CN103456878B - 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法 - Google Patents

压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法 Download PDF

Info

Publication number
CN103456878B
CN103456878B CN201310388095.4A CN201310388095A CN103456878B CN 103456878 B CN103456878 B CN 103456878B CN 201310388095 A CN201310388095 A CN 201310388095A CN 103456878 B CN103456878 B CN 103456878B
Authority
CN
China
Prior art keywords
piezoelectric ceramic
composite material
cutting
electricity composite
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310388095.4A
Other languages
English (en)
Other versions
CN103456878A (zh
Inventor
徐东宇
黄世峰
徐跃胜
李兰
程新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201310388095.4A priority Critical patent/CN103456878B/zh
Publication of CN103456878A publication Critical patent/CN103456878A/zh
Application granted granted Critical
Publication of CN103456878B publication Critical patent/CN103456878B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法,属于水泥基压电智能复合材料及其制备技术领域。该压电复合材料以压电陶瓷为功能相,聚合物和水泥的混合物为基体相,并附有上下电极。该压电复合材料的制备方法为:设计压电陶瓷的非均匀周期结构排列方式,经过二次切割将压电陶瓷块切割成多排非均匀周期排列的竖直陶瓷柱和尺寸相同的切割凹槽,然后进行清洗、干燥,将基体填充于陶瓷柱的四周及内部并进行抽真空处理、最后进行养护、打磨、抛光及涂电极处理。本发明的1-3型压电复合材料不仅其横向耦合干扰作用受到了抑制,频带宽度得到了拓展,而且还能根据需要得到各种形状的产品,满足不同功能传感器元件的性能需求。

Description

压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法
技术领域
本发明属于水泥基压电智能复合材料及其制备技术领域,具体涉及到一种压电陶瓷柱呈非均匀周期性排列的1-3型压电复合材料及其制备方法。
背景技术
将水泥与压电陶瓷复合制得的水泥基压电复合材料具有与混凝土材料相容性好,响应速度快,传感/驱动一体化,耐久性好,不易受环境温/湿度影响等特性,在土木工程结构健康监测中有着巨大的应用潜力。
1-3型水泥基压电复合材料是指以水泥为基体、压电陶瓷为功能体,一维的压电陶瓷柱平行地排列于三维连通的水泥基体中而构成的两相压电复合材料,因其具有较多优点,是目前研究和应用较为广泛的一种压电材料。然而,由于压电陶瓷的声阻抗较高,而水泥的声阻抗与混凝土材料的声阻抗又相近,因而制得的1-3型水泥基压电复合材料的声阻抗仍难以实现与混凝土声阻抗的良好匹配。此外,水泥与压电陶瓷间的界面结合能力较弱,也限制了该类复合材料的应用化。因此,通过在水泥中掺加聚合物基体制备水泥聚合物基压电复合材料,不仅可以增强水泥基体与压电陶瓷的结合强度,提高水泥基压电复合材料的柔韧性和整体性能,而且,低声阻抗的聚合物也改善了水泥聚合物基压电复合材料与混凝土材料的声阻抗匹配能力。
另一方面,由于目前的1-3型水泥基压电复合材料体系中,压电陶瓷相和基体相的排列方式均为均匀周期性排列,虽然均匀的排列方式能够提高材料的制备效率,而且所制备出的压电复合材料亦具有各向同性的特点,但由于压电陶瓷和基体的周期性排列,由此产生的横向结构模会干扰压电复合材料换能器的辐射声场,不利于获得需要的声场分布。
发明内容
本发明的目的是提供一种压电陶瓷柱非均匀周期性排列的1-3型压电复合材料,这种压电复合材料中压电陶瓷柱呈非均匀周期排列,性能良好,还能根据需要得到各种形状的产品,满足不同功能传感器元件的性能需求。
本发明的另一目的是提供上述材料的制备方法,本发明方法易于实施,为压电陶瓷柱非均匀周期性排列压电复合材料的实现提供了技术支持。
本发明采用二次切割-浇注法制备压电陶瓷柱非均匀周期性排列的压电复合材料,在制备过程中,首先需要设计压电复合材料的结构参数,例如确定压电陶瓷柱和切割沟槽的尺寸,确定切割间距的非均匀周期性变化方式,确定压电陶瓷和基体的具体成分,确定制备过程中的工艺步骤和参数等具体内容,尤其是压电陶瓷柱和切割沟槽的尺寸,以及切割间距的非均匀周期性变化方式非常重要,只有确定了这些内容,才能保证产品的品质和性能。下面详细阐述实现本发明的技术方案及本方案的优点:
一种压电陶瓷柱非均匀周期性排列的1-3型压电复合材料,其特征是:由压电陶瓷柱、基体和上下电极构成,压电陶瓷的体积百分比为50%~80%,各压电陶瓷柱间的间隔相同,沿压电陶瓷块长度和宽度方向的压电陶瓷柱的两边长均按下述任一方式变化:①按等差数列增大或减小,公差为0.1~1.5mm;②按等差数列增大或减小至多项,然后作为一个循环周期重复此变化,公差为0.1~1.5mm;③按等差数列增大或减小至多项,然后再按照等差数列减小或增大到原始尺寸,由此作为一个循环周期,然后重复此变化,公差为0.1~1.5mm,所述压电陶瓷柱的两边长的变化规律一致。
  一种压电陶瓷柱非均匀周期性排列的1-3型压电复合材料的制备方法,其特征是包括以下步骤:
(1)在垂直于压电陶瓷块极化轴的面上,沿着压电陶瓷块长度或宽度的方向垂直切割形成一系列凹槽,凹槽宽度相同,切割时保留底座;切割间距按下列任意一种方式变化:①按等差数列增大或减小,公差为0.1~1.5mm;②按等差数列增大或减小至多项,然后作为一个循环周期重复此变化,公差为0.1~1.5mm;③按等差数列增大或减小至多项,然后再按照等差数列减小或增大到原始尺寸,由此作为一个循环周期,然后重复此变化,公差为0.1~1.5mm;
(2)切割后将压电陶瓷坯体清洗干净并晾干,然后向凹槽中浇注基体,浇注完后抽真空去除凹槽中的气孔,然后常温固化;
(3)固化后沿着第一次切割垂直的方向进行第二次切割,形成一系列的凹槽,凹槽宽度与第一次切割时相同或者不同,切割时保留底座;切割间距的变化规律与第一次切割时一致,切割间距变化的公差与第一次切割时的相同或者不同;
(4)切割后将样品清洗干净并晾干,然后向凹槽中浇注基体,浇注完后抽真空去除凹槽中的气孔,然后常温固化;
(5)固化后将样品打磨、去掉底座、抛光、洗净,然后在上下两个平行表面涂上电极,即得压电陶瓷柱非均匀周期性排列的1-3型压电复合材料。
上述的制备方法,凹槽宽度可在0.5~1.5mm范围内选择;切割间距的最小值不低于0.5mm,最大值为5mm。
上述的制备方法,切割间距的公差可在0.1~1.5mm范围内选择。
上述的制备方法,底座高度为0.3~0.5mm。
本发明以压电陶瓷为功能体,所用压电陶瓷的选择范围可以涵盖现有的各种类型含铅或无铅压电陶瓷材料,将压电陶瓷块经过极化处理,即可使用。
本发明以水泥或者水泥/聚合物为基体,优选以水泥与聚合物的混合物为基体,其中水泥和聚合物的质量比为(0.5~1.5):1,聚合物可选用环氧树脂、聚氨酯、硅橡胶等有机材料,水泥材料可选用硅酸盐水泥、硫铝酸盐水泥、高铝水泥、磷酸盐水泥等水泥材料。
在切割过程中不将整个陶瓷块切透,留下一个底座,底座高度不小于0.3mm,从而防止陶瓷柱的散落破损。
每次切割完毕后,都用超声波清洗机对切割后的陶瓷坯体进行清洗,然后用丙酮、乙醇等有机溶剂对切割后的陶瓷块再次进行清洗,以去除其中残留的陶瓷残渣,减小其对复合材料性能的影响。将清洗后的压电陶瓷坯体固定于模具中,将基体灌注于切割凹槽中,然后放置于真空箱进行再次抽真空处理去除残留在凹槽中的气孔。浇注后的样品置于室内放置48小时进行固化。
本发明转变了常规的压电复合材料的制备思路,将压电陶瓷柱与基体均匀分布变为压电陶瓷柱非均匀周期性分布,得到压电陶瓷柱非均匀周期性排列的1-3型压电复合材料。通过压电陶瓷柱的排列方式,使得压电陶瓷沿一定的方向(长度或宽度)呈特定分布,那么复合材料整体的压电、介电常数及机电性能参数等皆会随着该方向呈类似分布,从而有效的避免了横向结构模的干扰,从而达到控制辐射声场的目的。此外,压电陶瓷柱非均匀性变化也会使得材料本身的纵波声速呈非均匀性变化,从而使得这种非均匀周期结构的压电复合材料的频带宽度也要比均匀压电复合材料的宽。
附图说明
图1为实施例1所制压电陶瓷柱非均匀周期性排列的1-3型水泥聚合物基压电复合材料的平面结构示意图。
图2为实施例2所制压电陶瓷柱非均匀周期性排列的1-3型水泥聚合物基压电复合材料的平面结构示意图。
图3为实施例3所制压电陶瓷柱非均匀周期性排列的1-3型水泥聚合物基压电复合材料的平面结构示意图。
图4为压电陶瓷柱均匀周期性排列的1-3型水泥聚合物基压电复合材料和实施例1-3所制压电陶瓷柱非均匀周期性排列的1-3型水泥聚合物基压电复合材料的阻抗-频率谱图,a为均匀周期性排列产品,b为实施例1产品,c为实施例2产品,d为实施例3产品。
具体实施方式
下面通过具体实施例对本发明进行进一步的说明和阐述。
实施例1
采用PZT-4型压电陶瓷为功能体,普通硅酸盐水泥和E51型环氧树脂的混合物作为基体,采用二次切割-浇注工艺制备压电陶瓷柱非均匀周期排列的1-3型水泥聚合物基压电复合材料,压电复合材料的结构示意图如图1所示,制备过程如下:
(1)PZT-4压电陶瓷块的尺寸为长度×宽度×厚度=30mm×30mm×10mm;
(2)采用金刚石外圆下切割机在在垂直于压电陶瓷极化轴的面上,沿着压电陶瓷的宽度方向垂直切割系列凹槽,凹槽宽度0.5mm,切割间距依次为1.00mm,1.20mm,1.40mm,1.60mm,1.80mm,2.00mm,2.20mm,2.40mm,2.60mm,2.80mm,3.00mm,切割过程中不将整个陶瓷块切透,留下一个底座,底座高度0.5mm;
(3)用超声波清洗机对切割后的陶瓷坯体进行清洗2小时,然后用丙酮溶剂对陶瓷块进行再次清洗,以去除其中残留的陶瓷残渣;
(4)将普通硅酸盐水泥和环氧树脂按照质量比1:1进行混合,经均匀搅拌后进行抽真空处理,将抽真空处理后的水泥环氧树脂的混合物灌注于切割凹槽中,然后再次进行抽真空处理去除残留在凹槽中的气孔;
(5)将浇注后的坯体置于室内,常温放置48小时进行固化;
(6)采用金刚石外圆下切割机,在垂直于陶瓷极化轴的面上,沿着固化后压电陶瓷坯体的长度方向进行二次切割系列凹槽,凹槽宽度0.5mm,切割间距依次为1.00mm,1.25mm,1.50mm,1.75mm,2.00mm,2.25mm,2.50mm,2.75mm,3.00mm,切割过程中不将整个陶瓷块切透,留下一个底座,底座高度0.5mm;
(7)重复上述水泥环氧树脂的配比、抽真空处理,浇注,再次抽真空处理、固化等步骤;
(8)分别采用细度为W20和W10的白刚玉微粉将二次固化后的试样的上下两个平行表面分别进行粗磨和细磨处理,然后用丙酮清洗试样表面,晾干后在两表面均匀地涂抹薄层低温银导电浆料,即得压电陶瓷柱非均匀周期性排列的1-3型压电复合材料,厚度为9.40mm。
该压电陶瓷非均匀周期结构的1-3型压电复合材料的阻抗-频率谱图如图4b所示,与压电陶瓷均匀周期结构的压电复合材料的阻抗-频率谱图(如图4a)相比,其横向结构模耦合干扰减弱,厚度谐振峰附近耦合谐振消失,厚度模带宽增大,其6dB带宽为7.5kHz,而压电陶瓷均匀周期结构的1-3型压电复合材料的6dB带宽为6.4kHz。
实施例2
采用PZT型压电陶瓷为功能体,普通硅酸盐水泥和E51型环氧树脂的混合物作为基体,采用二次切割-浇注工艺制备压电陶瓷柱非均匀周期排列的1-3型水泥聚合物基压电复合材料,压电复合材料的结构示意图如图2所示,制备过程如下:
(1)PZT-4压电陶瓷块的尺寸为长度×宽度×厚度=30mm×30mm×10mm;
(2)采用金刚石外圆下切割机在在垂直于压电陶瓷极化轴的面上,沿着压电陶瓷的宽度方向垂直切割系列凹槽,凹槽宽度0.5mm,切割间距依次为1.00mm,1.44mm,1.88mm,2.32mm,2.76mm,3.20mm,2.76mm,3.20mm,2.76mm,2.32mm,1.88mm,1.44mm,1.00mm,切割过程中不将整个陶瓷块切透,留下一个底座,底座高度0.5mm;
(3)用超声波清洗机对切割后的陶瓷坯体进行清洗2小时,然后用丙酮溶剂对陶瓷块进行再次清洗,以去除其中残留的陶瓷残渣;
(4)将普通硅酸盐水泥和环氧树脂按照质量比1:1进行混合,经均匀搅拌后进行抽真空处理,将抽真空处理后的水泥环氧树脂的混合物灌注于切割凹槽中,然后再次进行抽真空处理去除残留在凹槽中的气孔;
(5)将浇注后的坯体置于室内,常温放置48小时进行固化;
(6)采用金刚石外圆下切割机,在垂直于陶瓷极化轴的面上,沿着固化后压电陶瓷坯体的长度方向进行二次切割系列凹槽,凹槽宽度0.5mm,切割间距依次为1.04mm,1.58mm,2.12mm,2.66mm,3.20mm,2.66mm,2.12mm,1.58mm,1.04mm,切割过程中不将整个陶瓷块切透,留下一个底座,底座高度0.5mm;
(7)重复上述水泥环氧树脂的配比、抽真空处理,浇注,再次抽真空处理、固化等步骤;
(8)分别采用细度为W20和W10的白刚玉微粉将二次固化后的试样的上下两个平行表面分别进行粗磨和细磨处理,然后用丙酮清洗试样表面,晾干后在两表面均匀地涂抹薄层低温银导电浆料,即得压电陶瓷柱非均匀周期性排列的1-3型压电复合材料,厚度为9.40mm。
该压电陶瓷非均匀周期结构的1-3型压电复合材料的阻抗-频率谱图如图4c所示,与压电陶瓷均匀周期结构的压电复合材料的阻抗-频率谱图(如图4a)相比,其横向结构模耦合干扰减弱,厚度谐振峰附近耦合谐振消失,厚度模带宽增大,其6dB带宽为13.7kHz,而压电陶瓷均匀周期结构的1-3型压电复合材料的6dB带宽为6.4kHz。
实施例3
采用PZT-4型压电陶瓷为功能体,普通硅酸盐水泥和E51型环氧树脂的混合物作为基体,采用二次切割-浇注工艺制备压电陶瓷柱非均匀周期排列的1-3型水泥聚合物基压电复合材料,压电复合材料的结构示意图如图3所示,制备过程如下:
(1)PZT-4压电陶瓷块的尺寸为长度×宽度×厚度=30mm×30mm×10mm;
(2)采用金刚石外圆下切割机在在垂直于压电陶瓷极化轴的面上,沿着压电陶瓷的宽度方向垂直切割系列凹槽,凹槽宽度0.5mm,切割间距依次为1.10mm,1.76mm,2.42mm,3.08mm,1.10mm,1.76mm,2.42mm,3.08mm,1.10mm,1.76mm,2.42mm,切割过程中不将整个陶瓷块切透,留下一个底座,底座高度0.5mm;
(3)用超声波清洗机对切割后的陶瓷坯体进行清洗2小时,然后用丙酮溶剂对陶瓷块进行再次清洗,以去除其中残留的陶瓷残渣;
(4)将普通硅酸盐水泥和环氧树脂按照质量比1:1进行混合,经均匀搅拌后进行抽真空处理,将抽真空处理后的水泥环氧树脂的混合物灌注于切割凹槽中,然后再次进行抽真空处理去除残留在凹槽中的气孔;
(5)将浇注后的坯体置于室内,常温放置48小时进行固化;
(6)采用金刚石外圆下切割机,在垂直于陶瓷极化轴的面上,沿着固化后压电陶瓷坯体的长度方向进行二次切割系列凹槽,凹槽宽度0.5mm,切割间距依次为1.00mm,2.00mm,3.00mm,1.00mm,2.00mm,3.00mm,1.00mm,2.00mm,3.00mm,切割过程中不将整个陶瓷块切透,留下一个底座,底座高度0.5mm;
(7)重复上述水泥环氧树脂的配比、抽真空处理,浇注,再次抽真空处理、固化等步骤;
(8)分别采用细度为W20和W10的白刚玉微粉将二次固化后的试样的上下两个平行表面分别进行粗磨和细磨处理,然后用丙酮清洗试样表面,晾干后在两表面均匀地涂抹薄层低温银导电浆料,即得压电陶瓷柱非均匀周期性排列的1-3型压电复合材料,厚度为9.40mm。
该压电陶瓷非均匀周期结构的1-3型压电复合材料的阻抗-频率谱图如图4d所示,与压电陶瓷均匀周期结构的压电复合材料的阻抗-频率谱图(如图4a)相比,其横向结构模耦合干扰减弱,厚度谐振峰附近耦合谐振消失, 厚度模带宽增大,其6dB带宽为13.7kHz,而压电陶瓷均匀周期结构的1-3型压电复合材料的6dB带宽为6.4kHz。

Claims (5)

1.一种压电陶瓷柱非均匀周期性排列的1-3型压电复合材料,其特征是:由压电陶瓷柱、基体和上下电极构成,压电陶瓷的体积百分比为50%~80%,各压电陶瓷柱间的间隔相同,沿压电陶瓷块长度和宽度方向的压电陶瓷柱的两边长均按下述任一方式变化:①按等差数列增大或减小,公差为0.1~1.5mm;②按等差数列增大或减小至多项,然后作为一个循环周期重复此变化,公差为0.1~1.5mm;③按等差数列增大或减小至多项,然后再按照等差数列减小或增大到原始尺寸,由此作为一个循环周期,然后重复此变化,公差为0.1~1.5mm,所述压电陶瓷柱的两边长的变化规律一致。
2.根据权利要求1所述的压电复合材料,其特征是:以水泥或者水泥与聚合物的混合物作为基体,水泥和聚合物的质量比为0.5~1.5:1;压电陶瓷的体积百分比为50%~80%。
3.一种压电陶瓷柱非均匀周期性排列的1-3型压电复合材料的制备方法,其特征是包括以下步骤:
(1)在垂直于压电陶瓷块极化轴的面上,沿着压电陶瓷块长度或宽度的方向垂直切割形成一系列凹槽,凹槽宽度相同,切割时保留底座;切割间距按下列任意一种方式变化:①按等差数列增大或减小,公差为0.1~1.5mm;②按等差数列增大或减小至多项,然后作为一个循环周期重复此变化,公差为0.1~1.5mm;③按等差数列增大或减小至多项,然后再按照等差数列减小或增大到原始尺寸,由此作为一个循环周期,然后重复此变化,公差为0.1~1.5mm;
(2)切割后将压电陶瓷坯体清洗干净并晾干,然后向凹槽中浇注基体,浇注完后抽真空去除凹槽中的气孔,然后常温固化;
(3)固化后沿着第一次切割垂直的方向进行第二次切割,形成一系列的凹槽,凹槽宽度与第一次切割时相同或者不同,切割时保留底座;切割间距的变化规律与第一次切割时一致,切割间距变化的公差与第一次切割时的相同或者不同;
(4)切割后将样品清洗干净并晾干,然后向凹槽中浇注基体,浇注完后抽真空去除凹槽中的气孔,然后常温固化;
(5)固化后将样品打磨、去掉底座、抛光、洗净,然后在上下两个平行表面涂上电极,即得压电陶瓷柱非均匀周期性排列的1-3型压电复合材料。
4.根据权利要求3所述的制备方法,其特征是:凹槽宽度可在0.5~1.5mm范围内选择;切割间距的最小值不低于0.5mm,最大值为5mm。
5.根据权利要求3或4所述的制备方法,其特征是:切割间距的公差可在0.1~1.5mm范围内选择。
CN201310388095.4A 2013-09-01 2013-09-01 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法 Expired - Fee Related CN103456878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310388095.4A CN103456878B (zh) 2013-09-01 2013-09-01 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310388095.4A CN103456878B (zh) 2013-09-01 2013-09-01 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN103456878A CN103456878A (zh) 2013-12-18
CN103456878B true CN103456878B (zh) 2015-10-21

Family

ID=49739038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310388095.4A Expired - Fee Related CN103456878B (zh) 2013-09-01 2013-09-01 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN103456878B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357795B (zh) * 2018-12-28 2023-09-01 吉林建筑大学 一种水泥基压电复合材料传感器
CN109985796A (zh) * 2019-03-25 2019-07-09 中国船舶重工集团公司第七一五研究所 一种多边形阵元压电复合材料换能器制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658176A (en) * 1984-07-25 1987-04-14 Hitachi, Ltd. Ultrasonic transducer using piezoelectric composite
CN100398224C (zh) * 2001-09-17 2008-07-02 Ge帕拉莱尔设计公司 换能器的频率和振幅旁瓣缩减
CN101255265A (zh) * 2008-04-11 2008-09-03 清华大学 无铅压电陶瓷/聚合物1-3结构复合材料及其加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658176A (en) * 1984-07-25 1987-04-14 Hitachi, Ltd. Ultrasonic transducer using piezoelectric composite
CN100398224C (zh) * 2001-09-17 2008-07-02 Ge帕拉莱尔设计公司 换能器的频率和振幅旁瓣缩减
CN101255265A (zh) * 2008-04-11 2008-09-03 清华大学 无铅压电陶瓷/聚合物1-3结构复合材料及其加工方法

Also Published As

Publication number Publication date
CN103456878A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
CN102427110B (zh) 多基元压电复合材料及其制备方法和应用
CN101255265B (zh) 无铅压电陶瓷/聚合物1-3结构复合材料及其加工方法
CN103594616B (zh) 基体非均匀周期排列的1-3型压电复合材料及其制备方法
CN102260061A (zh) 1-3型聚合物/水泥基压电复合材料及其制备方法
CN103456879B (zh) 基体非均匀周期排列的2-2型压电复合材料及其制备方法
CN111187073A (zh) 一种3-3型压电陶瓷/水泥复合材料及其制备方法
CN103474569B (zh) 压电陶瓷非均匀周期排列的2-2型压电复合材料及制备方法
CN102509766B (zh) 1-3型正交异性水泥基压电复合材料及其制备方法和应用
CN106058040B (zh) 一种压电复合材料制备方法
CN103456878B (zh) 压电陶瓷非均匀周期排列的1-3型压电复合材料及制备方法
Mirza et al. Dice-and-fill processing and characterization of microscale and high-aspect-ratio (K, Na) NbO3-based 1–3 lead-free piezoelectric composites
CN104393164A (zh) 一种1-1-3型压电复合材料及其制备方法
US20230189651A1 (en) Preparation method for piezoelectric composite material, and application thereof
CN103796149B (zh) 一种尖劈状声学匹配层的制作方法
CN107170882B (zh) 基于改进聚合物相的1-3型压电复合材料及其制备方法
CN101499512B (zh) 宽带换能器的压电复合材料
Xu et al. Fabrication and properties of piezoelectric composites designed for process monitoring of cement hydration reaction
CN102130293A (zh) 一种耐高温双层压电复合材料元器件制备方法
CN1719635A (zh) 一种1-3结构巨磁电材料及其制备方法
CN101798201B (zh) 铌酸盐基压电陶瓷纤维/聚合物1-3型复合材料及制备方法
JP2001015822A (ja) 複合圧電体及び棒状圧電セラミック焼結体
Li et al. Bismuth sodium titanate based lead-free ceramic/epoxy 1–3 composites: fabrication and electromechanical properties
CN103078600B (zh) 一种压电振子制备方法及应用该方法制备的压电振子
CN108339728A (zh) 一种基于球冠形压电复合材料的换能器及其制作方法
CN109053046B (zh) 一种碱激发粉煤灰矿渣压电复合板及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151021

Termination date: 20190901

CF01 Termination of patent right due to non-payment of annual fee