WO2020048102A1 - 一种起重设备 - Google Patents

一种起重设备 Download PDF

Info

Publication number
WO2020048102A1
WO2020048102A1 PCT/CN2019/076667 CN2019076667W WO2020048102A1 WO 2020048102 A1 WO2020048102 A1 WO 2020048102A1 CN 2019076667 W CN2019076667 W CN 2019076667W WO 2020048102 A1 WO2020048102 A1 WO 2020048102A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance
trolley
trolleys
working condition
balance beam
Prior art date
Application number
PCT/CN2019/076667
Other languages
English (en)
French (fr)
Inventor
赵江平
孟进军
周玉龙
余钦伟
章琢
李云青
Original Assignee
徐工集团工程机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐工集团工程机械股份有限公司 filed Critical 徐工集团工程机械股份有限公司
Priority to RU2021108671A priority Critical patent/RU2761006C1/ru
Priority to GB2102004.5A priority patent/GB2590831B/en
Publication of WO2020048102A1 publication Critical patent/WO2020048102A1/zh
Priority to ZA2021/02235A priority patent/ZA202102235B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/50Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes mounted on railway vehicles, e.g. breakdown cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/60Derricks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/72Counterweights or supports for balancing lifting couples
    • B66C23/74Counterweights or supports for balancing lifting couples separate from jib
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/72Counterweights or supports for balancing lifting couples
    • B66C23/78Supports, e.g. outriggers, for mobile cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/84Slewing gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C9/00Travelling gear incorporated in or fitted to trolleys or cranes
    • B66C9/10Undercarriages or bogies, e.g. end carriages, end bogies
    • B66C9/12Undercarriages or bogies, e.g. end carriages, end bogies with load-distributing means for equalising wheel pressure

Definitions

  • the present disclosure relates to the technical field of construction machinery, and in particular, to a lifting device.
  • Super-large lifting equipment is a new type of crane, which has the advantages of large lifting weight and large lifting torque, and is often used for the lifting of super-large and over-weight parts.
  • the chassis system accounts for about 1/3 of the cost of the whole machine.
  • the foundation treatment in the process of lifting oversized and overweight parts is a difficult problem and an irreversible process, which can be solved at a greater cost. The larger the specific ground pressure that the ground needs to withstand It will also cost more.
  • the front and rear balance trolleys are arranged in the same way, and the counterweight is fixed on the platform and cannot be moved. Generally, it is increased by increasing the weight of the platform counterweight, strengthening the structure of the whole machine or adjusting the size of the track Load capacity of the whole machine. In this way, the lifting moment of the ring-rail crane is changed by adjusting the distance between the front truck and the counterweight, and the entire conversion process is very complicated.
  • the improvement of load carrying capacity can only be achieved by replacing reinforced structural components, increasing the number of counterweights, or adjusting the diameter of the track.
  • the load carrying capacity is limited, the cost is large, the parts are not versatile, the utilization rate is not high, and it is subject to transportation conditions Restrictions, structural components can not be strengthened without limit.
  • the ground specific pressure is also increased, which puts forward higher requirements for ground treatment.
  • the lifting capacity will be wasted in the case of small lifting weights. After all, the frequency of use of super heavy lifting in actual work is not high.
  • Embodiments of the present disclosure provide a lifting device that can simultaneously meet the needs of the lifting device under different lifting weights.
  • a lifting device including:
  • a chassis including a track and a plurality of first balancing trolleys, each of the first balancing trolleys being disposed on the track and located in a front area below the boom assembly;
  • each first balancing trolley in the first working condition, includes a first balancing beam and two first trolleys, and the first balancing beam overlaps the two first trolleys; in the second operating condition Next, each first balanced trolley also includes a balanced beam group and a trolley group, the trolley group is located outside the first trolley along the track extension direction, and the balanced beam group is overlapped above the first balanced beam and the trolley group ; The lifting weight of the first working condition does not exceed the preset lifting weight, and the lifting weight of the second working condition exceeds the preset lifting weight.
  • the trolley set includes a second trolley
  • the balanced beam set includes a second balanced beam
  • two ends of the second balanced beam are respectively overlapped above the first balanced beam and the second trolley.
  • the second balance beam includes a main load bearing portion and an abutting portion connected to each other, the main load bearing portion is overlapped on the first balance beam, and the abutment portion ranges from an end connected to the main load bearing portion to a free end cross-sectional area. It gradually decreases and inclines downward with respect to the main bearing portion until the free end of the abutting portion contacts the top surface of the second vehicle.
  • the trolley set includes at least two second trolleys
  • the balance beam set includes at least two second balance beams
  • each of the at least two second balance beams overlaps the first balance beam Above the balance beam, at least two second trolleys, and two of the other second flat beams.
  • At least two second balance beams include an upper balance beam and a lower balance beam.
  • the lower balance beam has the same structure as the first balance beam and will have at least The two second cars overlap each other, and the upper balance beam overlaps the first balance beam and each lower balance beam.
  • the lifting device includes a chassis and a boom assembly
  • the chassis includes a track and a plurality of first balance trolleys, each first balance trolley is disposed on the track and located in a front area below the boom assembly;
  • each first balancing trolley includes a balancing beam and two trolleys arranged along the track extension direction, and the balancing beams overlap the two trolleys; in the second operating condition, each The first balance trolley is provided with a balance beam and a trolley. The added trolley is located outside the original trolley along the track extension direction. At least part of the added balance beam overlaps the added trolley and the original balance beam.
  • a balance beam is added for each additional trolley, and the added balance beam overlaps the additional trolley and the lower stage balance beam.
  • each first balance trolley under the first working condition, includes a first balance beam and two first trolleys, and the first balance beam overlaps the two first trolleys;
  • a second balance beam and a second carriage are added to each of the first balance carriages. The second carriage is located outside the first carriage along the track extension direction, and the second balance beam overlaps the second carriage. Above the car and the first balance beam.
  • the added balance beam includes a main load bearing portion and an abutting portion which are connected to each other.
  • the main load bearing portion is overlapped on the bottom balance beam, and the abutment portion ranges from an end connected to the main load bearing portion to a free end cross-sectional area. It gradually decreases and inclines downward with respect to the main bearing portion until the free end of the abutting portion contacts the top surface of the increasing trolley.
  • the number of trolleys added to each first balanced trolley is an even number.
  • the added balancing beams include an upper balancing beam and a lower balancing beam.
  • the lower balancing beam has the same structure as the original balancing beam and will be added. They are overlapped one by one, and the upper balance beam is overlapped on each lower balance beam.
  • the chassis further includes a plurality of second balance trolleys, each of which is disposed on the track and located in a rear area below the boom assembly.
  • the track is a circular track
  • the first and second balance trolleys are arranged side by side on the inner ring track and the outer ring track, and the balance trolleys at the corresponding positions on the inner ring track and the outer ring track have the same structure. .
  • each second balance trolley under the second working condition, also adds a balance beam and a trolley.
  • the additional trolley is located outside the original trolley along the track direction, and the additional balance beam overlaps the Added trolley and bottom balance beam above.
  • the chassis further includes a swing platform, and the swing platform includes:
  • the front vehicle platform in the first working condition, includes a first beam section and two support platforms, the first beam section is located between the two support platforms, and the longitudinal beam is connected to the first beam section; in the second condition A second beam section is added to both ends of the first beam section, and the second beam section is connected to the supporting platform on the corresponding side.
  • the longitudinal beam includes a plurality of mounting sections. Under the first working condition, each mounting section forms a longitudinal beam that is generally parallel to the plane on which the track is located; in the second working condition, the mounting section connected to the front vehicle platform It is inclined with respect to the plane on which the track is located, and the first end connected to the front vehicle platform of the mounting section is higher than the second end connected to the adjacent mounting section.
  • the boom assembly includes two masts and two main booms, the bottom ends of the two main booms are respectively connected to a support platform, and the bottom ends of the two masts are respectively connected to a support platform.
  • the boom assembly includes two main arms, and the two main arms are correspondingly connected at the top and bottom positions; wherein, in the first working condition, the bottom positions of the two main booms The first connecting rod sections connected to each other; in the second working condition, the first connecting rod sections are added to the bottom positions of the two main arms; or
  • the jib assembly includes two jib, the two jib are connected correspondingly at the top and bottom positions; in the first working condition, the bottom position of the two jib is connected by two first connecting rods connected in the length direction In the second working condition, the first connecting rod section is added to the bottom position of the two jib.
  • the boom assembly includes two main booms, two masts, and two pullers.
  • the bottom end of the mast is hinged on the chassis adjacent to the bottom end of the corresponding main boom, and the top end is connected to the corresponding main boom through the puller. Connected at the top, correspondingly connected between the top and bottom of the two masts;
  • the boom assembly includes two main booms and two masts, and the two main booms and / or two masts have a trapezoidal structure from top to bottom under a second working condition.
  • the lifting equipment of some embodiments of the present disclosure at least increases the balance beam group and the trolley group in the first balanced trolley under the second working condition to increase the support span of the first balanced trolley.
  • the hoisting capacity of the lifting equipment can be configured according to the actual hoisting demand, which can reduce the waste of hoisting capacity when the hoisting weight is small, and can increase the hoisting capacity through the structure when the hoisting weight is heavy, and can also reduce the grounding of the ground. Specific pressure, thereby reducing the difficulty and cost of foundation treatment.
  • FIG. 1 is a schematic structural diagram of an embodiment of a lifting device according to the present disclosure
  • FIG. 2 is a top view of an embodiment of the lifting equipment of the present disclosure
  • 3A and 3B are schematic structural diagrams of a slewing platform in a lifting device of the present disclosure under a first working condition and a second working condition, respectively;
  • FIG. 4 is a schematic structural diagram of an embodiment of a swing platform in a lifting device of the present disclosure
  • FIG. 5 is a schematic structural diagram of a setting of a balancing trolley of a lifting device of the present disclosure under a first working condition
  • FIG. 6 is a schematic structural diagram of the setting of a balancing trolley of the lifting equipment in the second working condition of the present disclosure
  • FIG. 7 is an enlarged view of a first balance trolley in FIG. 6;
  • FIG. 8 is a force diagram of the first balance trolley in FIG. 7;
  • FIG. 9A and FIG. 9B are schematic diagrams of ground areas of a balanced trolley in a first working condition and a second working condition in the present disclosure, respectively;
  • FIG. 10A and FIG. 10B are schematic diagrams of a supporting span of a balanced trolley layout in a first working condition and a second working condition in the present disclosure, respectively;
  • FIG. 11 is a schematic structural diagram of a chassis in a lifting device of the present disclosure.
  • FIGS. 12A and 12B are schematic structural diagrams of a mast in a lifting device in a first working condition and a second working condition, respectively;
  • FIGS. 13A and 13B are schematic structural diagrams of a main boom in a lifting device of the present disclosure under a first working condition and a second working condition, respectively;
  • FIG. 14 is a schematic structural diagram of a lifting device of the present disclosure under a first working condition
  • FIG. 15 is a schematic structural diagram of a lifting device of the present disclosure under a second working condition.
  • first and second appearing in the present disclosure are merely for convenience of description, to distinguish different component parts having the same name, and do not indicate a sequential or primary-secondary relationship.
  • the improvement of the carrying capacity of the entire vehicle will also increase the specific pressure on the ground, and even increase the area occupied by the entire machine.
  • the requirements for the bearing capacity of the foundation and the site's adaptation conditions will be greatly increased. Difficulty in handling foundations and entire volumes. After all, the second working condition is a minority in comparison. Under normal lifting conditions, the lifting equipment is in a wasteful state of lifting capacity, causing the equipment to be expensive to use.
  • the current front and rear balance trolleys in the lifting equipment use the same arrangement, but in the actual lifting process, due to the role of the front load, the first balance trolley in the front bears much more force than the rear.
  • the second balance trolley the uneven load of the two balance trolleys causes the ground specific pressure under the two balance trolleys to be different, and the ground specific pressure under the first balance trolley is also much larger than the second balance trolley.
  • the ground must be processed according to the ground specific pressure under the first balanced trolley, which increases the cost and difficulty of foundation treatment.
  • the present disclosure provides a lifting device.
  • the lifting device includes a chassis and a boom assembly, and the boom assembly is integrally disposed on the chassis.
  • the boom assembly includes a main boom 5, a mast 4, and a pulling member 7.
  • the main boom 5 is a main boom part of a front end of a lifting device, and an “A” type or parallel double-truss boom structure can be adopted; the mast 4 It is set at an angle with the main boom 5 and its function is to change the working range of the boom and improve the lifting performance.
  • the bottom end of the mast 4 is hinged to the chassis, and the bottom end is located near the bottom end of the main arm 5.
  • the top end is connected to the top end of the main arm 5 through a pulling member 7 and is also connected to the chassis through a mast bracket 8 or a suspension pull plate.
  • Platform weights 9 in the rear area are connected.
  • the pulling member 7 may be a pulling plate, a rope, or a truss.
  • the mast bracket 8 may provide a pulling force for the mast 4 or support the mast 4.
  • a luffing pulley group 6 is provided at a position where the pulling member 7 is connected to the mast 4, and the expansion and contraction of the wire rope can be controlled by the pulley group to pull the main arm 5 to rotate along the lower hinge point through the pulling member 7 to realize the crane luffing.
  • the chassis includes a track, a slewing platform 1, a plurality of first balance trolleys 2 and a plurality of second balance trolleys 2 ′ provided on the track, and each of the first balance trolleys 2 is located below the boom assembly.
  • each second balance trolley 2 ' is located in the rear area below the boom assembly.
  • the track can be in a circular ring shape.
  • the bottom of the balancing trolley is a wheel structure. The wheels are pressed on the annular track.
  • the whole machine controls the driving motor on the balancing trolley through a hydraulic system to drive the wheels of the balancing trolley to rotate on the annular track. turn around.
  • the slewing platform 1 is overlapped on each of the first and second balance trolleys 2 and 2 ', and the entire boom assembly can be disposed on the slewing platform 1.
  • the main boom 5, the mast 4, the platform counterweight 9, Both the hoisting system 3 and the power system 10 can be provided on the slewing platform 1.
  • the power system 10 provides power for the lifting equipment, and the platform counterweight 9 is used to maintain the stability of the entire vehicle.
  • each of the first balance trolleys 2 includes a balance beam and two trolleys arranged along the track extension direction.
  • the balance beam is overlapped on the two trolleys, and the second balance trolley
  • the vehicle 2 ′ can adopt the same structure as the first balanced trolley 2, and the rotary platform 1 is overlapped on each balanced beam.
  • the slewing platform 1 is used to connect the first balance trolley 2 and the second balance trolley 2 'on the lifting equipment, and can be used to install a boom assembly, a power unit 10, a platform counterweight 9, and a control room frame.
  • the hoisting weight of the first working condition does not exceed the preset hoisting weight, and the hoisting working condition is a small weight.
  • the preset lifting weight can be set according to the lifting capacity of different cranes.
  • a balance beam group and a trolley group are added to each of the first balanced trolleys 2.
  • the added trolley group is located at the outer side of the original trolley along the track direction.
  • the balance beam overlaps the added trolley and the original balance beam, and the rotary platform 1 overlaps the top balance beam.
  • the at least partially increased balance beam can be directly overlapped on the added trolley, or the partially increased balance beam can be indirectly overlapped on the added trolley.
  • the lifting weight of the second working condition exceeds the preset lifting weight, which is an overweight lifting working condition.
  • the load of the first balance trolley 2 is much greater than that of the second balance trolley 2 '.
  • the first balance trolley 2 is off the ground.
  • the increase of grounding pressure is greater than that of the structure.
  • the structure can be increased by the first balance trolley 2 providing a supporting point for the slewing platform 1, which effectively increases Grounding area, without changing the chassis system, can increase the load capacity of the whole machine and reduce the ground specific pressure, thereby reducing the difficulty and cost of ground treatment.
  • the ground specific pressure refers to the vertical load on a unit area of an object in contact with the ground.
  • the balance trolley can realize the walking action on the circular track, and adopts multi-level balance beam to realize the equalizing force.
  • Multiple vehicles are arranged on the same track, which can make full use of the chassis, increase the contact area, effectively reduce the ground specific pressure, simple foundation treatment, and can greatly reduce operating costs.
  • the solution of this embodiment of the present disclosure can configure the lifting capacity of the lifting equipment according to the actual lifting requirements when the lifting equipment is assembled, which can both When the lifting weight is small, the waste of lifting capacity is reduced, and the lifting capacity can be increased by the structure when the weight is heavy, and the ground pressure of the ground can be reduced, thereby reducing the difficulty and cost of foundation treatment.
  • This kind of lifting equipment can realize multiple uses of one machine, and the load capacity of the whole machine can be improved by adding a few components on the basis of the existing ring-rail crane equipment.
  • the number of added trolleys for each first balanced trolley 2 is an even number.
  • the added balancing beams include an upper balancing beam and a lower balancing beam.
  • the balance beam has the same structure and overlaps the additional trolleys.
  • a lower-level balance beam needs to be added, and the upper-level balance beam is overlapped on each lower-level balance beam.
  • the number of trolleys is increased to two.
  • Two lower balancing beams are used to span the two trolleys.
  • the upper balancing beams are used to span the two lower balancing beams at the bottom to ensure that four The trolleys are evenly stressed.
  • a balance beam needs to be added accordingly.
  • the added balance beam overlaps the additional trolley and the lower stage balance beam.
  • One end of the balancing beam is directly attached to the added trolley.
  • each first balanced trolley 2 includes a first balanced beam 22 and two first trolleys 21.
  • the first balanced beam 22 Overlap the two first cars 21.
  • the structure of the two first trolleys 21 is the same.
  • the first trolley 21 may adopt a trapezoidal structure, and the bottom is provided with a guide wheel that moves along the track.
  • the first balance beam 22 may be designed as an inverted trapezoidal structure. The tops of the two first trolleys 21 are fitted into the space between the two first trolleys 21 to improve the support stability and overall rigidity of the balanced trolleys.
  • each of the first balanced trolleys 2 maintains the structural configuration under the first working condition, and the added trolley group includes a second trolley 23,
  • the two additional sets of balance include a second balance beam 24, the second carriage 23 is located outside the first carriage 21 along the track extension direction, and the two ends of the second balance beam 24 overlap the second carriage 23 and the first Above a balance beam 22.
  • This embodiment adopts a form in which two-stage balance beams are superposed in the height direction.
  • the structure is simple, and a single first balance trolley 2 can be moved outward to the supporting point of the slewing platform 1, and two pairs of first balance trolleys are added.
  • the supporting distance of the slewing platform 1 effectively increases the ground area and reduces the ground specific pressure, thereby reducing the difficulty and cost of ground treatment.
  • the second balance beam 24 includes a main load bearing portion 241 and an abutting portion 242 connected to each other.
  • the main load bearing portion 241 is overlapped on the bottom balance beam, and the abutting portion 242 is connected with the main load.
  • the cross-sectional area from one end to the free end of the bearing portion 241 gradually decreases, and is inclined downward with respect to the main bearing portion 241 until the free end of the abutting portion 242 contacts the top surface of the increased balance trolley.
  • the first balance trolley 2 can form a stable supporting structure while saving weight.
  • the main bearing portion 241 of the second balance beam 24 is overlapped on the first balance beam 22.
  • One end of the abutting portion 242 is connected to the main bearing portion 241 and the other end is in contact with the top surface of the second trolley 23.
  • the top of the second balance beam 24 is provided with a mounting interface, which can realize the connection between the swing platform 1 and the first balance trolley 2.
  • the two first trolleys 21 collectively provide support for the first balance beam 22, and the first and second trolleys 22 and 23 collectively provide support for the second balance beam 24.
  • the slewing platform 1 is set on the second balance beam 24 of the first balance trolley 2 so that the lifting weight is shared by the three trolleys, which not only increases the support span, but also Reduce the force of each trolley when working, and ensure that the forces of three trolleys are uniform, thereby reducing the size of the structural parts, the specifications of supporting parts and the transportation parameters of the balanced trolley.
  • the front end of the turning platform 1 is straddled on two first balanced trolleys 2 and the rear end is straddled on two second balanced trolleys 2 ′, which can ensure that the left and right two sets of balanced trolleys are stressed. Uniform and stable work.
  • the supporting span between the two first balanced trolleys 2 is L1; in the second working condition, referring to FIG. 10B, by increasing the platform
  • the support span between the vehicle and the balance beam and the two first balance trolleys 2 is L2, and L2> L1.
  • the trolley set includes at least two second trolleys 23, the balance beam set includes at least two second balance beams 24, and each second balance beam 24 of the at least two second balance beams 24 It is overlapped above any two of the first balance beam 22, the at least two second trolleys 23, and the other second flat beams 24.
  • This embodiment can further increase the load carrying capacity of the crane in the second working condition.
  • This setting method can adopt the following two types of structures, which will be given separately below.
  • the second trolley 23 is an even number.
  • At least two second balance beams 24 include an upper balance beam and a lower balance beam.
  • the lower balance beam has the same structure as the first balance beam 22 and has at least two
  • the second trolley 23 is overlapped one by one, and the upper balance beam is overlapped on the first balance beam 22 and each lower balance beam.
  • a lower balance beam needs to be added.
  • This embodiment can reduce the height of the first balanced trolley 2 after the expanded structure, reduce the influence on the original crane structure, and make the structure symmetrical and stable, and can also make full use of the original balanced beam structural components.
  • a second balance beam 24 is required for each additional second vehicle 23, for each additional second vehicle 23, a second balance beam 24 is required. One end of the second balance beam 24 is directly connected to the second vehicle 23, and the other end is overlapped. Above the lower-stage balance beam, the lower-stage balance beam may be the first balance beam 22 or the second balance beam 24. This structure can flexibly increase the number of the second vehicles 23, so as to gradually increase the chassis support strength according to the requirements of the lifting weight.
  • the chassis includes a subgrade box 30, which is laid on the ground and has a ring plate structure with a large area, which can reduce the pressure of the lifting equipment on the ground.
  • the track is a circular track, which is laid on the subgrade box, and the balance trolley can rotate along it.
  • the first balance trolley 2 and the second balance trolley 2 ′ are arranged side by side on the inner ring track 31 and the outer ring track 32, and the first balance of the corresponding positions on the inner ring track 31 and the outer ring track 32
  • the structure of the trolley 2 is the same, and the structure of the second balanced trolley 2 'at the corresponding position on the inner ring track 31 and the outer ring track 32 is the same.
  • two sets of first balance trolleys 2 are spaced in the front area of the track, and each group of first balance trolleys 2 includes two correspondingly arranged first and second balance trolleys on the inner ring track 31 and the outer ring track 32.
  • each first balanced trolley 2 is added with a balanced beam group and a trolley group, including three trolleys and two balanced beams.
  • two sets of second balance trolleys 2 ′ are spaced apart, and each set of second balance trolleys 2 ′ includes two second balance trolleys correspondingly provided on the inner ring track 31 and the outer ring track 32.
  • the first balance beam 22 overlaps the two first trolleys 21 at the bottom of each of the second balanced trolleys 2 ′.
  • the first balance trolley 2 and the second balance trolley 2 act on the inner and outer ring tracks, and the number of the first and second balance trolleys is differentiated according to the force to reduce a single balance trolley.
  • the load on the first and second balance trolleys is uniform, and the contact area with the ground is increased to reduce the ground specific pressure.
  • each second balance trolley 2 ' also adds a balance beam group and a trolley group, and the added trolley group is located outside the original trolley along the track direction.
  • the balance beam overlaps the added trolley and the bottom balance beam. If the hoisting weight is large, this embodiment can increase the span of the first balancing trolley 2 and the second balancing trolley 2 'to support the slewing platform 1 at the same time, thereby further increasing the grounding area and reducing the ground specific pressure on the ground. , Thereby reducing the difficulty and cost of foundation treatment, so that the crane can obtain greater lifting capacity.
  • each second balance trolley 2 ′ includes a first balance beam 22 and two first trolleys 21, and the first balance beam 22 overlaps the two first trolleys 21.
  • each second balanced trolley 2 ' also includes a balanced beam group and a trolley group, the trolley group is located outside the first trolley 21 along the track extension direction, and the balanced beam group overlaps with The first balance beam 22 and the top of the trolley.
  • the structures of the first balance trolley 2 given above are all applicable to the second balance trolley 2 '.
  • the chassis further includes a slewing platform 1, which includes a front vehicle platform 12, a rear vehicle platform 11, and two longitudinal beams 13.
  • the rear vehicle platform 11 is supported on a plurality of second balanced trolleys 2 '
  • the front vehicle platform 12 is supported on a plurality of first balanced trolleys 2
  • two longitudinal beams 13 are connected side by side to the front vehicle platform 12 and the rear vehicle platform. Between 11.
  • the front vehicle platform 12 includes a first beam section 121 and two support platforms 122, and the first beam section 121 is located between the two support platforms 122.
  • Two support beams 122 are provided with two first beam sections 121 spaced apart from each other along the length direction of the slewing platform 1.
  • the two beams 13 are connected to the first beam section 121 on the inner side.
  • the supporting platform 122 is provided with a mounting interface 123 for mounting the boom assembly.
  • the mounting interface 123 may be a lug plate.
  • the bottom ends of the two main arms 5 are respectively hinged on the lug plates of a support base 122 and the bottom ends of the two masts 4 They are also connected to the ear plates of a support base 122 respectively.
  • a second beam section 124 is added to both ends of the first beam section 121, and the second beam section 124 is connected to the supporting platform 122 on the corresponding side. It is equivalent to increasing the distance between the two supporting platforms 122, thereby increasing the supporting span of the front vehicle platform 12 so as to match the increase in the supporting point span of the first balanced trolley 2 at the bottom.
  • the front-car platform 12 of the special-shaped slewing platform 1 is installed on the top of the second balance beam 24, which can ensure that the three trolleys in the same first balance trolley 2 are uniformly stressed.
  • the length of the second beam section 124 is shorter than the length of the first beam section 121, so that the lifting capacity can be increased in small steps, so as to flexibly increase the structural rigidity of the component according to the actual lifting demand, so as not to cause waste of the lifting capacity.
  • the lifting capacity of the lifting equipment can be configured according to the requirements of the actual lifting weight.
  • the lifting weight is small, the supporting span of the boom platform of the swing platform 1 and the front vehicle platform 12 can be reduced, and the platform and the balance beam are not added.
  • the matching of the first balanced trolley 2 can reduce the waste of lifting capacity. It can also increase the lifting capacity through the structure during heavy lifting, and increase the supporting span of the boom platform of the front platform 12 of the swing platform 1 to match the first balance trolley 2 with the increase of the trolley and the balance beam. At the same time of lifting capacity, it can also reduce the specific pressure of grounding on the ground, thereby reducing the difficulty and cost of ground treatment.
  • the side member 13 includes a plurality of mounting sections.
  • the top height also changes. It is the same, so each mounting section is connected in sequence along its own length direction, forming a longitudinal beam 13 that is parallel to the plane where the track is located as a whole.
  • the installation section connected to the front vehicle platform 12 is inclined relative to the plane on which the track is located, and the first end of the installation section connected to the front vehicle platform 12 is higher than the second end connected to the adjacent installation section.
  • the longitudinal beam 13 adopts a multi-segment split structure, which can meet the requirements of different transformation forms.
  • the hoisting system 3 and the power system 10 can be overlapped and disposed on the two longitudinal beams 13 and can be disposed on different installation sections.
  • the rear vehicle platform 11 includes two parallel beams 111.
  • the two beams 111 are connected by two longitudinal beams 112.
  • One mounting interface 113 is provided on each of the two longitudinal beams 112.
  • the platform counterweight 9 can be set on the rear platform 11.
  • the mounting interface 113 on the rear vehicle platform 11 may be a lug, one end of the mast bracket 8 is hinged to the top of the mast 4, and the other end is hinged to the lug of the rear vehicle platform 11.
  • first beam sections 121 (D1) are spaced apart along the length direction of the turning platform 1.
  • the distance between the two supporting platforms 122 is L1.
  • second working condition as shown in FIG. 3B, between the two support stands 122 of the front vehicle platform 12, two sets of beam sections are provided at intervals along the length direction of the turning platform 1, and each group of beam sections includes sequential connections.
  • the second beam section 124 (D2), the first beam section 121 (D1), and the second beam section 124 (D2) are separated by a distance L2. Since the second beam section 124 is added, L2> L1, which is equivalent to increasing the support span of the front vehicle platform 12 under the second working condition through the structure.
  • the side member 13 includes the mounting sections C1, C2, C3, and C4 connected in order along the length direction from the rear vehicle platform 11 to the front vehicle platform 12, and the side member 13 The plane is parallel to the orbit.
  • the side member 13 includes the mounting sections C1, C2, C3, and C5 connected in sequence along the length direction from the rear vehicle platform 11 to the front vehicle platform. It can be seen that the mounting section C5 is arranged obliquely.
  • the crossbeam and longitudinal beam 13 of the lifting equipment slewing platform 1 of the present disclosure both adopt a modular design, a multi-segment split structure, and have an interface for upgrading from a small span to a large span, which can realize the rotation from a small span platform to a large span Conversion of platform 1.
  • the boom assembly includes two main arms 5, and the two main arms 5 are correspondingly connected at the top and bottom positions.
  • the positions of the bottoms of the two main arms 5 are connected by two first connecting rod segments 51 connected in the length direction; in the second working condition, as shown in FIG. 13B, the two A first connecting rod segment 51 is added to the position of the bottom of each main arm 5. Specifically, it may be increased between the two first connecting rod segments 51 or between the first connecting rod segment 51 and the main arm 5.
  • the bottoms of the two main booms 5 are connected by two first connecting rod segments 51. They are E1 and E2 respectively, and the bottom width between the two main arms 5 is L1.
  • the bottoms of the two main arms 5 are connected by three first connecting rod segments 51, E3 is added between E1 and E2, and the bottom width between the two main arms 5 Is L2, and L2> L1.
  • the bottom width between the two main arms 5 is larger than the top width, so that the two main arms 5 have a trapezoidal structure from the top to the bottom, which is conducive to increasing the overall rigidity of the main arms 5.
  • the jib assembly includes two jibs, the jib is an extended arm of the main jib 5, and the two jibs are correspondingly connected at the top and bottom positions; in the first working condition, the bottoms of the two jibs The positions are connected by two first connecting rod segments 51 connected along the length direction; in the second working condition, the first connecting rod segments 51 are added to the positions of the bottoms of the two jib arms.
  • the boom assembly includes two main booms 5, two masts 4, and two pullers 7, the bottom ends of the masts 4 are adjacent to the bottom ends of the corresponding main booms 5 on the chassis Hinged, the top end is connected to the top end of the corresponding main arm 5 through a pulling member 7, and the top and bottom of the two masts 4 are correspondingly connected.
  • the first working condition as shown in FIG. 12A
  • the position at the bottom of the mast 4 is connected by two second connecting rod segments 41 connected in the length direction;
  • the second working condition as shown in FIG. 12B, it is located on the mast 4
  • a second connecting rod segment 41 is added between the two second connecting rod segments 41 at the bottom. Specifically, it may be increased between the two second connecting rod segments 41 or between the second connecting rod segment 41 and the main arm 4.
  • the bottoms of the two masts 4 are connected by two second connecting rod segments 41, respectively. D1 and D2, the bottom width between the two masts 4 is L1, and a rectangular structure is formed between the two masts 4.
  • the bottoms of the two masts 4 are connected by three second connecting rod segments 41, D3 is added between D1 and D2, and the bottom width between the two masts 4 is L2.
  • the bottom width between the two masts 4 is greater than the top width, so that the two masts 4 have a trapezoidal structure from the top to the bottom, which is beneficial to increasing the overall rigidity of the masts 4.
  • the chassis is provided with a first balance trolley 2 and a second balance trolley 2 ′, which respectively correspond to the front balance trolley and The rear balance trolley, so that the hoisting equipment can get on the car to realize the whole rotation.
  • the improvements of the present disclosure are also applicable to semi-circular rail lifting equipment. Only the first balancing trolley 2 is provided in the chassis. Corresponding to the front balancing trolley in the usual sense, the lifting equipment can only be loaded onto the vehicle. The center point of the counterweight is used as the center of rotation, and the part of the track is rotated in the circumferential direction.
  • the entire vehicle is transformed based on the same ring track, the transformation method is simple, and the cost is low; during the transformation process, only the components need to be re-assembled and assembled, and the component universality is high; multiple vehicles are arranged in the same Equipped with a balance trolley, the component utilization rate is high.
  • it can reduce the design difficulty of the balance trolley, reduce the structural size of the balance trolley, reduce the stress during work, reduce the size of supporting parts and transportation parameters, and achieve "small structure and large load. Ability.
  • the following theoretical analysis will be performed:
  • F is the vertical force of the entire vehicle
  • S is the actual ground area, that is, the ground area of the balanced trolley
  • the grounding area of multiple vehicles is S2> S1. Therefore, with the same hoisting capacity and the same vertical force of the vehicle, P2 ⁇ P1, the configuration of multiple vehicles can greatly reduce the ground specific pressure on the ground.
  • I x 8I dg + 2A 2 A dg + 2B 2 A dg
  • Ix is the moment of inertia of the plane of rotation (in the plane of revolution, the boom is used as a fixed mechanical model for one end to analyze);
  • Iy is the moment of inertia of the plane of amplitude (in the plane of amplitude, the boom is simply supported at both ends)
  • Mechanical model for analysis Idg is the moment of inertia of a single main chord;
  • B is the width dimension of the section of the single boom;
  • H is the height dimension of the section of the single boom;
  • A is the center distance of the two arms (that is, Figures 12A, 12B, 13A and 13B; Lg;
  • Adg is the cross-sectional area of a single main chord.
  • the load capacity of very large lifting equipment can be improved by adding a few components, which can effectively reduce the ground specific pressure of the vehicle to the ground without changing the chassis system.
  • it can greatly reduce the difficulty and cost of handling the foundation of the hoisting site. It can realize the functions of multiple functions of one machine, which broadens the scope of use.
  • the conventional model and the extended model use the same track. The component utilization rate is high, the cost is low, and the overall machine footprint is not increased.
  • the conventional model and the extended model are the same. Equipped with a balanced trolley, the component utilization rate is high. At the same time, it can reduce the design difficulty of the balanced trolley, reduce the structural size of the balanced trolley, and achieve the purpose of "small structure" and large carrying capacity.
  • the lifting capacity of the lifting equipment can be configured according to demand, and the lifting capacity of the whole machine can be fully utilized. It can meet the operating economics of the "car”, and at the same time has structural interfaces and methods to improve the carrying capacity, which can improve the carrying capacity and meet the lifting of individual oversized and heavy parts.
  • the super-large lifting equipment uses the same set of balanced trolleys and the same set of chassis to reduce the structural size of the balanced trolley and the chassis, reduce the stress during work, reduce the size of supporting parts and transportation parameters, and achieve "small structure and large "Bearing capacity", the cost of the entire machine to achieve the function of improving the carrying capacity is low.
  • Different super-large lifting equipment can be assembled according to the actual hoisting conditions, site and other conditions, which reduces the requirements of the vehicle on the external environment (such as the hoisting site), improves the vehicle utilization rate, and makes the project more applicable. wide.

Abstract

一种起重设备,包括:臂架组件和底盘,底盘包括轨道和多个第一平衡台车(2),各个第一平衡台车(2)设在轨道上且位于臂架组件下方的前部区域;其中,在第一工况下,每个第一平衡台车(2)中包括第一平衡梁(22)和两个第一台车(21),第一平衡梁(22)搭接在两个第一台车(21)上方;在第二工况下,每个第一平衡台车(2)还包括平衡梁组和台车组,台车组位于第一台车(21)沿轨道延伸方向的外侧,平衡梁组搭接在第一平衡梁(22)和台车组的上方;第一工况的吊重量不超过预设吊装重量,第二工况的吊重量超过预设吊装重量。可根据实际吊重需求配置起重设备的吊装能力,能通过结构增加吊装能力,同时降低对地面的接地比压。

Description

一种起重设备
本公开是以申请号为 201811029799.1,申请日为 2018年9月5日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及工程机械技术领域,尤其涉及一种起重设备。
背景技术
随着国际能源和石化工程建设领域的快速发展,工程中模块化、大型化和一体化吊装要求不断提高,对起重机设备起重量和起重力矩提出了更高的要求。
超大型起重设备是一种新形式的起重机,具有起重量和起重力矩大的优势,经常被用作超大超重件的吊装。在整机的构成中,底盘系统占整机中约1/3的成本。随着目前超大超重件施工不断增多,在超大超重件吊装过程中地基的处理是一个难题,且是一个不可逆的过程,需要花费较大的代价方能解决,地面需要承受的接地比压越大所要花费的代价也越大。
在目前常用的全回转式环轨起重机中,前后平衡台车采用相同方式布置,配重固定在平台上,不可移动,一般通过增加平台配重重量、强化整机结构或调整轨道直径大小来提升整机的承载能力。此种方式环轨起重机起重力矩的变化是通过调整前台车与配重之间的距离实现的,整个转换过程非常复杂。
对于此种起重机,承载能力的提升仅能通过更换强化的结构件、增加配重数量或调整轨道直径,承载能力提升有限,成本较大,部件通用性差,利用率不高,且受制于运输条件的限制,结构件也不可能无限制的加强。而且,在通过结构件加强提高起重能力后,接地比压也增大,对地基处理提出了更高的要求。另外,在满足超重件吊装的情况下,在小吊重量工况时,又会造成起重能力浪费,毕竟超重件的吊装工况在实际工作时的使用频率并不高。
公开内容
本公开的实施例提供了一种起重设备,能够同时满足起重设备在不同吊重量下的需求。
根据本公开的一些实施例,提供了一种起重设备,包括:
臂架组件;和
底盘,底盘包括轨道和多个第一平衡台车,各个第一平衡台车设在轨道上且位于臂架组件下方的前部区域;
其中,在第一工况下,每个第一平衡台车中包括第一平衡梁和两个第一台车,第一平衡梁搭接在两个第一台车上方;在第二工况下,每个第一平衡台车还包括平衡梁组和台车组,台车组位于第一台车沿轨道延伸方向的外侧,平衡梁组搭接在第一平衡梁和台车组的上方;第一工况的吊重量不超过预设吊装重量,第二工况的吊重量超过预设吊装重量。
在一些实施例中,台车组包括一个第二台车,平衡梁组包括一个第二平衡梁,第二平衡梁的两端分别搭接在第一平衡梁和第二台车上方。
在一些实施例中,第二平衡梁包括相互连接的主承载部和抵接部,主承载部搭接在第一平衡梁上,抵接部从与主承载部连接的一端至自由端截面积逐渐减小,且相对于主承载部向下倾斜,直至抵接部的自由端与第二台车的顶面接触。
在一些实施例中,台车组包括至少两个第二台车,平衡梁组包括至少两个第二平衡梁,至少两个第二平衡梁中的每个第二平衡梁搭接在第一平衡梁、至少两个第二台车和其它第二平横梁中的两个的上方。
在一些实施例中,在第二工况下,第二台车为偶数个,至少两个第二平衡梁包括上级平衡梁和下级平衡梁,下级平衡梁与第一平衡梁结构相同且将至少两个第二台车两两搭接,上级平衡梁搭接在第一平衡梁和各个下级平衡梁上。
在一些实施例中,起重设备包括底盘和臂架组件,底盘包括轨道和多个第一平衡台车,各个第一平衡台车设在轨道上且位于臂架组件下方的前部区域;
在第一工况下,每个第一平衡台车均包括平衡梁和两个沿轨道延伸方向设置的台车,平衡梁搭接在两个台车上方;在第二工况下,每个第一平衡台车增加平衡梁和台车,增加的台车位于原有台车沿轨道延伸方向的外侧,至少部分增加的平衡梁搭接于增加的台车和原有平衡梁的上方。
在一些实施例中,在第二工况下,每增加一个台车就相应增加一个平衡梁,增加的平衡梁搭接在增加台车和底下一级平衡梁的下方。
在一些实施例中,在第一工况下,每个第一平衡台车中包括第一平衡梁和两个第一台车,第一平衡梁搭接在两个第一台车上方;在第二工况下,每个第一平衡台车增 加第二平衡梁和第二台车,第二台车位于第一台车沿轨道延伸方向的外侧,第二平衡梁搭接在第二台车和第一平衡梁上方。
在一些实施例中,增加的平衡梁包括相互连接的主承载部和抵接部,主承载部搭接在底部的平衡梁上,抵接部从与主承载部连接的一端至自由端截面积逐渐减小,且相对于主承载部向下倾斜,直至抵接部的自由端与增加台车的顶面接触。
在一些实施例中,每个第一平衡台车增加的台车为偶数个,增加的平衡梁包括上级平衡梁和下级平衡梁,下级平衡梁与原有平衡梁结构相同且将增加的台车两两搭接,上级平衡梁搭接在各个下级平衡梁上。
在一些实施例中,底盘还包括多个第二平衡台车,各个第二平衡台车设在轨道上且位于臂架组件下方的后部区域。
在一些实施例中,轨道为环形轨道,第一平衡台车和第二平衡台车在内环轨道和外环轨道上并排设置,内环轨道和外环轨道上相应位置的平衡台车结构相同。
在一些实施例中,在第二工况下,每个第二平衡台车也增加平衡梁和台车,增加的台车位于原有台车沿轨道方向的外侧,增加的平衡梁搭接在增加的台车和底部平衡梁的上方。
在一些实施例中,底盘还包括回转平台,回转平台包括:
后车平台,支撑于各个第二平衡台车上;
前车平台,支撑于各个第一平衡台车上;和
纵梁,连接于前车平台与后车平台之间;
其中,在第一工况下,前车平台包括第一横梁段和两个支撑台,第一横梁段位于两个支撑台之间,纵梁与第一横梁段连接;在第二工况下,第一横梁段的两端增加第二横梁段,第二横梁段与相应侧的支撑台连接。
在一些实施例中,纵梁包括多个安装段,在第一工况下,各个安装段形成整体与轨道所在平面平行的纵梁;在第二工况下,与前车平台连接的安装段相对于轨道所在平面倾斜设置,且安装段与前车平台连接的第一端高于与相邻安装段连接的第二端。
在一些实施例中,臂架组件包括两个桅杆和两个主臂,两个主臂的底端分别连接在一个支撑台上,两个桅杆的底端分别连接在一个支撑台上。
在一些实施例中,臂架组件包括两个主臂,两个主臂在顶部与底部的位置对应连接;其中,在第一工况下,两个主臂的底部位置通过两个沿长度方向相连的第一连接杆段连接;在第二工况下,两个主臂的底部位置增加第一连接杆段;或者
臂架组件包括两个副臂,两个副臂在顶部与底部的位置对应连接;其中,在第一工况下,两个副臂的底部位置通过两个沿长度方向相连的第一连接杆段连接;在第二工况下,两个副臂的底部位置增加第一连接杆段。
在一些实施例中,臂架组件包括两个主臂、两个桅杆和两个牵拉件,桅杆的底端在底盘上邻近相应主臂的底端铰接,顶端通过牵拉件与相应主臂的顶端连接,两个桅杆的顶部与底部之间对应连接;
其中,在第一工况下,位于桅杆的底部位置设有两个第二连接杆段;在第二工况下,位于桅杆底部的两个第二连接杆段之间增加第二连接杆段。
在一些实施例中,臂架组件包括两个主臂和两个桅杆,两个主臂和/或两个桅杆在第二工况下从顶部至底部呈梯形结构。
基于上述技术方案,本公开一些实施例的起重设备,在第二工况下至少增加第一平衡台车中的平衡梁组和台车组,以增加第一平衡台车的支撑跨距,可以根据实际吊重的需求配置起重设备的吊装能力,既能在吊重量较小时减小吊装能力的浪费,又能在超重吊重时通过结构增加吊装能力,同时还能降低对地面的接地比压,从而降低地基处理的难度及成本。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开起重设备的一个实施例的结构示意图;
图2为本公开起重设备的一个实施例的俯视图;
图3A和图3B分别为本公开起重设备中的回转平台在第一工况和第二工况下的结构示意图;
图4为本公开起重设备中回转平台的一个实施例的结构示意图;
图5为本公开起重设备在第一工况下平衡台车的设置结构示意图;
图6为本公开起重设备在第二工况下平衡台车的设置结构示意图;
图7为图6中第一平衡台车放大图;
图8为图7中第一平衡台车的受力图;
图9A和图9B分别为本公开中平衡台车在第一工况和第二工况下的接地面积示意 图;
图10A和图10B分别为本公开中平衡台车在第一工况和第二工况下平衡台车布局的支撑跨距示意图;
图11为本公开起重设备中底盘的结构示意图;
图12A和12B分别为本公开起重设备中的桅杆在第一工况和第二工况下的结构示意图;
图13A和13B分别为本公开起重设备中的主臂在第一工况和第二工况下的结构示意图;
图14为本公开起重设备在第一工况下的结构示意图;
图15为本公开起重设备在第二工况下的结构示意图。
具体实施方式
以下详细说明本公开。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本公开中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
在本公开的描述中,采用了“上”、“下”、“顶”、“底”、“前”、“后”、“内”和“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。后续实施例中将起重机执行吊装作业时吊重的一侧定义为“前”,吊重的后方定义为“后”。
发明人注意到,如果要提高现有起重机的承载能力以满足第二工况的需求,就需要更换强化的结构件、增加配重数量或调整轨道直径,这些措施使承载能力的提升也比较有限,而且这样还会带来整机成本的提高,部件利用率低。
进一步地,整车承载能力的提升还会带来对地面接地比压的增大,甚至是整机占用场地面积的增加,对地基的承载力和场地的适应条件要求较高,会大大的增加地基的处理难度及处理整本。毕竟第二工况相比而言属于少数,在通常吊装工况下起重设备处于起升能力浪费的状态,造成设备的使用成本昂贵。
另外,目前起重设备中的前后平衡台车采用相同的布置方式,但是在实际吊装过程中由于前方吊重物的作用,位于前方的第一平衡台车承受的力要远远大于位于后方的第二平衡台车,两个平衡台车受力的不均导致两个平衡台车下地面的接地比压不同,第一平衡台车下的接地比压也要远远大于第二平衡台车,导致地面必须按第一平衡台车下的接地比压进行处理,增加地基处理成本和处理难度。
基于发明人发现的上述问题,才有动机提出一种起重设备,既能满足超重吊装工况下的承载能力,又具备接地比压小、部件利用率高、拆装便利和成本合理的优点。
如图1至图15所示,本公开提供了一种起重设备,在一些实施例中,包括底盘和臂架组件,臂架组件整体设在底盘上。参考图1,臂架组件包括主臂5、桅杆4和牵拉件7,主臂5是起重设备前端主起重臂部分,可以采用“A”型或平行的双桁架臂结构;桅杆4与主臂5成角度设置,其作用是改变起重臂工作幅度,提高起重性能。桅杆4的底端与底盘铰接,且底端设在靠近主臂5底端的位置,顶端除了通过牵拉件7与主臂5顶端连接,还通过桅杆支架8或悬挂拉板与设在底盘上后部区域的平台配重9连接。例如,牵拉件7可以是拉板、拉绳或者桁架。桅杆支架8可以为桅杆4提供拉力,或支撑桅杆4。在牵拉件7与桅杆4连接的位置设有变幅滑轮组6,能够通过滑轮组控制钢丝绳的伸缩,以通过牵拉件7拉动主臂5沿下铰点转动,实现起重机的变幅。
如图2所示,底盘包括轨道、回转平台1、设在轨道上的多个第一平衡台车2以及多个第二平衡台车2’,各个第一平衡台车2位于臂架组件下方的前部区域,各个第二平衡台车2’位于臂架组件下方的后部区域。轨道可以呈圆环形,平衡台车底部为车轮结构,车轮压在环形轨道上,整机通过液压系统控制平衡台车上的驱动马达,驱动平衡台车车轮在环形轨道上转动,实现起重机的回转。回转平台1搭接在各个第一平衡台车2和第二平衡台车2’上,整个臂架组件可设置在回转平台1上,具体地,主臂5、桅杆4、平台配重9、卷扬系统3和动力系统10均可设在回转平台1上。其中,动力系统10为起重设备提供动力,平台配重9用于保持整车稳定性。
参考图5,在第一工况下,每个第一平衡台车2均包括平衡梁和两个沿轨道延伸方向设置的台车,平衡梁搭接在两个台车上方,第二平衡台车2’可采用与第一平衡台车2相同的结构,回转平台1搭接在各个平衡梁上。回转平台1在起重设备上用于连接第一平衡台车2和第二平衡台车2’,可用来安装臂架组件、动力装置10、平台配重9和操纵室机架。其中,第一工况的吊重量不超过预设吊装重量,为小重量吊装 工况。预设吊装重量可根据不同起重机的吊重能力进行设定。
参考图6,在第二工况下,每个第一平衡台车2中均增加平衡梁组和台车组,增加的台车组位于原有台车沿轨道方向的外侧,至少部分增加的平衡梁搭接于增加的台车和原有平衡梁的上方,回转平台1搭接在最顶部的平衡梁上。其中,至少部分增加的平衡梁可直接搭接于增加的台车上,或者通过部分增加的平衡梁间接搭接于增加的台车上。其中,第二工况的吊重量超过预设吊装重量,为超重吊装工况。
在实际吊装过程中,由于前方吊重物的作用,第一平衡台车2承受的力要远远大于第二平衡台车2’,在第二工况下,第一平衡台车2下地面的接地比压增幅更大,通过多台车组合,且多级平衡梁沿高度方向叠加设置的结构形式,可增加各第一平衡台车2对回转平台1提供支撑点的跨距,有效增加接地面积,不需改变底盘系统就能在提高整机承载能力的同时降低对地面的接地比压,从而降低地基处理的难度及成本。其中,接地比压是指和地面接触物体的单位面积上所承受的垂直载荷。
平衡台车可以在环形轨道上实现行走动作,且采用多级平衡梁实现均力。多台车布置在同一轨道上,可以充分利用底盘,增加接触面积,有效降低接地比压,地基处理简单,可以大幅减少运营成本。
由于起重设备在转场时,各关键部件均拆开来运输,因而本公开该实施例的方案能够在起重设备组装时,根据实际吊重的需求配置起重设备的吊装能力,既能在吊重量较小时减小吊装能力的浪费,又能在超重吊重时通过结构增加吊装能力,同时还能降低对地面的接地比压,从而降低地基处理的难度及成本。此种起重设备可实现一机多用,只需在现有环轨起重机设备基础上,通过增加少许部件即可提升整机的承载能力。
下面给出两种增加台车组和平衡梁组的方式。
在第一种实施例中,在第二工况下,每个第一平衡台车2增加的台车为偶数个,增加的平衡梁包括上级平衡梁和下级平衡梁,下级平衡梁与原有平衡梁结构相同且将增加的台车两两搭接,每增加两个台车,就需要增加一个下级平衡梁,上级平衡梁搭接在各个下级平衡梁上。该实施例能够降低第一平衡台车2扩展结构后的高度,减小对原有起重机结构的影响,并使结构对称稳定,而且还能充分利用原有的平衡梁结构件。
例如,根据接地比压要求增加台车的数量为两个,采用两个下级平衡梁分别横跨两个台车,最后再通过上级平衡梁横跨在底部的两个下级平衡梁上,保证四个台车受 力均匀。
在第二种实施例中,在第二工况下,每增加一个台车,就需要相应增加一个平衡梁,增加的平衡梁搭接在增加台车和底下一级平衡梁的下方,这样增加的平衡梁的一端直接搭接于增加的台车上。这种结构形式可灵活地增加台车数量,以便根据吊重量需求逐渐地增加底盘支撑强度。
在一个具体的实施例中,如图5所示,在第一工况下,每个第一平衡台车2中包括第一平衡梁22和两个第一台车21,第一平衡梁22搭接在两个第一台车21上方。两个第一台车21结构尺寸相同,第一台车21可采用梯形结构,底部设有沿着轨道运动的导向轮,第一平衡梁22可设计为倒梯形结构,两端分别搭接在两个第一台车21顶部,中间嵌合到两个第一台车21之间的空间,以提高平衡台车的支撑稳定性和整体刚度。
如图6和图7所示,在第二工况下,每个第一平衡台车2在保持第一工况下结构配置的基础上,增加的台车组包括一个第二台车23,增加的平衡两组包括一个第二平衡梁24,第二台车23位于第一台车21沿轨道延伸方向的外侧,第二平衡梁24的两端分别搭接在第二台车23和第一平衡梁22上方。
该实施例采用两级平衡梁在高度方向叠加设置的形式,结构简单,可将单个第一平衡台车2对回转平台1的支撑点向外移动,增加了两个第一平衡台车2对回转平台1的支撑间距,有效增加接地面积,降低对地面的接地比压,从而降低地基处理的难度及成本。
在一些实施例中,仍参考图7,第二平衡梁24包括相互连接的主承载部241和抵接部242,主承载部241搭接在底部的平衡梁上,抵接部242从与主承载部241连接的一端至自由端截面积逐渐减小,且相对于主承载部241向下倾斜,直至抵接部242的自由端与增加平衡台车的顶面接触。该实施例能够在节省重量的情况下,使第一平衡台车2形成稳定的支撑结构。
例如,增第二平衡梁24的主承载部241搭接在第一平衡梁22上,抵接部242的一端与主承载部241连接,另一端与第二台车23的顶面接触。第二平衡梁24的顶部设有安装接口,可实现回转平台1与第一平衡台车2的连接。
该实施例的受力情况可参考图8,两个第一台车21共同为第一平衡梁22提供支撑力,第一平衡梁22和第二台车23共同为第二平衡梁24提供支撑力,在第二工况下,回转平台1设在第一平衡台车2的第二平衡梁24上这样就实现了通过三个台车 共同承担吊重量,不仅增加了支撑跨距,还能减小每个台车工作时的受力,并保证三个台车受力均匀,由此可减小平衡台车的结构件尺寸、配套件规格和运输参数。
如图6所示,回转平台1的前端横跨在两个第一平衡台车2上,后端横跨在两个第二平衡台车2’上,可保证左右两组平衡台车受力均匀,工作稳定。
如图10A和10B所示,在第一工况下,参考图10A,两个第一平衡台车2之间的支撑跨距为L1;在第二工况下,参考图10B,通过增加台车和平衡梁,两个第一平衡台车2之间的支撑跨距为L2,L2>L1。
如图9A和9B所示,在第一工况下,参考图9A,两个第一平衡台车2之间围合形成的支撑面积S1;在第二工况下,参考图9B,通过增加台车和平衡梁,两个第一平衡台车2之间的围合形成的支撑面积S2,S2>S1。
在另一些实施例中,台车组包括至少两个第二台车23,平衡梁组包括至少两个第二平衡梁24,至少两个第二平衡梁24中的每个第二平衡梁24搭接在第一平衡梁22、至少两个第二台车23和其它第二平横梁24中任意两个的上方。该实施例能够进一步增加起重机在第二工况下的承载能力。此种设置方式可采用如下两类结构,下面将分别给出。
在第一种实施例中,第二台车23为偶数个,至少两个第二平衡梁24包括上级平衡梁和下级平衡梁,下级平衡梁与第一平衡梁22结构相同且将至少两个第二台车23两两搭接,上级平衡梁搭接在第一平衡梁22和各个下级平衡梁上。每增加两个第二平衡梁24,就需要增加一个下级平衡梁。该实施例能够降低第一平衡台车2扩展结构后的高度,减小对原有起重机结构的影响,并使结构对称稳定,而且还能充分利用原有的平衡梁结构件。
例如,根据接地比压要求增加两个第二台车23,采用一个下级平衡梁横跨两个第二台车23,最后再通过上级平衡梁横跨在第一平衡梁22和下级平衡梁上,保证第一台车21和第二台车23受力均匀。
在第二种实施例中,每增加一个第二台车23,就需要相应增加一个第二平衡梁24,第二平衡梁24的一端直接搭接于第二台车23上,另一端搭接在底下一级平衡梁的上方,底下一级平衡梁可以是第一平衡梁22或第二平衡梁24。这种结构形式可灵活地增加第二台车23数量,以便根据吊重量需求逐渐地增加底盘支撑强度。
在一些实施例中,底盘包括路基箱30,路基箱30铺设在地面之上,为环形板结构,面积大,可降低起重设备对地面的压力。轨道为环形轨道,铺设在路基箱之上, 平衡台车可以沿其转动。
如图6所示,第一平衡台车2和第二平衡台车2’在内环轨道31和外环轨道32上并排设置,内环轨道31和外环轨道32上相应位置的第一平衡台车2结构相同,内环轨道31和外环轨道32上相应位置的第二平衡台车2’结构相同。在图6中,在轨道的前部区域间隔设有两组第一平衡台车2,每组第一平衡台车2均包括在内环轨道31和外环轨道32上对应设置的两个第一平衡台车2,各个第一平衡台车2中均增加平衡梁组和台车组,包括三个台车和两个平衡梁。在轨道的后部区域间隔设有两组第二平衡台车2’,每组第二平衡台车2’均包括在内环轨道31和外环轨道32上对应设置的两个第二平衡台车2’,各个第二平衡台车2’中只有第一平衡梁22搭接在底部的两个第一台车21上。
在该实施例中,第一平衡台车2和第二平衡台车2’作用于内外环形轨道上,第一和第二平衡台车数量根据受力采取差异化布置,减小单个平衡台车的受力,使第一和第二平衡台车中每个台车受力均匀,同时增大与地面的接触面积,降低接地比压。
在另一些实施例中,在第二工况下,每个第二平衡台车2’也增加平衡梁组和台车组,增加的台车组位于原有台车沿轨道方向的外侧,增加的平衡梁搭接在增加的台车和底部平衡梁的上方。如果吊重量较大,该实施例可以同时增加第一平衡台车2和第二平衡台车2’对回转平台1提供支撑点的跨距,从而进一步增加接地面积,降低对地面的接地比压,进而降低地基处理的难度及成本,可使起重机获得更大的吊重能力。
具体地,在第一工况下,每个第二平衡台车2’中包括第一平衡梁22和两个第一台车21,第一平衡梁22搭接在两个第一台车21上方;在第二工况下,每个第二平衡台车2’还包括平衡梁组和台车组,台车组位于第一台车21沿轨道延伸方向的外侧,平衡梁组搭接在第一平衡梁22和台车组的上方。上述给出的第一平衡台车2的结构均适用于第二平衡台车2’。
在一些实施例中,如图3B和图4,底盘还包括回转平台1,回转平台1包括前车平台12、后车平台11和两根纵梁13。后车平台11支撑于多个第二平衡台车2’上,前车平台12支撑于多个第一平衡台车2上,两根纵梁13并排间隔连接于前车平台12与后车平台11之间。
其中,在第一工况下,前车平台12包括第一横梁段121和两个支撑台122,第一横梁段121位于两个支撑台122之间,为了提高支撑刚度和稳定性,在两个支撑台122 之间沿回转平台1的长度方向间隔设置两个第一横梁段121,两根纵梁13与内侧的第一横梁段121连接。支撑台122上设有安装接口123,用于安装臂架组件。具体地,安装接口123可以是耳板,对于双主臂和双桅杆的起重设备,两个主臂5的底端分别铰接在一个支撑台122的耳板上,两个桅杆4的底端也分别连接在一个支撑台122的耳板上。
在第二工况下,第一横梁段121的两端增加第二横梁段124,第二横梁段124与相应侧的支撑台122连接。相当于增加了两个支撑台122之间的距离,从而增加了前车平台12的支撑跨距,以便与底部第一平衡台车2支撑点跨距的增加相匹配。异形回转平台1的前车平台12安装在第二平衡梁24的顶部,可保证同一个第一平衡台车2中的三个台车受力均匀。
优选地,第二横梁段124的长度小于第一横梁段121,这样能够以较小的步长增加吊装能力,以根据实际吊重需求灵活地增加部件的结构刚度,以免造成吊装能力的浪费。
该实施例可根据实际吊重的需求配置起重设备的吊装能力,在吊重量较小时减小回转平台1前车平台12对臂架组件的支撑跨距,并与未增加台车和平衡梁的第一平衡台车2相匹配,可减小吊装能力的浪费。又能在超重吊重时通过结构增加吊装能力,增加回转平台1前车平台12对臂架组件的支撑跨距,以便与增加台车和平衡梁的第一平衡台车2相匹配,在满足吊装能力的同时,还能降低对地面的接地比压,从而降低地基处理的难度及成本。
在一些实施例中,如图3B和图4,纵梁13包括多个安装段,在第一工况下,由于第一平衡台车2和第二平衡台车2’结构相同,顶部高度也相同,因此各个安装段沿着自身长度方向依次连接,形成整体与轨道所在平面平行的纵梁13。在第二工况下,与前车平台12连接的安装段相对于轨道所在平面倾斜设置,且安装段与前车平台12连接的第一端高于与相邻安装段连接的第二端。由于在第二工况下,第一平衡台车2由于在高度方向上采用多个平衡梁叠加设置,总高度大于第二平衡台车2’,因此将与前车平台12连接的安装段倾斜设置可为第一平衡台车2的加高预留空间,以便使前车平台12搭接于高度增大的第一平衡台车2上。纵梁13采用多段分体结构,可适应不同变换形式的需求。
在该结构的基础上,如图2所示,卷扬系统3和动力系统10可搭接设置在两个纵梁13上,可设在不同的安装段上。如图4所示,后车平台11包括两个平行设置的 横梁111,两个横梁111之间通过两个纵向梁112连接,在两个纵向梁112上分别设置一个安装接口113,平台配重9可设在后车平台11上。具体地,后车平台11上的安装接口113可以是耳板,桅杆支架8的一端铰接于桅杆4顶部,另一端铰接于后车平台11的耳板处。
具体地,在第一工况下,如图3A所示,在前车平台12的两个支撑台122之间,沿回转平台1的长度方向间隔设有两根第一横梁段121(D1),两个支撑台122之间的距离为L1。在第二工况下,如图3B所示,在前车平台12的两个支撑台122之间,沿回转平台1的长度方向间隔设有两组横梁段,每组横梁段均包括依次连接的第二横梁段124(D2)、第一横梁段121(D1)和第二横梁段124(D2),两个支撑台122之间的距离为L2。由于增加了第二横梁段124,L2>L1,相当于通过结构增大了第二工况下前车平台12的支撑跨距。
更进一步地,在第一工况下,如图3A所示,纵梁13从后车平台11至前车平台12包括沿长度方向依次连接的安装段C1、C2、C3和C4,纵梁13所在平面与轨道平行。在第二工况下,如图3B所示,纵梁13从后车平台11至前车平台12包括沿长度方向依次连接的安装段C1、C2、C3和C5,从图4和图11可以看出,安装段C5倾斜设置。
本公开起重设备回转平台1横梁和纵梁13均采用模块化设计、多段分体式结构,具有由小跨距升级为大跨距的接口,可以实现由小跨距平台到到大跨距回转平台1的转换。
在一些实施例中,如图14和15,臂架组件包括两个主臂5,两个主臂5在顶部与底部的位置对应连接。其中,在第一工况下,如图13A,两个主臂5底部的位置通过两个在长度方向上相连的第一连接杆段51连接;在第二工况下,如图13B,两个主臂5底部的位置增加第一连接杆段51。具体地,可在两个第一连接杆段51之间增加,也可在第一连接杆段51与主臂5之间增加。
如图13A和图13B,在两个主臂5顶部宽度一定的情况下,在第一工况下,如图13A所示,两个主臂5底部通过两个第一连接杆段51连接,分别为E1和E2,两个主臂5之间的底部宽度为L1。在第二工况下,如图13B所示,两个主臂5底部通过三个第一连接杆段51连接,在E1和E2之间增加了E3,两个主臂5之间的底部宽度为L2,且L2>L1。在两种工况下,两个主臂5之间的底部宽度均大于顶部宽度,使两个主臂5从顶部至底部呈梯形结构,有利于增加主臂5的整体刚度。
可选地,臂架组件包括两个副臂,副臂为主臂5的加长臂,两个副臂在顶部与底部的位置对应连接;其中,在第一工况下,两个副臂底部的位置通过两个沿长度方向相连的第一连接杆段51连接;在第二工况下,两个副臂底部的位置增加第一连接杆段51。
在一些实施例中,如图14和15,臂架组件包括两个主臂5、两个桅杆4和两个牵拉件7,桅杆4的底端在底盘上邻近相应主臂5的底端铰接,顶端通过牵拉件7与相应主臂5的顶端连接,两个桅杆4的顶部与底部之间对应连接。其中,在第一工况下,如图12A,位于桅杆4底部的位置通过两个在长度方向上相连的第二连接杆段41连接;在第二工况下,如图12B,位于桅杆4底部的两个第二连接杆段41之间增加第二连接杆段41。具体地,可在两个第二连接杆段41之间增加,也可在第二连接杆段41与主臂4之间增加。
如图12A和图12B,在两个桅杆4顶部宽度一定的情况下,在第一工况下,如图12A所示,两个桅杆4底部通过两个第二连接杆段41连接,分别为D1和D2,两个桅杆4之间的底部宽度为L1,两个桅杆4之间形成矩形结构。在第二工况下,如图12B所示,两个桅杆4底部通过三个第二连接杆段41连接,在D1和D2之间增加了D3,两个桅杆4之间的底部宽度为L2,且L2>L1。在第二工况下,两个桅杆4之间的底部宽度大于顶部宽度,使两个桅杆4从顶部至底部呈梯形结构,有利于增加桅杆4的整体刚度。
上述各实施例均以全环轨式起重设备为例进行说明,底盘中同时设有第一平衡台车2和第二平衡台车2’,分别对应于通常意义上的前平衡台车和后平衡台车,由此起重设备上车可实现整周回转。除此之外,本公开的改进也适用于半环轨式起重设备,底盘中只设有第一平衡台车2,对应于通常意义上的前平衡台车,起重设备上车只能以配重的中心点作为回转中心,沿轨道的部分周向回转。
在本公开的实施例中,整车基于同一个环形环轨进行变换,变换方式简单,成本低;变换过程中仅需将各部件进行重新变换组装,部件通用率高;多台车布置采用同一套平衡台车,部件利用率高,同时可以减轻平衡台车的设计难度,降低平衡台车的结构尺寸,降低工作时的受力,减小配套件规格和运输参数,实现“小结构大承载能力”的目的。下面将进行理论分析:
整机接地比压:P=F/S;
其中:F为整车的垂直力;S为实际接地面积,即平衡台车接地面积;
由图9A和9B可知,多台车接地面积S2>S1,因此在相同吊装量及整车垂直力相同的情况下P2<P1,多台车配置可大幅度降低对地面的接地比压。
以8弦杆臂架组件为例,截面惯性矩为:
I x=8I dg+2A 2A dg+2B 2A dg
I y=8I dg+2H 2A dg
其中:Ix为回转平面惯性矩(在回转平面内,臂架作为一端固定一端自由的力学模型来进行分析);Iy为变幅平面惯性矩(在变幅平面内,臂架作为两端简支的力学模型来进行分析);Idg为单个主弦杆的惯性矩;B为单臂架截面宽度尺寸;H为单臂架截面高度尺寸;A为双臂架中心距(即图12A、12B、13A和图13B中的跨距L);Adg为单个主弦杆的截面积。
可知,在同等条件下,臂架组件的主弦杆越多,臂架组件的截面惯性矩越大,臂架组件的承载能力越大;双臂架组件的中心距越大,回转面的截面惯性矩大幅度增大,臂架组件的承载能力也大幅度提高。由图12A、12B、13A和13B可知,L2>L1,因此Ix 2>Ix 1,异形主臂和异形桅杆的承载能力也得到大幅度的提升。
本方案已双臂复合式8弦杆举例说明,不局限于此。本方案为了成本最优,第一和第二平衡台车采用差异化布置,不局限于此,也可以相同方式布置。本方案中的示意图仅表示原理,并不局限于此。
本公开的起重设备至少具备如下优点之一:
(1)通过在现有环形轨道上,不增加底盘成本及整机占地面积的前提下,通过将异形平衡台车、异形回转平台、异形主臂和异形桅杆采用模块化、通用化结构形式,可以满足不同变换形式的需求。
(2)在现有部件的基础上,通过增加少许部件即可提升超大型起重设备的承载能力,在不需改变底盘系统的情况下可有效降低整车对地面的接地比压,既满足了特殊工况下超大超重件吊装对整机承载能力的需求,又可大幅度降低吊装场地地基的处理难度及处理成本。可实现一机多用的功能,拓宽了使用范围,常规机型与扩展机型采用同一轨道,部件利用率高,成本低,并且不增加整机占地面积;常规机型与扩展机型采用同一套平衡台车,部件利用率高,同时可以减轻平衡台车的设计难度,降低平衡台车的结构尺寸,实现“小结构”大承载能力的目的。
(3)根据不同的吊重量,可根据需求配置起重设备的吊装能力,可充分利用整机的吊装能力。可以满足“小车”的运营经济性,同时具备提升承载能力的结构接口 及方法,可以实现承载能力的提升,满足个别超大超重件的吊装。
(4)第一和第二平衡台车的差异化布置,使每组台车的受力均匀、合理。
(5)超大型起重设备采用同一套平衡台车、同一套底盘,降低平衡台车及底盘的结构尺寸,降低工作时的受力,减小配套件规格和运输参数,实现“小结构大承载能力”的目的,整机实现承载能力提升功能的成本低。
(6)可根据实际吊装工况、场地等条件组装出不同的超大型起重设备,降低了整车对外界环境(如吊装场地)的条件要求,提高了整车使用率,工程适用性更广。
(7)整机形式变化多样,方便用户采用多种方式进行施工,部件通用率高,成本低。
(8)整机变换形式简单可靠,方便用户使用,并可以保证任何工况下都能够进行回转。
以上对本公开所提供的一种起重设备进行了详细介绍。本文中应用了具体的实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (14)

  1. 一种起重设备,包括:
    臂架组件;和
    底盘,所述底盘包括轨道和多个第一平衡台车(2),各个所述第一平衡台车(2)设在所述轨道上且位于臂架组件下方的前部区域;
    其中,在第一工况下,每个所述第一平衡台车(2)中包括第一平衡梁(22)和两个第一台车(21),所述第一平衡梁(22)搭接在所述两个第一台车(21)上方;在第二工况下,每个所述第一平衡台车(2)还包括平衡梁组和台车组,所述台车组位于所述第一台车(21)沿所述轨道延伸方向的外侧,所述平衡梁组搭接在所述第一平衡梁(22)和所述台车组的上方;第一工况的吊重量不超过预设吊装重量,第二工况的吊重量超过预设吊装重量。
  2. 根据权利要求1所述的起重设备,其中,所述台车组包括一个第二台车(23),平衡梁组包括一个第二平衡梁(24),所述第二平衡梁(24)的两端分别搭接在所述第一平衡梁(22)和所述第二台车(23)上方。
  3. 根据权利要求2所述的起重设备,其中,所述第二平衡梁(24)包括相互连接的主承载部(241)和抵接部(242),所述主承载部(241)搭接在所述第一平衡梁(22)上,所述抵接部(242)从与主承载部(241)连接的一端至自由端截面积逐渐减小,且相对于所述主承载部(241)向下倾斜,直至所述抵接部(242)的自由端与所述第二台车(23)的顶面接触。
  4. 根据权利要求1所述的起重设备,其中,所述台车组包括至少两个第二台车(23),平衡梁组包括至少两个第二平衡梁(24),所述至少两个第二平衡梁(24)中的每个第二平衡梁(24)搭接在第一平衡梁(22)、至少两个第二台车(23)和其它第二平横梁(24)中的两个的上方。
  5. 根据权利要求4所述的起重设备,其中,所述第二台车(23)为偶数个,所述至少两个第二平衡梁(24)包括上级平衡梁和下级平衡梁,所述下级平衡梁与所述第一平衡梁(22)结构相同且将所述至少两个第二台车(23)两两搭接,所述上级平衡梁搭接在所述第一平衡梁(22)和各个下级平衡梁上。
  6. 根据权利要求1所述的起重设备,其中,所述底盘还包括多个第二平衡台车(2’),各个所述第二平衡台车(2’)设在所述轨道上且位于臂架组件下方的后部 区域。
  7. 根据权利要求6所述的起重设备,其中,所述轨道为环形轨道且包括:内环轨道(31)和外环轨道(32),所述第一平衡台车(2)和第二平衡台车(2’)均在所述内环轨道(31)和外环轨道(32)上并排设置,所述内环轨道(31)和外环轨道(32)上相应位置的所述第一平衡台车(2)结构相同,所述内环轨道(31)和外环轨道(32)上相应位置的所述第二平衡台车(2’)结构相同。
  8. 根据权利要求6所述的起重设备,其中,在第一工况下,每个所述第二平衡台车(2’)中包括所述第一平衡梁(22)和两个第一台车(21),所述第一平衡梁(22)搭接在所述两个第一台车(21)上方;在第二工况下,每个所述第二平衡台车(2’)还包括平衡梁组和台车组,所述台车组位于所述第一台车(21)沿所述轨道延伸方向的外侧,所述平衡梁组搭接在所述第一平衡梁(22)和所述台车组的上方。
  9. 根据权利要求6所述的起重设备,其中,所述底盘还包括回转平台(1),所述回转平台(1)包括:
    前车平台(12),支撑于各个所述第一平衡台车(2)上;
    后车平台(11),支撑于各个所述第二平衡台车(2’)上;和
    纵梁(13),连接于所述前车平台(12)与后车平台(11)之间;
    其中,在第一工况下,所述前车平台(12)包括第一横梁段(121)和两个支撑台(122),所述第一横梁段(121)位于两个所述支撑台(122)之间,所述纵梁(13)与所述第一横梁段(121)连接;在第二工况下,所述第一横梁段(121)的两端增加第二横梁段(124),所述第二横梁段(124)与相应侧的所述支撑台(122)连接。
  10. 根据权利要求9所述的起重设备,其中,所述纵梁(13)包括多个安装段,在第一工况下,各个所述安装段形成整体与轨道所在平面平行的纵梁(13);在第二工况下,与所述前车平台(12)连接的所述安装段相对于轨道所在平面倾斜设置,且所述安装段与所述前车平台(12)连接的第一端高于与相邻安装段连接的第二端。
  11. 根据权利要求9所述的起重设备,其中,所述臂架组件包括两个桅杆(4)和两个主臂(5),两个所述主臂(5)的底端分别连接在一个所述支撑台(122)上,所述两个桅杆(4)的底端分别连接在一个所述支撑台(122)上。
  12. 根据权利要求1所述的起重设备,其中,所述臂架组件包括两个主臂(5),两个所述主臂(5)在顶部与底部的位置对应连接;其中,在第一工况下,两个所述主臂(5)的底部位置通过两个沿长度方向相连的第一连接杆段(51)连接;在第二 工况下,两个所述主臂(5)的底部位置增加第一连接杆段(51);或者
    所述臂架组件包括两个副臂,两个所述副臂在顶部与底部的位置对应连接;其中,在第一工况下,两个所述副臂的底部位置通过两个沿长度方向相连的第一连接杆段(51)连接;在第二工况下,两个所述副臂的底部位置增加第一连接杆段(51)。
  13. 根据权利要求1所述的起重设备,其中,所述臂架组件包括两个主臂(5)、两个桅杆(4)和两个牵拉件(7),所述桅杆(4)的底端在所述底盘上邻近相应主臂(5)的底端铰接,顶端通过所述牵拉件(7)与相应所述主臂(5)的顶端连接,两个所述桅杆(4)的顶部与底部之间对应连接;
    其中,在第一工况下,位于所述桅杆(4)的底部位置设有两个所述第二连接杆段(41);在第二工况下,位于所述桅杆(4)底部的两个所述第二连接杆段(41)之间增加第二连接杆段(41)。
  14. 根据权利要求1所述的起重设备,其中,所述臂架组件包括两个主臂(5)和两个桅杆(4),两个所述主臂(5)和/或两个所述桅杆(4)在第二工况下从顶部至底部呈梯形结构。
PCT/CN2019/076667 2018-09-05 2019-03-01 一种起重设备 WO2020048102A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2021108671A RU2761006C1 (ru) 2018-09-05 2019-03-01 Грузоподъемное устройство
GB2102004.5A GB2590831B (en) 2018-09-05 2019-03-01 Hoisting apparatus
ZA2021/02235A ZA202102235B (en) 2018-09-05 2021-04-01 Hoisting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811029799.1 2018-09-05
CN201811029799.1A CN108946515A (zh) 2018-09-05 2018-09-05 一种起重设备

Publications (1)

Publication Number Publication Date
WO2020048102A1 true WO2020048102A1 (zh) 2020-03-12

Family

ID=64475195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076667 WO2020048102A1 (zh) 2018-09-05 2019-03-01 一种起重设备

Country Status (5)

Country Link
CN (1) CN108946515A (zh)
GB (1) GB2590831B (zh)
RU (1) RU2761006C1 (zh)
WO (1) WO2020048102A1 (zh)
ZA (1) ZA202102235B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117550500A (zh) * 2024-01-10 2024-02-13 天津同丰信息技术有限公司 一种货物运输用车臂架工作安全保护装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946515A (zh) * 2018-09-05 2018-12-07 徐工集团工程机械股份有限公司 一种起重设备
CN113460594B (zh) * 2020-03-30 2023-03-21 南京宝地梅山产城发展有限公司 一种带回转辅助支撑的料机
CN116462109A (zh) * 2020-08-13 2023-07-21 合肥工业大学 柔索并联起重机器人的稳定调节机构及调节方法
CN113023564A (zh) * 2021-03-29 2021-06-25 中核能源科技有限公司 环形吊车
CN112960574B (zh) * 2021-04-28 2023-10-24 徐工集团工程机械股份有限公司建设机械分公司 起重机平衡重的托架和起重机
CN113184697A (zh) * 2021-04-28 2021-07-30 徐工集团工程机械股份有限公司建设机械分公司 轨道行走组件及环轨起重机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394911A (en) * 1980-04-08 1983-07-26 Fmc Corporation Heavy duty crane
US6516961B1 (en) * 1998-03-26 2003-02-11 Atecs Mannesmann Ag Ringlift crane
CN202609838U (zh) * 2012-05-07 2012-12-19 徐工集团工程机械股份有限公司 组合式台车及履带起重机
CN108083140A (zh) * 2017-09-18 2018-05-29 太原重型机械集团工程技术研发有限公司 环轨直轨两用起重机
CN108328483A (zh) * 2018-03-29 2018-07-27 徐工集团工程机械股份有限公司 一种带门架的超大型起重设备
CN108328487A (zh) * 2018-04-11 2018-07-27 徐工集团工程机械股份有限公司 一种具有变形功能的双轨道超大型起重设备
CN108946515A (zh) * 2018-09-05 2018-12-07 徐工集团工程机械股份有限公司 一种起重设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1207988A1 (ru) * 1984-04-11 1986-01-30 Донецкий Филиал Института "Автомэнергостройпроект" Ходова часть крана
CN204625000U (zh) * 2015-01-07 2015-09-09 河南省矿山起重机有限公司 一种台车装置及使用该台车装置的门式起重机
CN108455467A (zh) * 2018-04-11 2018-08-28 徐工集团工程机械股份有限公司 一种具有变形功能的多轨道超大型起重设备
CN208883351U (zh) * 2018-09-05 2019-05-21 徐工集团工程机械股份有限公司 一种起重设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394911A (en) * 1980-04-08 1983-07-26 Fmc Corporation Heavy duty crane
US6516961B1 (en) * 1998-03-26 2003-02-11 Atecs Mannesmann Ag Ringlift crane
CN202609838U (zh) * 2012-05-07 2012-12-19 徐工集团工程机械股份有限公司 组合式台车及履带起重机
CN108083140A (zh) * 2017-09-18 2018-05-29 太原重型机械集团工程技术研发有限公司 环轨直轨两用起重机
CN108328483A (zh) * 2018-03-29 2018-07-27 徐工集团工程机械股份有限公司 一种带门架的超大型起重设备
CN108328487A (zh) * 2018-04-11 2018-07-27 徐工集团工程机械股份有限公司 一种具有变形功能的双轨道超大型起重设备
CN108946515A (zh) * 2018-09-05 2018-12-07 徐工集团工程机械股份有限公司 一种起重设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117550500A (zh) * 2024-01-10 2024-02-13 天津同丰信息技术有限公司 一种货物运输用车臂架工作安全保护装置
CN117550500B (zh) * 2024-01-10 2024-03-19 天津同丰信息技术有限公司 一种货物运输用车臂架工作安全保护装置

Also Published As

Publication number Publication date
CN108946515A (zh) 2018-12-07
GB2590831A (en) 2021-07-07
RU2761006C1 (ru) 2021-12-02
GB202102004D0 (en) 2021-03-31
ZA202102235B (en) 2022-10-26
GB2590831B (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2020048102A1 (zh) 一种起重设备
CN201580914U (zh) 单梁无轨组合龙门吊
CN102190255B (zh) 一种起重机
CN105110213A (zh) 起重物自重配重平衡机构的起重机和起重机改造方案
CN203728443U (zh) 一种具有主副臂结构的组塔塔式起重机
CN108328487B (zh) 一种具有变形功能的双轨道超大型起重设备
CN103832933B (zh) 一种带有副臂的组塔塔式起重机
CN102556861B (zh) 一种用于起重机的配重拉板装置及起重机
CN208883351U (zh) 一种起重设备
CN101955133B (zh) 一种移动式起重机
CN201338910Y (zh) 简易移动式行车
CN102826447A (zh) 一种桁架臂起重机及其下车结构、转点方法
CN112645224A (zh) 一种塔式起重机
CN201999659U (zh) 一种加强型臂架及设有该臂架的起重机
CN115676616A (zh) 轨道转场装置、环轨起重机、转场系统及转场方法
CN202449768U (zh) 一种用于起重机的配重拉板装置及起重机
CN108455467A (zh) 一种具有变形功能的多轨道超大型起重设备
CN214456342U (zh) 一种用于起重机的一体化超起变幅装置
CN205076725U (zh) 一种转台结构及具有该转台结构的风电安装船的起重机
CN107010545A (zh) 一种用于柴油机的起吊装置
CN210457249U (zh) 机身自顶升的电力抱杆结构
CN103510742B (zh) 多功能旋转抱杆
CN203159081U (zh) 一种桁架臂起重机及其下车结构
CN111483931A (zh) 一种臂架组件和起重机
CN214692982U (zh) 一种起重机械的三方位预应力体系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202102004

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190301

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 521421379

Country of ref document: SA