WO2020048266A1 - 水泥制品表面微晶化专用设备及方法 - Google Patents
水泥制品表面微晶化专用设备及方法 Download PDFInfo
- Publication number
- WO2020048266A1 WO2020048266A1 PCT/CN2019/098804 CN2019098804W WO2020048266A1 WO 2020048266 A1 WO2020048266 A1 WO 2020048266A1 CN 2019098804 W CN2019098804 W CN 2019098804W WO 2020048266 A1 WO2020048266 A1 WO 2020048266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- cement product
- cement
- power amplifier
- vibrator
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0067—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability making use of vibrations
Definitions
- the invention relates to the technical field of preparation of cement products. More specifically, it relates to a special equipment for surface microcrystallization of cement products and a method for surface microcrystallization of cement products.
- the anti-aging performance of cement products is an important index that affects the life of cement products.
- the cement product begins the hydration process after being stirred and poured. It undergoes the process of initial setting, final setting, and later hydration. During this process, hydrated silicate, ettringite, calcium hydroxide and other crystals are formed. Keep growing.
- the surface of conventional cement products is composed of underdeveloped silicate crystals, unhydrated silicate particles, coarse columnar or needle-like ettringite and calcium hydroxide crystals.
- the surface of the cement product produced under the conventional process is rough under microscopic observation, and there are a large number of tiny holes.
- the formed columnar or needle-like ettringite and calcium hydroxide crystals have long and coarse limbs, and their strength is not high. These reasons lead to easy erosion by carbon dioxide, acids, alkalis, salts, etc., making the anti-aging properties of cement products poor.
- An object of the present invention is to provide a special equipment and a method for microcrystallization of the surface of a cement product, which can make the surface of the cement product with good anti-aging properties.
- the present invention adopts the following technical solutions:
- Special equipment for microcrystallization of cement product surface including a vibrator, a vibration signal generator, a power amplifier and a vibration transmitting body.
- the signal output terminal of the vibration signal generator is connected to the signal input terminal of the power amplifier.
- the signal output end is connected to the signal input end of the vibrator, the vibrator is directly or indirectly connected to the vibration transmitting body, and the vibration transmitting body is in contact with the inner surface and / or the outer surface of the cement product after the pouring.
- the above-mentioned special equipment for crystallizing the surface of the cement product, the vibration transmitting body is a mold, the cement product is located in the mold, and the vibrator is installed on the mold.
- the vibration transmitting body is an inner mold, a part of the inner mold is in contact with the inner surface of the cement product, and another part is located outside the cement product, and the vibrator is mounted on The inner mold is located on a portion outside the cement product.
- the vibration frequency generated by the vibration signal generator is greater than or equal to 1 KHz.
- the method of microcrystallizing the surface of a cement product applies vibration to the cement product after pouring and before final setting, the vibration frequency is greater than or equal to 1 KHz, and the vibration time is greater than or equal to 5 minutes.
- the frequency of vibration is 1KHz to 120KHz.
- the method for crystallizing the surface of a cement product includes the following steps:
- the vibration applied to the cement product after pouring to the final setting is continuous vibration or intermittent vibration.
- the surface micro-crystallization method of the cement product surface is as follows:
- microcrystallization of the surface of the cement product described above the process of microcrystallization of the interior of the cement product is as follows:
- the vibrator is installed on the inner mold of the cement product, and the vibrator, the vibration signal generator and the power amplifier are connected; the signal output terminal of the vibration signal generator is connected with the signal input terminal of the power amplifier, A signal output end is connected to a signal input end of the oscillator;
- the surface microcrystallization method and special equipment of the cement product of the present invention apply high-frequency vibration to the cement during the hydration process of the cement product (the effect of applying vibration after the cement product is set to the final setting before the final setting is relatively limited), so that The surface contacted with the vibration transmitting body formed a dense layer of hydrated silicate colloid under the action of vibration, and during the later cement hydration process, fine particles were developed on the surface of this layer of hydrated silicate colloid. Crystals or keep the gel phase. Thereby, the characteristics of micro-crystallization on the surface of cement products are presented.
- Microcrystalline cement products have the characteristics of high surface hardness, high density, low water vapor permeability, and aging resistance (carbonization, freeze-thaw, acid and alkali salt erosion) are better than ordinary cement products.
- high-frequency vibration-treated cement-based materials can absorb more solar radiation, which is conducive to the absorption of heat and ice from buildings and pavement materials in cold regions; high-frequency vibration-treated cement-based materials have higher surface tension and water droplets are less likely to adhere. On the surface, it has a very good anti-slip effect for pavement materials.
- the principle of surface microcrystallization of the cement product of the present invention special equipment is designed to apply high-frequency vibration to the cement product within a period of time before the cement is poured to final setting, thereby vibrating at the position where the surface of the cement product contacts the vibration transmitting body.
- a layer of dense hydrated silicate colloid was formed underneath.
- fine granular crystals developed on the surface of this layer of hydrated silicate colloid or maintained a gel phase.
- the dense surface hydrated silicate colloids and microcrystalline hydrate crystals make the surface of cement products denser and lower in permeability.
- the crystals have lower internal energy and better chemical stability, the cement products are more stable. It is not easy to be eroded and has better anti-aging performance.
- the invention proposes the principle of densifying the surface layer of cement-based materials and microcrystallizing the surface by high-frequency physical vibration; and applying external vibration during the hydration process of the cement to microcrystallize the hydrated product to produce a surface microcrystalline cement product.
- Vibration frequency The applied vibration frequency is a range, usually 1KHz ⁇ 120KHz. The lower the frequency, the greater the depth of action, and the higher the frequency, the smaller the depth of action, but the more concentrated the energy.
- Vibration can be applied on the outer surface of the cement product, or on the inner surface of the cement product. By applying vibration on the inner and outer surfaces of cement products, the vibrator can be directly or indirectly attached to the surface of the mold, and the mold acts as a vibration transmitting body.
- Vibration time After the cement product is poured, it starts to vibrate, and the vibration is terminated before the cement is finally set (the effect of applying vibration after the final set is relatively limited). During this period, continuous vibration or intermittent vibration can be used.
- the frequency is high, the vibration energy is more concentrated in the surface layer, and the depth of action is small; if the frequency is low, the vibration energy is transmitted deeper inside, and the depth of action is large.
- the choice of vibrator The principle of the invention shows that from the lower frequency oscillator of 1KHz to the high frequency ultrasonic oscillator of 120KHz, dense hydrated silicate colloids can be formed on the surface layer of cement products, and uniform granular crystals or Keep the gel phase.
- the current commonly used vibrators such as commonly used ultrasonic vibrators up to 120KHz, the same effect can be achieved if higher frequency vibrators are produced.
- the inventors have completed the tests of 28KHz, 40KHz, 80KHz, 120KHz oscillators, and have achieved similar
- the effect of the invention achieves the purpose of the present invention; therefore, the frequency of the vibration applied to the surface of the cement product can be arbitrarily selected on the basis of greater than 1 KHz, and the same technical effect can be achieved.
- the output power will affect the length of the vibration time. Under the same vibration frequency, the power is small and the time is longer, but it has no essential effect on the result.
- FIG. 1 is a schematic structural diagram of a special equipment for the surface microcrystallization process of a cement product according to the present invention.
- FIG. 2 is a schematic diagram of another structure of the special equipment for the internal microcrystallization process of the cement product of the present invention.
- Figure 3 The surface morphology of the cement product treated by this patent, using 40KHz frequency vibration, output power 50W, vibration duration: within 2 hours to 8 hours after pouring, vibration for 15 minutes, interval of 15 minutes ... Repeated and intermittent vibration. Confocal shot by Olympus OLS4100 laser. It can be seen that the surface of the cement product is covered with uniform hydrated silicate crystals, the surface is dense, and the crystal gap is small.
- Figure 4 Surface morphology of cement products not treated by this patent process, taken by Olympus OLS4100 laser confocal. It can be seen that the surface of the cement product is composed of unhydrated silicate particles, columnar ettringite crystals, pores, etc. The surface of the cement product is not dense, the crystals are coarse, and the crystal gap is large.
- FIG. 5 The surface of the cement paste product treated by this patent process is cut into a micro-morphology. It uses 40KHz frequency vibration, the output power is 20W, and the vibration duration is: 10 minutes to 30 minutes after pouring, continuous vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of about 160 ⁇ m dense hydrated silicate colloid is formed on the surface of the cement product. On the left is the interior of the cement product, consisting of underdeveloped and unhydrated silicate particles.
- Fig. 6 The surface of the cement paste product treated by this patent process is cut into a micro-morphology. It adopts 80KHz frequency vibration, output power is 25W, and vibration duration: within 2 hours to 5.5 hours after pouring, continuous vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of about 120 ⁇ m dense hydrated silicate colloid is formed on the surface of the cement product. On the left is the interior of the cement product, consisting of underdeveloped and unhydrated silicate particles.
- Fig. 7 The surface of the cement paste product treated by this patent process is cut into a microscopic morphology. It adopts 120KHz frequency vibration, output power 15W, vibration duration: 0.5 to 3 hours after pouring, continuous vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of about 120 ⁇ m dense hydrated silicate colloid is formed on the surface of the cement product. On the left is the interior of the cement product, consisting of underdeveloped and unhydrated silicates.
- Fig. 8 The micro-morphology of the surface of the cement mortar product processed by this patent process is cut with a frequency of 28KHz, the output power is 100W, and the vibration duration is: within 5 hours to 9 hours after pouring, the vibration is 15 minutes per hour and the interval is 45 minutes « Such repeated, intermittent vibrations.
- the right side is the natural surface of the cement product. It can be seen that a layer of dense hydrated silicate colloid of about 60-120 ⁇ m is formed on the surface of the cement product. On the left is the interior of the cement product, consisting of underdeveloped and unhydrated silicate particles.
- Figure 9 The micro-morphology of the surface of the cement concrete product treated by this patent process is cut at a frequency of 28KHz, with an output power of 100W, and the duration of vibration: within 6 hours to 12 hours after pouring, vibrations of 15 minutes per hour and 45 minutes interval « Such repeated, intermittent vibrations.
- the right side is the natural surface of the cement product. It can be seen that a layer of dense hydrated silicate colloid of about 40-120 ⁇ m is formed on the surface of the cement product.
- On the left is the interior of the cement product, consisting of underdeveloped and unhydrated silicates.
- Fig. 10 The micromorphology of the surface of the cement paste product which has not been treated by the patent process is cut and photographed by Olympus OLS4100 laser confocal. The right side is the natural surface of the cement product. It can be seen that no hydrated silicate colloid is formed on the surface of the cement product. The entire section is composed of underdeveloped and non-colloidal silicate particles.
- Figure 11 shows the cementitious concrete test block shown in Figure 9 after standard carbonization ("Standard Test Method for Long-term Performance and Durability of General Concrete” GB / T50082-2009) (14 days, 20% concentration of carbon dioxide, equivalent (25 years of natural carbonization). It can be seen that there is no carbonization, and the carbonization depth is zero.
- FIG. 13 is a comparison diagram of the density of cement paste products treated by the patent process and the density of cement paste products not treated by the patent process.
- FIG. 14a is a statistical diagram of the hardness of the surface of a cement paste product treated by this patent process
- FIG. 14b is a statistical diagram of the hardness of the surface of a cement paste product which is not treated by this patent process.
- FIG 15a Schematic diagram of testing the water vapor permeability of ultrasonically treated cement paste test specimens using the ASTM E96-16 method;
- Figure 15b when the water-cement ratio is 0.28, the cement paste products treated by this patent process and those without this patent process Comparison of water vapor permeability of treated cement paste products;
- Figure 15c shows the water vapor permeability of cement paste products treated by this patent process and cement paste products not treated by this patent process when the water-cement ratio is 0.30.
- Fig. 15d compares the water vapor permeability of cement paste products treated with the patented process and cement paste products not treated with the patented process when the water-cement ratio is 0.32.
- FIG. 16 is a comparison diagram of the reflectance of the surface of a cement paste product treated by this patent process and a surface of a cement paste product not treated by this patent process at a wavelength of 280 nm to 2500 nm.
- FIG. 17a is a surface tension test chart of a cement-based material surface treated by this patent process, and the drop is glycerol;
- FIG. 17b is a surface tension test chart of a cement-based material surface not treated by this patent, and the drop is glycerin.
- Fig. 18a Statistical surface tension diagram of the surface of cement paste products treated by this patent process, the drop is glycerin;
- Fig. 18b Statistical surface tension diagram of the surface of cement paste products not treated by the patent process, the drop is glycerin .
- the special equipment for surface microcrystallization of cement products in this embodiment is used for surface microcrystallization of cement products, and includes a vibrator 1, a vibration signal generator 2, a power amplifier 3, and a mold 4.
- the vibration signal generator 2 The signal output terminal of is connected to the signal input terminal of the power amplifier 3, and the signal output terminal of the power amplifier 3 is connected to the signal input terminal of the oscillator 1.
- the cement product 6 is located in the mold 4.
- the mold 4 includes a bottom mold 41 and a side mold 42.
- the vibrator 1 is fixedly mounted on the outer surfaces of the bottom mold 41 and the side mold 42 by screws 7. .
- the vibration signal generator 2 generates a vibration frequency of 40 KHz and an output power of 50 W.
- One vibrator is arranged every 400 cm 2 of the mold surface area.
- the special equipment for microcrystallization of the surface of cement products is used for the microcrystallization of the inner surface of cement products, and includes a vibrator 1, a vibration signal generator 2, a power amplifier 3, and a vibration transmitting body.
- the signal output terminal is connected to the signal input terminal of the power amplifier 3, and the signal output terminal of the power amplifier 3 is connected to the signal input terminal of the oscillator 1.
- the vibration transmitting body is an inner mold 5. A part of the inner mold 5 is in contact with the inner surface of the cement product 6, and another part is located outside the cement product 6.
- the vibrator 1 is mounted on the cement product by screws 7.
- the inner mold 5 is located on the outer part of the cement product 6.
- the vibration signal generator 2 generates a vibration frequency of 120 KHz and an output power of 25 W. One vibrator is arranged every 400 cm 2 of the mold surface area.
- the surface micro-crystallization method of the cement product is as follows:
- the mold 4 includes a bottom mold 41 and a side mold 42.
- the vibrator 1 is fixedly installed on the outer surface of the bottom mold 41 and the side mold 42 by screws 7.
- One vibrator is arranged every 400 cm 2 of the mold surface area and connected.
- Figure 3 The morphology of the surface of the cement product treated in this embodiment, using 40KHz frequency vibration, output power 50W, vibration duration: within 2 hours to 8 hours after pouring, 15 minutes of vibration, 15 minutes interval ... Repeated and intermittent vibration. Confocal shot by Olympus OLS4100 laser. It can be seen that the surface of the cement product is covered with uniform hydrated silicate crystals, the surface is dense, and the crystal gap is small.
- FIG. 4 The surface morphology of the cement product without the process of this embodiment, taken by Olympus OLS4100 laser confocal. It can be seen that the surface of the cement product is composed of unhydrated silicate particles, columnar ettringite crystals, pores, etc. The surface of the cement product is not dense, the crystals are coarse, and the crystal gap is large.
- Fig. 5 The surface of the cement paste product treated by the process of this embodiment is cut into a micro-morphology, and it is vibrated at a frequency of 40 KHz, with an output power of 20 W, and a vibration duration: 10 to 30 minutes after pouring, continuous vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of about 160 ⁇ m dense hydrated silicate colloid is formed on the surface of the cement product. On the left is the interior of the cement product.
- FIG. 6 The surface of the cement paste product treated by the process of this embodiment is cut into a micro-morphology, and it uses 80KHz frequency vibration, output power 25W, and vibration duration: within 2 hours to 5.5 hours after pouring, continuous vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of about 120 ⁇ m dense hydrated silicate colloid is formed on the surface of the cement product. On the left is the interior of the cement product.
- Fig. 7 The surface of the cement paste product treated by the process of this embodiment is cut into a microscopic morphology, and adopts 120KHz frequency vibration, output power 15W, and vibration duration: 0.5 to 3 hours after pouring, continuous vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of about 120 ⁇ m dense hydrated silicate colloid is formed on the surface of the cement product. On the left is the interior of the cement product.
- Figure 8 The surface of the cement mortar product treated by the process of this embodiment is cut into a micro-morphology, using a 28KHz frequency vibration, an output power of 100W, and a vibration duration: within 5 hours to 9 hours after pouring, the vibration is 15 minutes per hour and the interval is 45 Minutes ... so repetitive, intermittent vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of dense hydrated silicate colloid of about 60-120 ⁇ m is formed on the surface of the cement product. On the left is the interior of the cement product.
- Fig. 9 The surface of the cement concrete product treated by the process of this embodiment is cut into a micro-morphology, using 28KHz frequency vibration, output power 100W, vibration duration: within 6 hours to 12 hours after pouring, vibration for 15 minutes per hour, interval 45 Minutes ... so repetitive, intermittent vibration. Confocal shot by Olympus OLS4100 laser.
- the right side is the natural surface of the cement product. It can be seen that a layer of dense hydrated silicate colloid of about 40-120 ⁇ m is formed on the surface of the cement product. On the left is the interior of the cement product.
- FIG. 10 The micromorphology of the surface of the cement paste product which has not been treated by the process of this embodiment is cut and photographed by Olympus OLS4100 laser confocal.
- the right side is the natural surface of the cement product. It can be seen that no hydrated silicate colloid layer is formed on the surface of the cement product.
- Figure 11 shows the cementitious concrete test block shown in Figure 9 after standard carbonization ("Standard Test Method for Long-term Performance and Durability of General Concrete" GB / T50082-2009) (14 days, 20% carbon dioxide, (Equivalent to 25 years of natural carbonization). It can be seen that there is no carbonization, and the carbonization depth is zero.
- High-frequency vibration is applied to the cement product, so that a dense layer of hydrated silicate colloid is formed under the action of vibration at the position where the surface of the cement product contacts the vibration transmitting body.
- the layer is hydrated.
- a layer of well-developed and relatively uniform granular silicate crystals grows on the surface of the silicate colloid.
- the well-developed uniform and fine-grained crystals are formed to achieve the effect of microcrystals.
- the surface layer of dense hydrated silicate colloids and microcrystalline hydrate crystals make the surface of cement products denser.
- high-frequency vibration cement products the hydrated silicate colloids and microcrystals formed on the surface
- the hydrated hydrate crystal layer has a high density.
- the micro hardness tester was used to test the Vickers hardness of the surface of the mortar specimens treated with high frequency vibration. The results showed that the average surface hardness after ultrasonic treatment was 1757HV0.1 / 10, as shown in Figure 14a; It is 746HV0.1 / 10, as shown in Figure 14b, which is 135% higher than that of the comparative specimen.
- the ASTM E96-16 method was used to test the water vapor permeability of the cement slurry test specimens treated with high frequency vibration. It was shown that the high density hydrated silicate colloid layer formed by high frequency vibration can effectively prevent water vapor penetration.
- Figure 15a is a test device diagram
- Figures 15b-15d show the comparison of test data of cement paste test specimens with high-frequency vibration treatment and without treatment when the water-cement ratio (W / C) is 0.28, 0.30, and 0.32, respectively.
- the hydrated silicate colloids and microcrystalline hydrate crystals make the surface of cement products denser, the water vapor permeability of the cement paste test specimens subjected to high-frequency vibration treatment is low, making the cement products more resistant to erosion and resistance Better aging performance.
- the high-frequency vibration-treated surface of the cement-based material has a lower reflectance to the full spectrum than the untreated comparative specimen. This characteristic indicates that the cement-based material can absorb more solar radiation, absorb heat to buildings in cold areas, and pavement materials Endothermic melting ice is beneficial.
- the surface of the cement-based material after high-frequency vibration treatment is 34.5% lower than the spectral reflectance of the comparative specimen in the wavelength of 280nm-2500nm, as shown in FIG. 16.
- the contact angle test chart after glycerin was dropped on the surface of the cement-based material that was subjected to high-frequency vibration treatment and not subjected to high-frequency vibration treatment.
- Figure 18a and Figure 18b show the normal distribution curve of the contact angle test.
- the average surface contact angle of cement-based materials after high-frequency vibration treatment was 91.18 degrees, and the average surface contact angle of cement-based materials without high-frequency treatment was 62.34 degrees.
- the surface tension of the cement-based material is higher, and water droplets are not easily adsorbed on the surface of the material.
- higher tension can make raindrops fall on the surface faster, and the raindrops carry cement-based materials.
- Corrosive materials of the material are not easy to adsorb on the surface of the material.
- pavement materials such as cement pavement tiles, concrete pavement
- water droplets will gather and flow away faster, making it more resistant to wet skid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Abstract
水泥制品表面微晶化专用设备及方法,所述专用设备包括振子(1)、振动信号发生器(2)、功率放大器(3)和振动传递体,振动信号发生器(2)的信号输出端与功率放大器(3)的信号输入端连接,功率放大器(3)的信号输出端与振子(1)的信号输入端连接,振子(1)与振动传递体连接,振动传递体与初凝后的水泥制品接触;水泥制品表面微晶化方法包括在水泥制品浇筑后、终凝前,对其外或内表面施加振动,振动频率大于或等于1KHz,振动时间大于或等于5分钟。采用该设备和方法制得的水泥制品表层形成具有一定厚度的密度高、渗透率低、表面覆盖比较均匀的粒状晶体或凝胶相的结构层,使得水泥制品具有优良的抗老化性能。
Description
本发明涉及水泥制品的制备技术领域。更具体地,涉及一种水泥制品表面微晶化专用设备及水泥制品表面微晶化方法。
水泥制品,包括水泥净浆、砂浆、混凝土制品的抗老化性能是影响水泥制品寿命的重要指标。水泥制品在搅拌浇筑后开始水化过程,经历初凝、终凝及后期水化的过程在此过程中形成水合硅酸盐、钙矾石、氢氧化钙等晶体,在整个水化过程中晶体不断生长变大。常规水泥制品表面是由发育不充分的硅酸盐晶体、未水化的硅酸盐颗粒、粗大的柱状或针状钙矾石和氢氧化钙晶体混合组成。常规工艺下生成水泥制品表面微观观察下粗糙,存在大量微小的孔洞,形成的柱状或针状钙矾石和氢氧化钙晶体晶肢长而粗大,强度不高。这些原因导致容易被二氧化碳、酸、碱、盐等侵蚀,使得水泥制品的抗老化性能不佳。
本发明的一个目的在于提供一种能够使得水泥制品抗老化性能好的水泥制品表面微晶化专用设备及水泥制品表面微晶化方法。
为达到上述目的,本发明采用下述技术方案:
水泥制品表面微晶化专用设备,包括振子、振动信号发生器、功率放大器和振动传递体,所述振动信号发生器的信号输出端与所述功率放大器的信号输入端连接,所述功率放大器的信号输出端与所述振子的信号输入端连接,所述振子与所述振动传递体直接或间接连接,所述振动传递体与浇筑后的水泥制品内表面和/或外表面接触。
上述水泥制品表面微晶化专用设备,所述振动传递体为模具,所述水泥制品位于所述模具内,所述振子安装在所述模具的上。
上述水泥制品表面微晶化专用设备,所述振动传递体为内模,所述内模的一部分与所述水泥制品的内表面接触、另一部分位于所述水泥制品的外部,所述振子安装在所述内模位于所述水泥制品外部的部分上。
上述水泥制品表面微晶化专用设备,所述振动信号发生器产生的振动频率大于或等于1KHz。
水泥制品表面微晶化方法,在水泥制品浇筑后、终凝前,对其施加振动,振动频率大于或等于1KHz,振动时间大于或等于5分钟。
上述水泥制品表面微晶化方法,振动的频率为1KHz~120KHz。
上述水泥制品表面微晶化方法,包括如下步骤:
A、按照现有技术中的水泥制品制备方法准备水泥制品浇筑原料;
B、在振动传递体上安装振子,并连接振动信号发生器和功率放大器;所述振动信号发生器的信号输出端与所述功率放大器的信号输入端连接,所述功率放大器的信号输出端与所述振子的信号输入端连接;
C、浇筑,得水泥制品,并将振动传递体与水泥制品接触;水泥制品浇筑后至终凝之前这段时间内,打开所述振动信号发生器和所述功率放大器,对水泥制品施加振动;
D、水泥制品终凝后,拆除振子,对水泥制品进行正常养护作业。
上述水泥制品表面微晶化方法,对水泥制品在浇筑后至终凝之前施加的振动为连续振动或者间断振动。
上述水泥制品表面微晶化方法,对水泥制品表面微晶化工艺流程如下:
A、按照现有技术中的水泥制品制备方法准备水泥制品浇筑原料;
B、在模具上安装振子,并连接振动信号发生器和功率放大器;所述振动信号发生器的信号输出端与所述功率放大器的信号输入端连接,所述功率放大器的信号输出端与所述振子的信号输入端连接;
C、在模具内浇筑,得水泥制品,打开所述振动信号发生器和所述功率放大器,对水泥制品施加振动;振动制度为:在浇筑后至终凝前施加振动;
D、水泥制品终凝后,拆除振子,对水泥制品进行正常养护作业。
上述水泥制品表面微晶化方法,对水泥制品内部微晶化工艺流程如下:
A、按照现有技术中的水泥制品制备方法准备水泥制品浇筑原料;
B、将振子安装在水泥制品内模上,将振子、振动信号发生器和功率放大器连接;所述振动信号发生器的信号输出端与所述功率放大器的信号输入端连接,所述功率放大器的信号输出端与所述振子的信号输入端连接;
C、浇筑,制得水泥制品,水泥制品浇筑后,打开所述振动信号发生器和所述功率放大器,对水泥制品施加振动;振动制度为:在浇筑后至终凝前施加振动。
D水泥制品终凝后,拆除振子,对水泥制品进行正常养护作业。
本发明水泥制品表面微晶化方法及其专用设备是通过在水泥水化过程中对其施加高频振动(水泥制品浇筑后至终凝前,终凝之后再施加振动的作用比较有限),使其表层与振动传递体接触的位置在振动作用下形成了一层致密的水化硅酸盐胶体,并且在后期水泥水化过程中,在这层水化硅酸盐胶体表面发育出细小颗粒状的晶体或保持凝胶相。从而呈现出水泥制品表面微晶化的特征。微晶化的水泥制品具有表层硬度高、密度高,水蒸气渗透率低,抗老化性能(碳化,冻融性,酸碱盐侵蚀)优于普通水泥制品的特点。同时,经过高频振动处理的水泥基材料可以吸收更多的太阳辐射,有利于寒冷地区建筑物和路面材料吸热融冰;经过高频振动处理的水泥基材料表面张力更高,水滴不易附着在表面,对于路面材料,起到很好的防湿滑作用。
本发明水泥制品表面微晶化原理:设计了专用设备,在水泥浇筑到终凝前的一段时间内,对水泥制品施加高频振动,从而在水泥制品表层与振动传递体接触的位置在振动作用下形成了一层致密的水化硅酸盐胶体,在后期水泥水化过程中,在这层水化硅酸盐胶体表面发育出细小颗粒状的晶体或保持凝胶相。表层致密的水化硅酸盐胶体以及微晶化的水合物晶体使得水泥制品表面更致密,渗透率更低,同时由于晶体具有更低的内能,化学稳定性更好,因此使得水泥制品更不易被侵蚀,抗老化性能更好。
本发明提出了通过高频物理振动使得水泥基材料表层致密化,表面微晶化的原理;通过在水泥水化过程中施加外部振动从而使得水合产物微晶化,制成表面微晶水泥制品。
振动频率:施加的振动频率是一个范围,通常为1KHz~120KHz。频率越低,则作用深度越大,频率越高,则作用深度越小,但能量更集中。
振动部位:可在水泥制品外表面施加振动,也可在水泥制品内表面施加振动。在水泥制品内外表面施加振动,可将振子直接或间接附着在模具表面,模具作为振动传递体。
振动时间:在水泥制品浇筑后开始振动,至水泥终凝前终止振动(终凝之后再施加振动的作用比较有限)。在此期间可连续振动也可间断振动。
频率高,则振动能量更集中在表层,作用深度小;频率低,则振动能量向内部传递更深,作用深度大。
振子的选择。本发明原理表明从1KHz的较低频率振子到120KHz高频的超声振子均可在水泥制品表层形成致密的水化硅酸盐胶体,并在后期水化过程中在表面发育出均匀的粒状晶体或保持凝胶相。鉴于目前常用的振子,例如常用超声振子最高到120KHz,如果生产出更高频率的振子,也可以实现同样的效果,发明人已完成了28KHz、40KHz、80KHz、120KHz振子的试验,均取得了相似的效果,达到了本发明的目的;因此对水泥制品表面施加振动的频率,可以在大于1KHz的基础上任意选择均可以实现同样的技术效果。
达到同样技术效果的情况下,输出功率的大小会影响振动时间长短,相同振动频率的条件下,功率小、耗时会比较长,但对结果没有本质的影响。
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1本发明水泥制品表面微晶化工艺专用设备的一种结构示意图。
图2本发明水泥制品内部微晶化工艺专用设备的另一种结构示意图。
图3经本专利处理的水泥制品表面形貌,采用40KHz频率振动,输出功率50W,振动时长:浇筑后2小时~8小时内,振动15分钟、间隔15分钟……如此反复、间断振动。由奥林巴斯OLS4100激光共聚焦拍摄。可见水泥制品表面覆盖均匀的水化硅酸盐晶体,表面密实,晶体间隙小。
图4未经本专利工艺处理的水泥制品表面形貌,由奥林巴斯OLS4100激光共聚焦拍摄。可见水泥制品表面由未水化的硅酸盐颗粒、柱状钙矾石晶体、孔洞等构成,水泥制品表面不密实、晶体粗大、晶体间隙大。
图5经本专利工艺处理的水泥净浆制品表面剖切开微观形貌,采用40KHz频率振动,输出功率20W,振动时长:浇筑后10分钟~30分钟内,连续振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约160μm致密的水化的硅酸盐胶体。左侧为水泥制品内部,由发育不充分和未水化的硅酸盐颗粒组成。
图6经本专利工艺处理的水泥净浆制品表面剖切开微观形貌,采用80KHz频率振动,输出功率25W,振动时长:浇筑后2小时~5.5小时内,连续振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部,由发育不充分和未水化的硅酸盐颗粒组成。
图7经本专利工艺处理的水泥净浆制品表面剖切开微观形貌,采用120KHz频率振动,输出功率15W,振动时长:浇筑后0.5小时~3小时内,连续振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部,由发育不充分和未水化的硅酸盐组成。
图8经本专利工艺处理的水泥砂浆制品表面剖切开微观形貌,采用28KHz频率振动,输出功率100W,振动时长:浇筑后5小时~9小时内,每小时内振动15分钟、间隔45分钟……如此反复、间断振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约60~120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部,由发育不充分和未水化的硅酸盐颗粒组成。
图9经本专利工艺处理的水泥混凝土制品表面剖切开微观形貌,采用28KHz频率振动,输出功率100W,振动时长:浇筑后6小时~12小时内,每小时内振动15分钟、间隔45分钟……如此反复、间断振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约40~120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部,由发育不充分和未水化的硅酸盐组成。
图10未经本专利工艺处理的水泥净浆制品表面剖切开微观形貌,由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面没有形成水化的硅酸盐胶体。整个切面均由发育不充分和未形成胶体的硅酸盐颗粒组成。
图11为图9所示经本专利工艺处理的水泥混凝土试块经标准碳化(《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082-2009)后(14天,20%浓度二氧化碳,相当于自然碳化25年)的碳化深度照片。可见其没有碳化,碳化深度为0。
图12未经本专利工艺处理的水泥混凝土试块经标准碳化(《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082-2009)后(14天,20%浓度二氧化碳,相当于自然碳化25年)的碳化深度照片。可见其碳化深度超过6mm。
图13经本专利工艺处理的水泥净浆制品的密度与未经本专利工艺处理的水泥净浆制品的密度的比较图。
图14a经本专利工艺处理的水泥净浆制品表面的硬度统计图;图14b未经本专利工艺处理的水泥净浆制品表面的硬度统计图。
图15a采用 ASTM E96-16方法测试超声处理的水泥净浆试件水蒸气渗透率的示意图;图15b在水灰比为0.28时,经本专利工艺处理的水泥净浆制品与未经本专利工艺处理的水泥净浆制品的水蒸气渗透率比较图;图15c在水灰比为0.30时,经本专利工艺处理的水泥净浆制品与未经本专利工艺处理的水泥净浆制品的水蒸气渗透率比较图;图15d在水灰比为0.32时,经本专利工艺处理的水泥净浆制品与未经本专利工艺处理的水泥净浆制品的水蒸气渗透率比较图。
图16经本专利工艺处理的水泥净浆制品与未经本专利工艺处理的水泥净浆制品的表面在280nm-2500nm波长的反射率的对比图。
图17a经本专利工艺处理的水泥基材料表面的表面张力测试图,滴加物为甘油;图17b未经本专利工艺处理的水泥基材料表面的表面张力测试图,滴加物为甘油。
图18a经本专利工艺处理的水泥净浆制品表面的表面张力统计图,滴加物为甘油;图18b未经本专利工艺处理的水泥净浆制品表面的表面张力统计图,滴加物为甘油。
图中:1-振子;2-振动信号发生器;3-功率放大器;4-模具;41-底模;42-侧模;5-内模;6-水泥制品;7-螺钉。
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
如图1所示,本实施例水泥制品表面微晶化专用设备用于水泥制品表面微晶化,包括振子1、振动信号发生器2、功率放大器3和模具4,所述振动信号发生器2的信号输出端与所述功率放大器3的信号输入端连接,所述功率放大器3的信号输出端与所述振子1的信号输入端连接。所述水泥制品6位于所述模具4内,所述模具4包括底模41和侧模42,所述振子1通过螺钉7固定安装在所述底模41和所述侧模42的外表面上。所述振动信号发生器2产生的振动频率为40KHz,输出功率50W,每400cm
2模具表面积布置一个振子。
实施例2
如图2所示,水泥制品表面微晶化专用设备用于水泥制品内表面微晶化,包括振子1、振动信号发生器2、功率放大器3和振动传递体,所述振动信号发生器2的信号输出端与所述功率放大器3的信号输入端连接,所述功率放大器3的信号输出端与所述振子1的信号输入端连接。
所述振动传递体为内模5,所述内模5的一部分与所述水泥制品6的内表面接触、另一部分位于所述水泥制品6的外部,所述振子1通过螺钉7安装在所述内模5位于所述水泥制品6外部的部分上。所述振动信号发生器2产生的振动频率为120KHz,输出功率25W,每400cm
2模具表面积布置一个振子。
实施例3
本实施例水泥制品表面微晶化方法,对水泥制品表面微晶化工艺流程如下:
A、按照现有技术中的水泥制品制备方法准备水泥制品浇筑原料;
B、模具4包括底模41和侧模42,所述振子1通过螺钉7固定安装在所述底模41和所述侧模42的外表面上,每400cm
2模具表面积布置一个振子,并连接振动信号发生器2和功率放大器3;所述振动信号发生器2的信号输出端与所述功率放大器3的信号输入端连接,所述功率放大器3的信号输出端与所述高频振子1的信号输入端连接;
C、在模具4内浇筑水泥制品6;浇筑后,打开所述振动信号发生器2和所述功率放大器3,对水泥制品6施加振动;振动制度为:浇筑后连续振动或间断振动;
D、水泥制品6浇筑20小时后,拆除高频振子1,对水泥制品6进行正常养护作业。
图3经本实施例处理的水泥制品表面形貌,采用40KHz频率振动,输出功率50W,振动时长:浇筑后2小时~8小时内,振动15分钟、间隔15分钟……如此反复、间断振动。由奥林巴斯OLS4100激光共聚焦拍摄。可见水泥制品表面覆盖均匀的水化硅酸盐晶体,表面密实,晶体间隙小。
图4未经本实施例工艺处理的水泥制品表面形貌,由奥林巴斯OLS4100激光共聚焦拍摄。可见水泥制品表面由未水化的硅酸盐颗粒、柱状钙矾石晶体、孔洞等构成,水泥制品表面不密实、晶体粗大、晶体间隙大。
图5经本实施例工艺处理的水泥净浆制品表面剖切开微观形貌,采用40KHz频率振动,输出功率20W,振动时长:浇筑后10分钟~30分钟内,连续振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约160μm致密的水化的硅酸盐胶体。左侧为水泥制品内部。
图6经本实施例工艺处理的水泥净浆制品表面剖切开微观形貌,采用80KHz频率振动,输出功率25W,振动时长:浇筑后2小时~5.5小时内,连续振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部。
图7经本实施例工艺处理的水泥净浆制品表面剖切开微观形貌,采用120KHz频率振动,输出功率15W,振动时长:浇筑后0.5小时~3小时内,连续振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部。
图8经本实施例工艺处理的水泥砂浆制品表面剖切开微观形貌,采用28KHz频率振动,输出功率100W,振动时长:浇筑后5小时~9小时内,每小时内振动15分钟、间隔45分钟……如此反复、间断振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约60~120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部。
图9经本实施例工艺处理的水泥混凝土制品表面剖切开微观形貌,采用28KHz频率振动,输出功率100W,振动时长:浇筑后6小时~12小时内,每小时内振动15分钟、间隔45分钟……如此反复、间断振动。由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面形成了一层约40~120μm致密的水化的硅酸盐胶体。左侧为水泥制品内部。
图10未经本实施例工艺处理的水泥净浆制品表面剖切开微观形貌,由奥林巴斯OLS4100激光共聚焦拍摄。其中右侧为水泥制品天然表面。可见水泥制品表面没有形成水化的硅酸盐胶体层。图11为图9所示经本实施例工艺处理的水泥混凝土试块经标准碳化(《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082-2009)后(14天,20%浓度二氧化碳,相当于自然碳化25年)的碳化深度照片。可见其没有碳化,碳化深度为0。
图12未经本实施例工艺处理的水泥混凝土试块经标准碳化(《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082-2009)后(14天,20%浓度二氧化碳,相当于自然碳化25年)的碳化深度照片。可见其碳化深度超过6mm。
随后,对硅酸盐胶体的密度、硬度、水蒸气渗透率、表面反射率和表面张力的特性进行了研究,具体研究结果如下:
1、密度高:
对水泥制品施加高频振动,从而在水泥制品表层与振动传递体接触的位置在振动作用下形成了一层致密的水化硅酸盐胶体,在后期水泥水化过程中,在这层水化硅酸盐胶体表面生长出一层发育充分且比较均匀的粒状的硅酸盐晶体,表面在后期水化过程中生成发育较充分的均匀且呈现细小颗粒状的晶体达到微晶的效果。表层致密的水化硅酸盐胶体以及微晶化的水合物晶体使得水泥制品表面更致密,图13所示,采用高频振动的水泥制品,其表面形成的水化硅酸盐胶体以及微晶化的水合物晶体层密度大。
2、表面硬度高
采用显微硬度计对高频振动处理过的砂浆试件表面测试维氏硬度,结果表明超声处理后表面硬度平均值为1757HV0.1/10,如图14a所示;对比试件表面硬度平均值为 746HV0.1/10,如图14b所示,高出对比试件135%。
3、水蒸气渗透率低
采用 ASTM E96-16方法测试高频振动处理的水泥净浆试件水蒸气渗透率,表明高频振动形成的高密度水化硅酸盐胶体层可有效阻止水蒸气渗透。
图15a为测试装置图;
图15b-图15d分别为水灰比(W/C)为0.28、0.30和0.32时,采用高频振动处理和没有处理的水泥净浆试件的试验数据对比图。
由于水化硅酸盐胶体以及微晶化的水合物晶体使得水泥制品表面更致密,因此经过高频振动处理的水泥净浆试件的水蒸气渗透率低,得水泥制品更不易被侵蚀,抗老化性能更好。
4、对全光谱的反射率低
高频振动处理的水泥基材料表面对全光谱的反射率低于未进行处理的对比试件,该特性表明水泥基材料可以吸收更多的太阳辐射,对寒冷地区建筑物吸热,对路面材料吸热融冰有益。经高频振动处理的水泥基材料表面在280nm-2500nm波长内比对比试件的光谱反射率低34.5%,如图16所示。
5、表面张力高
如图17a和图17b所示,甘油滴加到表面经高频振动处理和未经过高频振动处理的水泥基材料表面后的接触角测试图。图18a和图18b所示为接触角测试正态分布曲线。高频振动处理后水泥基材料表面接触角平均值为91.18度,未经高频处理的水泥基材料表面接触角平均值为62.34度。
经过高频振动处理的水泥基材料表面张力更高,水滴在材料表面不易吸附,对于工程材料而言,更高的张力可以使得雨滴落在表面更快的滑落,雨滴中所携带的对水泥基材料有腐蚀性的物质不易吸附在材料表面。对于路面材料(例如水泥路面砖、混凝土路面)而言,意味着水滴会更快的汇聚并流走,从而使其防湿滑性能更好。
Claims (10)
- 水泥制品表面微晶化专用设备,其特征在于,包括振子(1)、振动信号发生器(2)、功率放大器(3)和振动传递体,所述振动信号发生器(2)的信号输出端与所述功率放大器(3)的信号输入端连接,所述功率放大器(3)的信号输出端与所述振子(1)的信号输入端连接,所述振子(1)与所述振动传递体直接或间接连接,所述振动传递体与浇筑后的水泥制品(6)内表面和/或外表面接触。
- 根据权利要求1所述的水泥制品表面微晶化专用设备,其特征在于,所述振动传递体为模具,所述水泥制品(6)位于所述模具(4)内,所述振子(1)安装在所述模具(4)的上。
- 根据权利要求1所述的水泥制品表面微晶化专用设备,其特征在于,所述振动传递体为内模(5),所述内模(5)的一部分与所述水泥制品(6)的内表面接触、另一部分位于所述水泥制品(6)的外部,所述振子(1)安装在所述内模(5)位于所述水泥制品(6)外部的部分上。
- 根据权利要求1-3任一所述的水泥制品表面微晶化专用设备,其特征在于,所述振动信号发生器(2)产生的振动频率大于或等于1KHz。
- 水泥制品表面微晶化方法,其特征在于,在水泥制品浇筑后、终凝前,对其施加振动,振动频率大于或等于1KHz,振动时间大于或等于5分钟。
- 根据权利要求5所述的水泥制品表面微晶化方法,其特征在于,振动的频率为1KHz~120KHz。
- 根据权利要求5或6所述的水泥制品表面微晶化方法,其特征在于,包括如下步骤:A、按照现有技术中的水泥制品制备方法准备水泥制品浇筑原料;B、在振动传递体上安装振子(1),并连接振动信号发生器(2)和功率放大器(3);所述振动信号发生器(2)的信号输出端与所述功率放大器(3)的信号输入端连接,所述功率放大器(3)的信号输出端与所述振子(1)的信号输入端连接;C、浇筑,得水泥制品(6),并将振动传递体与水泥制品(6)接触;水泥制品浇筑后至终凝之前这段时间内,打开所述振动信号发生器(2)和所述功率放大器(3),对水泥制品(6)施加振动;D、水泥制品终凝后,拆除振子(1),对水泥制品(6)进行正常养护作业。
- 根据权利要求5或6所述的水泥制品表面微晶化方法,其特征在于,对水泥制品(6)的外表面或内表面在浇筑后至终凝之前施加的振动为连续振动或者间断振动。
- 根据权利要求5或6所述的水泥制品表面微晶化方法,其特征在于,对水泥制品表面微晶化工艺流程如下:A、按照现有技术中的水泥制品制备方法准备水泥制品浇筑原料;B、在模具(4)上安装振子(1),并连接振动信号发生器(2)和功率放大器(3);所述振动信号发生器(2)的信号输出端与所述功率放大器(3)的信号输入端连接,所述功率放大器(3)的信号输出端与所述振子(1)的信号输入端连接;C、在模具(4)内浇筑,得水泥制品(6),打开所述振动信号发生器(2)和所述功率放大器(3),对水泥制品(6)施加振动;振动制度为:在浇筑后至终凝前施加振动;D、水泥制品(6)终凝后,拆除振子(1),对水泥制品(6)进行正常养护作业。
- 根据权利要求5或6所述的水泥制品表面微晶化方法,其特征在于,对水泥制品内部微晶化工艺流程如下:A、按照现有技术中的方法水泥制品制备方法准备水泥制品浇筑原料;B、将振子(1)安装在水泥制品内模(5)上,将振子(1)、振动信号发生器(2)和功率放大器(3)连接;所述振动信号发生器(2)的信号输出端与所述功率放大器(3)的信号输入端连接,所述功率放大器(3)的信号输出端与所述振子(1)的信号输入端连接;C、浇筑,制得水泥制品(6),水泥制品浇筑后,打开所述振动信号发生器(2)和所述功率放大器(3),对水泥制品(6)的外表面或内表面施加振动;振动制度为:在浇筑后至终凝前施加振动;D水泥制品(6)终凝后,拆除振子(1),对水泥制品(6)进行正常养护作业。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/049,745 US11299434B2 (en) | 2017-12-28 | 2019-08-01 | Special device and method for cement product surface microcrystallization |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711454270 | 2017-12-28 | ||
CN201811043496.5A CN108975951B (zh) | 2017-12-28 | 2018-09-07 | 水泥制品表面微晶化专用设备及方法 |
CN201811043496.5 | 2018-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020048266A1 true WO2020048266A1 (zh) | 2020-03-12 |
Family
ID=64545736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/098804 WO2020048266A1 (zh) | 2017-12-28 | 2019-08-01 | 水泥制品表面微晶化专用设备及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11299434B2 (zh) |
CN (1) | CN108975951B (zh) |
WO (1) | WO2020048266A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108975951B (zh) * | 2017-12-28 | 2020-05-01 | 内蒙古工业大学 | 水泥制品表面微晶化专用设备及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051408A (zh) * | 1989-11-02 | 1991-05-15 | 株式会社竹中工务店 | 形成致密混凝土表层的方法 |
CN101748895A (zh) * | 2009-12-17 | 2010-06-23 | 绍兴文理学院 | 一种利用超声波振动的砼振动装置及其方法 |
CN105908973A (zh) * | 2016-04-27 | 2016-08-31 | 天津送变电工程公司 | 一种改善基础施工工艺的微振捣技术 |
JP2017014888A (ja) * | 2015-07-01 | 2017-01-19 | エクセン株式会社 | コンクリートバイブレータ |
CN108407044A (zh) * | 2018-04-09 | 2018-08-17 | 佛山水木金谷环境科技有限公司 | 一种干硬性混凝土密实方法 |
CN207813047U (zh) * | 2017-12-28 | 2018-09-04 | 辽宁科技学院 | 一种锹式楼板混凝土振捣器 |
CN208133309U (zh) * | 2018-01-26 | 2018-11-23 | 重庆巨能建设集团四川有限公司 | 一种超声波振捣器 |
CN108975951A (zh) * | 2017-12-28 | 2018-12-11 | 内蒙古工业大学 | 水泥制品表面微晶化专用设备及方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK29785A (da) * | 1984-05-29 | 1985-11-30 | L & N Int As | Fremgangsmaade til komprimering af nystoebt beton samt apparat til udoevelse af fremgangsmaaden |
FI20051027A (fi) * | 2005-10-12 | 2007-04-13 | Elematic Oy Ab | Menetelmä ja laitteisto betonimassan valamiseksi |
CN102995904A (zh) * | 2012-09-18 | 2013-03-27 | 江苏大众电器有限公司 | 高效混凝土振动棒 |
US8926311B1 (en) * | 2013-01-09 | 2015-01-06 | Hawkeye Concrete Products Co. | Vibration system for concrete pipe making machines |
CN103103912B (zh) * | 2013-02-25 | 2015-04-22 | 江苏四明工程机械有限公司 | 滑模摊铺机混凝土密实振动器 |
JP6151589B2 (ja) * | 2013-07-04 | 2017-06-21 | 大成建設株式会社 | コンクリートなどの締固め管理装置と管理方法 |
FI127854B (en) * | 2014-06-09 | 2019-04-15 | Elematic Oy Ab | Method and apparatus for casting concrete products |
CN104878938B (zh) * | 2015-04-03 | 2017-02-01 | 金陵科技学院 | 一种混凝土振动装置 |
CN207582974U (zh) * | 2017-11-15 | 2018-07-06 | 丁碧江 | 一种偏心式混凝土振动棒 |
-
2018
- 2018-09-07 CN CN201811043496.5A patent/CN108975951B/zh active Active
-
2019
- 2019-08-01 US US17/049,745 patent/US11299434B2/en active Active
- 2019-08-01 WO PCT/CN2019/098804 patent/WO2020048266A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051408A (zh) * | 1989-11-02 | 1991-05-15 | 株式会社竹中工务店 | 形成致密混凝土表层的方法 |
CN101748895A (zh) * | 2009-12-17 | 2010-06-23 | 绍兴文理学院 | 一种利用超声波振动的砼振动装置及其方法 |
JP2017014888A (ja) * | 2015-07-01 | 2017-01-19 | エクセン株式会社 | コンクリートバイブレータ |
CN105908973A (zh) * | 2016-04-27 | 2016-08-31 | 天津送变电工程公司 | 一种改善基础施工工艺的微振捣技术 |
CN207813047U (zh) * | 2017-12-28 | 2018-09-04 | 辽宁科技学院 | 一种锹式楼板混凝土振捣器 |
CN108975951A (zh) * | 2017-12-28 | 2018-12-11 | 内蒙古工业大学 | 水泥制品表面微晶化专用设备及方法 |
CN208133309U (zh) * | 2018-01-26 | 2018-11-23 | 重庆巨能建设集团四川有限公司 | 一种超声波振捣器 |
CN108407044A (zh) * | 2018-04-09 | 2018-08-17 | 佛山水木金谷环境科技有限公司 | 一种干硬性混凝土密实方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108975951B (zh) | 2020-05-01 |
US11299434B2 (en) | 2022-04-12 |
CN108975951A (zh) | 2018-12-11 |
US20210246079A1 (en) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5940134B2 (ja) | 石英ガラス又は石英品より成るコーティングされた構成部材の製造法 | |
CN110618488B (zh) | 一种带氮化硅层的单晶薄膜及其制备方法 | |
CN110011632A (zh) | 单晶薄膜体声波谐振器的制备方法及体声波谐振器 | |
WO2020048266A1 (zh) | 水泥制品表面微晶化专用设备及方法 | |
CN107400871A (zh) | 一种基于硅衬底的金刚石薄膜的制备方法 | |
CN104805405A (zh) | 一种氮化铝压电薄膜及其制备方法 | |
CN105552212A (zh) | 一种3-3型压电陶瓷/水泥压电复合材料及其制备方法 | |
CN114665006A (zh) | 一种d15模式铁电单晶薄膜压电振动传感器及其制备方法 | |
US11664277B2 (en) | Method for thinning solid-body layers provided with components | |
CN104211116A (zh) | 一种Bi4Ti3O12单晶纳米棒的制备方法及产品 | |
CN109065508B (zh) | 一种反向台面复合结构超薄晶片及其制备方法 | |
CN110247639B (zh) | 一种射频声表面波滤波器芯片及制作工艺 | |
CN103456879A (zh) | 基体非均匀周期排列的2-2型压电复合材料及其制备方法 | |
JPS5821883A (ja) | 複合圧電材料の製造方法 | |
CN103456878B (zh) | 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法 | |
CN107540402A (zh) | 一种多孔钛酸铜钙薄膜的制备方法 | |
CN113690364A (zh) | 一种复合压电基体及其制备方法 | |
Tian et al. | Piezoelectric crystal composite for high frequency ultrasound application | |
CN113637941A (zh) | 一种氧化锌镓磁控溅射靶材的制备方法 | |
US11767455B2 (en) | Superhydrophobic hemispherical array which can realize droplet pancake bouncing phenomenon | |
KR102478933B1 (ko) | 복합 임베디드 경량 골재 제조 방법 및 이에 의한 복합 임베디드 경량 골재 | |
JPH06279190A (ja) | 酸化亜鉛単結晶の育成方法 | |
RU2278910C1 (ru) | Способ изготовления сегнетоэлектрических покрытий | |
CN101372758B (zh) | 压电水晶无籽晶声表晶片的制备方法 | |
JPH07231127A (ja) | 多孔質圧電体の電極設置法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19857443 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19857443 Country of ref document: EP Kind code of ref document: A1 |