, wherein the light emitting element 111 is received in the receiving cavity.
  • the projection assembly 11 may further include an optical auxiliary element 113, wherein the optical auxiliary element 113 is supported by the bracket 112 and held in a light emitting path of the light emitting element 111, and emits light at the light emitting element 111. After that, the light passes through the optical auxiliary element 113 and then radiates outward.
  • the optical auxiliary element 113 may be an optical diffraction element.
  • the optical auxiliary element 113 is used to assist the light emitting element 111 to radiate light outward.
  • the type of the optical auxiliary element 113 does not limit the present invention.
  • bracket 112 may be formed on the second circuit board 12 by integral molding, such as ceramic sintering and integral molding.
  • the bracket 112 may be mounted on the second circuit board 12 by assembling.
  • the second circuit board 12 includes a conductive portion 121 and an insulating portion 122, wherein the insulating portion 122 is connected to the conductive portion 121, and the insulating portion 122 and the bracket 112 may be integrally formed with the conductive portion.
  • the part 121 is, for example, integrally molded or ceramic sintered.
  • the manufacturing materials of the bracket 112 of the floodlight module 10 and the insulating portion 122 of the second circuit board 12 may be the same or different.
  • the heat dissipation performance of the material of the second circuit board 12 of the floodlight module 10 may be better than or close to that of the bracket 112.
  • the height of the flood light module 10 is generally lower than the height of the receiving module 20.
  • the height can be adjusted by the height of the bracket 112. The higher the height of the bracket 112, the higher the height of the flood light module 10, and the lower the height of the bracket 112, the flood light module. The lower the height of 10.
  • the height of the flood light module 10 is within 4.5 mm. In some examples of the present invention, the height of the flood light module 10 is between 4 mm.
  • the second circuit board 12 of the floodlight module 10 is connectably connected to the receiving module 20 through the flexible connector 40 located in the support base 50. ⁇ ⁇ ⁇ ⁇ 23 ⁇ The first circuit board 23.
  • the second circuit board 12 is provided with at least a first conductive end 1210 and at least a second conductive end 1220, wherein the first conductive end 1210 is located on the front surface of the second circuit board 12, and the first Two conductive ends 1220 are located on one side of the second circuit board 12.
  • the first conductive end 1210 and the second conductive end 1220 can be electrically connected to each other and the first conductive end 1210 is directly contactable. ⁇ mentioned light-emitting element 111.
  • the second conductive end 1220 can be electrically connected to the first circuit board 23.
  • the second conductive end 1220 is electrically connected to the first circuit board 23 through the flexible connecting member 40.
  • the support base 50 can be made by processes such as injection molding, molding, and ceramic die casting.
  • the support base 50 is integrally formed on the second circuit board 12 of the floodlight module 10.
  • the second circuit board 12 itself can be manufactured by an integrated manufacturing process such as injection molding, molding, and ceramic sintering.
  • the support base 50 and the insulating portion 122 of the second circuit board 12 The production materials can be different.
  • the support base 50 is integrally formed on the second circuit board 12.
  • the second circuit board 12 is integrally formed by ceramic sintering.
  • the support base 50 may also be integrally formed with the insulating portion 122 on the conductive portion 121, that is, the support base 50 and the insulating portion 122 of the second circuit board 12 may be integrally formed. This manner is beneficial to the connection strength between the support base 50 and the flood light module 20.
  • part of the electronic component 30 is connectably connected to the first circuit board 23 of the receiving module 20, and part of the electronic component 30 is connectably connected to the flood light.
  • the second circuit board 12 of the lamp module 10. At least a part of the electronic component 30 which is connected to the flood light module 10 in a conductive manner is disposed on the back surface of the first circuit board 23 of the receiving module 20. In this way, the size of the second circuit board 12 of the flood light module 10 can be reduced because the second circuit board 12 of the flood light module 10 is the electronic component.
  • the installation space reserved can be reduced, so that an area size of the entire flood light module 10 can be reduced, and the electronic device body 2 provides a size of installation space for the TOF camera module 1 Requirements can be reduced. In other words, the electronic device body 2 can accommodate more functional modules, such as a flash, different types of camera modules, and the like.
  • the electronic component 30 of the floodlight assembly 100 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, that is, the floodlight
  • the electronic component 30 of the light lamp assembly 100 may also be partially disposed on the front surface of the second circuit board 12 of the flood light module 10. Regardless of whether the electronic component 30 of the floodlight module 100 is located on the second circuit board 12 of the floodlight module 10 or the first circuit board 23 of the receiving module 20,
  • the electronic component 30 of the floodlight module 100 is connected to the second circuit board 12 of the floodlight module 10 in an electrically conductive manner.
  • the electronic components 30 of the flood light assembly 100 located on the first circuit board 23 of the receiving module 20 are connected to the flexible circuit through the first circuit board 23 of the receiving module 20 and the flexible connection.
  • the piece 40 is connectably connected to the second circuit board 12 of the flood light module 10, and the flood light assembly located on the second circuit board 12 of the flood light module 10
  • the electronic component 30 of 100 is directly conductively contacted with the second circuit board 12.
  • the electronic component 30 of the receiving module assembly 200 is disposed on the front surface of the first circuit board 23 of the receiving module 20 and is located around the first photosensitive element 22, And they are respectively connected to the first circuit board 23 in a conductive manner.
  • the electronic components 30 of the receiving module assembly 200 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, thereby facilitating the receiving module 20
  • the size of the first circuit board 23 can be reduced because the installation space reserved by the first circuit board 23 of the receiving module 20 for the electronic components 30 of the receiving module assembly 200 can be reduced.
  • the electronic components 30 of the receiving module assembly 200 located on the back of the first circuit board 23 of the receiving module 20 are connected to the first circuit board 23 in an electrically conductive manner.
  • the receiving module 20 further includes a protection member 24, wherein the protection member 24 is located below the first circuit board 23, and the protection member 24 forms a protection cavity 240, which is located on the first circuit board 23.
  • the electronic components 30 on the back side are accommodated in the protection cavity 240, on the one hand, it is possible to prevent pollutants such as dust from contacting the electronic components 30 on the back side of the first circuit board 23, On the other hand, the protection member 24 makes the electronic component 30 in a suspended state.
  • the protection member 24 has a bottom surface
  • the electronic component 30 has a front surface and a back surface, wherein the front surface of the electronic component 30 is connected to the first portion of the receiving module 20.
  • the back surface of a circuit board 23, the back surface of the electronic component 30 is exposed in the protective cavity 240, and the bottom surface of the protective member 24 is lower than the position of the electronic component 30.
  • the back surface so that when the TOF camera module 1 is mounted on a circuit board of the electronic device body 2, the TOF camera module 1 is supported to the electronics by the bottom surface of the protective member 24 The device body 2, thereby preventing the electronic component 30 from being squeezed during the installation process, so that the electronic component 30 can be in a suspended state relative to the protection member 24, that is, the electronic component 30
  • the back surface may not be in contact with the electronic device body 2, or the back surface of the electronic component 30 may not be subjected to a large squeeze.
  • the electronic components 30 on the first circuit board 23 of the receiving module 20 may be mounted on the back surface of the first circuit board 23 or may be at least partially covered on the first circuit board 23. Inside a circuit board 23.
  • Those skilled in the art can understand that the connection manner between the electronic component 30 and the first circuit board 23 of the first circuit board 23 of the receiving module 20 here is only here By way of example, it does not impose restrictions.
  • the protection member 24 may be mounted on the back surface of the first circuit board 23, or may be integrally formed with the first circuit board 23.
  • the height of the protection member 24 ranges from 0.35 mm to 0.5 mm. In some examples of the present invention, the height of the protective member 24 is 0.45 mm.
  • the area size of the TOF camera module 1 is within 12 mm * 7 mm. In some examples of the present invention, the area size of the TOF camera module 1 is within 11.6 mm * 6.5 mm.
  • the TOF camera module includes a cover body 70, wherein the cover body 70 is mounted on the flood light module 10 to protect the flood light module 10, and simultaneously The light radiated by the light-emitting element 111 can pass through the cover body 70 to propagate outward.
  • FIG. 5B shows a modified embodiment of the TOF camera module 1 according to the above-mentioned preferred embodiment of the present invention.
  • the TOF camera module 1 includes a floodlight module 100 and a receiving module module 200, wherein the floodlight module 100 is connectably connected to the receiving module module 200, so
  • the floodlight assembly 100 is configured to emit light, and the light is reflected by at least one object.
  • the receiving module assembly 200 receives the reflected light, so as to obtain information based on a time difference or a phase difference between the emitted light and the reflected light. A depth information of the object.
  • the TOF camera module 1 includes a flood light module 10, a receiving module 20, and at least one electronic component 30. At least one of the electronic components 30 is connected to the flood light in a conductive manner. In the module 10, at least one of the electronic components 30 is connectably connected to the receiving module 20.
  • the flood light assembly 100 includes the flood light module 10 and at least one of the electronic components 30, wherein the electronic components 30 are connectably connected to the flood light module.
  • the receiving module assembly 200 includes the receiving module 20 and at least one of the electronic components 30, wherein the electronic component 30 is connected to the receiving module 20 in a conductive manner.
  • the TOF camera module 1 further includes a support base 50, wherein the support base 50 supports the floodlight module 10 on the receiving module 20. It is worth noting that, in this example, the support base 50 is a hollow structure.
  • the TOF camera module 1 further includes a conductive member 60, wherein the conductive member 60 includes a conductive body 61 and a first connection end 611 and a second connection end 612. The first connection end 611 and The second connection ends 612 are respectively located at two ends of the conductive body 61 and are respectively connected to the flood light module 10 and the receiving module 20.
  • the conductive body 61 is capable of transmitting electrical signals.
  • the support base 50 is integrally formed with the conductive member 60. It is worth mentioning that the conductive member 60 in the present invention can be a straight wire, so that the flood light module 10 can communicate with the receiving module 20; the conductive member 60 can also be implemented as a multilayer
  • the circuit layer is arranged inside the support body 50 to achieve conduction.
  • the support base 50 can be obtained by injection molding, molding, ceramic die casting, and the like.
  • the conductive member 60 is wrapped by injection molding material, molding material, or ceramic die casting.
  • the receiving module 20 includes a first lens assembly 21, a first photosensitive element 22, and a first circuit board 23.
  • the first lens assembly 21 provides an optical path for light to pass through to reach the first photosensitive element.
  • the element 22 performs photoelectric conversion, and the first photosensitive element 22 is connectably connected to the first circuit board 23.
  • the first lens assembly 21 includes a first lens 211 and a base 212, wherein a light window is formed around the base 212, and the first lens 211 is supported by the base 212 and held at the base.
  • a light sensing path of the first photosensitive element 22 is provided so that light passes through the first lens 211 and passes through the light window to reach the first photosensitive element 22.
  • the first lens assembly 21 and the flood light module 10 are separately held on the first circuit board 23 respectively. That is, there is no physical contact between the first lens assembly 21 and the floodlight module 10 in space.
  • the support base 50 may be integrally formed with the base 212.
  • the base 212 and the support base 50 are the first lens 211 and the flood light module, respectively.
  • 10 provides a solid support.
  • the integrated support base 50 and the base 212 make the combination between the two more stable.
  • the flood light module 10 includes a projection component 11 and a second circuit board 12, wherein the projection component 11 is connectably connected to the second circuit board 12,
  • the second circuit board 12 is connectably connected to the first circuit board 23 of the receiving module 20.
  • the second circuit board 12 of the flood light module 10 is connectably connected to the first circuit board 23 of the receiving module 20 through the conductive member 60.
  • the second circuit board 12 may be a ceramic substrate, a rigid-flexible board, or a circuit board.
  • the projection assembly 11 further includes a light-emitting element 111 and a bracket 112, wherein the light-emitting element 111 is conductively supported on the second circuit board 12, and the bracket 112 is supported on the second circuit board. 12 and the bracket 112 forms a receiving cavity, wherein the light emitting element 111 is received in the receiving cavity.
  • the projection assembly 11 may further include an optical auxiliary element 113, wherein the optical auxiliary element 113 is supported by the bracket 112 and held in a light emitting path of the light emitting element 111, and emits light at the light emitting element 111. After that, the light passes through the optical auxiliary element 113 and then radiates outward.
  • the optical auxiliary element 113 may be an optical diffraction element.
  • the optical auxiliary element 113 is used to assist the light emitting element 111 to radiate light outward.
  • the type of the optical auxiliary element 113 does not limit the present invention.
  • bracket 112 may be formed on the second circuit board 12 by integral molding, for example, ceramic sintering is integrally molded.
  • the bracket 112 may be mounted on the second circuit board 12 by assembling.
  • the height of the flood light module 10 is generally lower than the height of the receiving module 20.
  • the height can be adjusted by the height of the bracket 112. The higher the height of the bracket 112, the higher the height of the flood light module 10, and the lower the height of the bracket 112, the flood light module. The lower the height of 10.
  • the height of the flood light module 10 is within 4.5 mm. In some examples of the present invention, the height of the flood light module 10 is between 4 mm.
  • the second circuit board 12 of the floodlight module 10 is connected to the first circuit board 23 of the receiving module 20 via the conductive member 60 in a conductive manner.
  • the second circuit board 12 has a front surface and a back surface, wherein the front surface of the second circuit board 12 is used to support the light emitting element 111, and the light emitting element 111 is connected to the first circuit ⁇ ⁇ ⁇ 12 ⁇ Two circuit boards 12.
  • the first circuit board 23 of the receiving module 20 has a front surface and a back surface, wherein the front surface of the first circuit board 23 is connectably connected to the first photosensitive element 22.
  • the second circuit board 12 is provided with at least a first conductive end 1210 and at least a second conductive end 1220, wherein the first conductive end 1210 is located on the front surface of the second circuit board 12, and the first Two conductive ends 1220 are located on the back surface of the second circuit board 12.
  • the first conductive end 1210 and the second conductive end 1220 can be electrically connected to each other and the first conductive end 1210 is directly connectable. In contact with the light emitting element 111.
  • the second conductive end 1220 can be electrically connected to the first circuit board 23.
  • the second conductive end 1220 is electrically connected through the conductive member 60 and a conductive end of the first circuit board 23.
  • electrical conduction needs to be applied between the second conductive end 1220 of the second circuit board 12 of the floodlight module 10 and the first connection end 611 of the conductive member 60.
  • a medium such as a conductive silver paste, to establish a problematic electrical connection between the second circuit board 12 and the conductive member 60.
  • the commonly used conductive medium usually has fluidity. Inevitably, during the process of applying the conductive medium, the conductive medium may overflow and cause a malfunction such as the short circuit of the flood light module 10. It is worth mentioning that a conductive medium can not only electrically connect the second circuit board 12 and the conductive member 60, but also fix the second circuit board 12 and the conductive member 60 by a conductive medium.
  • the support base 50 is further provided with at least one groove 500, wherein the groove 500 is respectively provided on the second circuit board 12 and the The electrical connection of the conductive member 60 is used to prevent the floodlight module 10 from being short-circuited due to the overflow of the conductive medium.
  • the groove 500 is concavely formed on an upper surface of the support base 50, and the first connection of the conductive member 60 The end 611 is exposed in at least one of the grooves 500.
  • the second conductive ends 1220 are respectively corresponding to and embedded in the grooves 500 and the conductive members.
  • the first connection end 611 of 60 is in contact.
  • at least one of the grooves 500 is provided with a conductive medium, and when the floodlight module 10 is mounted on the support base 50, at least one of the grooves 500 is covered by the second circuit.
  • the plate 12 is sealed to prevent malfunctions such as short circuits caused by overflow of the conductive medium.
  • the groove 500 can be regarded as an alignment reference for the floodlight module 10, which is helpful for The flood light module 10 is positionably mounted on the upper surface of the support base 50.
  • the conductive member 60 may be embedded in the support base 50, which can prevent a short circuit between the conductive members 60 and other faults, and also prevent the conductive member 60 from being oxidized.
  • a through hole may be formed in the support base 50, and then the conductive member 60 may be installed in the through hole.
  • the floodlight module 10 is still installed on the first circuit board 23 of the receiving module 20, but the floodlight module 10 and the receiving module 20 pass through
  • the conductive members 60 are electrically connected to each other.
  • the support base 50 can be made by processes such as injection molding, molding, and ceramic die casting.
  • the surface of the conductive body 61 of the conductive member 60 may be covered with a layer of insulating material.
  • part of the electronic component 30 is connectably connected to the first circuit board 23 of the receiving module 20, and part of the electronic component 30 is connectably connected to the flood light.
  • the second circuit board 12 of the lamp module 10. At least a part of the electronic component 30 which is connected to the flood light module 10 in a conductive manner is disposed on the back surface of the first circuit board 23 of the receiving module 20. In this way, the size of the second circuit board 12 of the flood light module 10 can be reduced because the second circuit board 12 of the flood light module 10 is the electronic component.
  • the installation space reserved can be reduced, so that an area size of the entire flood light module 10 can be reduced, and the electronic device body 2 provides a size of installation space for the TOF camera module 1 Requirements can be reduced. In other words, the electronic device body 2 can accommodate more functional modules, such as a flash, different types of camera modules, and the like.
  • the electronic component 30 of the floodlight module 10 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, that is, the The electronic component 30 of the flood light assembly 100 may also be partially disposed on the front surface of the second circuit board 12 of the flood light module 10. Regardless of whether the electronic component 30 of the floodlight module 100 is located on the second circuit board 12 of the floodlight module 10 or the first circuit board 23 of the receiving module 20, The electronic component 30 of the floodlight module 100 is connected to the second circuit board 12 of the floodlight module 10 in an electrically conductive manner.
  • the electronic components 30 of the floodlight assembly 100 located on the first circuit board 23 of the receiving module 20 pass through the first circuit board 23 and the conductive member of the receiving module 20 60 is connectably connected to the second circuit board 12 of the flood light module 10, and the flood light module located on the second circuit board 12 of the flood light module 10
  • the electronic component 30 of 10 is directly conductively contacted with the second circuit board 12.
  • the electronic component 30 of the receiving module assembly 200 is disposed on the front surface of the first circuit board 23 of the receiving module 20 and is located around the first photosensitive element 22, And they are respectively connected to the first circuit board 23 in a conductive manner.
  • the electronic components 30 of the receiving module assembly 200 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, thereby facilitating the receiving module 20
  • the size of the first circuit board 23 can be reduced because the installation space reserved by the first circuit board 23 of the receiving module 20 for the electronic components 30 of the receiving module assembly 200 can be reduced.
  • the electronic components 30 of the receiving module assembly 200 located on the back of the first circuit board 23 of the receiving module 20 are connected to the first circuit board 23 in an electrically conductive manner.
  • the receiving module 20 further includes a protection member 24, wherein the protection member 24 is located below the first circuit board 23, and the protection member 24 forms a protection cavity 240, which is located on the first circuit board 23.
  • the electronic components 30 on the rear surface are received in the protective cavity 240.
  • the protective member 24 makes the electronic component 30 In a floating state.
  • the protection member 24 has a bottom surface
  • the electronic component 30 has a front surface and a back surface, wherein the front surface of the electronic component 30 is connected to the first portion of the receiving module 20.
  • the back surface of a circuit board 23, the back surface of the electronic component 30 is exposed in the protective cavity 240, and the bottom surface of the protective member 24 is lower than the position of the electronic component 30.
  • the back surface so that when the TOF camera module 1 is mounted on a circuit board of the electronic device body 2, the TOF camera module 1 is supported to the electronics by the bottom surface of the protective member 24 The device body 2, thereby preventing the electronic component 30 from being squeezed during the installation process, so that the electronic component 30 can be in a suspended state relative to the protection member 24, that is, the electronic component 30
  • the back surface may not be in contact with the electronic device body 2, or the back surface of the electronic component 30 may not be subjected to a large squeeze.
  • the electronic components 30 on the first circuit board 23 of the receiving module 20 may be mounted on the back surface of the first circuit board 23 or may be at least partially covered on the first circuit board 23. Inside a circuit board 23.
  • Those skilled in the art can understand that the connection manner between the electronic component 30 and the first circuit board 23 of the first circuit board 23 of the receiving module 20 here is only here By way of example, it does not impose restrictions.
  • the protection member 24 may be mounted on the back surface of the first circuit board 23, or may be integrally formed with the first circuit board 23.
  • the protection member 24 can be made of a metal material, so that the TOF camera module 1 can be grounded through the protection member 24, and further provide the grounding performance of the TOF camera module 1, and
  • the protective member 24 made of a metal material can also enhance the heat dissipation performance at this position, on the one hand, it can help the first circuit board 23 to dissipate heat, and on the other hand, it can also help the front circuit board 23, or The electronic component 30, which is the back surface of the first circuit board 23, dissipates heat.
  • the support base 50 is connected to the floodlight module 10 and the receiving module 20 by an assembly method.
  • the second circuit board 12 of the flood light module 10 is connectably connected to the first circuit board 23 of the receiving module 20 through the conductive member 60 in the support base 50, Therefore, at least a part of the electronic components 30 located on the back surface of the first circuit board 23 is connected to the flood light module via the first circuit board 23 and the conductive member 60 in an electrically conductive manner. 10 of the second circuit board 12.
  • the protection member 24 is integrally formed on the first circuit board 23 of the receiving module 20 and is located on the back surface of the first circuit board 23.
  • the electronic component 30 located on the first circuit board 23 of the receiving module 20 is covered with the protective member 24 during the integral molding of the protective member 24. In this way, not only the electronic component 30 can be protected, but also a flat surface can be provided.
  • the bottom surface of the protective member 24 is the lower surface of the TOF camera module 1, so that the lower surface of the TOF camera module 1 formed by the molding process may be a flat surface, which is convenient for subsequent use. The installation of TOF camera module 1 and other equipment will be described.
  • the protection member 24 is disposed on the back surface of the first circuit board 23 of the receiving module 20 and the receiving The module 20 further includes a protective layer 25, wherein the protective layer 25 is located in the protective cavity 240 and is formed by a protective material.
  • the protective material may be a protective material such as glue.
  • the protective layer 25 can be to a certain extent.
  • the electronic component 30 is hermetically sealed, for example, the electronic component 30 is contaminated by water or other substances, thereby affecting the normal operation of the electronic component 30.
  • the support base 50 may be integrally formed with the first circuit board 23 of the receiving module 20.
  • the TOF camera module includes a cover body 70, wherein the cover body 70 is mounted on the flood light module 10 to protect the flood light module 10, and simultaneously The light radiated by the light-emitting element 111 can pass through the cover body 70 to propagate outward.
  • FIG. 6A shows a TOF camera module 1 according to a preferred embodiment of the present invention.
  • the TOF camera module 1 includes a floodlight module 100 and a receiving module module 200, wherein the floodlight module 100 is connectably connected to the receiving module module 200, so
  • the floodlight assembly 100 is configured to emit light, and the light is reflected by at least one object.
  • the receiving module assembly 200 receives the reflected light, so as to obtain information based on a time difference or a phase difference between the emitted light and the reflected light. A depth information of the object.
  • the TOF camera module 1 includes a flood light module 10, a receiving module 20, and at least one electronic component 30. At least one of the electronic components 30 is connected to the flood light in a conductive manner. In the module 10, at least one of the electronic components 30 is connectably connected to the receiving module 20.
  • the flood light module 10 includes the flood light module 10 and at least one of the electronic components 30, wherein the electronic components 30 are connectably connected to the flood light module.
  • the receiving module 20 includes the receiving module 20 and at least one of the electronic components 30, wherein the electronic component 30 is connected to the receiving module 20 in a conductive manner.
  • the TOF camera module 1 further includes a flexible connecting member 40, wherein the flexible connecting member 40 is connected to the floodlight module 10 and the receiving module 20, respectively.
  • the flood light module 10 is connectably connected to the receiving module 20 through the flexible connecting member 40, and the receiving module 20 is connectably connected to the receiving module 20 through the flexible connecting member 40.
  • the TOF camera module 1 further includes a support base 50, wherein the support base 50 supports the floodlight module 10 on the receiving module 20.
  • the receiving module 20 includes a first lens assembly 21, a first photosensitive element 22, and a first circuit board 23.
  • the first lens assembly 21 provides an optical path for light to pass through to reach the first photosensitive element.
  • the element 22 performs photoelectric conversion, and the first photosensitive element 22 is connectably connected to the first circuit board 23.
  • the first lens assembly 21 includes a first lens 211 and a base 212, wherein a light window is formed around the base 212, and the first lens 211 is supported by the base 212 and held at the base.
  • a light sensing path of the first photosensitive element 22 is provided so that light passes through the first lens 211 and passes through the light window to reach the first photosensitive element 22.
  • the flood light module 10 includes a projection module 11 and a second circuit board 12, wherein the projection module 11 is connectably connected to the second circuit board 12, and the second circuit board 12 is The first circuit board 23 is connectably connected to the receiving module 20.
  • the second circuit board 12 may be a ceramic substrate, a rigid-flexible board, or a circuit board.
  • the projection assembly 11 further includes a light-emitting element 111 and a bracket 112, wherein the light-emitting element 111 is conductively supported on the second circuit board 12, and the bracket 112 is supported on the second circuit board. 12 and the bracket 112 forms a receiving cavity, wherein the light emitting element 111 is received in the receiving cavity.
  • the projection assembly 11 may further include an optical auxiliary element 113, wherein the optical auxiliary element 113 is supported by the bracket 112 and held in a light emitting path of the light emitting element 111, and emits light at the light emitting element 111. After that, the light passes through the optical auxiliary element 113 and then radiates outward.
  • the optical auxiliary element 113 may be an optical diffraction element.
  • the optical auxiliary element 113 is used to assist the light emitting element 111 to radiate light outward.
  • the type of the optical auxiliary element 113 does not limit the present invention.
  • bracket 112 may be formed on the second circuit board 12 by integral molding, such as ceramic sintering and integral molding.
  • the bracket 112 may be mounted on the second circuit board 12 by assembling.
  • the second circuit board 12 includes a conductive portion 121 and an insulating portion 122, wherein the insulating portion 122 is connected to the conductive portion 121, and the insulating portion 122 and the bracket 112 may be integrally formed with the conductive portion.
  • the part 121 is integrally molded, for example.
  • the manufacturing materials of the bracket 112 of the floodlight module 10 and the insulating portion 122 of the second circuit board 12 may be the same or different.
  • the heat dissipation performance of the material of the second circuit board 12 of the floodlight module 10 may be better than or close to that of the bracket 112.
  • the height of the flood light module 10 is generally lower than the height of the receiving module 20.
  • the height can be adjusted by the height of the bracket 112. The higher the height of the bracket 112, the higher the height of the flood light module 10, and the lower the height of the bracket 112, the flood light module. The lower the height of 10.
  • the height of the flood light module 10 is within 4.5 mm. In some examples of the present invention, the height of the flood light module 10 is between 4 mm.
  • the support base 50 is integrally formed on the second circuit board 12 of the flood light module 10, and after the second circuit board 12 is formed, the support base 50 is integrated Molded on the second circuit board. Further, the manufacturing materials of the support base 50 and the second circuit board 12 are not the same. It is worth mentioning that, in this example, the support base 50 is integrally formed with the base 212. In the longitudinal direction, the base 212 and the support base 50 are the first lens 211 and the The floodlight module 10 provides a stable support. The integrated support base 50 and the base 212 make the combination between the two more stable.
  • the bracket 112, the support base 50, and the second circuit board 12 are integrally formed, so that the floodlight module 10 has a stable structure. More specifically, the bracket 112, the support base 50, and the second circuit board 12 are integrally formed by a ceramic process, and then the flood light module 10 with the support base 50 is installed on the First Circuit Board 23.
  • bracket 112 and the support base 50 may be respectively mounted on the second circuit board 12.
  • the manufacturing materials of the bracket 112 and the support base 50 and the insulating portion 12 of the second circuit board 12 may be the same or different.
  • the second circuit board 12 of the floodlight module 10 is connectably connected to the first circuit board 23 of the receiving module 20 through the flexible connecting member 40.
  • the second circuit board 12 is provided with at least a first conductive end 1210 and at least a second conductive end 1220, wherein the first conductive end 1210 is located on the front surface of the second circuit board 12, and the first Two conductive ends 1220 are located on one side of the second circuit board 12.
  • the first conductive end 1210 and the second conductive end 1220 can be electrically connected to each other and the first conductive end 1210 is directly contactable. ⁇ mentioned light-emitting element 111.
  • the first conductive end 1210 is formed on an upper surface of the conductive portion 121
  • the second conductive end 1220 is formed on a side of the conductive portion 121.
  • the second conductive end 1220 can be electrically connected to the first circuit board 23.
  • the first conductive end 1210 is electrically connected to the first circuit board 23 through the flexible connecting member 40.
  • part of the electronic component 30 is connectably connected to the first circuit board 23 of the receiving module 20, and part of the electronic component 30 is connectably connected to the flood light.
  • the second circuit board 12 of the lamp module 10. At least a part of the electronic component 30 which is connected to the flood light module 10 in a conductive manner is disposed on the back surface of the first circuit board 23 of the receiving module 20. In this way, the size of the second circuit board 12 of the flood light module 10 can be reduced because the second circuit board 12 of the flood light module 10 is the electronic component.
  • the installation space reserved can be reduced, so that an area size of the entire flood light module 10 can be reduced, and the electronic device body 2 provides a size of installation space for the TOF camera module 1 Requirements can be reduced. In other words, the electronic device body 2 can accommodate more functional modules, such as a flash, different types of camera modules, and the like.
  • the electronic component 30 of the floodlight assembly 100 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, that is, the floodlight
  • the electronic component 30 of the light lamp assembly 100 may also be partially disposed on the front surface of the second circuit board 12 of the flood light module 10. Regardless of whether the electronic component 30 of the floodlight module 100 is located on the second circuit board 12 of the floodlight module 10 or the first circuit board 23 of the receiving module 20,
  • the electronic component 30 of the floodlight module 100 is connected to the second circuit board 12 of the floodlight module 10 in an electrically conductive manner.
  • the electronic components 30 of the flood light assembly 100 located on the first circuit board 23 of the receiving module 20 are connected to the flexible circuit through the first circuit board 23 of the receiving module 20 and the flexible connection.
  • the piece 40 is connectably connected to the second circuit board 12 of the flood light module 10, and the flood light assembly located on the second circuit board 12 of the flood light module 10
  • the electronic component 30 of 100 is directly conductively contacted with the second circuit board 12.
  • the electronic component 30 of the receiving module assembly 200 is disposed on the front surface of the first circuit board 23 of the receiving module assembly 200 and is located around the first photosensitive element 22 And are respectively connected to the first circuit board 23 in a conductive manner.
  • the electronic components 30 of the receiving module assembly 200 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, thereby facilitating the receiving module 20
  • the size of the first circuit board 23 can be reduced because the installation space reserved by the first circuit board 23 of the receiving module 20 for the electronic components 30 of the receiving module assembly 200 can be reduced.
  • the electronic components 30 of the receiving module assembly 200 located on the back of the first circuit board 23 of the receiving module 20 are connected to the first circuit board 23 in an electrically conductive manner.
  • the receiving module 20 further includes a protection member 24, wherein the protection member 24 is located below the first circuit board 23, and the protection member 24 forms a protection cavity 240, which is located on the first circuit board 23.
  • the electronic components 30 on the rear surface are received in the protective cavity 240.
  • the protection member 24 includes a protection enclosure wall 241 and a protection bottom wall 242.
  • the protection enclosure wall 241 surrounds the protection cavity 240 and the protection bottom wall 242 is closed. There is a mouth of the protection cavity 240, and the protection bottom wall 242 is connected to the protection enclosure wall 241, so that pollutants cannot enter the protection cavity 240 from a bottom surface upward and cause pollution to the electronic components 30.
  • the electronic components 30 on the first circuit board 23 of the receiving module 20 may be mounted on the back surface of the first circuit board 23 or may be at least partially covered on the first circuit board 23. Inside a circuit board 23.
  • Those skilled in the art can understand that the connection manner between the electronic component 30 and the first circuit board 23 of the first circuit board 23 of the receiving module 20 here is only here By way of example, it does not impose restrictions.
  • the protection member 24 may be mounted on the back surface of the first circuit board 23, or may be integrally formed with the first circuit board 23.
  • the height of the protection member 24 ranges from 0.35 mm to 0.5 mm. In some examples of the present invention, the height of the protection member 24 is 0.45 mm.
  • the area size of the TOF camera module 1 is within 12 mm * 7 mm. In some examples of the present invention, the area size of the TOF camera module 1 is within 11.6 mm * 6.5 mm.
  • the TOF camera module includes a cover body 70, wherein the cover body 70 is mounted on the flood light module 10 to protect the flood light module 10, and simultaneously The light radiated by the light-emitting element 111 can pass through the cover body 70 to propagate outward.
  • FIG. 6B shows a modified embodiment of the TOF camera module 1 according to the above-mentioned preferred embodiment of the present invention.
  • the TOF camera module 1 includes a floodlight module 100 and a receiving module module 200, wherein the floodlight module 100 is connectably connected to the receiving module module 200, so
  • the floodlight assembly 100 is configured to emit light, and the light is reflected by at least one object.
  • the receiving module assembly 200 receives the reflected light, so as to obtain information based on a time difference or a phase difference between the emitted light and the reflected light. A depth information of the object.
  • the TOF camera module 1 includes a flood light module 10, a receiving module 20, and at least one electronic component 30. At least one of the electronic components 30 is connected to the flood light in a conductive manner. In the module 10, at least one of the electronic components 30 is connectably connected to the receiving module 20.
  • the flood light module 10 includes the flood light module 10 and at least one of the electronic components 30, wherein the electronic components 30 are connectably connected to the flood light module.
  • the receiving module 20 includes the receiving module 20 and at least one of the electronic components 30, wherein the electronic component 30 is connected to the receiving module 20 in a conductive manner.
  • the TOF camera module 1 further includes a support base 50, wherein the support base 50 supports the floodlight module 10 on the receiving module 20.
  • the TOF camera module 1 further includes a conductive member 60, wherein the conductive member 60 includes a conductive body 61 and a first connection end 611 and a second connection end 612. The first connection end 611 and The second connection ends 612 are respectively located at two ends of the conductive body 61 and are respectively connected to the flood light module 10 and the receiving module 20.
  • the conductive body 61 is capable of transmitting electrical signals.
  • the support base 50 is integrally formed with the conductive member 60.
  • the support base 50 can be obtained by injection molding, molding, ceramic die casting, and the like.
  • the conductive member 60 is wrapped by injection molding material, molding material, or ceramic die casting.
  • the receiving module 20 includes a first lens assembly 21, a first photosensitive element 22, and a first circuit board 23.
  • the first lens assembly 21 provides an optical path for light to pass through to reach the first photosensitive element.
  • the element 22 performs photoelectric conversion, and the first photosensitive element 22 is connectably connected to the first circuit board 23.
  • the first lens assembly 21 includes a first lens 211 and a base 212, wherein a light window is formed around the base 212, and the first lens 211 is supported by the base 212 and held at the base.
  • a light sensing path of the first photosensitive element 22 is provided so that light passes through the first lens 211 and passes through the light window to reach the first photosensitive element 22.
  • the receiving module 20 includes a base bracket 26, which is supported on the first circuit board 23.
  • the base 212 is supported by the base bracket 26.
  • the support base 50 is integrally formed with the base 212.
  • the base 212 and the support base 50 are the first lens 211 and the The floodlight module 10 provides a stable support.
  • the integrated support base 50 and the base 212 make the combination between the two more stable.
  • the bracket 112, the support base 50, and the second circuit board 12 are integrally formed, so that the floodlight module 10 has a stable structure. More specifically, the bracket 112, the support base 50, and the second circuit board 12 are integrally formed by a ceramic process, and then the flood light module 10 with the support base 50 is installed on the First Circuit Board 23.
  • the flood light module 10 includes a projection module 11 and a second circuit board 12, wherein the projection module 11 is connectably connected to the second circuit board 12, and the second circuit board 12 is The first circuit board 23 is connectably connected to the receiving module 20.
  • the second circuit board 12 of the flood light module 10 is connectably connected to the first circuit board 23 of the receiving module 20 through the conductive member 60.
  • the second circuit board 12 may be a ceramic substrate, a rigid-flexible board, or a circuit board.
  • the projection assembly 11 further includes a light-emitting element 111 and a bracket 112, wherein the light-emitting element 111 is conductively supported on the second circuit board 12, and the bracket 112 is supported on the second circuit board. 12 and the bracket 112 forms a receiving cavity, wherein the light emitting element 111 is received in the receiving cavity.
  • the projection assembly 11 may further include an optical auxiliary element 113, wherein the optical auxiliary element 113 is supported by the bracket 112 and held in a light emitting path of the light emitting element 111, and emits light at the light emitting element 111. After that, the light passes through the optical auxiliary element 113 and then radiates outward.
  • the optical auxiliary element 113 may be an optical diffraction element.
  • the optical auxiliary element 113 is used to assist the light emitting element 111 to radiate light outward.
  • the type of the optical auxiliary element 113 does not limit the present invention.
  • bracket 112 may be formed on the second circuit board 12 by integral molding, for example, ceramic sintering is integrally molded.
  • the bracket 112 may be mounted on the second circuit board 12 by assembling.
  • the support base 50 and the base 212 of the receiving module 20 are integrally formed. After the base 212 is formed, the support base 50 may be integrally formed on the base 212, or the support base 50 and the base 212 of the receiving module 20 are integrally formed. . That is, the manufacturing materials of the support base 50 and the base 212 may be the same or different.
  • the height of the flood light module 10 is generally lower than the height of the receiving module 20.
  • the height can be adjusted by the height of the bracket 112. The higher the height of the bracket 112, the higher the height of the flood light module 10, and the lower the height of the bracket 112, the flood light module. The lower the height of 10.
  • the height of the flood light module 10 is within 4.5 mm. In some examples of the present invention, the height of the flood light module 10 is between 4 mm.
  • the second circuit board 12 of the floodlight module 10 is connected to the first circuit board 23 of the receiving module 20 via the conductive member 60 in a conductive manner.
  • the second circuit board 12 has a front surface and a back surface, wherein the front surface of the second circuit board 12 is used to support the light emitting element 111, and the light emitting element 111 is connected to the first circuit ⁇ ⁇ ⁇ 12 ⁇ Two circuit boards 12.
  • First circuit board 23
  • the first circuit board 23 of the receiving module 20 has a front surface and a back surface, wherein the front surface of the first circuit board 23 is connectably connected to the first photosensitive element 22.
  • the front surface of the first circuit board 23 and the back surface of the first circuit board 23 are oppositely disposed.
  • the TOF camera module 1 is provided with at least a first conductive end 1210 and at least a second conductive end 1220, wherein the first conductive end 1210 is located on the front surface of the second circuit board 12, and the first The two conductive ends 1220 are located on a back surface of the support base 50, wherein the back surface of the support base 50 directly contacts the front surface of the first circuit board 23, so that the second conductive end 1220 is directly guided.
  • the first circuit board 23 is connected to the first circuit board 23, so that the first circuit board 12 of the flood light module 10 can be connected to the first circuit board 23 of the receiving module 20. It can be understood that the conduction between the support base 50 and the second circuit board 12 of the floodlight module 10 may be through a through conductive member, which is not shown in the figure.
  • the second conductive end 1220 can be conducted to the first circuit. Plate 23.
  • part of the electronic component 30 is connectably connected to the first circuit board 23 of the receiving module 20, and part of the electronic component 30 is connectably connected to the flood light.
  • the installation space reserved can be reduced, so that an area size of the entire flood light module 10 can be reduced, and the electronic device body 2 provides a size of installation space for the TOF camera module 1 Requirements can be reduced. In other words, the electronic device body 2 can accommodate more functional modules, such as a flash, different types of camera modules, and the like.
  • the electronic component 30 of the floodlight assembly 100 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, that is, the floodlight
  • the electronic component 30 of the light lamp assembly 100 may also be partially disposed on the front surface of the second circuit board 12 of the flood light module 10. Regardless of whether the electronic component 30 of the floodlight module 100 is located on the second circuit board 12 of the floodlight module 10 or the first circuit board 23 of the receiving module 20, The electronic component 30 of the floodlight module 100 is connected to the second circuit board 12 of the floodlight module 10 in an electrically conductive manner.
  • the electronic components 30 of the floodlight assembly 100 located on the first circuit board 23 of the receiving module 20 pass through the first circuit board 23 and the conductive member of the receiving module 20 60 is conductively connected to the second circuit board 12 of the flood light module 10, and the flood light assembly 100 located on the second circuit board 12 of the flood light module 10
  • the electronic component 30 is directly conductively contacted with the second circuit board 12.
  • the electronic component 30 of the receiving module assembly 200 is disposed on the front surface of the first circuit board 23 of the receiving module assembly 200 and is located around the first photosensitive element 22 And are respectively connected to the first circuit board 23 in a conductive manner.
  • the electronic components 30 of the receiving module assembly 200 may be partially disposed on the back surface of the first circuit board 23 of the receiving module 20, thereby facilitating the receiving module 20
  • the size of the first circuit board 23 can be reduced because the installation space reserved by the first circuit board 23 of the receiving module 20 for the electronic components 30 of the receiving module assembly 200 can be reduced.
  • the electronic components 30 of the receiving module assembly 200 located on the back of the first circuit board 23 of the receiving module 20 are connected to the first circuit board 23 in an electrically conductive manner.
  • the receiving module 20 further includes a protection member 24, wherein the protection member 24 is located below the first circuit board 23, and the protection member 24 forms a protection cavity 240, which is located on the first circuit board 23.
  • the electronic components 30 on the back side are accommodated in the protection cavity 240, on the one hand, it is possible to prevent pollutants such as dust from contacting the electronic components 30 on the back side of the first circuit board 23,
  • the protection member 24 makes the electronic component 30 in a suspended state.
  • the protection member 24 has a bottom surface, and the electronic component 30 has a front surface and a back surface, wherein the front surface of the electronic component 30 is connected to the first portion of the receiving module 20.
  • the back surface of a circuit board 23, the back surface of the electronic component 30 is exposed in the protective cavity 240, and the bottom surface of the protective member 24 is lower than the position of the electronic component 30.
  • the back surface so that when the TOF camera module 1 is mounted on a circuit board of the electronic device body 2, the TOF camera module 1 is supported to the electronics by the bottom surface of the protective member 24 The device body 2, thereby preventing the electronic component 30 from being squeezed during the installation process, so that the electronic component 30 can be in a suspended state relative to the protection member 24, that is, the electronic component 30
  • the back surface may not be in contact with the electronic device body 2, or the back surface of the electronic component 30 may not be subjected to a large squeeze.
  • the electronic components 30 on the first circuit board 23 of the receiving module 20 may be mounted on the back surface of the first circuit board 23 or may be at least partially covered on the first circuit board 23. Inside a circuit board 23.
  • Those skilled in the art can understand that the connection manner between the electronic component 30 and the first circuit board 23 of the first circuit board 23 of the receiving module 20 here is only here By way of example, it does not impose restrictions.
  • the protection member 24 may be mounted on the back surface of the first circuit board 23, or may be integrally formed with the first circuit board 23.
  • the protection member 24 can be made of a metal material, so that the TOF camera module 1 can be grounded through the protection member 24, and further provide the grounding performance of the TOF camera module 1, and
  • the protective member 24 made of a metal material can also enhance the heat dissipation performance at this position, on the one hand, it can help the first circuit board 23 to dissipate heat, and on the other hand, it can also help the front circuit board 23, or The electronic component 30, which is the back surface of the first circuit board 23, dissipates heat.
  • the support base 50 is connected to the floodlight module 10 and the receiving module 20 by an assembly method.
  • the second circuit board 12 of the flood light module 10 is connectably connected to the first circuit board 23 of the receiving module 20 through the conductive member 60 in the support base 50, Therefore, at least a part of the electronic components 30 located on the back surface of the first circuit board 23 is connected to the flood light module via the first circuit board 23 and the conductive member 60 in a conductive manner. 10 of the second circuit board 12.
  • the protection member 24 is integrally formed on the first circuit board 23 of the receiving module 20 and is located on the back surface of the first circuit board 23.
  • the electronic component 30 located on the first circuit board 23 of the receiving module 20 is covered with the protective member 24 during the integral molding of the protective member 24. In this way, not only the electronic component 30 can be protected, but also a flat surface can be provided.
  • the bottom surface of the protective member 24 is the lower surface of the TOF camera module 1, so that the lower surface of the TOF camera module 1 formed by the molding process may be a flat surface, which is convenient for subsequent use. The installation of TOF camera module 1 and other equipment will be described.
  • the receiving module 20 further includes a protective layer 25.
  • the protective layer 25 is located in the protective cavity 240 and is formed by a protective material.
  • the protective material may be a protective material such as glue.
  • the protection layer 25 can seal the electronic component 30 to a certain extent, for example, the electronic component 30 is contaminated by water or other substances, thereby affecting the normal operation of the electronic component 30.
  • the protective layer 25 may completely cover the electronic component 30, and may also expose at least a part of the electronic component 30.
  • the support base 50 may be integrally formed with the first circuit board 23 of the receiving module 20.
  • the second circuit board 12 of the floodlight module 10 includes a conductive portion 121 and an insulating portion 122, wherein the insulating portion 122 is connected to the conductive portion 121 and plays an insulating role.
  • the insulating portion 122 is integrally formed with the insulating portion 122.
  • the first conductive end 1210 and the second conductive end 1220 are respectively formed on an upper surface and a lower surface of the conductive portion 121.
  • the second conductive end 1220 may also be formed on a side surface of the conductive portion 121.
  • the conductive portion 121 further includes a first conductive portion 1211 and a second conductive portion 1212, wherein the first conductive portion 1211 and the second conductive portion 1212 are isolated by the insulating portion 122 to avoid the first conductive portion 1211 and the second conductive portion 1212.
  • a conductive portion 1211 and the second conductive portion 1212 are short-circuited when they are turned on at the same time.
  • the first conductive portion 1211 can not only perform a conductive function, but also perform a heat dissipation function to transfer heat generated by the light emitting element 112 from one side of the second circuit board 12 to the other side for dissipation. .
  • the first conductive portion 1211 is larger than the second conductive portion 1212, wherein the first conductive portion 1211 can be used to support the light emitting element 112.
  • the first conductive portion 1211 may be electrically connected to one electrode of the light emitting element 112, and the second conductive portion 1212 may be electrically connected to another electrode of the light emitting element 112 to form a loop after being energized.
  • the first conductive portion 1211 penetrates the insulating portion 122 in a height direction, the first conductive end 1210 is formed on an upper surface of the first conductive portion 1211, and the second conductive end 1220 is formed. On the lower surface of the first conductive portion 1211.
  • the second conductive end 1220 is formed on a side of the first conductive portion 1211.
  • the conductive portion 121 may further include a third conductive portion 1213 and a fourth conductive portion 1214, wherein the third conductive portion 1213 and the fourth conductive portion 1214 can be used to conductably support other electronic components.
  • 115 for example, used to turn on PD components (light intensity detection), capacitor resistance, NTC (temperature control) and other components.
  • the conductive portion 121 may further include a fifth conductive portion or even more conductive portions.
  • the structure and arrangement of the conductive portions 121 can be flexibly designed according to requirements.
  • the second circuit board 12 of the floodlight module 10 includes a conductive layer 310, a circuit layer 320, and an insulation layer. Layer 330 and a heat dissipation portion 340, wherein the insulation layer 330 is connected to the conductive layer 310 and the circuit layer 320, respectively, and the heat dissipation portion 340 is formed on the conductive layer 310 and the circuit layer 320.
  • the first conductive end 1210 is formed on an upper surface of the heat dissipation portion 340
  • the second conductive end 1220 is formed on the lower surface of the heat dissipation portion 340.
  • the conductive layer 310 and the circuit layer 320 are respectively developed by a light, and then formed by electroplating.
  • the second conductive end 1220 may also be formed on one side.
  • the present invention provides a method for assembling a TOF camera module 1, which includes the following steps:
  • At least one of the electronic components 30 is disposed on a back surface of the first circuit board 23 of the receiving module 20 in a manner of being electrically connected to the second circuit board 12 of the floodlight module 10.
  • the electronic component 30 located on the back surface of the first circuit board 23 is connectably connected to the second circuit board 12 through the flexible connecting member 40.
  • the electronic component 30 located on the back surface of the first circuit board 23 is connectably connected to the electronic component 30 through the conductive member 60 built in the support base 50. Mentioned second circuit board 12.
  • the flood light module 10 is directly mounted on the first circuit board 23 of the receiving module 20.
  • the flood light module 10 is mounted on the first circuit board 23 of the receiving module 20 through the support base 50.
  • the support base 50 is integrally formed on the first circuit board 23 of the floodlight module 10.
  • the support base 50 is integrally formed on the base 212 of the receiving module 20.
  • the support base 50 is integrally formed on the first circuit board 23 of the receiving module 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

本发明提供了一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组包括一泛光灯模组、一接收模组以及多个电子元器件,其中部分所述电子元器件被可导通地连接于所述泛光灯模组,部分所述电子元器件被可导通地连接于所述接收模组,所述接收模组提供一第一电路板,多个电子元器件中的至少一个所述电子元器件位于所述接收模组的所述第一电路板的所述背面。

Description

TOF摄像模组和电子设备以及组装方法 技术领域
本发明涉及到深度信息摄像模组领域,尤其涉及到一TOF摄像模组和电子设备以及组装方法。
背景技术
TOF摄像模组,即Time of Flight是指利用传感器发出经过调制后的光线,然后遇到物体反射后,传感器通过计算发射光线和接收到来自于物体反射的光线的时间差或者是相位差,来获得关于该物体的一深度信息。
目前在电子设备领域尤其是移动电子设备领域,随着科技的进步和消费者需求的升级,对于摄像头的要求也越来越多,消费者不仅希望通过摄像头可以获得清晰的图像,还希望整个电子设备拥有更多的功能,比如说一开始的摄像头是后置的,用于拍摄物体,后来又增加了闪光灯,为了满足消费者在光线较暗的情况下方便地使用摄像头,再后来,又增加了前置摄像头,使得消费者可以在使用电子设备的过程中直接拍摄到自己的图像。
移动电子设备发展到今天,从一开始的搭载一摄像头逐渐升级到二摄像头甚至是三摄像头,到未来可能搭载用于获取深度信息的摄像模组,整个电子设备的功能越来越强大,内部的结构和设计也越来越复杂。
显然,整个电子设备的可供搭载功能模块的空间是有限的,所述TOF摄像模组本身相对于单个摄像头占据了较多的空间,因为对于单个所述TOF摄像模组而言,其包括一泛光灯和一接收模组,其中所述泛光灯用于发射光线,所述接收模组用于接收光线,所述接收模组的尺寸和正常的一摄像头的尺寸类似,所述泛光灯进一步占据了所述电子设备的至少部分的安装空间。
如何能够为搭载有所述TOF摄像模组的所述电子设备在将来搭载其他功能模块时留出更多的安装空间或者是如何使得电子设备能够搭载更多的功能模块,这是一个需要关注的问题。
发明内容
本发明的一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组具有较小的面积尺寸以减少在安装中占据的空间。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组的一第一电路板具有较小的面积尺寸。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组包括一泛光灯模组和一接收模组,其中所述泛光灯模组的一第二电路板具有较小的面积尺寸。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述接收模组的所述第一电路板具有较小的面积尺寸。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组的至少一电子元器件被设置于一第一电路板的背面,以缩小所述TOF摄像模组的面积尺寸。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述泛光灯的至少一所述电子元器件被设置于所述接收模组的所述电路板的一背面,以缩小所述TOF摄像模组的面积尺寸。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述接收模组的至少一所述电子元器件被设置于所述接收模组的所述电路板的一背面,以缩小所述TOF摄像模组的面积尺寸。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组在保持一定面积尺寸的前提下能够被安装有更多的所述电子元器件。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组在保持一定数量的所述电子元器件前提下,尺寸可以更小。
本发明的另一目的在于提供一TOF摄像模组和电子设备以及组装方法,其中所述TOF摄像模组在保持一定面积尺寸的前提下所述接收模组的一感光元件能够被设计为较大尺寸。
根据本发明的一方面,本发明提供了一TOF摄像模组,其中所述TOF摄像模组包括:
一泛光灯模组;
一接收模组;以及
多个电子元器件,其中所述接收模组包括一第一镜头组件、一第一感光元件以及一第一电路板,其中所述第一镜头组件提供一光学通路供光线穿过后达到所述第一感光元件进行光电转换,所述第一感光元件被可导通地连接于所述第一电路板,其中所述泛光灯模组被可导通地连接于所述接收模组,其中所述第一电路板具有一正面和一背面,其中所述第一感光元件位于所述第一电路板的所述正面,多个所述电子元器件的至少部分位于所述接收模组的所述第一电路板的所述背面。
根据本发明的一实施例,位于所述第一电路板的所述背面的至少部分所述电子元器件被可导通地连接于所述接受模组本体。
根据本发明的一实施例,于所述第一电路板的所述背面的至少部分所述电子元器件被可导通地连接于所述泛光灯模组。
根据本发明的一实施例,位于所述第一电路板的所述背面的至少部分所述电子元器件被可导通地连接于所述接受模组本体,并且位于所述第一电路板的所述背面的至少部分所述电子元器件被可导通地连接于所述泛光灯模组。
根据本发明的一实施例,所述泛光灯模组包括一发光元件、一支架以及一第二电路板,其中所述发光元件被可导通地连接于所述第二电路板,所述支架被支撑于所述第二电路板并且围绕所述发光元件,其中所述泛光灯模组支撑于所述接收模组的所述第一电路板。其中所述泛光灯模组的所述第二电路板被直接可导通地连接于所述接收模组的所述第一电路板。
根据本发明的一实施例,进一步包括一柔性连接件,其中所述泛光灯模组的所述第一电路板通过所述柔性连接件被可导通地连接于所述接收模组的所述第一电路板。
根据本发明的一实施例,所述泛光灯模组的所述支架通过陶瓷烧结工艺一体成型于所述第二电路板。
根据本发明的一实施例,至少部分所述泛光灯模组的所述第二电路板的位于所述第一电路板的上方。
根据本发明的一实施例,进一步包括一支撑座,其中所述泛光灯模组包括一发光元件、一支架以及一第二电路板,其中所述发光元件被可导通地连接于所述第二电路板,所述支架被支撑于所述第二电路板并且围绕所述发光元件,其中所 述支撑座位于所述第二电路板和所述第一电路板之间,所述泛光灯模组通过所述支撑座被支撑于所述第一电路板。
根据本发明的一实施例,进一步包括一导电件,其中所述导电件位于所述支撑座,所述导电件导通所述第一电路板和所述第二电路板。
根据本发明的一实施例,所述支撑座具有一上表面,其中所述第二电路板被支撑于所述上表面,所述支撑座具有一凹槽,其中所述凹槽形成于所述上表面,其中所述导电件具有一第一导电端和一第二导电端,其中所述第二导电端被可导通地连接于所述第二电路板并且被容纳于所述凹槽,所述第一导电端被可导通地连接于所述第一电路板。
根据本发明的一实施例,所述导电件被包裹于所述支撑座。
根据本发明的一实施例,进一步包括一柔性连接件,其中所述第一电路板通过所述柔性连接件被可导通地连接于所述第二电路板,位于所述第一电路板的所述背面的至少部分所述电子元器件通过所述柔性连接件被可导通地连接于所述第二电路板。
根据本发明的一实施例,所述支撑座通过陶瓷烧结工艺一体成型于所述泛光灯模组的所述第二电路板。
根据本发明的一实施例,所述支撑座通过陶瓷烧结工艺一体成型于所述泛光灯模组的所述第二电路板。
根据本发明的一实施例,所述支撑座、所述支架以及所述第二电路板通过陶瓷烧结工艺一体成型。
根据本发明的一实施例,进一步包括一保护件,其中所述保护件位于所述第一电路板的所述背面,所述保护件形成一保护腔,其中位于所述第一电路板的所述背面的所述电子元器件被容纳于所述保护腔。
根据本发明的一实施例,所述保护件是一围壁。
根据本发明的一实施例,进一步包括一保护层,其中所述保护层位于所述保护腔并且覆盖所述电子元器件。
根据本发明的一实施例,所述保护件包括一围壁和一底壁,其中所述底壁覆盖所述保护腔的腔口。
根据本发明的一实施例,所述保护件通过模塑工艺一体成型于所述第一电路板。
根据本发明的一实施例,所述保护件的高度范围是0.35mm到0.5mm。
根据本发明的一实施例,所述泛光灯模组的高度不大于4.5mm。
根据本发明的一实施例,所述TOF摄像模组的面积尺寸范围不大于10.5mm*6.6mm。
根据本发明的一实施例,所述TOF摄像模组的面积尺寸不大于12mm*7mm。
根据本发明的一实施例,所述泛光灯模组,和所述接收模组具有一高度差,所述高度差的范围不超过0.15mm。
根据本发明的另一方面,本发明提供了一电子设备,其包括:
一电子设备本体;和
根据上述的TOF摄像模组,其中所述TOF摄像模组被设置于所述电子设备本体。
附图说明
图1A是根据本发明的一较佳实施例的一TOF摄像模组的立体示意图。
图1B是根据本发明的一较佳实施例的一TOF摄像模组的剖视示意图。
图2是根据本发明的一较佳实施例的一电子设备的示意图。
图3是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图4A是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图4B是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图5A是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图5B是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图6A是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图6B是根据本发明的一较佳实施例的一TOF摄像模组的示意图。
图7A是根据本发明的一较佳实施例的一泛光灯模组的示意图。
图7B是根据本发明的一较佳实施例的一泛光灯模组的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方 案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
附图1A和附图1B示出了根据本发明的一较佳实施例的一TOF摄像模组1,附图2示出了带有所述TOF摄像模组1的一电子设备1000。
所述电子设备1000包括一电子设备主体2和所述TOF摄像模组1,其中所述TOF摄像模组1被设置于所述电子设备主体2。所述电子设备1000还可以包括至少一摄像模组,比如说一长焦摄像模组,一中焦摄像模组以及一广角摄像模组。
所述TOF摄像模组1具有较小的面积尺寸,从而所述电子设备本体2预留更多的安装空间供安装所述摄像模组或者是其他部件。
具体地说,所述TOF摄像模组1包括一泛光灯组件100和一接收模组组件200,其中所述泛光灯组件100被可导通地连接于所述接收模组组件200,所述泛光灯组件100用于发射光线,光线被至少一物体反射,所述接收模组组件200接收被反射的光线,从而基于所述发射光线和所述反射光线的时间差或者是相位差获得关于该物体的一深度信息。
所述TOF摄像模组1包括一泛光灯模组10,一接收模组20以及至少一电子元器件30,其中至少一所述电子元器件30被可导通地连接于所述泛光灯模组10,至少一所述电子元器件30被可导通地连接于所述接收模组20,所述电子元器件30被导通可理解为,至少部分所述电子元器件30是用来支持对应的所述泛光灯组件100或/和所述接收模组组件200工作。
进一步地,所述泛光灯组件100包括所述泛光灯模组10和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述泛光灯模组10。所述 接收模组组件200包括所述接收模组20和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述接收模组20。
所述接收模组20包括一第一镜头组件21、一第一感光元件22以及一第一电路板23,其中所述第一镜头组件21提供一光学通路供光线穿过后达到所述第一感光元件22以进行光电转换,所述第一感光元件22被可导通地连接于所述第一电路板23。
所述第一镜头组件21包括一第一镜头211和一基座212,其中所述基座212围绕形成有一光窗,所述第一镜头211被支撑于所述基座212并且被保持在所述第一感光元件22的一感光路径,以使光线经过所述第一镜头211后通过所述光窗到达所述第一感光元件22。
所述泛光灯模组10包括一投射组件11和一第二电路板12,其中所述投射组件11被可导通地连接于所述第二电路板12,所述第二电路板12被可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12可以是陶瓷基板、软硬结合板或者是线路板等。在本发明中,至少部分所述泛光灯模组10的所述第二电路板12位于所述第一电路板23上方,即所述第二电路板12在沿着高度方向正投影于所述第一电路板23时,至少有部分位于所述第一电路板23范围内,即所述第二电路板12相对于所述第一电路板23投影时,至少部分位于所述第一电路板23内。
所述投射组件11进一步包括一发光元件111和一支架112,其中所述发光元件111被可导通地支撑于所述第二电路板12,所述支架112被支撑于所述第二电路板12并且所述支架112形成一容纳腔,其中所述发光元件111被容纳于所述容纳腔。
所述投射组件11还可以包括一光学辅助元件113,其中所述光学辅助元件113被支撑于所述支架112并且被保持在所述发光元件111的一发光通路,在所述发光元件111发出光线后,光线经过所述光学辅助元件113再朝外辐射。所述光学辅助元件113可以是一光学衍射元件,所述光学辅助元件113用于辅助所述发光元件111朝外辐射光线,所述光学辅助元件113的类型并不对本发明造成限制。
进一步地,所述支架112是通过一体成型的方式形成于所述第二电路板12,比如说陶瓷烧结一体成型,或者是模塑一体成型。所述支架112也可以是通过组 装的方式被安装于所述第二电路板12。其中,优选地所述支架112和所述第二电路板12通过陶瓷烧结一体成型。
参考附图7A,所述第二电路板12包括一导电部121和一绝缘部122,其中所述绝缘部122被连接于所述导电部121,所述绝缘部122可以和所述支架112一体成型于所述导电部121,比如说模塑一体成型。
可以理解是,所述泛光灯模组10的所述支架112和所述第二电路板12的所述绝缘部122的制作材料可以是相同的,也可以是不同的。所述泛光灯模组10的所述第二电路板12的制作材料的散热性能可以优于或者是接近于所述支架112的制作材料。所述第二电路板12与所述支架112可以一体成型,也可以是所述支架112被贴附于所述第二电路板12,两者如何形成并不对本发明构成限制。
进一步地,对于整个所述TOF摄像模组1而言,所述泛光灯模组10的高度一般低于所述接收模组20的高度,对于所述泛光灯模组10而言,其高度可以通过所述支架112的高度来调整,所述支架112的高度越高,所述泛光灯模组10的高度越高,所述支架112的高度越低,所述泛光灯模组10的高度越低。
在本发明的一些实施例中,所述泛光灯模组10的高度在4.5mm之内。在本发明的一些示例中,所述泛光灯模组10的高度在4mm之间。
在本示例中,所述泛光灯模组10的所述第二电路板12被直接可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12具有一正面和一背面,其中所述第二电路板12的所述正面用于支撑所述发光元件111,所述发光元件111被可导通地连接于所述第二电路板12,所述第二电路板12的所述背面用于接触所述第一电路板23,并且所述第二电路板12被可导通地连接于所述第一电路板23。
所述第一电路板23具有一正面和一背面,其中所述第一电路板23的所述正面被可导通地连接于所述第一感光元件22,所述第一电路板23的所述正面和所述第二电路板12的所述背面被相对设置。
所述第二电路板12被设置有至少一第一导电端1210和至少一第二导电端1220,其中所述第一导电端1210位于所述第二电路板12的所述正面,所述第二导电端1220位于所述第二电路板12的所述背面,所述第一导电端1210和所述第二导电端1220能够相互导通并且所述第一导电端1210被可导通地直接接触于 所述发光元件111。
在所述泛光灯模组10被安装于所述接收模组20的所述第一电路板23,所述第二导电端1220能够被导通于所述第一电路板23。可以是,所述第二导电端1220可以直接和所述第一电路板23的一导电端导通。
进一步地,部分所述电子元器件30被可导通地连接于所述接收模组20的所述第一电路板23,部分所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。所述电子元器件30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面。优选地,所述泛光灯组件100的所述电子元器件30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面,例如所述电子元器件30被实施为所述泛光灯模组10的所述发光元件111的一驱动器,也可以是电容、电阻等器件。在本发明其他实施例中,被设置于所述第一电路板23的所述背面的部分所述电子元器件30为所述接收模组组件200的电子元器件30,即用来支撑所述接收模组20工作。在本发明其他实施例中,被设置于所述第一电路板23的所述背面的部分所述电子元器件30中,有部分是用于支撑所述泛光灯模组10工作,另外部分用于支撑所述接收模组20工作。
所述接收模组20的所述第一电路板23的所述背面可以是一平面,所述电子元器件30可以通过贴装的方式被设置于所述第一电路板23。所述接收模组20的所述第一电路板23的所述背面可以形成有一凹槽,所述电子元器件30能够被贴装于所述凹槽位置,从而降低所述第一电路板23和所述电子元件器件30之间的厚度。所述电子元器件30也可以至少部分被包覆于所述第一电路板23的方式被设置于所述第一电路板23。本领域技术人员可以理解的是,上述的方式并不对所述电子元器件30和所述第一电路板23之间的连接方式造成限制。
通过这样的方式,所述泛光灯模组10的所述第二电路板12的尺寸可以被缩小,因为所述泛光灯模组10的所述第二电路板12为所述电子元器件30预留的安装空间可以被缩小,从而整个所述泛光灯模组10的一面积尺寸可以被缩小,进而所述电子设备本体2为所述TOF摄像模组1提供一安装空间的大小的要求可以被降低。换句话说,所述电子设备本体2可以容纳更多的功能模块,比如说闪光灯,不同类型的摄像模组等。
可以理解的是,所述泛光灯组件100的所述电子元器件30可以被部分设置于所述接收模组组件200的所述第一电路板23的所述背面,也就是说,所述泛 光灯组件100的所述电子元器件30还可以部分被设置于所述泛光灯模组10的所述第二电路板12的所述正面。不论所述泛光灯组件100的所述电子元器件30位于所述泛光灯模组10的所述第二电路板12还是位于所述接收模组组件200的所述第一电路板23,所述泛光灯组件100的所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12,以使得所述泛光灯组件100工作。
位于所述接收模组组件200的所述第一电路板23的所述泛光灯模组10的所述电子元器件30通过所述接收模组组件200的所述第一电路板23被可导通地连接于所述泛光灯模组10的所述第二电路板12,位于所述泛光灯模组10的所述第二电路板12的所述泛光灯组件100的所述电子元器件30被直接可导通地接触于所述第二电路板12。
进一步地,所述接收模组组件200的所述电子元器件30被设置于所述接收模组组件200的所述第一电路板23的所述正面,位于所述第一感光元件22的周围,并且分别被可导通地连接于所述第一电路板23。所述接收模组组件200的所述电子元器件30可以被部分设置于所述接收模组组件200的所述第一电路板23的所述背面,从而有利于所述接收模组组件200的所述第一电路板23的尺寸可以被缩小,因为所述接收模组的200所述第一电路板23为所述接收模组组件200的所述电子元器件30预留的安装空间可以减小。位于所述接收模组组件200的所述第一电路板23的所述背面的所述接收模组组件200的所述电子元器件30被可导通地连接于所述第一电路板23。
所述接收模组20进一步包括一保护件24,其中所述保护件24位于所述第一电路板23的下方,所述保护件24形成有一保护腔240,其中位于所述第一电路板23的所述背面的所述电子元器件30被容纳于所述保护腔240。
在本示例中,所述保护件24是一围壁,所述保护件24自所述第一电路板12朝下延伸而成,所述保护腔240的腔口被暴露在外,在所述第一电路板12的所述背面一侧可以直接观察到被安装于所述第一电路板12的所述背面的所述电子元器件30,通过这样的方式,一方面能够避免灰尘等污染物接触到位于所述第一电路板23的所述背面的所述电子元器件30,另一方面所述保护件24使得所述电子元器件30处于一相对悬空的状态,其中优选地所述保护件24高度高于所述电子元器件30的高度,从而在所述TOF摄像模组1被安装于所述电子设备本体2时,所述TOF摄像模组1通过所述保护件24被支撑于所述电子设备本体2, 从而避免所述电子元器件30受到安装过程中的挤压,使得所述电子元器件30能够处于一种相对于所述保护件24悬空的状态,即所述电子元器件30的所述背面可以不与所述电子设备本体2接触,或者是所述电子元器件30不必承受较大的挤压。具体的说,所述电子元器件30和所述保护件24被设置于所述第一电路板23的背面,所述电子元器件30被收容于所述保护件24围成的所述保护腔240,所述电子元器件30优选地高度低于所述保护件24的高度。
在本发明的另一些示例中,参考附图4B,所述保护件24被设置于所述接收模组20的所述第一电路板23的所述背面并且所述接收模组20进一步包括一保护层25,其中所述保护层25位于所述保护腔240,并且通过一保护材料形成,所述保护材料可以是胶水等保护材料,所述保护层25能够在一定程度上密封所述电子元器件30,比如所述电子元器件30进水或者是其他物质污染,从而影响到所述电子元器件30的正常工作。
位于所述接收模组组件200的所述第一电路板23的所述电子元器件30可以被贴装于所述第一电路板23的所述背面,也可以被至少部分包覆在所述第一电路板23内。本领域技术人员可以理解的是,此处的位于所述接收模组组件200的所述第一电路板23的所述电子元器件30和所述第一电路板23之间的连接方式在此仅为举例,并不造成限制。
所述保护件24可以是被安装于所述第一电路板23的所述背面,也是可以和所述第一电路板23一体成型。
在本发明的一些示例中,所述保护件24的高度范围是0.35mm~0.5mm。在本发明的一些示例中,所述保护件24的高度是0.45mm。
在本示例中,所述TOF摄像模组1的面积尺寸在10.5mm*6.6mm之内。在本发明的一些示例中,所述TOF摄像模组1的面积尺寸在10mm*6.1mm之内。
进一步地,所述TOF摄像模组包括一罩体70,其中所述罩体70被安装于所述泛光灯模组10,以起到保护所述泛光灯模组10的作用,同时所述发光元件111辐射的光线可以通过所述罩体70以朝外传播。
所述TOF摄像模组的所述泛光灯模组10和所述接收模组20具有一高度差,所述高度差的范围不超过0.15mm,即所述泛光灯模组10与所述接收模组20的上表面高度差范围不超过0.15mm,可以是所述泛光灯模组10的高度略高于所述接收模组20,也可以是所述泛光灯模组10的高度略低于所述接收模组20。
附图3示出了本发明的另一较佳实施例的一TOF摄像模组1。
具体地说,所述TOF摄像模组1包括一泛光灯组件100和一接收模组组件200,其中所述泛光灯组件100被可导通地连接于所述接收模组组件200,所述泛光灯组件100用于发射光线,光线被至少一物体反射,所述接收模组组件200接收被反射的光线,从而基于所述发射光线和所述反射光线的时间差或者是相位差获得关于该物体的一深度信息。
所述TOF摄像模组1包括一泛光灯模组10,一接收模组20以及至少一电子元器件30,其中至少一所述电子元器件30被可导通地连接于所述泛光灯模组10,至少一所述电子元器件30被可导通地连接于所述接收模组20。
进一步地,所述泛光灯组件100包括所述泛光灯模组10和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述泛光灯模组10。
所述接收模组组件200包括所述接收模组20和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述接收模组20。
所述TOF摄像模组1进一步包括一柔性连接件40,其中所述柔性连接件40被分别可导通地连接于所述泛光灯模组10和所述接收模组20,或者说,所述泛光灯模组10通过所述柔性连接件40被可导通地连接于所述接收模组20,所述接收模组20通过所述柔性连接件40被可导通地连接于所述泛光灯模组10。
所述接收模组20包括一第一镜头组件21、一第一感光元件22以及一第一电路板23,其中所述第一镜头组件21提供一光学通路供光线穿过后达到所述第一感光元件22以进行光电转换,所述第一感光元件22被可导通地地连接于所述第一电路板23。
所述第一镜头组件21包括一第一镜头211和一基座212,其中所述基座212围绕形成有一光窗,所述第一镜头211被支撑于所述基座212并且被保持在所述第一感光元件22的一感光路径,以使光线经过所述第一镜头211后通过所述光窗到达所述第一感光元件22。
所述泛光灯模组10包括一投射组件11和一第二电路板12,其中所述投射组件11被可导通地连接于所述第二电路板12,所述第二电路板12被可导通地连接于所述接收模组20的所述第一电路板23。具体地说,所述泛光灯模组10的所述第二电路板12通过所述柔性连接件40被可导通地连接于所述接收模组的所述第一电路板23。
所述投射组件11进一步包括一发光元件111和一支架112,其中所述发光元件111被可导通地支撑于所述第二电路板12,所述支架112被支撑于所述第二电路板12并且所述支架112形成一容纳腔,其中所述发光元件111被容纳于所述容纳腔。
所述投射组件11还可以包括一光学辅助元件113,其中所述光学辅助元件113被支撑于所述支架112并且被保持在所述发光元件111的一发光通路,在所述发光元件111发出光线后,光线经过所述光学辅助元件113再朝外辐射。所述光学辅助元件113可以是一光学衍射元件,所述光学辅助元件113用于辅助所述发光元件111朝外辐射光线,所述光学辅助元件113的类型并不对本发明造成限制。
进一步地,所述支架112是通过一体成型的方式形成于所述第二电路板12,比如说陶瓷烧结一体成型,或者是模塑一体成型。所述支架112也可以是通过组装的方式被安装于所述第二电路板12。在本示例中,所述支架112通过陶瓷烧结一体成型于所述第二电路板12。
参考附图7A,所述第二电路板12包括一导电部121和一绝缘部122,其中所述绝缘部122被连接于所述导电部121,所述绝缘部122可以和所述支架112一体成型于所述导电部121,比如说模塑一体成型,亦可以为陶瓷烧结形成。
可以理解是,所述泛光灯模组10的所述支架112和所述第二电路板12的所述绝缘部122的制作材料可以是相同的,也可以是不同的。所述泛光灯模组10的所述第二电路板12的制作材料的散热性能可以优于或者是接近于所述支架112的制作材料。
进一步地,对于整个所述TOF摄像模组1而言,所述泛光灯模组10的高度一般低于所述接收模组组件200的高度,对于所述泛光灯模组10而言,其高度可以通过所述支架112的高度来调整,所述支架112的高度越高,所述泛光灯模组10的高度越高,所述支架112的高度越低,所述泛光灯模组10的高度越低。
在本发明的一些实施例中,所述泛光灯模组10的高度在4.5mm之内。在本发明的一些示例中,所述泛光灯模组10的高度在4mm之间。
在本发明的一些示例中,所述接收模组20的所述第一电路板23的厚度范围在0.4mm之内,可以是0.35mm。所述第一电路板23的层数可以是3到7层,比如说6层。
在本示例中,所述泛光灯模组10的所述第二电路板12通过所述柔性连接件40可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12具有一正面和一背面,其中所述第二电路板12的所述正面用于支撑所述发光元件111,所述发光元件111被可导通地连接于所述第二电路板12。
所述第一电路板23具有一正面和一背面,其中所述第一电路板23的所述正面被可导通地连接于所述第一感光元件22,所述第一电路板23的所述正面和所述第二电路板12的所述背面被相对设置。
。所述第二电路板12被设置有至少一第一导电端1210和至少一第二导电端1220,其中所述第一导电端1210位于所述第二电路板12的所述正面,所述第二导电端1220位于所述第二电路板12的一侧面,所述第一导电端1210和所述第二导电端1220能够相互导通并且所述第一导电端1210被可导通地直接接触于所述发光元件111。在本示例中,所述第一导电端1210形成于所述导电部121的一上表面,所述第二导电端1220形成于所述导电部121的一侧面。
在所述泛光灯模组10被安装于所述接收模组20的所述第一电路板23,所述第二导电端1220能够被导通于所述第一电路板23。在本实例中,所述第二导电端1220通过所述柔性连接件40和所述第一电路板23导通。
所述第二导电端1220可以位于所述第二电路板12的所述背面或是一侧面。
在本示例中,所述泛光灯模组10依然被安装于所述接收模组20的所述第一电路板23,但是所述泛光灯模组10本体和所述接收模组20通过所述柔性连接件40相互导通,例如软板。
进一步地,部分所述电子元器件30被可导通地连接于所述接收模组20的所述第一电路板23,部分所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。被可导通地连接于所述泛光灯模组10的所述电子元器件30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面。通过这样的方式,所述泛光灯模组10的所述第二电路板12的尺寸可以被缩小,因为所述泛光灯模组10的所述第二电路板12为所述电子元器件30预留的安装空间可以被缩小,从而整个所述泛光灯模组10的一面积尺寸可以被缩小,进而所述电子设备本体2为所述TOF摄像模组1提供一安装空间的大小的要求可以被降低。换句话说,所述电子设备本体2可以容纳更多的功能模块,比如说闪光灯,不同类型的摄像模组等。
可以理解的是,所述泛光灯组件100的所述电子元器件30可以被部分设置于所述接收模组29的所述第一电路板23的所述背面,也就是说,所述泛光灯组件100的所述电子元器件30还可以部分被设置于所述泛光灯模组10的所述第二电路板12的所述正面。不论所述泛光灯10的所述电子元器件30位于所述泛光灯模组10的所述第二电路板12还是位于所述接收模组20的所述第一电路板23,所述泛光灯组件100的所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。位于所述接收模组20的所述第一电路板23的所述泛光灯模组10的所述电子元器件30通过所述接收模组20的所述第一电路板23被可导通地连接于所述泛光灯模组10的所述第二电路板12,位于所述泛光灯模组10的所述第二电路板12的所述泛光灯组件100的所述电子元器件30被直接可导通地接触于所述第二电路板12。
进一步地,所述接收模组组件200的所述电子元器件30被设置于所述接收模组20的所述第一电路板23的所述正面,位于所述第一感光元件22的周围,并且分别被可导通地连接于所述第一电路板23。所述接收模组组件200的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,从而有利于所述接收模组20的所述第一电路板23的尺寸可以被缩小,因为所述接收模组20的所述第一电路板23为所述接收模组组件200的所述电子元器件30预留的安装空间可以减小。位于所述接收模组20的所述第一电路板23的所述背面的所述接收模组组件200的所述电子元器件30被可导通地连接于所述第一电路板23。
所述接收模组20进一步包括一保护件24,其中所述保护件24位于所述第一电路板23的下方,所述保护件24形成有一保护腔240,其中位于所述第一电路板23的所述背面的所述电子元器件30被容纳于所述保护腔240。
通过这样的方式,一方面能够避免灰尘等污染物接触到位于所述第一电路板23的所述背面的所述电子元器件30,另一方面所述保护件24使得所述电子元器件30处于一悬空的状态。
值得一提的是,在本示例中,所述保护件24包括一保护围壁241和一保护底壁242,所述保护围壁241围绕形成所述保护腔240,所述保护底壁242封闭所述保护腔240的腔口,所述保护底壁242被连接于所述保护围壁241,从而污染物无法从一底面朝上进入到所述保护腔240内对于所述电子元器件30造成污 染。
位于所述接收模组20的所述第一电路板23的所述电子元器件30可以被贴装于所述第一电路板23的所述背面,也可以被至少部分包覆在所述第一电路板23内。本领域技术人员可以理解的是,此处的位于所述接收模组20的所述第一电路板23的所述电子元器件30和所述第一电路板23之间的连接方式在此仅为举例,并不造成限制。
所述保护件24可以是被安装于所述第一电路板23的所述背面,也是可以和所述第一电路板23一体成型。
可以理解的是,所述保护件24可以通过金属材料制成,使得所述TOF摄像模组1能够通过所述保护件24实现接地连接,进一步提供所述TOF摄像模组1的接地性能,同时金属材料制作的所述保护件24还可以增强该位置的散热性能,一方面能够帮助所述第一电路板23散热,另一方面还可以帮助位于所述第一电路板23的所述正面或者是所述第一电路板23的所述背面的所述电子元器件30散热。
进一步地,所述TOF摄像模组包括一罩体70,其中所述罩体70被安装于所述泛光灯模组10,以起到保护所述泛光灯模组10的作用,同时所述发光元件111辐射的光线可以通过所述罩体70以朝外传播。
附图4A和附图4B分别示出了上述较佳实施例中的所述TOF摄像模组1的一变形实施例,在附图4A所示的示例中,所述保护件24一体成型于所述接收模组20的所述第一电路板23,并且位于所述第一电路板23的所述背面。
所述接收模组20的所述第一电路板23通过所述柔性连接件40被可导通地连接于所述泛光灯模组10的所述第二电路板12。
位于所述接收模组20的所述第一电路板23的所述电子元器件30在所述保护件24一体成型的过程中被包覆于所述保护件24。通过这样的方式,不仅可以对于所述电子元器件30起到保护作用,还可以提供一平整的表面。所述保护件24的所述底面就是所述TOF摄像模组1的一下表面,从而通过模塑工艺形成的所述TOF摄像模组1的所述下表面可以是一平整的表面,方便后续所述TOF摄像模组1和其他设备的安装。
可选地,所述保护件24可以通过模塑的方式一体成型于所述第一电路板23的所述背面。通过模塑工艺形成的所述保护件24具有一斜度,所述斜度在有利 于在模塑过程中,上、下模具的脱模。
进一步地,在本示例中,所述支架112和所述第二电路板12被分体成型,也就是说,所述支架112被安装于所述第二电路板12,可以通过比如说粘贴的方式。
在附图4B所示的示例中,所述保护件24被设置于所述接收模组20的所述第一电路板23的所述背面。
所述泛光灯模组10的所述第二电路板12被直接可导通地连接于所述接收模组20的所述第一电路板23。
所述接收模组20进一步包括一保护层25,其中所述保护层25填充所述保护腔240所在位置,并且通过一保护材料形成,所述保护材料可以是胶水等保护材料,所述保护层25能够在一定程度上密封所述电子元器件30,比如所述电子元器件30进水或者是其他物质污染,从而影响到所述电子元器件30的正常工作。所述保护层25厚度可以高于或低于所述保护件24的高度,也可以等于所述保护件24的高度。
附图5A示出了本发明的一较佳实施例的一TOF摄像模组1。
具体地说,所述TOF摄像模组1包括一泛光灯组件100和一接收模组组件200,其中所述泛光灯组件100被可导通地连接于所述接收模组组件200,所述泛光灯组件100用于发射光线,光线被至少一物体反射,所述接收模组组件200接收被反射的光线,从而基于所述发射光线和所述反射光线的时间差或者是相位差获得关于该物体的一深度信息。
所述TOF摄像模组1包括一泛光灯模组10,一接收模组20以及至少一电子元器件30,其中至少一所述电子元器件30被可导通地连接于所述泛光灯模组10,至少一所述电子元器件30被可导通地连接于所述接收模组20。
进一步地,所述泛光灯组件100包括所述泛光灯模组10和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述泛光灯模组10。所述接收模组组件200包括所述接收模组20和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述接收模组20。
在本发明另一变形实施例中,至少一所述电子元器30件被设置于所述泛光灯模组10的所述第二电路板12的背面。
所述TOF摄像模组1进一步包括一柔性连接件40,其中所述柔性连接件40 被分别可导通地连接于所述泛光灯模组10和所述接收模组20,或者说,所述泛光灯模组10通过所述柔性连接件40被可导通地连接于所述接收模组20,所述接收模组20通过所述柔性连接件40被可导通地连接于所述泛光灯模组10。
所述TOF摄像模组1进一步包括一支撑座50,其中所述支撑座50支撑所述泛光灯模组10于所述接收模组20,并且所述泛光灯模组10和所述接收模组20通过所述支撑座50被相互导通。
值得注意的是,在本示例中,所述支撑座50是一中空的结构。
所述接收模组20包括一第一镜头组件21、一第一感光元件22以及一第一电路板23,其中所述第一镜头组件21提供一光学通路供光线穿过后达到所述第一感光元件22以进行光电转换,所述第一感光元件22被可导通地地连接于所述第一电路板23。
所述第一镜头组件21包括一第一镜头211和一基座212,其中所述基座212围绕形成有一光窗,所述第一镜头211被支撑于所述基座212并且被保持在所述第一感光元件22的一感光路径,以使光线经过所述第一镜头211后通过所述光窗到达所述第一感光元件22。
所述泛光灯模组10包括一投射组件11和一第二电路板12,其中所述投射组件11被可导通地连接于所述第二电路板12,所述第二电路板12被可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12可以是陶瓷基板、软硬结合板或者是线路板等。
所述投射组件11进一步包括一发光元件111和一支架112,其中所述发光元件111被可导通地支撑于所述第二电路板12,所述支架112被支撑于所述第二电路板12并且所述支架112形成一容纳腔,其中所述发光元件111被容纳于所述容纳腔。
所述投射组件11还可以包括一光学辅助元件113,其中所述光学辅助元件113被支撑于所述支架112并且被保持在所述发光元件111的一发光通路,在所述发光元件111发出光线后,光线经过所述光学辅助元件113再朝外辐射。所述光学辅助元件113可以是一光学衍射元件,所述光学辅助元件113用于辅助所述发光元件111朝外辐射光线,所述光学辅助元件113的类型并不对本发明造成限制。
进一步地,所述支架112可以是通过一体成型的方式形成于所述第二电路板 12,比如说陶瓷烧结一体成型。所述支架112也可以是通过组装的方式被安装于所述第二电路板12。
所述第二电路板12包括一导电部121和一绝缘部122,其中所述绝缘部122被连接于所述导电部121,所述绝缘部122可以和所述支架112一体成型于所述导电部121,比如说模塑一体成型或陶瓷烧结等。
可以理解是,所述泛光灯模组10的所述支架112和所述第二电路板12的所述绝缘部122的制作材料可以是相同的,也可以是不同的。所述泛光灯模组10的所述第二电路板12的制作材料的散热性能可以优于或者是接近于所述支架112的制作材料。
进一步地,对于整个所述TOF摄像模组1而言,所述泛光灯模组10的高度一般低于所述接收模组20的高度,对于所述泛光灯模组10而言,其高度可以通过所述支架112的高度来调整,所述支架112的高度越高,所述泛光灯模组10的高度越高,所述支架112的高度越低,所述泛光灯模组10的高度越低。
在本发明的一些实施例中,所述泛光灯模组10的高度在4.5mm之内。在本发明的一些示例中,所述泛光灯模组10的高度在4mm之间。
在本示例中,所述泛光灯模组10的所述第二电路板12通过位于所述支撑座50内的所述柔性连接件40被可导通地连接于所述接收模组20的所述第一电路板23。
所述第二电路板12被设置有至少一第一导电端1210和至少一第二导电端1220,其中所述第一导电端1210位于所述第二电路板12的所述正面,所述第二导电端1220位于所述第二电路板12的一侧面,所述第一导电端1210和所述第二导电端1220能够相互导通并且所述第一导电端1210被可导通地直接接触于所述发光元件111。
在所述泛光灯模组10被安装于所述接收模组20的所述第一电路板23,所述第二导电端1220能够被导通于所述第一电路板23。在本示例中,所述第二导电端1220通过所述柔性连接件40被导通于所述第一电路板23。
所述支撑座50可以通过注塑、模塑、陶瓷压铸等工艺制成。
值得一提的是,在本示例中,所述支撑座50一体成型于所述泛光灯模组10的所述第二电路板12。
可以理解的是,所述第二电路板12本身是可以通过注塑、模塑、陶瓷烧结 等一体制作工艺制作而成,所述支撑座50和所述第二电路板12的所述绝缘部122的制作材料可以不相同。在一体成型所述第二电路板12之后,一体形成所述支撑座50于所述第二电路板12。优选地,所述第二电路板12通过陶瓷烧结一体成型。
所述支撑座50也可以和所述绝缘部122一体成型于所述导电部121,也就是或,所述支撑座50和所述第二电路板12的所述绝缘部122一体成型。这样的方式有利于所述支撑座50和所述泛光灯模组20的连接强度。
进一步地,部分所述电子元器件30被可导通地连接于所述接收模组20的所述第一电路板23,部分所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。被可导通地连接于所述泛光灯模组10的所述电子元器件30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面。通过这样的方式,所述泛光灯模组10的所述第二电路板12的尺寸可以被缩小,因为所述泛光灯模组10的所述第二电路板12为所述电子元器件30预留的安装空间可以被缩小,从而整个所述泛光灯模组10的一面积尺寸可以被缩小,进而所述电子设备本体2为所述TOF摄像模组1提供一安装空间的大小的要求可以被降低。换句话说,所述电子设备本体2可以容纳更多的功能模块,比如说闪光灯,不同类型的摄像模组等。
可以理解的是,所述泛光灯组件100的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,也就是说,所述泛光灯组件100的所述电子元器件30还可以部分被设置于所述泛光灯模组10的所述第二电路板12的所述正面。不论所述泛光灯组件100的所述电子元器件30位于所述泛光灯模组10的所述第二电路板12还是位于所述接收模组20的所述第一电路板23,所述泛光灯组件100的所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。位于所述接收模组20的所述第一电路板23的所述泛光灯组件100的所述电子元器件30通过所述接收模组20的所述第一电路板23和所述柔性连接件40被可导通地连接于所述泛光灯模组10的所述第二电路板12,位于所述泛光灯模组10的所述第二电路板12的所述泛光灯组件100的所述电子元器件30被直接可导通地接触于所述第二电路板12。
进一步地,所述接收模组组件200的所述电子元器件30被设置于所述接收模组20的所述第一电路板23的所述正面,位于所述第一感光元件22的周围, 并且分别被可导通地连接于所述第一电路板23。所述接收模组组件200的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,从而有利于所述接收模组20的所述第一电路板23的尺寸可以被缩小,因为所述接收模组20的所述第一电路板23为所述接收模组组件200的所述电子元器件30预留的安装空间可以减小。位于所述接收模组20的所述第一电路板23的所述背面的所述接收模组组件200的所述电子元器件30被可导通地连接于所述第一电路板23。
所述接收模组20进一步包括一保护件24,其中所述保护件24位于所述第一电路板23的下方,所述保护件24形成有一保护腔240,其中位于所述第一电路板23的所述背面的所述电子元器件30被容纳于所述保护腔240,一方面能够避免灰尘等污染物接触到位于所述第一电路板23的所述背面的所述电子元器件30,另一方面所述保护件24使得所述电子元器件30处于一悬空的状态。
具体地说,所述保护件24具有一底面,所述电子元器件30具有一正面和一背面,其中所述电子元器件30的所述正面被连接于所述接收模组20的所述第一电路板23的所述背面,所述电子元器件30的所述背面被暴露在所述保护腔240中,并且所述保护件24的所述底面位置低于所述电子元器件30的所述背面,从而在所述TOF摄像模组1被安装于所述电子设备本体2的一线路板时,所述TOF摄像模组1通过所述保护件24的所述底面被支撑于所述电子设备本体2,从而避免所述电子元器件30受到安装过程中的挤压,使得所述电子元器件30能够处于一种相对于所述保护件24悬空的状态,即所述电子元器件30的所述背面可以不与所述电子设备本体2接触,或者是所述电子元器件30的所述背面可以不必承受较大的挤压。
位于所述接收模组20的所述第一电路板23的所述电子元器件30可以被贴装于所述第一电路板23的所述背面,也可以被至少部分包覆在所述第一电路板23内。本领域技术人员可以理解的是,此处的位于所述接收模组20的所述第一电路板23的所述电子元器件30和所述第一电路板23之间的连接方式在此仅为举例,并不造成限制。
所述保护件24可以是被安装于所述第一电路板23的所述背面,也是可以和所述第一电路板23一体成型。
在本发明的一些示例中,所述保护件24的高度范围是0.35mm~0.5mm。在 本发明的一些示例中,所述保护件24的高度是0.45mm。
在本示例中,所述TOF摄像模组1的面积尺寸在12mm*7mm之内。在本发明的一些示例中,所述TOF摄像模组1的面积尺寸在11.6mm*6.5mm之内。
进一步地,所述TOF摄像模组包括一罩体70,其中所述罩体70被安装于所述泛光灯模组10,以起到保护所述泛光灯模组10的作用,同时所述发光元件111辐射的光线可以通过所述罩体70以朝外传播。
附图5B示出了根据本发明的上述较佳实施例的所述TOF摄像模组1的一变形实施例。
具体地说,所述TOF摄像模组1包括一泛光灯组件100和一接收模组组件200,其中所述泛光灯组件100被可导通地连接于所述接收模组组件200,所述泛光灯组件100用于发射光线,光线被至少一物体反射,所述接收模组组件200接收被反射的光线,从而基于所述发射光线和所述反射光线的时间差或者是相位差获得关于该物体的一深度信息。
所述TOF摄像模组1包括一泛光灯模组10,一接收模组20以及至少一电子元器件30,其中至少一所述电子元器件30被可导通地连接于所述泛光灯模组10,至少一所述电子元器件30被可导通地连接于所述接收模组20。
进一步地,所述泛光灯组件100包括所述泛光灯模组10和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述泛光灯模组10。所述接收模组组件200包括所述接收模组20和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述接收模组20。
所述TOF摄像模组1进一步包括一支撑座50,其中所述支撑座50支撑所述泛光灯模组10于所述接收模组20。值得注意的是,在本示例中,所述支撑座50是一中空的结构。
所述TOF摄像模组1进一步包括一导电件60,其中所述导电件60包括一导电主体61和具有一第一连接端611以及一第二连接端612,其中所述第一连接端611和所述第二连接端612分别位于所述导电主体61两端并且分别导通于所述泛光灯模组10和所述接收模组20。所述导电主体61能够传递电信号。所述支撑座50一体成型于所述导电件60。值得一说的是,本发明中所述导电件60可以为一直线型导线,使得所述泛光灯模组10可连通所述接收模组20;所述导电件60也可以实施为多层线路层布置于所述支撑体50内部实现导通。
所述支撑座50可以通过注塑、模塑、陶瓷压铸等工艺得到,所述导电件60被注塑材料、模塑材料或陶瓷压铸所述包裹。
所述接收模组20包括一第一镜头组件21、一第一感光元件22以及一第一电路板23,其中所述第一镜头组件21提供一光学通路供光线穿过后达到所述第一感光元件22以进行光电转换,所述第一感光元件22被可导通地地连接于所述第一电路板23。
所述第一镜头组件21包括一第一镜头211和一基座212,其中所述基座212围绕形成有一光窗,所述第一镜头211被支撑于所述基座212并且被保持在所述第一感光元件22的一感光路径,以使光线经过所述第一镜头211后通过所述光窗到达所述第一感光元件22。
在本示例中,所述第一镜头组件21和所述泛光灯模组10被分别独立地保持于所述第一电路板23。也就是说,所述第一镜头组件21和所述泛光灯模组10在空间上不存在物理接触。
可选地,所述支撑座50可以一体成型于所述基座212,在长度方向,所述基座212和所述支撑座50分别为所述第一镜头211和所述泛光灯模组10提供了一稳固的支撑。一体结合的所述支撑座50和所述基座212使得两者之间的结合更加稳固。
进一步地,在本示例中,所述泛光灯模组10包括一投射组件11和一第二电路板12,其中所述投射组件11被可导通地连接于所述第二电路板12,所述第二电路板12被可导通地连接于所述接收模组20的所述第一电路板23。具体地说,所述泛光灯模组10的所述第二电路板12通过所述导电件60被可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12可以是陶瓷基板、软硬结合板或者是线路板等。
所述投射组件11进一步包括一发光元件111和一支架112,其中所述发光元件111被可导通地支撑于所述第二电路板12,所述支架112被支撑于所述第二电路板12并且所述支架112形成一容纳腔,其中所述发光元件111被容纳于所述容纳腔。
所述投射组件11还可以包括一光学辅助元件113,其中所述光学辅助元件113被支撑于所述支架112并且被保持在所述发光元件111的一发光通路,在所述发光元件111发出光线后,光线经过所述光学辅助元件113再朝外辐射。所述 光学辅助元件113可以是一光学衍射元件,所述光学辅助元件113用于辅助所述发光元件111朝外辐射光线,所述光学辅助元件113的类型并不对本发明造成限制。
进一步地,所述支架112可以是通过一体成型的方式形成于所述第二电路板12,比如说陶瓷烧结一体成型。所述支架112也可以是通过组装的方式被安装于所述第二电路板12。
进一步地,对于整个所述TOF摄像模组1而言,所述泛光灯模组10的高度一般低于所述接收模组20的高度,对于所述泛光灯模组10而言,其高度可以通过所述支架112的高度来调整,所述支架112的高度越高,所述泛光灯模组10的高度越高,所述支架112的高度越低,所述泛光灯模组10的高度越低。
在本发明的一些实施例中,所述泛光灯模组10的高度在4.5mm之内。在本发明的一些示例中,所述泛光灯模组10的高度在4mm之间。
在本示例中,所述泛光灯模组10的所述第二电路板12通过所述导电件60可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12具有一正面和一背面,其中所述第二电路板12的所述正面用于支撑所述发光元件111,所述发光元件111被可导通地连接于所述第二电路板12。
所述接收模组20的所述第一电路板23具有一正面和一背面,其中所述第一电路板23的所述正面被可导通地连接于所述第一感光元件22。
所述第二电路板12被设置有至少一第一导电端1210和至少一第二导电端1220,其中所述第一导电端1210位于所述第二电路板12的所述正面,所述第二导电端1220位于所述第二电路板12的所述背面,所述第一导电端1210和所述第二导电端1220能够相互导通并且所述第一导电端1210被可导通地直接接触于所述发光元件111。
在所述泛光灯模组10被安装于所述接收模组20的所述第一电路板23,所述第二导电端1220能够被导通于所述第一电路板23。在本示例中,所述第二导电端1220通过所述导电件60和所述第一电路板23的一导电端导通。
在具体的实施中,需在所述泛光灯模组10的所述第二电路板12的所述第二导电端1220和所述导电件60的所述第一连接端611之间施加导电介质,比如说导电银胶,以在所述第二电路板12和所述导电件60之间建立问题的电连接。然而,常用的导电介质通常具有流动性,难免地,在施加导电介质的过程中,导电 介质可能溢出从而造成所述泛光灯模组10短路等故障。值得一提的是,导电介质不仅可以使得所述第二电路板12和所述导电件60电连接,还可以藉由导电介质固定所述第二电路板12和所述导电件60。
相应地,针对上述技术问题,在本发明的较佳实施例中,所述支撑座50还设有至少一凹槽500,其中所述凹槽500分别设置于所述第二电路板12和所述导电件60的电连接处,用于防止导电介质溢出造成所述泛光灯模组10短路。更具体地,如图5B所示,在本发明的较佳实施例中,所述凹槽500凹陷地形成于所述支撑座50的一上表面,所述导电件60的所述第一连接端611裸露于至少一所述凹槽500。相应地,当所述泛光灯模组20贴装于所述支撑座50的所述上表面时,所述第二导电端1220分别对应并嵌入至所述凹槽500以和所述导电件60的所述第一连接端611相接触。这里,至少一所述凹槽500内设有导电介质,其中,当所述泛光灯模组10被贴装于所述支撑座50时,至少一所述凹槽500被所述第二电路板12密封以防止导电介质外溢造成短路等故障。
值得一提的是,在将所述泛光灯模组10贴装于所述支撑座50时,所述凹槽500可被视为所述泛光灯模组10的对齐基准,利于将所述泛光灯模组10可定位地安装于所述支撑座50的所述上表面。
所述导电件60可以内埋于所述支撑座50,可以避免所述导电件60之间发生短路等故障,还可以避免所述导电件60被氧化。
在所述支撑座50被模塑一体成型时,可以在所述支撑座50形成一贯通的通孔,然后将所述导电件60安装于所述通孔。
在本示例中,所述泛光灯模组10依然被安装于所述接收模组20的所述第一电路板23,但是所述泛光灯模组10和所述接收模组20通过所述导电件60相互导通。
所述支撑座50可以通过注塑、模塑、陶瓷压铸等工艺制成。所述导电件60的所述导电主体61的表面可以被覆盖有一层绝缘材料。
进一步地,部分所述电子元器件30被可导通地连接于所述接收模组20的所述第一电路板23,部分所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。被可导通地连接于所述泛光灯模组10的所述电子元器件30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面。通过这样的方式,所述泛光灯模组10的所述第二电路板12的尺寸可以被缩小,因 为所述泛光灯模组10的所述第二电路板12为所述电子元器件30预留的安装空间可以被缩小,从而整个所述泛光灯模组10的一面积尺寸可以被缩小,进而所述电子设备本体2为所述TOF摄像模组1提供一安装空间的大小的要求可以被降低。换句话说,所述电子设备本体2可以容纳更多的功能模块,比如说闪光灯,不同类型的摄像模组等。
可以理解的是,所述泛光灯模组10的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,也就是说,所述泛光灯组件100的所述电子元器件30还可以部分被设置于所述泛光灯模组10的所述第二电路板12的所述正面。不论所述泛光灯组件100的所述电子元器件30位于所述泛光灯模组10的所述第二电路板12还是位于所述接收模组20的所述第一电路板23,所述泛光灯组件100的所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。位于所述接收模组20的所述第一电路板23的所述泛光灯组件100的所述电子元器件30通过所述接收模组20的所述第一电路板23和所述导电件60被可导通地连接于所述泛光灯模组10的所述第二电路板12,位于所述泛光灯模组10的所述第二电路板12的所述泛光灯模组10的所述电子元器件30被直接可导通地接触于所述第二电路板12。
进一步地,所述接收模组组件200的所述电子元器件30被设置于所述接收模组20的所述第一电路板23的所述正面,位于所述第一感光元件22的周围,并且分别被可导通地连接于所述第一电路板23。所述接收模组组件200的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,从而有利于所述接收模组20的所述第一电路板23的尺寸可以被缩小,因为所述接收模组20的所述第一电路板23为所述接收模组组件200的所述电子元器件30预留的安装空间可以减小。位于所述接收模组20的所述第一电路板23的所述背面的所述接收模组组件200的所述电子元器件30被可导通地连接于所述第一电路板23。
所述接收模组20进一步包括一保护件24,其中所述保护件24位于所述第一电路板23的下方,所述保护件24形成有一保护腔240,其中位于所述第一电路板23的所述背面的所述电子元器件30被容纳于所述保护腔240。
通过这样的方式,一方面能够避免灰尘等污染物接触到位于所述第一电路板23的所述背面的所述电子元器件30,另一方面所述保护件24使得所述电子元器 件30处于一悬空的状态。具体地说,所述保护件24具有一底面,所述电子元器件30具有一正面和一背面,其中所述电子元器件30的所述正面被连接于所述接收模组20的所述第一电路板23的所述背面,所述电子元器件30的所述背面被暴露在所述保护腔240中,并且所述保护件24的所述底面位置低于所述电子元器件30的所述背面,从而在所述TOF摄像模组1被安装于所述电子设备本体2的一线路板时,所述TOF摄像模组1通过所述保护件24的所述底面被支撑于所述电子设备本体2,从而避免所述电子元器件30受到安装过程中的挤压,使得所述电子元器件30能够处于一种相对于所述保护件24悬空的状态,即所述电子元器件30的所述背面可以不与所述电子设备本体2接触,或者是所述电子元器件30的所述背面可以不必承受较大的挤压。
位于所述接收模组20的所述第一电路板23的所述电子元器件30可以被贴装于所述第一电路板23的所述背面,也可以被至少部分包覆在所述第一电路板23内。本领域技术人员可以理解的是,此处的位于所述接收模组20的所述第一电路板23的所述电子元器件30和所述第一电路板23之间的连接方式在此仅为举例,并不造成限制。
所述保护件24可以是被安装于所述第一电路板23的所述背面,也是可以和所述第一电路板23一体成型。
可以理解的是,所述保护件24可以通过金属材料制成,使得所述TOF摄像模组1能够通过所述保护件24实现接地连接,进一步提供所述TOF摄像模组1的接地性能,同时金属材料制作的所述保护件24还可以增强该位置的散热性能,一方面能够帮助所述第一电路板23散热,另一方面还可以帮助位于所述第一电路板23的所述正面或者是所述第一电路板23的所述背面的所述电子元器件30散热。
在本发明的另一些示例中,所述支撑座50通过组装的方式被连接于所述泛光灯模组10和所述接收模组20。
所述泛光灯模组10的所述第二电路板12通过所述支撑座50内所述导电件60被可导通地连接于所述接收模组20的所述第一电路板23,从而位于所述第一电路板23的所述背面的至少部分所述电子元器件30通过所述第一电路板23和所述导电件60被可导通地连接于所述泛光灯模组10的所述第二电路板12。
在本发明的另一些示例中,所述保护件24一体成型于所述接收模组20的所 述第一电路板23,并且位于所述第一电路板23的所述背面。位于所述接收模组20的所述第一电路板23的所述电子元器件30在所述保护件24一体成型的过程中被包覆于所述保护件24。通过这样的方式,不仅可以对于所述电子元器件30起到保护作用,还可以提供一平整的表面。所述保护件24的所述底面就是所述TOF摄像模组1的一下表面,从而通过模塑工艺形成的所述TOF摄像模组1的所述下表面可以是一平整的表面,方便后续所述TOF摄像模组1和其他设备的安装。
在本发明的另一些示例中,例如附图4B中所示的示例中,所述保护件24被设置于所述接收模组20的所述第一电路板23的所述背面并且所述接收模组20进一步包括一保护层25,其中所述保护层25位于所述保护腔240,并且通过一保护材料形成,所述保护材料可以是胶水等保护材料,所述保护层25能够在一定程度上密封所述电子元器件30,比如所述电子元器件30进水或者是其他物质污染,从而影响到所述电子元器件30的正常工作。
可以理解的是,在本发明的另一些示例中,所述支撑座50可以被一体成型于所述接收模组20的所述第一电路板23。
进一步地,所述TOF摄像模组包括一罩体70,其中所述罩体70被安装于所述泛光灯模组10,以起到保护所述泛光灯模组10的作用,同时所述发光元件111辐射的光线可以通过所述罩体70以朝外传播。
附图6A示出了根据本发明的一较佳实施例的一TOF摄像模组1。
具体地说,所述TOF摄像模组1包括一泛光灯组件100和一接收模组组件200,其中所述泛光灯组件100被可导通地连接于所述接收模组组件200,所述泛光灯组件100用于发射光线,光线被至少一物体反射,所述接收模组组件200接收被反射的光线,从而基于所述发射光线和所述反射光线的时间差或者是相位差获得关于该物体的一深度信息。
所述TOF摄像模组1包括一泛光灯模组10,一接收模组20以及至少一电子元器件30,其中至少一所述电子元器件30被可导通地连接于所述泛光灯模组10,至少一所述电子元器件30被可导通地连接于所述接收模组20。
进一步地,所述泛光灯模组10包括所述泛光灯模组10和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述泛光灯模组10。所述接收模组20包括所述接收模组20和至少一所述电子元器件30,其中所述电子元 器件30被可导通地连接于所述接收模组20。
所述TOF摄像模组1进一步包括一柔性连接件40,其中所述柔性连接件40被分别可导通地连接于所述泛光灯模组10和所述接收模组20,或者说,所述泛光灯模组10通过所述柔性连接件40被可导通地连接于所述接收模组20,所述接收模组20通过所述柔性连接件40被可导通地连接于所述泛光灯模组10。
所述TOF摄像模组1进一步包括一支撑座50,其中所述支撑座50支撑所述泛光灯模组10于所述接收模组20。
所述接收模组20包括一第一镜头组件21、一第一感光元件22以及一第一电路板23,其中所述第一镜头组件21提供一光学通路供光线穿过后达到所述第一感光元件22以进行光电转换,所述第一感光元件22被可导通地地连接于所述第一电路板23。
所述第一镜头组件21包括一第一镜头211和一基座212,其中所述基座212围绕形成有一光窗,所述第一镜头211被支撑于所述基座212并且被保持在所述第一感光元件22的一感光路径,以使光线经过所述第一镜头211后通过所述光窗到达所述第一感光元件22。
所述泛光灯模组10包括一投射组件11和一第二电路板12,其中所述投射组件11被可导通地连接于所述第二电路板12,所述第二电路板12被可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12可以是陶瓷基板、软硬结合板或者是线路板等。
所述投射组件11进一步包括一发光元件111和一支架112,其中所述发光元件111被可导通地支撑于所述第二电路板12,所述支架112被支撑于所述第二电路板12并且所述支架112形成一容纳腔,其中所述发光元件111被容纳于所述容纳腔。
所述投射组件11还可以包括一光学辅助元件113,其中所述光学辅助元件113被支撑于所述支架112并且被保持在所述发光元件111的一发光通路,在所述发光元件111发出光线后,光线经过所述光学辅助元件113再朝外辐射。所述光学辅助元件113可以是一光学衍射元件,所述光学辅助元件113用于辅助所述发光元件111朝外辐射光线,所述光学辅助元件113的类型并不对本发明造成限制。
进一步地,所述支架112可以是通过一体成型的方式形成于所述第二电路板 12,比如说陶瓷烧结一体成型。所述支架112也可以是通过组装的方式被安装于所述第二电路板12。
所述第二电路板12包括一导电部121和一绝缘部122,其中所述绝缘部122被连接于所述导电部121,所述绝缘部122可以和所述支架112一体成型于所述导电部121,比如说模塑一体成型。
可以理解是,所述泛光灯模组10的所述支架112和所述第二电路板12的所述绝缘部122的制作材料可以是相同的,也可以是不同的。所述泛光灯模组10的所述第二电路板12的制作材料的散热性能可以优于或者是接近于所述支架112的制作材料。
进一步地,对于整个所述TOF摄像模组1而言,所述泛光灯模组10的高度一般低于所述接收模组20的高度,对于所述泛光灯模组10而言,其高度可以通过所述支架112的高度来调整,所述支架112的高度越高,所述泛光灯模组10的高度越高,所述支架112的高度越低,所述泛光灯模组10的高度越低。
在本发明的一些实施例中,所述泛光灯模组10的高度在4.5mm之内。在本发明的一些示例中,所述泛光灯模组10的高度在4mm之间。
在本示例中,所述支撑座50一体成型于所述泛光灯模组10的所述第二电路板12,并且是在所述第二电路板12的成型后,所述支撑座50一体成型于所述第二电路板。进一步地,所述支撑座50和所述第二电路板12的制作材料并不相同。值得一提的是,在本示例中,所述支撑座50一体成型于所述基座212,在长度方向,所述基座212和所述支撑座50分别为所述第一镜头211和所述泛光灯模组10提供了一稳固的支撑。一体结合的所述支撑座50和所述基座212使得两者之间的结合更加稳固。
更进一步地,在本示例中,所述支架112、所述支撑座50以及所述第二电路板12一体成型,使得所述泛光灯模组10具有一稳固的结构。更加具体地,所述支架112、所述支撑座50以及所述第二电路板12通过陶瓷工艺一体成型,然后带有所述支撑座50的所述泛光灯模组10被安装于所述第一电路板23。
可选地,所述支架112和所述支撑座50可以被分别安装于所述第二电路板12。所述支架112和所述支撑座50以及所述第二电路板12的所述绝缘部12的制作材料可以是相同的,也可以是不相同的。
具体地说,所述泛光灯模组10的所述第二电路板12通过位于所述柔性连接件40被可导通地连接于所述接收模组20的所述第一电路板23。
所述第二电路板12被设置有至少一第一导电端1210和至少一第二导电端1220,其中所述第一导电端1210位于所述第二电路板12的所述正面,所述第二导电端1220位于所述第二电路板12的一侧面,所述第一导电端1210和所述第二导电端1220能够相互导通并且所述第一导电端1210被可导通地直接接触于所述发光元件111。在本示例中,所述第一导电端1210形成于所述导电部121的一上表面,所述第二导电端1220形成于所述导电部121的一侧面。
在所述泛光灯模组10被安装于所述接收模组20的所述第一电路板23,所述第二导电端1220能够被导通于所述第一电路板23。在本示例中,所述第一导电端1210通过所述柔性连接件40被电连接于所述第一电路板23。
进一步地,部分所述电子元器件30被可导通地连接于所述接收模组20的所述第一电路板23,部分所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。被可导通地连接于所述泛光灯模组10的所述电子元器件30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面。通过这样的方式,所述泛光灯模组10的所述第二电路板12的尺寸可以被缩小,因为所述泛光灯模组10的所述第二电路板12为所述电子元器件30预留的安装空间可以被缩小,从而整个所述泛光灯模组10的一面积尺寸可以被缩小,进而所述电子设备本体2为所述TOF摄像模组1提供一安装空间的大小的要求可以被降低。换句话说,所述电子设备本体2可以容纳更多的功能模块,比如说闪光灯,不同类型的摄像模组等。
可以理解的是,所述泛光灯组件100的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,也就是说,所述泛光灯组件100的所述电子元器件30还可以部分被设置于所述泛光灯模组10的所述第二电路板12的所述正面。不论所述泛光灯组件100的所述电子元器件30位于所述泛光灯模组10的所述第二电路板12还是位于所述接收模组20的所述第一电路板23,所述泛光灯组件100的所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。位于所述接收模组20的所述第一电路板23的所述泛光灯组件100的所述电子元器件30通过所述接收模组20的所述第一电路板23和所述柔性连接件40被可导通地连接于所述泛光灯模组10的所述第二电路 板12,位于所述泛光灯模组10的所述第二电路板12的所述泛光灯组件100的所述电子元器件30被直接可导通地接触于所述第二电路板12。
进一步地,所述接收模组组件200的所述电子元器件30被设置于所述接收模组组件200的所述第一电路板23的所述正面,位于所述第一感光元件22的周围,并且分别被可导通地连接于所述第一电路板23。所述接收模组组件200的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,从而有利于所述接收模组20的所述第一电路板23的尺寸可以被缩小,因为所述接收模组20的所述第一电路板23为所述接收模组组件200的所述电子元器件30预留的安装空间可以减小。位于所述接收模组20的所述第一电路板23的所述背面的所述接收模组组件200的所述电子元器件30被可导通地连接于所述第一电路板23。
所述接收模组20进一步包括一保护件24,其中所述保护件24位于所述第一电路板23的下方,所述保护件24形成有一保护腔240,其中位于所述第一电路板23的所述背面的所述电子元器件30被容纳于所述保护腔240。
值得一提的是,在本示例中,所述保护件24包括一保护围壁241和一保护底壁242,所述保护围壁241围绕形成所述保护腔240,所述保护底壁242封闭所述保护腔240口,所述保护底壁242被连接于所述保护围壁241,从而污染物无法从一底面朝上进入到所述保护腔240内对于所述电子元器件30造成污染。
位于所述接收模组20的所述第一电路板23的所述电子元器件30可以被贴装于所述第一电路板23的所述背面,也可以被至少部分包覆在所述第一电路板23内。本领域技术人员可以理解的是,此处的位于所述接收模组20的所述第一电路板23的所述电子元器件30和所述第一电路板23之间的连接方式在此仅为举例,并不造成限制。
所述保护件24可以是被安装于所述第一电路板23的所述背面,也是可以和所述第一电路板23一体成型。
在本发明的一些示例中,所述保护件24的高度范围是0.35mm~0.5mm。在本发明的一些示例中,所述保护件24的高度是0.45mm。
在本示例中,所述TOF摄像模组1的面积尺寸在12mm*7mm之内。在本发明的一些示例中,所述TOF摄像模组1的面积尺寸在11.6mm*6.5mm之内。
进一步地,所述TOF摄像模组包括一罩体70,其中所述罩体70被安装于所 述泛光灯模组10,以起到保护所述泛光灯模组10的作用,同时所述发光元件111辐射的光线可以通过所述罩体70以朝外传播。
附图6B示出了根据本发明的上述较佳实施例的所述TOF摄像模组1的一变形实施例。
具体地说,所述TOF摄像模组1包括一泛光灯组件100和一接收模组组件200,其中所述泛光灯组件100被可导通地连接于所述接收模组组件200,所述泛光灯组件100用于发射光线,光线被至少一物体反射,所述接收模组组件200接收被反射的光线,从而基于所述发射光线和所述反射光线的时间差或者是相位差获得关于该物体的一深度信息。
所述TOF摄像模组1包括一泛光灯模组10,一接收模组20以及至少一电子元器件30,其中至少一所述电子元器件30被可导通地连接于所述泛光灯模组10,至少一所述电子元器件30被可导通地连接于所述接收模组20。
进一步地,所述泛光灯模组10包括所述泛光灯模组10和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述泛光灯模组10。所述接收模组20包括所述接收模组20和至少一所述电子元器件30,其中所述电子元器件30被可导通地连接于所述接收模组20。
所述TOF摄像模组1进一步包括一支撑座50,其中所述支撑座50支撑所述泛光灯模组10于所述接收模组20。所述TOF摄像模组1进一步包括一导电件60,其中所述导电件60包括一导电主体61和具有一第一连接端611以及一第二连接端612,其中所述第一连接端611和所述第二连接端612分别位于所述导电主体61两端并且分别导通于所述泛光灯模组10和所述接收模组20。所述导电主体61能够传递电信号。所述支撑座50一体成型于所述导电件60。
所述支撑座50可以通过注塑、模塑、陶瓷压铸等工艺得到,所述导电件60被注塑材料、模塑材料或陶瓷压铸所述包裹。
所述接收模组20包括一第一镜头组件21、一第一感光元件22以及一第一电路板23,其中所述第一镜头组件21提供一光学通路供光线穿过后达到所述第一感光元件22以进行光电转换,所述第一感光元件22被可导通地地连接于所述第一电路板23。
所述第一镜头组件21包括一第一镜头211和一基座212,其中所述基座212围绕形成有一光窗,所述第一镜头211被支撑于所述基座212并且被保持在所述 第一感光元件22的一感光路径,以使光线经过所述第一镜头211后通过所述光窗到达所述第一感光元件22。所述接收模组20包括一基座支架26,其被支撑于所述第一电路板23。所述基座212被支撑于所述基座支架26。
值得一提的是,在本示例中,所述支撑座50一体成型于所述基座212,在长度方向,所述基座212和所述支撑座50分别为所述第一镜头211和所述泛光灯模组10提供了一稳固的支撑。一体结合的所述支撑座50和所述基座212使得两者之间的结合更加稳固。
更进一步地,在本示例中,所述支架112、所述支撑座50以及所述第二电路板12一体成型,使得所述泛光灯模组10具有一稳固的结构。更加具体地,所述支架112、所述支撑座50以及所述第二电路板12通过陶瓷工艺一体成型,然后带有所述支撑座50的所述泛光灯模组10被安装于所述第一电路板23。
所述泛光灯模组10包括一投射组件11和一第二电路板12,其中所述投射组件11被可导通地连接于所述第二电路板12,所述第二电路板12被可导通地连接于所述接收模组20的所述第一电路板23。具体地说,所述泛光灯模组10的所述第二电路板12通过所述导电件60被可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12可以是陶瓷基板、软硬结合板或者是线路板等。
所述投射组件11进一步包括一发光元件111和一支架112,其中所述发光元件111被可导通地支撑于所述第二电路板12,所述支架112被支撑于所述第二电路板12并且所述支架112形成一容纳腔,其中所述发光元件111被容纳于所述容纳腔。
所述投射组件11还可以包括一光学辅助元件113,其中所述光学辅助元件113被支撑于所述支架112并且被保持在所述发光元件111的一发光通路,在所述发光元件111发出光线后,光线经过所述光学辅助元件113再朝外辐射。所述光学辅助元件113可以是一光学衍射元件,所述光学辅助元件113用于辅助所述发光元件111朝外辐射光线,所述光学辅助元件113的类型并不对本发明造成限制。
进一步地,所述支架112可以是通过一体成型的方式形成于所述第二电路板12,比如说陶瓷烧结一体成型。所述支架112也可以是通过组装的方式被安装于所述第二电路板12。
进一步地,所述支撑座50和所述接收模组20的所述基座212一体成型。可以是在所述基座212成型后,所述支撑座50被一体成型于所述基座212,也可以是,所述支撑座50和所述接收模组20的所述基座212一体形成。也就是说,所述支撑座50和所述基座212的制作材料可以是相同的,也可以是不同的。
进一步地,对于整个所述TOF摄像模组1而言,所述泛光灯模组10的高度一般低于所述接收模组20的高度,对于所述泛光灯模组10而言,其高度可以通过所述支架112的高度来调整,所述支架112的高度越高,所述泛光灯模组10的高度越高,所述支架112的高度越低,所述泛光灯模组10的高度越低。
在本发明的一些实施例中,所述泛光灯模组10的高度在4.5mm之内。在本发明的一些示例中,所述泛光灯模组10的高度在4mm之间。
在本示例中,所述泛光灯模组10的所述第二电路板12通过所述导电件60可导通地连接于所述接收模组20的所述第一电路板23。所述第二电路板12具有一正面和一背面,其中所述第二电路板12的所述正面用于支撑所述发光元件111,所述发光元件111被可导通地连接于所述第二电路板12。第一电路板23
所述接收模组20的所述第一电路板23具有一正面和一背面,其中所述第一电路板23的所述正面被可导通地连接于所述第一感光元件22,所述第一电路板23的所述正面和所述第一电路板23的所述背面被相对设置。
所述TOF摄像模组1被设置有至少一第一导电端1210和至少一第二导电端1220,其中所述第一导电端1210位于所述第二电路板12的所述正面,所述第二导电端1220位于所述支撑座50的一背面,其中所述支撑座50的所述背面直接接触于所述第一电路板23的所述正面,从而所述第二导电端1220直接被导通于所述第一电路板23,从而所述泛光灯模组10的所述第一电路板12被可导通于所述接收模组20的所述第一电路板23。可以理解的是,所述支撑座50和所述泛光灯模组10的所述第二电路板12之间的导通可以是通过一贯通的导电件,图中未示出。
在所述泛光灯模组10和所述支撑座50被安装于所述接收模组20的所述第一电路板23,所述第二导电端1220能够被导通于所述第一电路板23。
进一步地,部分所述电子元器件30被可导通地连接于所述接收模组20的所述第一电路板23,部分所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。被可导通地连接于所述泛光灯模组10的所述电子元器件 30的至少部分被设置于所述接收模组20的所述第一电路板23的所述背面。通过这样的方式,所述泛光灯模组10的所述第二电路板12的尺寸可以被缩小,因为所述泛光灯模组10的所述第二电路板12为所述电子元器件30预留的安装空间可以被缩小,从而整个所述泛光灯模组10的一面积尺寸可以被缩小,进而所述电子设备本体2为所述TOF摄像模组1提供一安装空间的大小的要求可以被降低。换句话说,所述电子设备本体2可以容纳更多的功能模块,比如说闪光灯,不同类型的摄像模组等。
可以理解的是,所述泛光灯组件100的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,也就是说,所述泛光灯组件100的所述电子元器件30还可以部分被设置于所述泛光灯模组10的所述第二电路板12的所述正面。不论所述泛光灯组件100的所述电子元器件30位于所述泛光灯模组10的所述第二电路板12还是位于所述接收模组20的所述第一电路板23,所述泛光灯组件100的所述电子元器件30被可导通地连接于所述泛光灯模组10的所述第二电路板12。位于所述接收模组20的所述第一电路板23的所述泛光灯组件100的所述电子元器件30通过所述接收模组20的所述第一电路板23和所述导电件60被可导通地连接于所述泛光灯模组10的所述第二电路板12,位于所述泛光灯模组10的所述第二电路板12的所述泛光灯组件100的所述电子元器件30被直接可导通地接触于所述第二电路板12。
进一步地,所述接收模组组件200的所述电子元器件30被设置于所述接收模组组件200的所述第一电路板23的所述正面,位于所述第一感光元件22的周围,并且分别被可导通地连接于所述第一电路板23。所述接收模组组件200的所述电子元器件30可以被部分设置于所述接收模组20的所述第一电路板23的所述背面,从而有利于所述接收模组20的所述第一电路板23的尺寸可以被缩小,因为所述接收模组20的所述第一电路板23为所述接收模组组件200的所述电子元器件30预留的安装空间可以减小。位于所述接收模组20的所述第一电路板23的所述背面的所述接收模组组件200的所述电子元器件30被可导通地连接于所述第一电路板23。
所述接收模组20进一步包括一保护件24,其中所述保护件24位于所述第一电路板23的下方,所述保护件24形成有一保护腔240,其中位于所述第一电路板23的所述背面的所述电子元器件30被容纳于所述保护腔240,一方面能够避 免灰尘等污染物接触到位于所述第一电路板23的所述背面的所述电子元器件30,另一方面所述保护件24使得所述电子元器件30处于一悬空的状态。具体地说,所述保护件24具有一底面,所述电子元器件30具有一正面和一背面,其中所述电子元器件30的所述正面被连接于所述接收模组20的所述第一电路板23的所述背面,所述电子元器件30的所述背面被暴露在所述保护腔240中,并且所述保护件24的所述底面位置低于所述电子元器件30的所述背面,从而在所述TOF摄像模组1被安装于所述电子设备本体2的一线路板时,所述TOF摄像模组1通过所述保护件24的所述底面被支撑于所述电子设备本体2,从而避免所述电子元器件30受到安装过程中的挤压,使得所述电子元器件30能够处于一种相对于所述保护件24悬空的状态,即所述电子元器件30的所述背面可以不与所述电子设备本体2接触,或者是所述电子元器件30的所述背面可以不必承受较大的挤压。
位于所述接收模组20的所述第一电路板23的所述电子元器件30可以被贴装于所述第一电路板23的所述背面,也可以被至少部分包覆在所述第一电路板23内。本领域技术人员可以理解的是,此处的位于所述接收模组20的所述第一电路板23的所述电子元器件30和所述第一电路板23之间的连接方式在此仅为举例,并不造成限制。
所述保护件24可以是被安装于所述第一电路板23的所述背面,也是可以和所述第一电路板23一体成型。
可以理解的是,所述保护件24可以通过金属材料制成,使得所述TOF摄像模组1能够通过所述保护件24实现接地连接,进一步提供所述TOF摄像模组1的接地性能,同时金属材料制作的所述保护件24还可以增强该位置的散热性能,一方面能够帮助所述第一电路板23散热,另一方面还可以帮助位于所述第一电路板23的所述正面或者是所述第一电路板23的所述背面的所述电子元器件30散热。
在本发明的另一些示例中,所述支撑座50通过组装的方式被连接于所述泛光灯模组10和所述接收模组20。
所述泛光灯模组10的所述第二电路板12通过所述支撑座50内所述导电件60被可导通地连接于所述接收模组20的所述第一电路板23,从而位于所述第一电路板23的所述背面的至少部分所述电子元器件30通过所述第一电路板23和 所述导电件60被可导通地连接于所述泛光灯模组10的所述第二电路板12。
在本发明的另一些示例中,所述保护件24一体成型于所述接收模组20的所述第一电路板23,并且位于所述第一电路板23的所述背面。位于所述接收模组20的所述第一电路板23的所述电子元器件30在所述保护件24一体成型的过程中被包覆于所述保护件24。通过这样的方式,不仅可以对于所述电子元器件30起到保护作用,还可以提供一平整的表面。所述保护件24的所述底面就是所述TOF摄像模组1的一下表面,从而通过模塑工艺形成的所述TOF摄像模组1的所述下表面可以是一平整的表面,方便后续所述TOF摄像模组1和其他设备的安装。
在本示例中,所述接收模组20进一步包括一保护层25,其中所述保护层25位于所述保护腔240,并且通过一保护材料形成,所述保护材料可以是胶水等保护材料,所述保护层25能够在一定程度上密封所述电子元器件30,比如所述电子元器件30进水或者是其他物质污染,从而影响到所述电子元器件30的正常工作。所述保护层25可以完全覆盖所述电子元器件30,也可以暴露所述电子元器件30的至少部分。
可以理解的是,在本发明的另一些示例中,所述支撑座50可以被一体成型于所述接收模组20的所述第一电路板23。
所述泛光灯模组10的所述第二电路板12的一种实施方式,被示出于附图7A。具体地说,所述第二电路板12包括一导电部121和一绝缘部122,其中所述绝缘部122被连接于所述导电部121,起到绝缘的作用。可选地,所述绝缘部122被一体成型于所述绝缘部122。
所述第一导电端1210和所述第二导电端1220分别形成于所述导电部121的一上表面和一下表面。所述第二导电端1220也可以形成于所述导电部121的一侧面。
所述导电部121进一步包括一第一导电部分1211和一第二导电部分1212,其中所述第一导电部分1211和所述第二导电部分1212被所述绝缘部122隔绝,以避免所述第一导电部分1211和所述第二导电部分1212在同时被导通时短路。
所述第一导电部分1211不仅可以起到导电的作用,还可以起到散热的作用以将所述发光元件112产生的热量从所述第二电路板12的一侧传递至另一侧进行散发。优选地,所述第一导电部分1211大于所述第二导电部分1212,其中所 述第一导电部分1211可以用于支撑所述发光元件112。所述第一导电部分1211可以被导通于所述发光元件112的一电极,所述第二导电部分1212可以被导通于所述发光元件112的另一电极以在通电后形成一回路。
优选地,所述第一导电部分1211被在高度方向贯通所述绝缘部122,所述第一导电端1210形成于所述第一导电部分1211的一上表面,所述第二导电端1220形成于所述第一导电部分1211的一下表面。
可以理解的是,在本发明的另一些示例中,所述第二导电端1220形成于所述第一导电部分1211的一侧面。
所述导电部121还可以包括一第三导电部分1213和一第四导电部分1214,其中所述第三导电部分1213和所述第四导电部分1214能够用于可导通地支撑其他电子元器件115,比如说用于导通PD元件(光强检测)、电容电阻、NTC(温控)等元器件。
本领域技术人员可以理解的是,所述导电部121还可以包括一第五导电部分甚至是更多的导电部。所述导电部121的结构和排布可以根据需求被灵活设计。
所述泛光灯模组10的所述第二电路板12的一种实施方式,被示出于附图7B,所述第二电路板12包括一导电层310,一线路层320,一绝缘层330以及一散热部340,其中所述绝缘层330分别连接于所述导电层310和所述线路层320,所述散热部340形成于所述导电层310和所述线路层320。优选地,所述第一导电端1210形成于所述散热部340的一上表面,所述第二导电端1220形成于所述散热部340的所述下表面。所述导电层310,所述线路层320分别通过一光照显影,然后电镀形成。可选地,所述第二导电端1220也可以形成于一侧面。
根据本发明的另一方面,本发明提供了一TOF摄像模组1的组装方法,其包括如下步骤:
提供所述泛光灯模组10和所述接收模组20;和
以电连接于所述泛光灯模组10的所述第二电路板12的方式设置至少一所述电子元器件30于所述接收模组20的所述第一电路板23的一背面。
根据本发明的一实施例,其中位于所述第一电路板23的所述背面的所述电子元器件30通过所述柔性连接件40被可导通地连接于所述第二电路板12。
根据本发明的一实施例,其中位于所述第一电路板23的所述背面的所述电子元器件30通过内置于所述支撑座50的所述导电件60被可导通地连接于所述 第二电路板12。
根据本发明的一实施例,其中所述泛光灯模组10被直接安装于所述接收模组20的所述第一电路板23。
根据本发明的一实施例,其中所述泛光灯模组10被通过所述支撑座50被安装于所述接收模组20的所述第一电路板23。
根据本发明的一实施例,所述支撑座50被一体成型于所述泛光灯模组10的所述第一电路板23。
根据本发明的一实施例,所述支撑座50被一体成型于所述接收模组20的所述基座212。
根据本发明的一实施例,所述支撑座50被一体成型于所述接收模组20的所述第一电路板23。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (28)

  1. 一TOF摄像模组,其特征在于,包括:
    一泛光灯模组;
    一接收模组;以及
    多个电子元器件,其中所述接收模组包括一第一镜头组件、一第一感光元件以及一第一电路板,其中所述第一镜头组件提供一光学通路供光线穿过后达到所述第一感光元件进行光电转换,所述第一感光元件被可导通地连接于所述第一电路板,其中所述泛光灯模组被可导通地连接于所述接收模组,其中所述第一电路板具有一正面和一背面,其中所述第一感光元件位于所述第一电路板的所述正面,多个所述电子元器件中的至少一个电子元器件位于所述接收模组的所述第一电路板的所述背面。
  2. 根据权利要求1所述的TOF摄像模组,其中位于所述第一电路板的所述背面的至少一个所述电子元器件被可导通地连接于所述接收模组。
  3. 根据权利要求1所述的TOF摄像模组,其中位于所述第一电路板的所述背面的至少一个所述电子元器件被可导通地连接于所述泛光灯模组。
  4. 根据权利要求1所述的TOF摄像模组,其中位于所述第一电路板的所述背面的至少一个所述电子元器件被可导通地连接于所述接收模组,并且位于所述第一电路板的所述背面的至少一个所述电子元器件被可导通地连接于所述泛光灯模组。
  5. 根据权利要求1至4任一所述的TOF摄像模组,其中所述泛光灯模组包括一发光元件、一支架以及一第二电路板,其中所述发光元件被可导通地连接于所述第二电路板,所述支架被支撑于所述第二电路板并且围绕所述发光元件,其中所述泛光灯模组支撑于所述接收模组的所述第一电路板。
  6. 根据权利要求5所述的TOF摄像模组,其中所述泛光灯模组的所述第二电路板被直接可导通地连接于所述接收模组的所述第一电路板。
  7. 根据权利要求6所述的TOF摄像模组,进一步包括一柔性连接件,其中所述泛光灯模组的所述第一电路板通过所述柔性连接件被可导通地连接于所述接收模组的所述第一电路板。
  8. 根据权利要求5所述的TOF摄像模组,其中所述泛光灯模组的所述支架 通过陶瓷烧结一体成型于所述第二电路板。
  9. 根据权利要求5所述的TOF摄像模组,其中至少部分所述泛光灯模组的所述第二电路板位于所述第一电路板上方。
  10. 根据权利要求1至4任一所述的TOF摄像模组,进一步包括一支撑座,其中所述泛光灯模组包括一发光元件、一支架以及一第二电路板,其中所述发光元件被可导通地连接于所述第二电路板,所述支架被支撑于所述第二电路板并且围绕所述发光元件,其中所述支撑座位于所述第二电路板和所述第一电路板之间,所述泛光灯模组通过所述支撑座被支撑于所述第一电路板。
  11. 根据权利要求10所述的TOF摄像模组,进一步包括一导电件,其中所述导电件位于所述支撑座,所述导电件导通所述第一电路板和所述第二电路板。
  12. 根据权利要求11所述的TOF摄像模组,其中所述支撑座具有一上表面,其中所述第二电路板被支撑于所述上表面,所述支撑座具有一凹槽,其中所述凹槽形成于所述上表面,其中所述导电件具有一第一导电端和一第二导电端,其中所述第二导电端被可导通地连接于所述第二电路板并且被容纳于所述凹槽,所述第一导电端被可导通地连接于所述第一电路板。
  13. 根据权利要求11所述的TOF摄像模组,其中所述导电件被包裹于所述支撑座。
  14. 根据权利要求10所述的TOF摄像模组,进一步包括一柔性连接件,其中所述第一电路板通过所述柔性连接件被可导通地连接于所述第二电路板,位于所述第一电路板的所述背面的至少部分所述电子元器件通过所述柔性连接件被可导通地连接于所述第二电路板。
  15. 根据权利要求10所述的TOF摄像模组,其中所述支撑座通过陶瓷烧结工艺一体成型于所述泛光灯模组的所述第二电路板。
  16. 根据权利要求11至15任一所述的TOF摄像模组,其中所述支撑座通过陶瓷烧结工艺一体成型于所述泛光灯模组的所述第二电路板。
  17. 根据权利要求16所述的TOF摄像模组,其中所述支撑座、所述支架以及所述第二电路板通过陶瓷烧结工艺一体成型。
  18. 根据权利要求1至4任一所述的TOF摄像模组,进一步包括一保护件,其中所述保护件位于所述第一电路板的所述背面,所述保护件形成一保护腔,其中位于所述第一电路板的所述背面的所述电子元器件被容纳于所述保护腔。
  19. 根据权利要求18所述的TOF摄像模组,其中所述保护件是一围壁。
  20. 根据权利要求19所述的TOF摄像模组,进一步包括一保护层,其中所述保护层位于所述保护腔并且覆盖所述电子元器件。
  21. 根据权利要求18所述的TOF摄像模组,其中所述保护件包括一围壁和一底壁,其中所述底壁覆盖所述保护腔的腔口。
  22. 根据权利要求18所述的TOF摄像模组,其中所述保护件通过模塑工艺一体成型于所述第一电路板。
  23. 根据权利要求19至22任一所述的TOF摄像模组,其中所述保护件的高度范围是0.35mm到0.5mm。
  24. 根据权利要求1至4任一所述的TOF摄像模组,其中所述泛光灯模组的高度不大于4.5mm。
  25. 根据权利要求6或11所述的TOF摄像模组,其中所述TOF摄像模组的面积尺寸范围不大于10.5mm*6.6mm。
  26. 根据权利要求7或14所述的TOF摄像模组,其中所述TOF摄像模组的面积尺寸不大于12mm*7mm。
  27. 根据权利要求1所述的TOF摄像模组,所述泛光灯模组,和所述接收模组具有一高度差,所述高度差的范围不超过0.15mm。
  28. 一电子设备,其特征在于,包括:
    一电子设备主体;和
    根据权利要求1至27任一所述的TOF摄像模组,其中所述TOF摄像模组被设置于所述电子设备主体。
PCT/CN2019/102788 2018-09-04 2019-08-27 Tof摄像模组和电子设备以及组装方法 WO2020048352A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/273,079 US20210195076A1 (en) 2018-09-04 2019-08-27 Tof camera module, electronic device, and assembly method
JP2021512491A JP7122463B2 (ja) 2018-09-04 2019-08-27 Tof撮像モジュールと電子機器および組立方法
EP19856963.4A EP3840354A4 (en) 2018-09-04 2019-08-27 TOF CAMERA MODULE, ELECTRONIC DEVICE AND ASSEMBLY PROCEDURE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811027311.1A CN110876003A (zh) 2018-09-04 2018-09-04 Tof摄像模组和电子设备以及组装方法
CN201821444740.4 2018-09-04
CN201821444740.4U CN208956152U (zh) 2018-09-04 2018-09-04 Tof摄像模组和电子设备
CN201811027311.1 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020048352A1 true WO2020048352A1 (zh) 2020-03-12

Family

ID=69722171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102788 WO2020048352A1 (zh) 2018-09-04 2019-08-27 Tof摄像模组和电子设备以及组装方法

Country Status (4)

Country Link
US (1) US20210195076A1 (zh)
EP (1) EP3840354A4 (zh)
JP (1) JP7122463B2 (zh)
WO (1) WO2020048352A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944915B1 (en) 2020-01-05 2021-03-09 Ningbo Sunny Opotech Co., Ltd. Multi-aperture imaging system and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622063B2 (en) * 2020-02-11 2023-04-04 Johnson Controls Tyco Pp Holdings Llp Camera housing comprising movable thermal bridge for temperature regulation
CN113905150A (zh) * 2020-06-22 2022-01-07 三赢科技(深圳)有限公司 摄像头模组及电子装置
US20230144963A1 (en) * 2021-11-05 2023-05-11 Omnivision Technologies, Inc. Stacked image sensor
DE102022118822A1 (de) 2022-07-27 2024-02-01 Valeo Schalter Und Sensoren Gmbh Kameraanordnung zum Überwachen eines Fahrers eines Fahrzeugs mit einer LED, die direkt an ein Steckerelement einer Verbindungsvorrichtung montiert ist

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040132491A1 (en) * 2003-01-07 2004-07-08 Ho-Kyoum Kim Camera module for mobile communication terminals
US20110205145A1 (en) * 2010-02-24 2011-08-25 Au Optronics Corporation Optoelectronic Device, Display and Backlight Module
CN206742240U (zh) * 2017-04-28 2017-12-12 南昌欧菲光电技术有限公司 摄像模组及其感光组件
CN207518758U (zh) * 2017-12-14 2018-06-19 技嘉科技股份有限公司 影像获取装置
CN207782985U (zh) * 2018-03-13 2018-08-28 欧菲影像技术(广州)有限公司 摄像模组及其支架结构
CN208956152U (zh) * 2018-09-04 2019-06-07 宁波舜宇光电信息有限公司 Tof摄像模组和电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270274B2 (en) * 1999-10-04 2007-09-18 Hand Held Products, Inc. Imaging module comprising support post for optical reader
JP2002109517A (ja) * 2000-09-28 2002-04-12 Minolta Co Ltd デジタイザおよび情報処理システム
JP2005072978A (ja) * 2003-08-25 2005-03-17 Renesas Technology Corp 固体撮像装置およびその製造方法
JP4708232B2 (ja) * 2006-03-16 2011-06-22 富士通株式会社 撮像装置
US8547068B2 (en) * 2008-09-18 2013-10-01 Samsung Sdi Co., Ltd. Protection circuit module and secondary battery including the protection circuit module
JP2014092531A (ja) * 2012-11-07 2014-05-19 Seiko Epson Corp 物理量検出装置、電子機器および移動体
WO2015021333A1 (en) * 2013-08-07 2015-02-12 Cornell Universty Semiconductor tweezers and instrumentation for tissue detection and characterization
JP6453158B2 (ja) * 2015-05-25 2019-01-16 株式会社オプトエレクトロニクス 撮像装置及び光学的情報読取装置
JP6814947B2 (ja) * 2016-01-21 2021-01-20 パナソニックIpマネジメント株式会社 カメラモジュール
US10630876B2 (en) * 2016-02-18 2020-04-21 Ningbo Sunny Opotech Co., Ltd. Array imaging module and molded photosensitive assembly, circuit board assembly and manufacturing methods thereof for electronic device
WO2018010814A1 (en) * 2016-07-15 2018-01-18 Hewlett-Packard Development Company, L.P. Electrical device and shielding method
JP6731657B2 (ja) * 2017-10-17 2020-07-29 パナソニックIpマネジメント株式会社 カメラ
CN109756654A (zh) * 2017-11-01 2019-05-14 浙江舜宇智能光学技术有限公司 Tof摄像模组及其制造方法和tof深度图像成像方法以及电子设备
KR101961666B1 (ko) * 2017-12-21 2019-03-26 엘지전자 주식회사 이동 단말기 및 그 제어방법
US10575623B2 (en) * 2018-06-29 2020-03-03 Sephora USA, Inc. Color capture system and device
CN108989783A (zh) * 2018-08-22 2018-12-11 Oppo广东移动通信有限公司 电子装置和电子装置的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040132491A1 (en) * 2003-01-07 2004-07-08 Ho-Kyoum Kim Camera module for mobile communication terminals
US20110205145A1 (en) * 2010-02-24 2011-08-25 Au Optronics Corporation Optoelectronic Device, Display and Backlight Module
CN206742240U (zh) * 2017-04-28 2017-12-12 南昌欧菲光电技术有限公司 摄像模组及其感光组件
CN207518758U (zh) * 2017-12-14 2018-06-19 技嘉科技股份有限公司 影像获取装置
CN207782985U (zh) * 2018-03-13 2018-08-28 欧菲影像技术(广州)有限公司 摄像模组及其支架结构
CN208956152U (zh) * 2018-09-04 2019-06-07 宁波舜宇光电信息有限公司 Tof摄像模组和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944915B1 (en) 2020-01-05 2021-03-09 Ningbo Sunny Opotech Co., Ltd. Multi-aperture imaging system and application thereof

Also Published As

Publication number Publication date
US20210195076A1 (en) 2021-06-24
EP3840354A1 (en) 2021-06-23
JP7122463B2 (ja) 2022-08-19
EP3840354A4 (en) 2021-09-01
JP2021535687A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2020048352A1 (zh) Tof摄像模组和电子设备以及组装方法
US11493605B2 (en) Depth information camera module and base assembly, projection assembly, electronic device and manufacturing method thereof
TWI758645B (zh) 攝像模組及其感光元件和製造方法
WO2020125388A1 (zh) 飞行时间模组及电子设备
US7515817B2 (en) Camera module
JP2008108861A (ja) 光源にフレキシブルpcbが直結された発光ダイオードパッケージ
US10848649B2 (en) Imaging device having heat radiation structure
CN108769491A (zh) 镜座、摄像模组以及电子设备
JP2010041709A (ja) カメラモジュール
CN110876003A (zh) Tof摄像模组和电子设备以及组装方法
CN208956152U (zh) Tof摄像模组和电子设备
WO2021036498A1 (zh) Tof摄像模组及其投射模块和电子设备
TWI685255B (zh) 分體式陣列攝像模組及其製造方法
CN210129901U (zh) 电子设备及其tof摄像模组
JP6191254B2 (ja) 撮像ユニットおよび撮像装置
KR100503003B1 (ko) 휴대 단말기용 카메라 모듈
CN113534575A (zh) 镜头模组及电子装置
KR100647015B1 (ko) Led 고정용 하우징 구조 및 이를 이용한 카메라 모듈패키지
KR100803275B1 (ko) 카메라장치 및 그 제조방법
JP2019192813A (ja) 電子機器及び電子機器の製造方法
WO2020042839A1 (zh) 带有泛光灯的电子设备及其装配方法
CN219420891U (zh) 拍摄装置及其拍摄设备
CN111866320A (zh) Tof摄像模组及其应用
JP4511012B2 (ja) 光プリンタヘッド
CN107241539B (zh) 成像装置组件及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019856963

Country of ref document: EP

Effective date: 20210315