WO2020048263A1 - 线性传输系统的气源接入装置 - Google Patents

线性传输系统的气源接入装置 Download PDF

Info

Publication number
WO2020048263A1
WO2020048263A1 PCT/CN2019/098424 CN2019098424W WO2020048263A1 WO 2020048263 A1 WO2020048263 A1 WO 2020048263A1 CN 2019098424 W CN2019098424 W CN 2019098424W WO 2020048263 A1 WO2020048263 A1 WO 2020048263A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
permanent magnet
air source
receiving
side permanent
Prior art date
Application number
PCT/CN2019/098424
Other languages
English (en)
French (fr)
Inventor
池峰
Original Assignee
上海果栗自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海果栗自动化科技有限公司 filed Critical 上海果栗自动化科技有限公司
Publication of WO2020048263A1 publication Critical patent/WO2020048263A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials

Definitions

  • the invention relates to a linear transmission system, in particular to a gas source access device of a linear transmission system.
  • each mover unit must be designed to controlly and efficiently carry and move materials or parts, and achieve fast, faster acceleration. Therefore, the mover unit needs to further design a fixture or a tool for clamping, supporting or moving materials or components, wherein the fixture and the tool can be directly installed on the mover unit or independently installed and operated.
  • One problem for various types of linear transmission systems is: providing a power source for moving parts (pallets) at any time or at any position, making the transmission system more flexible in processing, which can provide, for example, controlled clamping in real time in accordance with instructions. Holding, adsorption, stretching, pushing, precise mobile positioning, and other functional applications for parts, materials, processing, testing, and processing.
  • the tray on the mover needs to carry or support fragile, soft, small parts or materials.
  • Traditional methods often use materials to keep them fixed by gravity, which causes the materials to fall and break due to speed changes, collisions, etc. during transmission. .
  • it is difficult for traditional fixing methods to accurately fix the materials in a certain position which requires greater tolerances during stacking, handling, and loading and unloading, which easily leads to the failure of the production process, and further difficult to precisely process or assemble And other high-performance applications.
  • traditional technologies often use cables, motive gas lines, or vacuum lines to connect to the mover of the transmission system to provide power to the actuators on the mover element.
  • the present invention is to solve the problem that it is difficult to provide a pneumatic power source for a moving mover unit of a transmission system through a cableless connection in the prior art.
  • the present invention is to solve the problem that a pneumatic actuator device with an actuating function cannot be provided on a mover device in a transmission system in the prior art.
  • an air source access device for a linear transmission system includes a linear motor.
  • the linear motor includes a stator and a plurality of mover units.
  • the stator has a stator coil assembly, the stator coil assembly includes a plurality of armature winding units, and the mover unit has a permanent magnet array, characterized in that the mover unit further includes a pneumatic execution unit, the pneumatic execution unit Configured to be connectable with the gas source access device to receive pressurized gas from the gas source access device,
  • the mover unit is provided with a mover unit gas receiving interface, the mover unit gas receiving interface has a receiving side base, and the receiving side base is provided with a gas path interface and a receiving side permanent magnet,
  • the air source access device includes an external air source, the external air source is provided with an external air source injection interface, the external air source injection interface has an injection side base, and the injection side base is provided with an injection interface. And injection-side permanent magnets,
  • the positions of the gas path interface and the receiving-side permanent magnet on the receiving-side base correspond to the positions of the injection interface and the injection-side permanent magnet on the injection-side base, respectively, and the receiving The side permanent magnet is opposite in polarity to the injection side permanent magnet.
  • the receiving-side permanent magnet includes two receiving-side permanent magnets
  • the injection-side permanent magnet includes two injection-side permanent magnets
  • the two receiving-side permanent magnets are respectively disposed on the upper and lower sides of the gas path interface, and the two injection-side permanent magnets are respectively disposed on the upper and lower sides of the injection interface.
  • the horizontal side of the receiving-side permanent magnet is provided with an additional receiving-side permanent magnet of the opposite polarity, and the injection-side permanent magnet is provided with the opposite polarity on the same side in the horizontal direction. Additional injection-side permanent magnets.
  • the receiving-side permanent magnet is provided with additional receiving-side permanent magnets having opposite polarities on both sides in the horizontal direction, and the injection-side permanent magnet is provided with opposite-polarity on both sides in the horizontal direction. Additional injection-side permanent magnets.
  • each of the receiving-side permanent magnets is provided with additional receiving-side permanent magnets of opposite polarities on the two sides in the horizontal direction, and each of the injection-side permanent magnets is provided on both sides in the horizontal direction.
  • An additional injection-side permanent magnet of opposite polarity is provided.
  • a sealing ring is provided around the gas path injection interface or the gas path injection interface.
  • the air source access device is disposed at a fixed position around the movement track of the mover unit.
  • the air source access device further includes an air source and an air supply cylinder, the air source and the air supply cylinder are connected by a pneumatic line, and an external air pressure valve is provided on the pneumatic line, and The air cylinder is connected to the injection interface through a gas nozzle.
  • the pneumatic unit includes a cylinder and a piston moving in the cylinder.
  • the piston is connected to a ejector rod, the ejector rod can move the material on the mover unit, and the cylinder passes a control valve. It is connected with the air interface.
  • the present invention has the following characteristics:
  • the invention realizes the function of connecting the air source on the mobile subunit, so that the pneumatic actuator can be set on the mobile subunit to perform operations such as material holding and moving.
  • Fig. 1 shows a linear motor and a linear transmission system with independently controllable multiple mover units according to the present invention.
  • FIG. 2 shows an embodiment of a linear motor mover of a linear transmission system according to the present invention.
  • FIG. 3 illustrates an embodiment of a power transmission structure of a mobile mover according to the present invention.
  • FIG. 4 illustrates an embodiment of motive gas transmission of a mobile mover according to the present invention.
  • FIG. 5 (a) -5 (c) are schematic diagrams showing a power gas transmission process of a mobile mover according to the present invention.
  • FIG. 6 shows an embodiment of a command communication transmission method for a mobile mover according to the present invention.
  • FIG. 7 illustrates an embodiment of a pneumatic clamping load on a moving mover according to the present invention.
  • FIG. 8 illustrates an embodiment of a pneumatic lifting load on a moving mover according to the present invention.
  • FIG. 9 shows an embodiment of a 2 degree-of-freedom aerodynamic load on a moving mover according to the present invention.
  • FIG. 10 illustrates an embodiment of a cross-strait mechanism toggle load on a mover and the like according to the present invention.
  • the closed-loop linear track transmission system includes a main control unit 100 having a communication module, at least one mover unit 108 of a linear motor, two segments of a linear stator coil module 104 and two segments of a constant radius arc.
  • Motor stator coil module 106 pneumatic execution unit 113, roller guide 103, wireless communication module 105, cableless power supply unit 107, magnetic grid or grating 110, magnetic grid or grating encoder array 109, moving unit collision avoidance module 111
  • the stator holder module array includes a fixed bracket 102, a stator base 101, and a power gas supply unit 112.
  • two sections of the linear stator coil module 104 and two sections of the constant-radius arc motor stator coil module 106 are each provided with a roller guide 30.
  • the two segments of the linear stator coil module 104 and the two segments of the arc-shaped motor stator coil module 106 of constant radius are alternately connected in the first position to form a closed loop, and the roller guide 30 also forms a closed loop circuit.
  • the mover unit 108 is installed on the linear stator coil module 104 and the constant-radius arc motor stator module 106, and moves in translation in the direction of the guide rail through the roller guide 103. Each mover unit 108 is relative to all other movers. The units move independently of each other.
  • the mover unit 108 includes a permanent magnet array and is mounted on the inner surface of the mover yoke.
  • the linear stator and the arc stator constituted by the stator coil modules 104 and 106 are connected to the fixing bracket 102 on the outer periphery.
  • the coil fixing bracket 102 is installed on the stator base 101, and the roller guide 103 is fixed on the stator base 102 by fastening screws.
  • a magnetic grid or grating encoder array 109 is installed on the fixed bracket 102.
  • the signal of the encoder array 109 is used for the position measurement of the mover unit 108.
  • the stator coil modules 104 and 106 pass an excitation current, so that the designated coil is activated and energized.
  • the exciting magnetic field generated by the coil interacts in the permanent magnetic field generated by the permanent magnet array of the mover unit 108 to form a thrust, so that the mover unit 108 moves in translation along the guide rail.
  • the stator coil modules 104, 106 and the mover unit 108 are combined functions of the motion control system to independently control each mover unit 108 to move along the roller guide 103.
  • the position signal measured by the magnetic grid or grating encoder array 109 is transmitted to the communication unit of the main control unit 100 through the wireless communication module 105 to receive and decode, and then fed into the servo loop for closed-loop control.
  • the main control unit 100 learns from the wireless communication module 105
  • the position information of the mover unit 108 further calculates the status and work instruction information of each mover unit 108 on the ring line, such as stimulating a designated coil, activating current and exciting it.
  • the exciting magnetic field generated by the coil causes the mover unit 108 to translate. The thrust of movement.
  • the mover unit 108 of the linear motor includes a magnetic grid or a grating and a permanent magnet array.
  • the mover yoke can be driven by electromagnetic driving. There is no cable connection on the mover unit 108 of the linear motor. .
  • the position measurement sensor for measuring the position of the mover unit 108 may be a grating sensor or a magnetic grating sensor.
  • the encoder 109 is arranged on the fixed bracket 102 at equal intervals, and the distance can be controlled according to the required position accuracy. Settings.
  • the moving unit unit 108 of the linear motor includes a pneumatic interface unit 141 (see FIG. 2), and power gas can be input through the power gas supply unit 112 as a power source of the pneumatic execution unit 113 above the moving unit unit 108.
  • the mover unit 108 of the linear motor includes a wireless communication module 105.
  • the wireless communication module 105 receives a command signal of the wireless communication unit of the main control unit 100 through a wireless communication connection mode, and sends the signal to the pneumatic
  • the actuator of the execution unit 113 is used to perform operations described below.
  • the mover unit 108 of the linear motor includes a cableless power supply unit 107.
  • the cableless power supply unit 107 is used to provide power for the pneumatic execution unit 113 and the wireless communication module 105 on each mover unit 108.
  • the mover unit 108 of the linear motor includes a mover unit anti-collision module 111 on both sides parallel to the guide rail.
  • the mover unit collision prevention module 111 which is usually made of some soft materials, such as polyvinyl chloride, can effectively absorb the kinetic energy generated by the collision process and protect it. Material or components on the mover unit 108 are damaged.
  • FIG. 2 illustrates a side view of an embodiment of the linear motor mover unit 108 of the linear transmission system in detail.
  • the mover unit 108 includes a fixed base plate 110, a permanent magnet array unit 130 of a linear motor, a back iron 131, a permanent magnet array auxiliary support plate 132, a back iron support plate 129, a guide roller 121, Slide base 122, crash block 111, cableless power supply unit 133, magnetic grid or grating 126, wireless communication module 135, carrier base plate 134, limit block 136, material 138, cylinder top rod 137, cylinder 139, control valve 140,
  • the pneumatic interface unit 141 is composed of an external air supply unit.
  • the external air supply unit includes: a sealing unit 144, an air nozzle 145, a supply cylinder 143, a guide rail slider unit 142, an air pressure line 146, an external air pressure valve 147, and an air source 148.
  • the slide base 122 is disposed below the fixed base plate 110, a set of guide rail guide rollers 121 is installed below the slide base 122, and is fastened and fixed to the fixed base plate 110 through the slide base 122.
  • Anti-collision blocks 111 are provided on both sides of the fixed base plate 110.
  • a permanent magnet array composed of a pair of permanent magnet array auxiliary support plates 132 which are opposite to each other and are arranged substantially horizontally, and a back iron support plate 129 which is perpendicular to and fixedly connected to the permanent magnet array auxiliary support plate 132. frame.
  • a pair of permanent magnet array units 130 are fixed to the permanent magnet array auxiliary support plates 132 via a pair of back irons 131, and face to face form a bilateral permanent magnet U-shaped mover.
  • the permanent magnet array unit 130 of the linear motor generates driving force under the current excitation of the coil stator, and pushes the entire mover unit 108 module to move along the guide rail through the guide roller 121.
  • the guide roller 121 can move along the linear guide or Move along the arc guide.
  • the magnetic grid or grating 126 is mounted on the mover unit 108, and is mounted on the fixed base plate 110 in the illustrated embodiment. Detection and measurement can be performed by the encoder array 109 mounted on the fixed bracket 102 for sensing the movement position of each mover unit 108.
  • the bumper block 111 is made of a soft material such as polyurethane.
  • the bumper block 111 first deforms to absorb the impact energy To slow down the impact force and protect the safety of the moving unit 108 or the materials on the moving unit 108.
  • a carrier substrate 134 is provided above the permanent magnet array frame, and a wireless communication module 135 is provided at the lower outer end thereof. However, it should be understood that the wireless communication module 135 may be disposed at any suitable location without exceeding the scope of the present invention.
  • a material 138 can be placed above the carrier substrate 134.
  • a limiting block 136 is provided on the outer side above the carrier substrate 134 to prevent the material 138 from moving outward beyond the carrier substrate 134 and falling.
  • a pneumatic execution unit 113 is provided on the inner side above the carrier substrate 134.
  • the pneumatic execution unit 113 includes a cylinder 139 and a cylinder rod 137 that is linearly movable within the cylinder 139 to push the material 138.
  • the air cylinder 139 is connected to the pneumatic interface unit 141 via a control valve 140.
  • the wireless communication module 135 receives a command signal of the wireless communication unit of the main control unit through a wireless communication connection mode, and sends the signal to the actuator of the control valve 140 of the pneumatic execution unit 113 for correlation. Instruction operation.
  • the cableless power supply unit 133 is disposed on the outside of the sliding seat 122 and is used to provide power for the pneumatic execution unit 113 and the wireless communication module 135 on each mover unit 108 as a control valve 140 or a cylinder 139 The sensors are powered.
  • the above-mentioned structure of the mover unit 108 is merely exemplary, and the above-mentioned components may be disposed in different positions in different manners.
  • the pneumatic execution unit 113 and the external air supply unit may be disposed outside the east sub-unit 108, and the blocking block may be disposed inside.
  • the anti-collision block 114 may be provided on both sides of any portion without being limited to both sides of the fixed base plate 110.
  • the cableless power supply unit 113 may be disposed at any suitable position on the mover unit 108, for example, it may also be disposed inside the sliding seat 122.
  • FIG. 3 shows an embodiment of the cableless power supply unit 113 of the mover unit 108 of the closed-loop linear track transmission system.
  • the mover cableless power supply unit 113 includes a conductive rail unit 301, a conductive rail V-shaped energizing unit 302, a conductive slider unit 303, a bias spring 304 of the conductive slider, a mover support unit 305, and a conductive cable 306. .
  • the mover support unit 305 is installed on the mover unit 108, the conductive guide unit 301 is fixed on the stator base 101, the conductive guide unit 301 has an insulation function, and the conductive guide V-shaped energizing unit 302 It is fixed to the conductive rail unit 301, and is connected to power supply and distribution, typically with direct current.
  • the conductive slider unit 303 slides on the V-shaped energized unit. During the movement of the mover unit 108, the power on the V-shaped energized unit 302 passes into the slider unit 303, and is further introduced into the mover unit through the conductive cable 306. Power unit on 108.
  • a bias spring 304 is provided between the conductive slider unit 303 and the mover support unit 305, and has a preset compression amount, and the compression force generated by the conductive slider unit 303 bears against the conductive guide rail V-shape.
  • the slot of the power-on unit 302 prevents slack in the two and ensures the reliability of the cableless power supply unit 113.
  • the structure of the cableless power supply unit 113 is not limited to the embodiment shown in FIG. 3.
  • the conductive rail V may have different shapes, for example, a “C” shape, a “W” shape, and the like, as long as the surfaces of the slider unit 303 and the conductive rail V have complementary shapes, and good electrical contact can be formed.
  • the bias spring 304 may also be replaced by other elastic devices known in the art, as long as the biasing force can be applied to bear the conductive slider unit 303 against the conductive rail V.
  • the conductive guide rail is in the shape of a rod
  • the slider unit 303 is in the form of an opening ring sleeved on the rod and capable of sliding along the rod.
  • the split ring can form a reliable sliding connection with the rod, and the split ring can be directly fixedly connected to the mover support unit 305 via a connecting member such as a link without the need to bias the spring 304.
  • the air source 148 is supplied to the air cylinder 143 through the air pressure line 146, and the air nozzle 145 in the air supply cylinder 143 is pushed out, and the air pressure on the mover unit 108 is topped.
  • the interface unit 141 forms a gas injection channel to inject external positive pressure gas into the pneumatic execution unit of the mover unit.
  • the supply cylinder 143 can move along the direction of the guide rail to ensure that the air nozzle 145 can effectively contact the pneumatic interface unit 141 of the mover unit.
  • the sealing unit 144 located at the end of the gas nozzle can effectively prevent leakage during the gas filling process and avoid injection failure.
  • the control valve 140 when the pneumatic interface unit 141 is injected with positive pressure gas, the control valve 140 is opened and is in an external gas inlet station, and when the inflation is completed, the control valve 140 is switched to a closed state and is in an internal gas path control station.
  • the control valve 140 receives an information command from the wireless communication module 135 regarding the movement of the cylinder top rod 137, the cylinder top rod 137 performs a corresponding pneumatic action.
  • the cylinder top rod 137 has a double station, including a cylinder piston contraction station and an extension station.
  • the limit block 136 positions the material 138 so that The material is fastened in the expected position.
  • FIG. 4 shows an external gas source gas injection interface of the mover unit 108 of the closed-loop linear orbital transmission system, including a gas receiver interface a of the mover unit and an external gas source injection interface b.
  • the mover gas receiving interface a includes two rows of SNS permanent magnet arrays 41a, 42a, 43a, 41b, 42b, and 43b arranged on the receiving side base 30, and a gas path interface 35.
  • the external air source injection interface b includes two permanent magnets 44 a and 44 b arranged on the injection-side base 40, a gas path injection interface 45, and a seal ring 46 provided around the gas path injection interface 45.
  • the positions of the N-level permanent magnets 42a and 42b and the gas path interface 35 in the two rows of permanent magnet arrays 41a, 42a, 43a, 41b, 42b, and 43b correspond to the positions of the permanent magnets 44a and 44b and the gas path injection interface 45.
  • a method for injecting an external air source gas into the mover unit 108 of the closed-loop linear orbit transmission system is further disclosed.
  • the mover gas receiving interface a of the mover unit 108 moves with the mover unit 108, and the external air source injection interface b is fixed at at least one work position.
  • the mover gas receiving interface a of the mover unit 108 approaches the fixed position of the external air source injection interface b as the mover unit 108 moves, as shown in FIG.
  • the air flow interface 35 above the mover unit 108 The spatial position of the S-class permanent magnet on the S-type permanent magnet on the external air source injection interface is close to generating a force of the same repulsion, preventing physical interference between the mover gas receiving interface a and the external air source injection interface b. Further, when the mover gas receiving interface a is centered at a fixed position of the external air source injection interface b as the mover unit 108 moves, the N-level permanent magnets on the mover gas receiving interface a are injected with the external air source. The spatial position of the S-class permanent magnet on the interface is close to the force of opposite-phase attraction, which makes the mover gas receiving interface a and the external gas source injection interface b adsorb together.
  • the gas path interface 35 and the gas path injection interface 45 are docked.
  • the external gas source valve is opened, and the gas valve on the mover gas receiving interface a is opened to receive the gas source injection.
  • the sealing ring 46 effectively prevents gas leakage.
  • the mover gas receiving interface a further moves with the mover, and the fixed position is further away from the external gas source injection interface b
  • the S-class permanent magnets on the mover gas receiving interface a and the external gas source injection interface The spatial position of the S-class permanent magnets on b is close to the same-sex repulsive force, which prevents physical interference between the mover gas receiving interface a and the external gas source injection interface b.
  • FIG. 6 shows an embodiment of a command communication transmission system of a moving mover unit 108 of a closed-loop linear orbit transmission system.
  • the system includes a main controller transmitting unit 14 and a mover wireless communication unit 15.
  • the transmitter transmitting unit 14 includes a main control unit 100, a data receiver 61, and a command transmitter 62.
  • the mover wireless communication unit includes a receiver 63, a transmitter 64, a movement control card 65, and a solenoid valve 66 and a cylinder 67 of a command execution unit on the mover unit.
  • the main control unit 100 receives external wireless signals from the data receiver 61, for example, information sent by the transmitter 64 of the wireless communication unit 15 on the robot, and the signals include sensor status information and position on the mover. Information, actuator status information, etc.
  • the main control unit 100 sends a related actuator action command compilation signal to a specific mover through the command transmitter 62 in a set timing according to the main control flow.
  • the receiver 63 of the mover wireless communication unit 15 receives the information sent from 62, and transmits the instruction information to the mobile control card 65 for decoding, and then the mobile control card 65 sends the decoded information to the solenoid valve 66. , And further drive the cylinder 67 to perform the corresponding action.
  • FIG. 7 shows an embodiment of a pneumatic gripping material 138 on a moving mover unit 108 of the closed-loop linear orbit transfer system.
  • the pneumatic actuator 113 on the moving mover unit 108 receives the action command from the control valve 140, it pushes out the ejector rod 137 connected to the cylinder piston, and the ejector rod pushes the material 138 forward until it reaches the outer limit.
  • Block 136, the outer limit block 136 defines the fixed position of the material 138.
  • FIG. 8 shows an embodiment of a pneumatically lifting material 138 on a moving mover unit 108 of a closed-loop linear orbit transfer system.
  • FIG. 9 shows an embodiment of a 2-DOF gas-actuated animal feed on a moving mover unit 108 of a closed-loop linear orbital transmission system.
  • the mobile mover unit 108 is provided with two pneumatic execution units 113, which are respectively arranged in two directions of X and Y.
  • each pneumatic execution unit extends the ejector rod 137 connected to the cylinder piston and pushes the material 138 forward, so that the material on the slider 10 can achieve 4 positions of movement, that is, Forward and backward movement in the X direction and forward and backward movement in the Y direction.
  • FIG. 10 shows an embodiment of moving the mover unit 108 of the closed-loop linear orbit transmission system by using a link mechanism to dial the animal feed.
  • the cylinder of the pneumatic execution unit 113 on the moving mover unit 108 drives the piston to move up and down in the vertical direction, and the piston moves up and down under the guidance of the guide portion 4, driving the hinge 1 to drive one end to be fixedly connected to the hinge 1.
  • the lever further drives the hinge 2 at the other end of the connecting rod, or further drives the hinge 3 in a fixed position on the fixed rod, and drives the movable rod 11 fixedly connected to the hinge 3 to rotate and dial the animal material 138 to realize some special application functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)

Abstract

一种线性传输系统的气源接入装置,线性传输系统包括线性马达,线性马达包括定子和多个动子单元(108),定子具有定子线圈组件,动子单元(108)具有永磁铁阵列,动子单元(108)还包括气动执行单元(113),其构造成能够与气源接入装置连接以从其接收加压气体,动子单元(108)上设有动子单元气体接收接口(a),其具有接收侧基座(30),接收侧基座(30)上设有气路接口(35)和接收侧永磁体,气源接入装置包括:外部气源,其设有外部气源注入接口(b),外部气源注入接口(b)具有注入侧基座(40),注入侧基座(40)上设有注入接口和注入侧永磁体,气路接口(35)和接收侧永磁体的位置分别与注入接口和注入侧永磁体的位置相对应,且接收侧永磁体与注入侧永磁体极性相反。实现了移动动子单元(108)上气源的接入功能。

Description

线性传输系统的气源接入装置
相关申请交叉引用
本专利申请要求于2018年09月06日提交的、申请号为2018110376809、发明名称为“线性传输系统的气源接入装置”的中国专利申请的优先权,上述申请的全文以引用的方式并入本文中。
技术领域
本发明涉及一种线性传输系统,具体地涉及一种线性传输系统的气源接入装置。
背景技术
随着制造技术向高产率、高精密化方向发展,精密运动控制技术的研究变得越来越重要,相应地,运动定位控制系统需求量也越来越大,广泛应用于自动化生产线,例如包装与运输、装配自动化、丝网印刷、高速自动分拣、自动装填等行业。对于线性传输系统的不同应用,每个动子单元均要设计用来可控、有效的承载和移动物料或零部件,并实现快速、更快加速的运动。因此,动子单元上需要进一步设计夹持、支撑或移动物料或零部件的夹具或工装,其中,所述的夹具和工装可直接安装于动子单元上或独立安装运行。
对于包括各种类型的线性传输系统的一个问题是:在任意时刻或任意位置为动子部件(托盘)提供动力源,使得传输系统更加具有加工柔性,可以提供比如按照指令实时受控地进行夹持、吸附、拉伸、推送、精密移动定位等用于零部件或物料的处理、测试、加工等功能应用。
一些应用中动子上的托盘需要承载或支撑易碎、柔软、细小的零件或物料,传统方式常采用通过物料自身重力保持固定,导致物料在传输过程中因变速、碰撞等原因而坠落、破碎。而且,传统固定方式难以使得物料精确的固定在某个位置,使得在堆叠、搬运、装卸过程需要更大的容差,容易造成生产过程的失效环节,更进一步的是难以进行精密地加工或装配等高性能应用生产。此外,传统技术还常采用电缆、动力气体管路或真空管路连接到传输系统运动动子上,为动子元件上的执行 器提供动力。对于线性的传输系统,随着生产线不断加长,这种方式下气体线缆或管路会很长且导致增加额外的拖动负载;而对于环形线传输系统,线缆或管路不断绕圈,产生了新的问题导致更为复杂的解决方案,而且传输系统的运动动子越多,线缆越复杂。
综上所述,这些针对运动动子单元的动力解决方法并不能满足线性传输系统的应用环境需求。因此,必须更便捷的用于向传输系统提供气动力的系统或方法。
发明内容
本发明要解决现有技术中难以给传输系统的运动动子单元通过无缆连接提供气动动力源的问题。
本发明要解决现有技术中传输系统中动子装置上无法提供具有作动功能的气动执行器装置的问题。
为实现上述目的,根据本发明的实施例,提供了一种线性传输系统的气源接入装置,所述线性传输系统包括线性马达,所述线性马达包括定子和多个动子单元,所述定子具有定子线圈组件,所述定子线圈组件包括多个电枢绕组单元,以及所述动子单元具有永磁铁阵列,其特征在于,所述动子单元还包括气动执行单元,所述气动执行单元构造成能够与所述气源接入装置连接以从所述气源接入装置接收加压气体,
所述动子单元上设有动子单元气体接收接口,所述动子单元气体接收接口具有接收侧基座,所述接收侧基座上设有气路接口和接收侧永磁体,
所述气源接入装置包括:外部气源,所述外部气源设有外部气源注入接口,所述外部气源注入接口具有注入侧基座,所述注入侧基座上设有注入接口和注入侧永磁体,
所述接收侧基座上所述气路接口和所述接收侧永磁体的位置分别与所述注入侧基座上所述注入接口和所述注入侧永磁体的位置相对应,且所述接收侧永磁体与所述注入侧永磁体极性相反。
在一优选实施例中,所述接收侧永磁体包括两个接收侧永磁体,而所述注入侧永磁体包括两个注入侧永磁体。
在一优选实施例中,所述两个接收侧永磁体分别设置在所述气路接口的上下两侧,而所述两个注入侧永磁体分别设置在所述注入接口的上下两侧。
在一优选实施例中,所述接收侧永磁体的水平方向的一侧设有极性相反的附加接收侧永磁体,而所述注入侧永磁体的水平方向的相同一侧设有极性相反的附加注入侧永磁体。
在一优选实施例中,所述接收侧永磁体的水平方向两侧分别设有极性相反的附加接收侧永磁体,而所述注入侧永磁体的水平方向两侧分别设有极性相反的附加注入侧永磁体。
在一优选实施例中,每个所述接收侧永磁体的水平方向两侧分别设有极性相反的附加接收侧永磁体,而每个所述注入侧永磁体的水平方向两侧分别设有极性相反的附加注入侧永磁体。
在一优选实施例中,所述气路注入接口或气路注入接口周围设有密封圈。
在一优选实施例中,所述气源接入装置设置在所述动子单元运动轨迹周围的固定位置。
在一优选实施例中,所述气源接入装置还包括气源和供气气缸,所述气源和供气气缸通过气压管路连接,所述气压管路上设有外部气压阀,所述气缸通过气嘴连接到所述注入接口。
在一优选实施例中,所述气动单元包括气缸和在气缸内运动的活塞,所述活塞与顶杆连接,所述顶杆能够移动所述动子单元上的物料,所述气缸通过控制阀与所述气路接口连接。
本发明与现有技术相比,具有以下特点:
本发明实现了移动动子单元上气源的接入功能,从而都能够在动子单元上设置气动执行装置,进行物料加持以及移动等操作。
附图说明
图1示出根据本发明具有独立可控的多动子单元的线性马达和线性传输系统。
图2示出根据本发明的线性传输系统的线性马达动子的一实施例。
图3示出根据本发明的移动动子的电源传输结构的一实施例。
图4示出根据本发明的移动动子的动力气体传输的一实施例。
图5(a)-5(c)示出根据本发明的移动动子的动力气体传输过程的示意图。
图6示出根据本发明的移动动子的命令通讯传输方法的一实施例。
图7示出根据本发明的移动动子上气动夹持载荷的一实施例。
图8示出根据本发明的移动动子上气动提升载荷的一实施例。
图9示出根据本发明的移动动子上2自由度气动作动载荷的一实施例。
图10示出根据本发明等等移动动子上两岸机构拨动载荷的一实施例。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况来实践实施例。在其它情形下,与线性马达相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
除非语境有其它需要,在整个说明书和权利要求中,词语“包括”和其变型,诸如“包含”和“具有”应被理解为开放的、包含的含义,即应解释为“包括,但不限于”。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
如该说明书和所附权利要求中所用的单数形式“一”和“所述”包括复数指代物,除非文中清楚地另外规定。应当指出的是术语“或”通常以其包括“和/或”的含义使用,除非文中清楚地另外规定。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
在图1所示实施例中,闭环的线性轨道传输系统包括具有通讯模块的主控制单元100,至少一个线性马达的动子单元108,两段直线定子线圈模块104和两段恒定半径的弧形马达定子线圈模块106,气动执行单元113,滚子导轨103,无线通讯模块105,无缆供电单元107,磁栅或光栅110,磁栅或光栅编码器阵列109,动子单元防撞模块111,定子线圈模块阵列的固定支架102,定子基座101,以及动力气体供给单元112。其中,两段直线定子线圈模块104和两段恒定半径的弧形马达定子线圈模块106各设有滚子导轨30。两段直线定子线圈模块104和两段恒定半径的弧形马达定子线圈模块106交替首位相接形成闭环,且滚子导轨30也形成闭环回路。
动子单元108安装于直线定子线圈模块104和恒定半径的弧形马达定子模块106之上,并通过滚子导轨103沿着导轨方向平移运动,每个动子单元108相对于所有的其他动子单元是相互独立运动的。所述的动子单元108包含永磁铁阵列,安装于动子磁轭内侧表面。所述的定子线圈模块104、106构成的直线定子和弧形定子在外周与固定支架102相连。所述的线圈固定支架102安装于定子基座101之上,所述的滚子导轨103通过紧固螺钉固定在定子基座102之上。磁栅或光栅编码器阵列109安装于固定支架102上,编码器阵列109的信号用于动子单元108的位置测量,定子线圈模块104、106通入励磁电流,使得指定线圈激活通电并励磁,线圈产生的励磁磁场在动子单元108的永磁阵列产生的永磁磁场中相互作用形成推力使得动子单元108沿着导轨平移运动。在实施例中,定子线圈模块104,106与动子单元108作为运动控制系统的组合功能独立控制每个动子单元108沿着滚子导轨103运动。
磁栅或光栅编码器阵列109测量的位置信号通过无线通讯模块105传送给主控制单元100的通讯单元接收和解码,然后馈入伺服环路进行闭环控制,主控制单元100根据无线通讯模块105获知动子单元108的位置信息,进一步进行环形线上各个动子单元108的状态和工作指令信息的计算处理,例如激励指定线圈,激活通电并励磁,线圈产生的励磁磁场使得动子单元108产生平移运动的推力。
其中,所述的线性马达的动子单元108上包括磁栅或光栅以及永磁阵列,动子磁轭能够受电磁驱动运动,所述的线性马达的动子单元108之上没有任何线缆连接。用于测量动子单元108位置的位置测量传感器可以是光栅传感器, 也可以是磁栅传感器,其编码器109等距间隔开地布置安装于固定支架102上,其间距可根据所需位置控制精度设置。
其中,线性马达的动子单元108之上包括气动接口单元141(见图2),可以通过动力气体供给单元112输入动力气体,作为动子单元108之上的气动执行单元113的动力源。
其中,所述的线性马达的动子单元108上包括无线通讯模块105,无线通讯模块105通过无线通信的连接方式,接收主控制单元100的无线通信单元的指令信号,并将该信号发送给气动执行单元113的执行器上,以执行下文将描述的操作。
其中,所述的线性马达的动子单元108上包括无缆供电单元107,所述的无缆供电单元107用于为每个动子单元108上的气动执行单元113和无线通讯模块105提供电源,以为控制阀140或气缸139上的传感器进行供电。
其中,所述的线性马达的动子单元108在平行于导轨的两侧包括动子单元防撞模块111,当若干个动子单元108在同一个循环线上运动时,若某个动子单元108出现故障,与相邻动子单元108发生意外碰撞时,通常由一些软性材料,如聚氯乙烯等制成的动子单元防撞模块111能够有效吸收因碰撞过程产生的运动动能,防护动子单元108上物料或器件被损坏。
图2详细示出了线性传输系统的线性马达动子单元108的一实施例的侧视图。如图2所示,动子单元108包括固定基座板110、线性马达的永磁阵列单元130、背铁131、永磁阵列辅助支撑板132、背铁支撑板129、导轨导向滚子121、滑座122、防撞块111、无缆供电单元133、磁栅或光栅126、无线通讯模块135、承载基板134、限位块136、物料138、气缸顶杆137、气缸139、控制阀140、气动接口单元141、以及外部供气单元组成。其中,所述的外部供气单元包括:密封单元144、气嘴145、供给气缸143、导轨滑块单元142、气压管路146、外部气压阀147和气源148。
在图2所示实施例中,滑座122设置于固定基座板110下方,一组导轨导向滚子121安装于滑座122下方,并通过滑座122紧固安装至固定基座板110。防撞块111设置在固定基座板110的两侧。在固定基座板110上方设有由彼此相对并大致水平设置的一对永磁阵列辅助支撑板132以及与永磁阵列辅助支撑板132垂直并固定连接的背铁支撑板129构成的永磁阵列框架。在一对永磁阵 列辅助支撑板132的相对表面上,一对永磁阵列单元130经由一对背铁131固定至永磁阵列辅助支撑板132,面面相对构成双边永磁U型动子。线性马达的永磁阵列单元130在线圈定子的电流励磁下产生驱动力,推动整个动子单元108模块通过导轨导向滚子121沿着导轨运动,导轨导向滚子121可以沿着直线导轨运动也可以沿着弧形导轨运动。
此外,所述的磁栅或光栅126安装于动子单元108上,在所示具体实施例中安装在固定基座板110上。可由安装于固定支架102上的编码器阵列109进行检测测量,用于感知每个动子单元108的运动位置。
其中,所述的防撞块111采用诸如聚氨酯这样的软性材料,当多个动子单元108运行于同一个闭合的运动轨道上,发生意外碰撞时,防撞块111首先变形吸收冲击的能量,减缓撞击力,保护动子单元108或动子单元108上物料的安全。
在永磁阵列框架上方设有承载基板134,其下方外侧端设有无线通讯模块135。但应理解,无线通讯模块135可设置在任何合适的位置而不超出本发明的发内。承载基板134上方可以放置物料138。承载基板134上方的外侧设有限位块136以阻挡物料138向外移动超出承载基板134而掉落。在承载基板134上方的内侧设有气动执行单元113。气动执行单元113包括气缸139和可在气缸139内线性移动以推动物料138的气缸杆137。气缸139经由控制阀140连接到气动接口单元141。
其中,所述的无线通讯模块135通过无线通信的连接方式,接收主控单元的无线通信单元的指令信号,并将该信号发送给气动执行单元113的控制阀140的执行器上,以进行相关的指令操作。
其中,所述的无缆供电单元133设置在滑座122的外侧,用于为每个动子单元108上的气动执行单元113和无线通讯模块135提供电源,以作为控制阀140或气缸139上的传感器进行供电。
应理解,动子单元108的上述结构仅为示例性的,上述各部件可以不同的方式设置在不同的位置。例如,气动执行单元113和外部供气单元可设置在东子单元108的外侧,而阻挡块则设置在内侧。防撞块114可设置在任何部分的两侧而不限于固定基座板110的两侧。
但应理解,无缆供电单元113可以设置在动子单元108上任何合适的位置, 例如也可设置于滑座122的内侧。
图3示出闭环的线性轨道传输系统的动子单元108的无缆供电单元113的一实施例。所述的动子无缆供电单元113包括导电导轨单元301,导电导轨V型通电单元302,导电滑块单元303,导电滑块的偏压弹簧304,动子支撑单元305,以及导电线缆306。
其中,所述的动子支撑单元305安装于动子单元108,导电导轨单元301固定于定子基座101上,所述的导电导轨单元301具有绝缘功能,所述的导电导轨V型通电单元302固定到导电导轨单元301,通有供配电,典型地以直流电。所述的导电滑块单元303在V型通电单元上滑动,在动子单元108移动过程中,V型通电单元302上的电源通入滑块单元303,进一步通过导电线缆306导入动子单元108上的用电单元。
其中,所述的导电滑块单元303与动子支撑单元305之间设置有偏压弹簧304,具有预设的压缩量,其产生的压缩力将导电滑块单元303抵靠于导电导轨V型通电单元302的槽内,防止二者出现松隙,确保无缆供电单元113的可靠性。
应理解,无缆供电单元113的结构并不限于图3所示的实施例。导电导轨V可具有不同的形状,例如“C”形,“W”形等,只要滑块单元303与导电导轨V相对的表面具有互补形状,能够形成的良好的电接触即可。而偏压弹簧304也可由本领域已知的其他弹性装置代替,只要能够施加偏压力将导电滑块单元303抵靠于导电导轨V即可。
在另一未示出实施例中,导电导轨呈杆状,滑块单元303呈套设在杆上并能够沿着杆滑动的开口环状。在该情况下,开口环能与杆形成可靠的滑动连接,开口环可经由连杆之类的连接件直接固定连接至动子支撑单元305而无需偏压弹簧304。
其中,对于外部供气单元,当外部气压阀147打开信号传递过来时,气源148通过气压管路146供给气缸143,供给气缸143中的气嘴145推出,顶上动子单元108上的气动接口单元141,从而形成气体注入通道,将外部正压气体注入动子单元的气动执行单元。其中,所述的供给气缸143可沿着导轨方向移动,确保气嘴145能够有效接触动子单元的气动接口单元141。进一步地,位于气嘴末端处的密封单元144可以有效防止在加注气体过程中出现泄漏,避免注入失 败。
进一步地,所述的气动接口单元141在注入正压气体时,控制阀140打开并处于外部气体通入工位,充气结束,控制阀140切换到关闭状态并处于内部气路控制工位。当控制阀140接收到来自无线通讯模块135的关于气缸顶杆137运动的信息指令时,气缸顶杆137进行相应的气动动作。其中,所述的气缸顶杆137具有双工位,包括气缸活塞收缩工位和伸出工位,当活塞伸出时可以顶紧物料138,同时限位块136对物料138进行位置限位,使得物料紧固在预期位置。
进一步地,所述的外部气源气体注入接口采用了一种特殊的对接方法,如图4所示。图4示出了闭环的线性轨道传输系统的动子单元108的外部气源气体注入接口,包括动子单元气体接收接口a,外部气源注入接口b。所述的动子气体接收接口a包括布置在接收侧基座30上的两排SNS永磁阵列41a、42a、43a,41b、42b、43b,气路接口35。所述的外部气源注入接口b包括布置在注入侧基座40上的2块永磁44a和44b,气路注入接口45和围绕气路注入接口45设置的密封圈46。其中两排永磁阵列41a、42a、43a,41b、42b、43b中的N级永磁体42a和42b和气路接口35的位置与永磁44a和44b和气路注入接口45的位置相对应。
如图5(a)-5(b)所示,进一步揭示了所述的闭环的线性轨道传输系统的动子单元108的外部气源气体注入接口的方法。所述的动子单元108的动子气体接收接口a随着动子单元108运动,所述的外部气源注入接口b固定于至少一个工位位置上。当所述的动子单元108的动子气体接收接口a随着动子单元108运动接近外部气源注入接口b固定位置时,如图5a所示,动子单元108的气路接口35上方的S级永磁体与外部气源注入接口上的S级永磁体的空间位置接近产生同性相斥的力量,防止动子气体接收接口a与外部气源注入接口b产生物理干涉。进一步地,当所述的动子气体接收接口a随着动子单元108运动正居中于外部气源注入接口b固定位置时,动子气体接收接口a上的N级永磁体与外部气源注入接口上的S级永磁体的空间位置接近产生异性相吸的力量,使得动子气体接收接口a与外部气源注入接口b吸附在一起,此时,气路接口35和气路注入接口45对接,外部气源阀门打开,动子气体接收接口a上的气阀打开接收气源注入。其中,所述的密封圈46有效防止气体泄漏。进一步地,当 所述的动子气体接收接口a随着动子进一步运动,与外部气源注入接口b固定位置进一步远离,动子气体接收接口a上的S级永磁体与外部气源注入接口b上的S级永磁体的空间位置接近产生同性相斥的力量,防止动子气体接收接口a与外部气源注入接口b产生物理干涉。
图6示出了闭环的线性轨道传输系统的一种移动动子单元108的命令通讯传输系统的实施例,该系统包括主控制器发射单元14和动子无线通讯单元15,所述的主控制器发射单元14包括主控制单元100,数据接收器61,命令发射器62。所述的动子无线通讯单元包括接收器63,发射器64,移动控制卡65,以及动子单元上命令执行单元的电磁阀66和气缸67。
其中,主控制单元100通过来自数据接收器61接收外部无线信号,例如来自动子上的无线通讯单元15的发射器64发送过来的信息,所述的信号包括动子上的传感器状态信息、位置信息、执行器状态信息等。主控制单元100根据主控流程在设定的时序中通过命令发射器62向特定的动子发送相关执行器动作命令编译信号。进一步地,动子无线通讯单元15的接收器63接收到来自62发送的信息,并将该指令信息传递给移动控制卡65进行解码,然后移动控制卡65将解码后的信息发送给电磁阀66,进一步驱动气缸67执行相应的动作。
图7示出了所述的闭环的线性轨道传输系统的一种移动动子单元108上气动夹持物料138的一实施例。所述的移动动子单元108上的气动执行单元113在控制阀140接收到动作指令时,伸出气缸活塞所连接的顶杆137,顶杆推动物料138向前移动直至抵靠外侧的限位块136,外侧的限位块136限定物料138的固定位置。
图8示出了闭环的线性轨道传输系统的一种移动动子单元108上气动提升物料138的实施例。所述的移动动子单元108上的气动执行单元113在控制阀140接收到动作指令时,伸出气缸139的活塞所连接的顶杆137,顶杆137向上顶出承载基板134,使得承载基板134搭载物料向上运动到顶部位置。
图9示出了闭环的线性轨道传输系统的一种移动动子单元108上2自由度气动作动物料的实施例。所述的移动动子单元108上设置有2路气动执行单元113,分别沿着X和Y两个方向布置。在控制阀140接收到动作指令时,每路气动执行单元伸出气缸活塞所连接的顶杆137,推动物料138向前移动,可以使得滑块10上的物料实现4个工位的运动,即沿X方向的前后运动和沿Y方向 的前后运动。
图10示出了闭环的线性轨道传输系统的一种移动动子单元108上通过连杆机构拨动物料的实施例。所述的移动动子单元108上的气动执行单元113的气缸驱动活塞沿着垂向方向上下移动,活塞在导向部4的导向作用下上下移动,带动铰链1驱动一端固定连接到铰链1的连杆,进一步带动连杆另一端的铰链2,或者进一步带动处于固定杆上固定位置的铰链3,驱动固定连接到铰链3的活动杆11旋转拨动物料138,实现某些特殊的应用功能。
以上已详细描述了本发明的优选实施例,但应理解到,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改。这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种线性传输系统的气源接入装置,所述线性传输系统包括线性马达,所述线性马达包括定子和多个动子单元,所述定子具有定子线圈组件,所述定子线圈组件包括多个电枢绕组单元,以及所述动子单元具有永磁铁阵列,其特征在于,所述动子单元还包括气动执行单元,所述气动执行单元构造成能够与所述气源接入装置连接以从所述气源接入装置接收加压气体,
    所述动子单元上设有动子单元气体接收接口,所述动子单元气体接收接口具有接收侧基座,所述接收侧基座上设有气路接口和接收侧永磁体,
    所述气源接入装置包括:外部气源,所述外部气源设有外部气源注入接口,所述外部气源注入接口具有注入侧基座,所述注入侧基座上设有注入接口和注入侧永磁体,其中
    所述接收侧基座上所述气路接口和所述接收侧永磁体的位置分别与所述注入侧基座上所述注入接口和所述注入侧永磁体的位置相对应,且所述接收侧永磁体与所述注入侧永磁体极性相反。
  2. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述接收侧永磁体包括两个接收侧永磁体,而所述注入侧永磁体包括两个注入侧永磁体。
  3. 根据权利要求2所述的线性传输系统的气源接入装置,其特征在于,
    所述两个接收侧永磁体分别设置在所述气路接口的上下两侧,而所述两个注入侧永磁体分别设置在所述注入接口的上下两侧。
  4. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述接收侧永磁体的水平方向的一侧设有极性相反的附加接收侧永磁体,而所述注入侧永磁体的水平方向的相同一侧设有极性相反的附加注入侧永磁体。
  5. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述接收侧永磁体的水平方向两侧分别设有极性相反的附加接收侧永磁体,而所述注入侧永磁体的水平方向两侧分别设有极性相反的附加注入侧永磁体。
  6. 根据权利要求3所述的线性传输系统的气源接入装置,其特征在于,
    每个所述接收侧永磁体的水平方向两侧分别设有极性相反的附加接收侧永磁体,而每个所述注入侧永磁体的水平方向两侧分别设有极性相反的附加注入侧永磁 体。
  7. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述气路注入接口或气路注入接口周围设有密封圈。
  8. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述气源接入装置设置在所述动子单元运动轨迹周围的固定位置。
  9. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述气源接入装置还包括气源和供气气缸,所述气源和供气气缸通过气压管路连接,所述气压管路上设有外部气压阀,所述气缸通过气嘴连接到所述注入接口。
  10. 根据权利要求1所述的线性传输系统的气源接入装置,其特征在于,
    所述气动单元包括气缸和在气缸内运动的活塞,所述活塞与顶杆连接,所述顶杆能够移动所述动子单元上的物料,所述气缸通过控制阀与所述气路接口连接。
PCT/CN2019/098424 2018-09-06 2019-07-30 线性传输系统的气源接入装置 WO2020048263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811037680.9A CN109178941B (zh) 2018-09-06 2018-09-06 线性传输系统的气源接入装置
CN201811037680.9 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020048263A1 true WO2020048263A1 (zh) 2020-03-12

Family

ID=64915117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098424 WO2020048263A1 (zh) 2018-09-06 2019-07-30 线性传输系统的气源接入装置

Country Status (2)

Country Link
CN (1) CN109178941B (zh)
WO (1) WO2020048263A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109178941B (zh) * 2018-09-06 2023-11-24 果栗智造(上海)技术股份有限公司 线性传输系统的气源接入装置
CN112027527A (zh) * 2019-06-03 2020-12-04 上海铼钠克数控科技股份有限公司 线性输送系统
CN116715021B (zh) * 2023-07-26 2024-03-15 果栗智造(上海)技术股份有限公司 真空吸附动子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245328A (ja) * 1993-02-18 1994-09-02 Hitachi Kiden Kogyo Ltd リニアモータを用いた磁気浮上搬送装置
JPH09208051A (ja) * 1996-02-05 1997-08-12 Murata Mach Ltd リニア搬送車システム
JP2001251841A (ja) * 2000-03-07 2001-09-14 Matsushita Electric Ind Co Ltd リニアアクチュエータ
JP2009120318A (ja) * 2007-11-14 2009-06-04 Kuroda Techno Co Ltd 作業用搬送装置
CN108023460A (zh) * 2018-02-02 2018-05-11 上海莫戈纳机电科技有限公司 线性电机
CN108336885A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 线性马达及其动子运动定位控制装置
CN108328249A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 一种线性传输系统
CN109178941A (zh) * 2018-09-06 2019-01-11 上海果栗自动化科技有限公司 线性传输系统的气源接入装置
CN209127646U (zh) * 2018-09-06 2019-07-19 上海果栗自动化科技有限公司 线性传输系统的气源接入装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352937B1 (ko) * 2000-05-20 2002-09-16 미래산업 주식회사 회전 및 직선운동형 선형전동기
KR100454656B1 (ko) * 2002-05-24 2004-11-05 한국전기연구원 영구자석여자 횡자속 선형전동기 이용 수평 및 수직이송장치
BRPI0806059A2 (pt) * 2008-11-27 2010-09-21 Whirlpool Sa sistema para atuação em válvula de admissão de um compressor a gás, compressor de gás e equipamento de refrigeração
KR101233061B1 (ko) * 2012-08-24 2013-02-15 주식회사 유니크 리니어 액추에이터

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245328A (ja) * 1993-02-18 1994-09-02 Hitachi Kiden Kogyo Ltd リニアモータを用いた磁気浮上搬送装置
JPH09208051A (ja) * 1996-02-05 1997-08-12 Murata Mach Ltd リニア搬送車システム
JP2001251841A (ja) * 2000-03-07 2001-09-14 Matsushita Electric Ind Co Ltd リニアアクチュエータ
JP2009120318A (ja) * 2007-11-14 2009-06-04 Kuroda Techno Co Ltd 作業用搬送装置
CN108336885A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 线性马达及其动子运动定位控制装置
CN108328249A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 一种线性传输系统
CN108023460A (zh) * 2018-02-02 2018-05-11 上海莫戈纳机电科技有限公司 线性电机
CN109178941A (zh) * 2018-09-06 2019-01-11 上海果栗自动化科技有限公司 线性传输系统的气源接入装置
CN209127646U (zh) * 2018-09-06 2019-07-19 上海果栗自动化科技有限公司 线性传输系统的气源接入装置

Also Published As

Publication number Publication date
CN109178941A (zh) 2019-01-11
CN109178941B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2020048263A1 (zh) 线性传输系统的气源接入装置
WO2020048262A1 (zh) 线性传输系统的无缆供电装置
US9096386B2 (en) Multi-mode scroll cam conveyor system
CN108946032B (zh) 传输系统、加工系统、以及传输系统的控制方法
CN106628928B (zh) 一种组合式测试流水线
EP2760770B1 (en) System and method for providing vacuum to a moving element
KR960702412A (ko) 웨이퍼 이송 장치(wafer transport device)
US20210184555A1 (en) Transport system and processing system
US6334523B1 (en) Component conveyor
CN101681683A (zh) Xy工作台动作执行器
CN208691096U (zh) 线性传输系统的无缆供电装置
CN211003542U (zh) 变距磁性上料装置
JP2019103225A (ja) 搬送装置、加工システム、および物品の製造方法
US11458847B2 (en) Article transferring device
CN209127646U (zh) 线性传输系统的气源接入装置
KR101215093B1 (ko) 이송 로봇
TWI520889B (zh) A fast positioning device for electronic components
JP2008036785A (ja) 組立装置、及び組立製造方法、並びに組立ライン
KR101630081B1 (ko) 공작기계의 자동 공구 교환 장치
JP5656324B2 (ja) ストッパ装置
US10951092B2 (en) Transport system, carriage, positioning apparatus, processing system, and positioning method
JPH09199516A (ja) 搬送装置
CN209143197U (zh) 载具定位组件、移载装置、传送装置和载具运输设备
CN218877827U (zh) 一种双向定位机构和试剂条灌装设备
KR102035024B1 (ko) 흡착 이송 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857216

Country of ref document: EP

Kind code of ref document: A1