WO2020045675A1 - 熱音響装置 - Google Patents

熱音響装置 Download PDF

Info

Publication number
WO2020045675A1
WO2020045675A1 PCT/JP2019/034307 JP2019034307W WO2020045675A1 WO 2020045675 A1 WO2020045675 A1 WO 2020045675A1 JP 2019034307 W JP2019034307 W JP 2019034307W WO 2020045675 A1 WO2020045675 A1 WO 2020045675A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
heat exchanger
waveguide
section
Prior art date
Application number
PCT/JP2019/034307
Other languages
English (en)
French (fr)
Inventor
西村 道明
孝 小野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020506847A priority Critical patent/JPWO2020045675A1/ja
Priority to CN201980047059.7A priority patent/CN112425185A/zh
Priority to US17/263,120 priority patent/US20210204072A1/en
Priority to EP19855523.7A priority patent/EP3846497A4/en
Publication of WO2020045675A1 publication Critical patent/WO2020045675A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/002Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using the energy of vibration of fluid columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/002Transducers other than those covered by groups H04R9/00 - H04R21/00 using electrothermic-effect transducer

Definitions

  • thermoacoustic device relate to a thermoacoustic device.
  • thermoacoustic device that converts heat energy into acoustic energy by a thermoacoustic effect, which is an interaction between heat and sound waves, and converts acoustic energy into other energy such as electric energy is known.
  • thermoacoustic generator in which a generator that generates power in response to the generator is provided in a loop tube is disclosed (for example, see Patent Document 1).
  • the thermoacoustic device includes a loop-shaped waveguide, a heat exchanger, and a heat conducting member.
  • the loop waveguide is filled with a medium.
  • the heat exchanger is provided in the waveguide, and has a low temperature section and a high temperature section that generate a temperature gradient.
  • the heat conduction member changes the temperature of the central part of at least one of the low temperature part and the high temperature part.
  • FIG. 1 is a diagram illustrating an example of the thermoacoustic device according to the embodiment.
  • FIG. 2A is a diagram illustrating an example of a high-temperature portion and a heat conduction member of a heat exchanger included in the thermoacoustic device according to the embodiment.
  • FIG. 2B is a diagram illustrating an example of a heat conducting member included in the thermoacoustic device according to the embodiment.
  • FIG. 3 is a diagram illustrating another example of the heat conducting member included in the thermoacoustic device according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a temperature gradient holding unit of the heat exchanger included in the thermoacoustic apparatus according to the embodiment.
  • FIG. 5A is a diagram illustrating another example of the high-temperature portion and the heat conducting member of the heat exchanger included in the thermoacoustic apparatus according to the embodiment.
  • FIG. 5B is a diagram illustrating another example of the high-temperature portion and the heat conducting member of the heat exchanger included in the thermoacoustic device according to the embodiment.
  • FIG. 5C is a diagram illustrating the relationship between the thickness of the fins forming the high-temperature portion of the heat exchanger included in the thermoacoustic apparatus according to the embodiment and the thickness of the heat conducting member.
  • FIG. 5D is a diagram illustrating the relationship between the width of the fins and the width of the heat conducting member that constitute the high-temperature portion of the heat exchanger included in the thermoacoustic apparatus according to the embodiment.
  • FIG. 6 is a diagram illustrating still another example of the high-temperature portion and the heat conducting member of the heat exchanger included in the thermoacoustic apparatus according to the embodiment.
  • thermoacoustic apparatus disclosed in the present application
  • FIG. 1 is a diagram illustrating an example of the thermoacoustic device 1 according to the embodiment.
  • the near side in the direction orthogonal to the paper surface is the positive direction of the Z-axis direction
  • the longitudinal direction and the lateral direction of the thermoacoustic device 1 are the X-axis direction and the Y-axis direction, respectively. 1 shows a three-dimensional rectangular coordinate system.
  • the thermoacoustic device 1 is a device that converts heat energy into acoustic energy of sound waves and converts acoustic energy of sound waves into other energy such as electric energy by a thermoacoustic effect.
  • the thermoacoustic effect is an interaction between heat and sound waves.
  • the thermoacoustic device 1 according to the embodiment includes a waveguide 2, a heat exchanger 3, an exciter 7, and a converter 8.
  • the waveguide 2 is filled with a gas G.
  • the gas G is, for example, air, nitrogen (N 2 ), helium (He), argon (Ar), hydrogen (H 2 ), carbon dioxide (CO 2 ), or the like.
  • the waveguide 2 seals the gas G inside.
  • the pressure of the gas G filled in the waveguide 2 is, for example, not less than 1 atm (1013.25 hPa) and less than 10 atm (10132.5 hPa).
  • the waveguide 2 is a loop-shaped waveguide having no reflective wall.
  • the waveguide 2 has, for example, a single loop shape as shown in FIG.
  • the waveguide 2 resonates sound waves generated in the gas G.
  • the phase of the temperature change of the gas G caused by the heat conduction between the heat exchanger 3 and the gas G with respect to the movement (advance) of the gas G by the sound wave generated in the gas G is caused by the rise of the medium. Delay by an amount corresponding to the warming or cooling rate. Accordingly, the phase of the pressure change of the sound wave of the gas G is delayed by 0 ° to 90 ° from the phase of the pressure change of the gas G when there is no temperature change.
  • thermoacoustic device 1 when the waveguide 2 has a reflecting wall, the resonance of the sound wave caused by the temperature change generated in the gas G is not stabilized, and the amplitude of the sound wave generated in the gas G is reduced.
  • the resonance of the sound wave generated in the gas G can be stabilized by the waveguide 2 having the shape of the loop without the reflective wall. Accordingly, the thermoacoustic device 1 according to the embodiment can increase the output of acoustic energy of sound waves.
  • the length of the waveguide 2 is an integral multiple of the wavelength of the sound wave generated in the gas G.
  • the length of the waveguide 2 is set so that, for example, the resonance frequency of the sound wave generated in the gas G is 1 m or less.
  • the waveguide 2 is, for example, a hollow waveguide having a circular or square cross section.
  • the waveguide 2 is formed of, for example, a metal such as stainless steel (SUS) or a plastic such as vinyl chloride.
  • SUS stainless steel
  • plastic such as vinyl chloride.
  • the heat exchanger 3 transfers heat to the gas G filled in the waveguide 2.
  • the heat exchanger 3 heats / cools the gas G according to the phase of the advection of the sound wave.
  • the length of the heat exchanger 3 in the direction in which the waveguide 2 extends (X-axis direction) is, for example, about 1/20 of the wavelength of the sound wave generated in the gas G, for example, about 5 cm.
  • the heat exchanger 3 is provided in the waveguide 2.
  • the heat exchanger 3 has a low temperature section 4, a high temperature section 5, and a temperature gradient holding section 6.
  • the low temperature section 4 is a member included in the heat exchanger 3 that maintains a relatively low temperature.
  • the high temperature section 5 is a member included in the heat exchanger 3 that maintains a relatively high temperature.
  • the relatively low temperature and the relatively high temperature are based on a comparison between the temperature of the low temperature section 4 and the temperature of the high temperature section 5. That is, the temperature of the high temperature part 5 is higher than the temperature of the low temperature part 4.
  • a temperature gradient occurs between the low temperature section 4 and the high temperature section 5. The configurations of the low temperature section 4 and the high temperature section 5 will be described later.
  • the low temperature section 4 and the high temperature section 5 are connected to a relatively low temperature heat source and a relatively high temperature heat source, respectively.
  • the relatively low temperature heat source may be, for example, a coolant such as water supplied to the tube.
  • the relatively high temperature heat source may be a heating medium such as boiling water supplied to the tube.
  • One of the relatively low temperature heat source and the relatively high temperature heat source may be, for example, air at room temperature.
  • the temperature gradient holding section 6 is a member that holds a temperature gradient generated between the low temperature section 4 and the high temperature section 5 of the heat exchanger 3.
  • the temperature gradient holding section 6 is provided between the low temperature section 4 and the high temperature section 5 of the heat exchanger 3.
  • the distance between the low-temperature section 4 and the temperature gradient holding section 6 and the distance between the temperature gradient holding section 6 and the high-temperature section 5 are, for example, 0.3 mm or less.
  • the temperature gradient holding unit 6 generates and amplifies a sound wave in the gas G by a temperature gradient generated between the low temperature unit 4 and the high temperature unit 5. The configuration of the temperature gradient holding unit 6 will be described later.
  • the exciter 7 generates a sound wave in the gas G at a predetermined frequency.
  • the exciter 7 is provided in the waveguide 2 so as to seal the gas G.
  • the piston inserted into a cylinder provided so as not to change the acoustic impedance of the waveguide 2 reciprocates, whereby the pressure of the gas G is increased. Vibrates.
  • the converter 8 converts acoustic energy of sound waves generated in the gas G into predetermined energy and extracts predetermined energy.
  • the converter 8 may be, for example, a generator that generates electricity by converting acoustic energy of sound waves generated in the gas G into electric energy.
  • the thermoacoustic device 1 can generate power using, for example, heat supplied to the heat exchanger 3 from a heat source.
  • the converter 8 is, for example, a cooler (cooling heat exchanger) that lowers the temperature of a medium that contacts the converter 8 by converting acoustic energy of sound waves generated in the gas G into heat energy for cooling.
  • the thermoacoustic device 1 can cool the medium using, for example, heat supplied to the heat exchanger 3 from a heat source.
  • the gas G filled in the waveguide 2 is vibrated at a predetermined frequency by the exciter 7.
  • the gas G moves from the low temperature side to the high temperature side of the temperature gradient holding unit 6 in the heat exchanger 3.
  • the gas G expands by being heated by the temperature gradient held by the temperature gradient holding unit 6.
  • the gas G moves from the high temperature side to the low temperature side of the temperature gradient holding unit 6 in the heat exchanger 3.
  • the gas G is cooled and contracted by the temperature gradient held by the temperature gradient holding unit 6.
  • the sound wave of the gas G filled in the waveguide 2 is amplified by the repetition of expansion and contraction of the gas G in the heat exchanger 3, and the heat energy is converted into the acoustic energy of the sound wave of the gas G.
  • the sound wave generated in the gas G filled in the waveguide 2 by the exciter 7 can be excited at a predetermined frequency. Sound waves generated in the gas G are stabilized by resonating in the waveguide 2. When the sound wave generated in the gas G reaches the converter 8, the converter 8 can convert the acoustic energy of the sound wave generated in the gas G into predetermined energy and extract the predetermined energy.
  • FIG. 2A is a diagram illustrating an example of the high-temperature portion 5 and the heat conducting member 11 of the heat exchanger 3 included in the thermoacoustic device 1 according to the embodiment.
  • FIG. 2B is a diagram illustrating an example of the heat conductive member 11 included in the thermoacoustic device 1 according to the embodiment.
  • the high temperature section 5 of the heat exchanger 3 has, for example, a substantially cylindrical shape.
  • the thickness of the high-temperature portion 5 of the heat exchanger 3 in the direction of the central axis (X-axis direction) is, for example, 1 cm or more and 2 cm or less.
  • the high temperature part 5 of the heat exchanger 3 has, for example, a plurality of fins 5a and 5b that are orthogonal to the direction of the central axis (X-axis direction) and orthogonal to each other. That is, the high temperature section 5 of the heat exchanger 3 has lattice-shaped fins 5a and 5b.
  • the plurality of fins 5a and 5b are formed of, for example, metal. In this case, the thermal conductivity of the plurality of fins 5a, 5b can be increased.
  • the metal forming the plurality of fins 5a and 5b is, for example, copper. In this case, the cost of the plurality of fins 5a and 5b can be reduced.
  • the thickness of the plurality of fins 5a, 5b is, for example, 100 ⁇ m or less.
  • the interval between the plurality of fins 5a, 5b is, for example, 0.4 mm or more and 1.5 mm or less.
  • the low temperature part 4 of the heat exchanger 3 has the same or similar structure as the structure of the high temperature part 5 of the heat exchanger 3.
  • the thermoacoustic device 1 includes a heat conducting member 11.
  • the heat conduction member 11 changes the temperature of the central part of the high temperature part 5 of the heat exchanger 3.
  • the heat conducting member 11 is connected to, for example, a relatively high-temperature heat source as described above.
  • the heat conduction member 11 raises the temperature of the high-temperature portion 5 of the heat exchanger 3 by, for example, supplying heat supplied from a heat source having a relatively high temperature to the central portion of the high-temperature portion 5 of the heat exchanger 3. Can be done.
  • the efficiency of converting thermal energy into acoustic energy of sound waves may be low.
  • the efficiency of converting heat energy into acoustic energy of sound waves may be low due to a temperature gradient between a heat source temperature of 100 ° C. or less and room temperature.
  • thermoacoustic device 1 includes the heat conducting member 11 that changes the temperature of the central portion of the high temperature section 5 of the heat exchanger 3, heat is supplied from the outer periphery of the high temperature section 5 of the heat exchanger 3. Instead, heat is supplied from the central part of the high-temperature part 5 of the heat exchanger 3.
  • thermoacoustic apparatus 1 is connected to the heat exchanger 3 via the heat conducting member 11.
  • the heat can be supplied from the central portion to the outer periphery of the high-temperature portion 5 of FIG.
  • thermoacoustic apparatus 1 can generate a desired temperature gradient between the low-temperature section 4 and the high-temperature section 5 of the heat exchanger 3. Accordingly, the thermoacoustic device 1 according to the embodiment can increase the efficiency of converting thermal energy into acoustic energy of sound waves.
  • thermoacoustic apparatus 1 can be configured such that the low-temperature section 4 and the high-temperature section 5 of the heat exchanger 3 are connected to a low-temperature section 4 and a high-temperature section, respectively. 5 can be appropriately generated. Therefore, the thermoacoustic device 1 can efficiently use heat from a heat source having a temperature of 100 ° C. or less, for example, waste heat, for example, for power generation or cooling.
  • the heat conducting member 11 is formed of, for example, a metal.
  • the heat conductivity of the heat conductive member 11 can be increased.
  • the metal forming the heat conducting member 11 is, for example, copper. In this case, the cost of the heat conduction member 11 can be reduced.
  • the heat conducting member 11 is provided to be rotationally symmetric with respect to the center axis of the high temperature section 5 of the heat exchanger 3.
  • the thermoacoustic device 1 can supply heat more uniformly in the high temperature section 5 of the heat exchanger 3. Therefore, the thermoacoustic apparatus 1 can generate a more uniform temperature gradient between the low temperature part 4 and the high temperature part 5 of the heat exchanger 3.
  • the heat conducting member 11 is orthogonal to the direction of the center axis of the high-temperature portion 5 of the heat exchanger 3 (X-axis direction). And a member extending in two directions orthogonal to each other (for example, the Y-axis direction and the Z-axis direction). That is, the heat conduction member 11 has a substantially cross shape when viewed from the direction of the central axis of the high temperature portion 5 of the heat exchanger 3 (X-axis direction).
  • thermoacoustic device 1 can simplify the shape of the heat conducting member 11 and generate a desired temperature gradient between the low-temperature portion 4 and the high-temperature portion 5 of the heat exchanger 3.
  • the heat conducting member 11 is a member extending to the center of the high-temperature portion 5 of the heat exchanger 3. In this case, heat can be more reliably supplied from the central portion to the outer periphery of the high-temperature portion 5 of the heat exchanger 3. Therefore, the thermoacoustic apparatus 1 can more reliably generate a desired temperature gradient between the low temperature section 4 and the high temperature section 5 of the heat exchanger 3.
  • the heat conducting member 11 is provided so as to partially contact the surface of the high-temperature portion 5 of the heat exchanger 3 on the opposite side of the temperature gradient holding portion 6 of the heat exchanger 3. . In this case, it is possible to make it difficult for the heat conducting member 11 to hinder the movement of the gas G through the high temperature section 5 of the heat exchanger 3 on the surface of the high temperature section 5 of the heat exchanger 3.
  • thermoacoustic device 1 can further stabilize the sound wave resonance in the waveguide 2. Accordingly, the thermoacoustic device 1 can increase the efficiency of converting thermal energy into acoustic energy of sound waves.
  • thermoacoustic device 1 includes a heat insulating member that lowers heat conduction between the heat conductive member 11 and the waveguide 2 at a position where the heat conductive member 11 contacts the waveguide 2.
  • a member 12 is provided.
  • the heat insulating member 12 increases heat conductivity between the heat conducting member 11 and the high-temperature portion 5 of the heat exchanger 3 by lowering heat conduction between the heat conducting member 11 and the waveguide 2. Can be. Therefore, the heat conduction member 11 can efficiently supply heat to the high-temperature portion 5 of the heat exchanger 3. Accordingly, the thermoacoustic device 1 can more efficiently generate a temperature gradient between the low-temperature section 4 and the high-temperature section 5 of the heat exchanger 3.
  • FIG. 3 is a diagram illustrating another example of the heat conducting members 11a, 11b, 11c, and 11d included in the thermoacoustic device 1 according to the embodiment.
  • the heat conducting members 11a and 11b It is a member extending in a first direction (for example, the Y-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the high-temperature portion 5 of the heat exchanger 3.
  • the heat conducting members 11c and 11d are arranged in a second direction (eg, Z axis) orthogonal to the direction of the central axis (X axis direction) and the first direction (eg, Y axis direction) of the high temperature section 5 of the heat exchanger 3.
  • a second direction eg, Z axis
  • the heat conducting members 11a, 11b, 11c, 11d are arranged so as to surround the center of the high temperature section 5 of the heat exchanger 3. 2A and 2B, the heat conducting members 11a, 11b, 11c, and 11d can also change the temperature of the central portion of the high-temperature portion 5 of the heat exchanger 3.
  • the heat conducting members 11a, 11b, 11c, and 11d will be collectively referred to as a heat conducting member 11.
  • thermoacoustic device 1 includes the heat conducting member 11 that changes the temperature of the central portion of the high-temperature portion 5 of the heat exchanger 3
  • the thermoacoustic device 1 includes the low-temperature portion 4 of the heat exchanger 3.
  • the heat conducting member is connected to, for example, a relatively low temperature heat source as described above.
  • the heat conducting member can lower the temperature of the low-temperature portion 4 of the heat exchanger 3 by, for example, transferring heat from a central portion of the low-temperature portion 4 of the heat exchanger 3 to a heat source having a relatively low temperature. .
  • thermoacoustic apparatus 1 may include a heat conductive member that changes the temperature of the central part of the low temperature part 4 of the heat exchanger 3 and a heat conductive member that changes the temperature of the central part of the high temperature part 5.
  • FIG. 4 is a diagram illustrating an example of the temperature gradient holding unit 6 of the heat exchanger 3 included in the thermoacoustic apparatus 1 according to the embodiment.
  • the temperature gradient holding unit 6 of the heat exchanger 3 has, for example, a substantially cylindrical shape.
  • the length of the temperature gradient holding section 6 of the heat exchanger 3 in the direction of the central axis (X-axis direction) is, for example, 1 cm or more and 2 cm or less. In this case, by obtaining the effective amplitude of the sound wave, an effective output of the sound energy of the sound wave converted from the heat energy of the temperature gradient holding unit 6 can be obtained.
  • the temperature gradient holding unit 6 of the heat exchanger 3 has, for example, a plurality of fins 6a that are orthogonal to the direction of the central axis (X-axis direction) and are parallel to each other.
  • the temperature gradient holding unit 6 of the heat exchanger 3 has, for example, a plurality of partitions 6b provided between a plurality of fins 6a.
  • the plurality of fins 6a and the plurality of partitions 6b are formed of, for example, ceramic or glass having low thermal conductivity. In this case, the thermal conductivity of the plurality of fins 6a and the plurality of partitions 6b can be reduced. Therefore, reduction of the temperature gradient in the temperature gradient holding unit 6 of the heat exchanger 3 can be reduced. Accordingly, the temperature gradient holding section 6 can satisfactorily hold the temperature gradient generated between the low temperature section 4 and the high temperature section 5 of the heat exchanger 3.
  • the ceramic forming the plurality of fins 6a and the plurality of partitions 6b is, for example, zirconia, titania, or steatite.
  • the thermal conductivity of the plurality of fins 6a and the plurality of partitions 6b can be satisfactorily reduced with respect to the thermal conductivity of the gas G from the plurality of fins 6a and the plurality of partitions 6b. Therefore, the temperature gradient holding unit 6 can enhance heat conduction from the plurality of fins 6a and the plurality of partitions 6b to the gas G. Accordingly, the temperature gradient holding section 6 can easily hold a desired temperature gradient between the low temperature section 4 and the high temperature section 5 of the heat exchanger 3.
  • the thickness of the plurality of fins 6a is, for example, 100 ⁇ m or less.
  • the interval between the plurality of fins 6a is, for example, 0.4 mm or more and 1.5 mm or less.
  • the thickness of the partitions 6b and the intervals between the partitions 6b are determined as appropriate. When the material of the plurality of partitions 6b is the same as the plurality of fins 6a, they may be integrally shaped and manufactured.
  • the waveguide 2 is filled with the gas G, but the waveguide 2 may be filled with a medium other than the gas G.
  • the waveguide 2 may be filled with liquid in a range where sound waves are effectively generated and amplified.
  • the waveguide 2 has a single loop shape.
  • the waveguide 2 has, for example, a plurality of loop shapes connected by at least one tube. You may have.
  • the thermoacoustic device 1 may have a plurality of transducers 8 in the same loop or different loops of the waveguide 2.
  • thermoacoustic apparatus 1 the gas G filled in the waveguide 2 is vibrated or excited by the exciter 7, but the thermoacoustic apparatus 1 does not include the exciter 7. You may.
  • thermoacoustic apparatus 1 converts, for example, the heat energy supplied to the heat exchanger 3 into acoustic energy of sound waves generated in the gas G. can do.
  • FIGS. 5A and 5B are diagrams illustrating another example (heat conductive member 11A) of the high-temperature portion 5 and the heat conductive member 11 of the heat exchanger 3 included in the thermoacoustic apparatus 1 according to the embodiment.
  • the high temperature section 5 of the heat exchanger 3 as shown in FIGS. 5A and 5B has the same configuration as the configuration of the high temperature section 5 of the heat exchanger 3 as shown in FIGS. 2A and 2B.
  • the heat conducting member 11A as shown in FIGS. 5A and 5B has a configuration similar to that of the heat conducting member 11 as shown in FIGS. 2A and 2B.
  • the heat conductive member 11A as shown in FIGS. 5A and 5B is a member extending through a hole provided in the hollow tube 13.
  • the hollow tube 13 covers at least the outer periphery of the low temperature section 4, the temperature gradient holding section 6, and the high temperature section 5 of the heat exchanger 3. That is, at least the low temperature section 4, the temperature gradient holding section 6, and the high temperature section 5 of the heat exchanger 3 are inserted into the hollow tube 13.
  • the hollow tube 13 seals at least the low-temperature portion 4, the temperature gradient holding portion 6, and the high-temperature portion 5 of the heat exchanger 3 so that the gas G moving in the heat exchanger 3 hardly leaks from the heat exchanger 3. I do.
  • the hollow tube 13 makes it difficult for the high temperature part 5 and the low temperature part 4 having at least the plurality of fins 5a and 5b to be oxidized by the surrounding air.
  • the material of the hollow tube 13 is preferably a material having a low thermal conductivity in order to reduce a change in the temperature of each of the low temperature section 4, the temperature gradient holding section 6, and the high temperature section 5 of the heat exchanger 3. .
  • the material of the hollow tube 13 is, for example, a plastic material such as vinyl chloride.
  • a heat insulating member 12A is provided between the low temperature section 4 (see FIG. 1), the temperature gradient holding section 6, and the high temperature section 5 and the hollow tube 13 of the heat exchanger 3. That is, the heat insulating member 12 ⁇ / b> A is provided so as to cover the outer circumference of the low temperature section 4, the temperature gradient holding section 6, and the high temperature section 5 of the heat exchanger 3 and the inner circumference of the hollow tube 13.
  • the heat insulating member 12 ⁇ / b> A is provided with the low temperature section 4, the temperature gradient holding section 6 of the heat exchanger 3, in order to reduce a change in the temperature of each of the low temperature section 4, the temperature gradient holding section 6, and the high temperature section 5. , And the heat conduction between the high-temperature section 5 and the hollow tube 13 is reduced.
  • the heat insulating member 12A is preferably a material having durability against a high temperature of about 300 ° C.
  • the material of the heat insulating member 12A is, for example, ceramic fiber or rock wool fiber.
  • the heat conducting member 11A extending through the hole provided in the hollow tube 13 is fixed to the hollow tube 13 by the heat insulating member 12B.
  • the heat insulating member 12B is provided on a surface (for example, an outer surface and an inner surface) of the hollow tube 13 near a position where the heat conducting member 11A is inserted into a hole provided in the hollow tube 13.
  • the heat insulating member 12B lowers the heat conduction between the heat conductive member 11A and the hollow tube 13 in order to reduce the change in the temperature of the heat conductive member 11A.
  • the heat insulating member 12B is provided with a hole provided in the hollow tube 13 in order to make it difficult for the gas G moving in the heat exchanger 3 to leak from the hole of the hollow tube 13 provided for inserting the heat conducting member 11A. Seal.
  • the heat insulating member 12B is preferably a material having durability against a high temperature of about 300 ° C.
  • the material of the heat insulating member 12B is, for example, a ceramic adhesive.
  • At least a part of the heat conducting member 11A is connected to one fin 5a constituting the high-temperature portion 5 of the heat exchanger 3 and one fin 5b orthogonal to the one fin 5a. . At least a part of the heat conducting member 11A is aligned with one fin 5a and one fin 5b.
  • the high-temperature portion 5 of the heat exchanger 3 has one direction (for example, the Y-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the high-temperature portion 5 of the heat exchanger 3.
  • the high-temperature portion 5 of the heat exchanger 3 has a direction orthogonal to both the direction of the central axis (X-axis direction) of the high-temperature portion 5 of the heat exchanger 3 and one direction (eg, the Y-axis direction) orthogonal thereto. It has an odd number (for example, five) of fins 5b (for example, in the Z-axis direction).
  • the heat conducting member 11A is aligned with the central fins 5a and 5b located near the central axis of the high temperature portion 5 of the heat exchanger 3.
  • the fins are connected to the center fins 5a and 5b.
  • the heat conducting member 11A is connected to the one fin 5a, 5b by using solder or the like.
  • a connection method, a method of laser joining the heat conducting member 11A to one of the fins 5a, 5b, and the like can be given.
  • FIG. 5C is a diagram showing the relationship between the thickness of the fins 5a constituting the high-temperature portion 5 of the heat exchanger 3 included in the thermoacoustic apparatus 1 according to the embodiment and the thickness of the heat conducting member 11A.
  • FIG. 5D is a diagram illustrating a relationship between the width of the fin 5b and the width of the heat conducting member 11A that configure the high-temperature portion 5 of the heat exchanger 3 included in the thermoacoustic apparatus 1 according to the embodiment.
  • the thickness T 11A of the heat conducting member 11A is , About 2 to 3 times the thickness T 5A of the central fin 5a. For example, if the thickness T 5A of the center of the fin 5a is about 2 mm, the thickness T 11A of the heat conductive member 11A is from about 4mm to 6 mm.
  • the width W 11A of the heat conducting member 11A is substantially the same as the width W 5B of the central fin 5b. .
  • the width W 11A of the heat conducting member 11A is also about 5 mm.
  • FIG. 6 is a diagram illustrating still another example (the heat conductive members 11B1, 11B2, 11B3, and 11B4) of the high-temperature portion 5 and the heat conductive member 11 of the heat exchanger 3 included in the thermoacoustic device 1 according to the embodiment. .
  • the high temperature section 5 of the heat exchanger 3 as shown in FIG. 6 has a configuration similar to the configuration of the high temperature section 5 of the heat exchanger 3 as shown in FIG. 5A.
  • the number of fins included in the high temperature section 5 of the heat exchanger 3 as shown in FIG. 6 is different from the number of fins included in the high temperature section 5 of the heat exchanger 3 as shown in FIG. 5A.
  • the configuration of the heat conducting members 11B1, 11B2, 11B3, 11B4 as shown in FIG. 6 is different from the configuration of the heat conducting member 11A as shown in FIG. 5A.
  • each of the heat conducting members 11B1, 11B2 is connected to one fin 5a constituting the high-temperature portion 5 of the heat exchanger 3. At least a part of each of the heat conducting members 11B1, 11B2 is aligned with one fin 5a. At least a part of each of the heat conducting members 11B3 and 11B4 is connected to one fin 5b orthogonal to one fin 5a constituting the high temperature part 5 of the heat exchanger 3. At least a part of each of the heat conducting members 11B3, 11B4 is aligned with one fin 5b.
  • the high temperature section 5 of the heat exchanger 3 has one direction (for example, Y axis direction) orthogonal to the direction of the central axis (X axis direction) of the high temperature section 5 of the heat exchanger 3.
  • the high-temperature portion 5 of the heat exchanger 3 has a direction orthogonal to both the direction of the central axis (X-axis direction) of the high-temperature portion 5 of the heat exchanger 3 and one direction (eg, the Y-axis direction) orthogonal thereto. It has an even number (for example, four) of fins 5b (for example, in the Z-axis direction). In this case, as shown in FIGS.
  • the heat conducting member 11A is aligned with the central fins 5a and 5b located near the central axis of the high temperature portion 5 of the heat exchanger 3.
  • the fins are connected to the center fins 5a and 5b.
  • each of the heat conduction members 11B1 and 11B2 is connected to one of the fins 5a near the center located closest to the central axis of the high temperature section 5 of the heat exchanger 3. It is connected to a part of the fin 5a near the center so as to align with the part.
  • At least a part of each of the heat conducting members 11B3 and 11B4 is so arranged as to be aligned with a part of the fin 5b near the center located closest to the central axis of the high temperature portion 5 of the heat exchanger 3 so that the fin 5b near the center is aligned Connected to a part of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

熱音響装置は、ループ状の導波管と、熱交換器と、熱伝導部材と、を備える。ループ状の導波管は、媒体が充填される。熱交換器は、導波管内に設けられ、温度勾配を生じる低温部および高温部を有する。熱伝導部材は、低温部および高温部の少なくとも一方の中央部の温度を変化させる。

Description

熱音響装置
 開示の実施形態は、熱音響装置に関する。
 従来、熱と音波との間の相互作用である熱音響効果によって熱エネルギーを音響エネルギーに変換し、音響エネルギーを電気エネルギーのような他のエネルギーに変換する熱音響装置が知られている。
 例えば、気体を充填したループ管に、放熱部と加熱部に挟まれた蓄熱部が配設され、蓄熱部内に生じた温度勾配によって気体に圧力振動を生じさせ、圧力振動によって生じた進行波に応動して発電を行う発電機がループ管に設けられた熱音響発電機が開示されている(例えば、特許文献1参照)。
特開2003-324932号公報
 実施形態の一態様に係る熱音響装置は、ループ状の導波管と、熱交換器と、熱伝導部材と、を備える。ループ状の導波管は、媒体が充填される。熱交換器は、導波管内に設けられ、温度勾配を生じる低温部および高温部を有する。熱伝導部材は、低温部および高温部の少なくとも一方の中央部の温度を変化させる。
図1は、実施形態に係る熱音響装置の一例を示す図である。 図2Aは、実施形態に係る熱音響装置に含まれる熱交換器の高温部および熱伝導部材の一例を示す図である。 図2Bは、実施形態に係る熱音響装置に含まれる熱伝導部材の一例を示す図である。 図3は、実施形態に係る熱音響装置に含まれる熱伝導部材の別の例を示す図である。 図4は、実施形態に係る熱音響装置に含まれる熱交換器の温度勾配保持部の一例を示す図である。 図5Aは、実施形態に係る熱音響装置に含まれる熱交換器の高温部および熱伝導部材の別の例を示す図である。 図5Bは、実施形態に係る熱音響装置に含まれる熱交換器の高温部および熱伝導部材の別の例を示す図である。 図5Cは、実施形態に係る熱音響装置に含まれる熱交換器の高温部を構成するフィンの厚さと熱伝導部材の厚さとの間の関係を示す図である。 図5Dは、実施形態に係る熱音響装置に含まれる熱交換器の高温部を構成するフィンの幅と熱伝導部材の幅との間の関係を示す図である。 図6は、実施形態に係る熱音響装置に含まれる熱交換器の高温部および熱伝導部材のさらに別の例を示す図である。
 以下、添付図面を参照して、本願の開示する熱音響装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
 図1は、実施形態に係る熱音響装置1の一例を示す図である。図1を含む複数の図において、紙面に対して直交する方向において手前側がZ軸方向の正方向であると共に熱音響装置1の長手方向および短手方向をそれぞれX軸方向およびY軸方向である三次元の直交座標系を示す。
 実施形態に係る熱音響装置1は、熱音響効果によって、熱エネルギーを音波の音響エネルギーに変換し、音波の音響エネルギーを電気エネルギーのような他のエネルギーに変換する装置である。ここで、熱音響効果は、熱と音波との間の相互作用である。図1に示すように、実施形態に係る熱音響装置1は、導波管2と、熱交換器3と、励振器7と、変換器8とを備える。
 導波管2には、気体Gが充填される。気体Gは、例えば、空気、窒素(N)、ヘリウム(He)、アルゴン(Ar)、水素(H)、または二酸化炭素(CO)などである。導波管2は、その内部に気体Gを密閉する。
 導波管2に充填される気体Gの圧力は、例えば、1気圧(1013.25hPa)以上10気圧(10132.5hPa)未満である。導波管2に充填される気体Gの圧力を増加させることによって、熱エネルギーを音波の音響エネルギーに変換する効率を高めることができる。
 導波管2は、反射壁の無いループ状の導波管である。導波管2は、例えば、図1に示すような単一のループの形状を有する。導波管2は、気体Gに生じる音波を共振させる。熱音響装置1においては、気体Gに生じる音波による気体Gの移動(移流)に対し、熱交換器3と気体Gとの間の熱伝導によって生じる気体Gの温度変化の位相は、媒体の昇温または降温速度に対応する分だけ遅延する。それに応じて、気体Gの音波の圧力変化の位相は、温度変化のない場合の気体Gの圧力変化の位相より0°~90°遅延する。
 よって、例えば、導波管2が反射壁を有する場合には、気体Gに生じる温度変化を介在した音波の共振が安定化されずに、気体Gに生じる音波の振幅を低減してしまう。実施形態に係る熱音響装置1においては、導波管2が反射壁の無いループの形状を有することによって、気体Gに生じる音波の共振を安定化することができる。それに応じて、実施形態に係る熱音響装置1は、音波の音響エネルギーの出力を高めることができる。
 導波管2の長さは、気体Gに生じる音波の波長の整数倍である。導波管2の長さは、例えば、気体Gに生じる音波の共振周波数が1m以下であるように、設定される。導波管2は、例えば、円形または方形の断面を有する中空導波管である。
 導波管2は、例えば、ステンレス鋼(SUS)のような金属または塩化ビニルのようなプラスチックで形成される。導波管2がプラスチックで形成される場合には、ループ状の導波管2を容易に製造することができるため、導波管2のコストを低減することができる。
 熱交換器3は、導波管2に充填された気体Gに対して熱を移動させる。熱交換器3は、気体Gを音波の移流の位相に従って加熱/冷却する。導波管2が延びる方向(X軸方向)における熱交換器3の長さは、例えば、気体Gに生じる音波の波長の1/20程度、例えば、5cm程度である。熱交換器3は、導波管2内に設けられる。熱交換器3は、低温部4と、高温部5と、温度勾配保持部6とを有する。
 低温部4は、熱交換器3に含まれる相対的に低い温度を保持する部材である。高温部5は、熱交換器3に含まれる相対的に高い温度を保持する部材である。ここで、相対的に低い温度および相対的に高い温度は、低温部4の温度および高温部5の温度の間の対比に基づいたものである。すなわち、高温部5の温度は、低温部4の温度よりも高い。熱交換器3において、低温部4と高温部5との間には温度勾配が生じる。低温部4および高温部5の構成については後述する。
 低温部4および高温部5は、それぞれ、相対的に低い温度の熱源および相対的に高い温度の熱源に接続される。相対的に低い温度の熱源は、例えば、管に供給される水のような冷媒であってもよい。相対的に高い温度の熱源は、管に供給される熱湯のような加熱媒体であってもよい。相対的に低い温度の熱源および相対的に高い温度の熱源の一方は、例えば、室温における空気であってもよい。
 温度勾配保持部6は、熱交換器3の低温部4と高温部5との間に生じた温度勾配を保持する部材である。温度勾配保持部6は、熱交換器3の低温部4と高温部5との間に設けられる。低温部4と温度勾配保持部6との間の間隔および温度勾配保持部6と高温部5との間の間隔は、例えば、0.3mm以下である。温度勾配保持部6は、低温部4と高温部5との間に生じた温度勾配によって気体Gに音波を生じ、増幅させる。温度勾配保持部6の構成については後述する。
 励振器7は、所定の周波数で気体Gに音波を生じさせる。励振器7は、気体Gを密閉するように、導波管2に設けられる。励振器7は、共振音波の圧力振幅が大きい箇所に設けられる場合には、導波管2の音響インピーダンスを変化させないように設けたシリンダに挿入されたピストンが往復運動することによって気体Gの圧力を振動させる。
 変換器8は、気体Gに生じた音波の音響エネルギーを所定のエネルギーに変換すると共に所定のエネルギーを取り出す。変換器8は、例えば、気体Gに生じた音波の音響エネルギーを電気エネルギーに変換することによって電気を発生させる発電機であってもよい。この場合には、熱音響装置1は、例えば、熱源から熱交換器3に供給される熱を用いて発電することができる。
 あるいは、変換器8は、例えば、気体Gに生じた音波の音響エネルギーを冷却の熱エネルギーに変換することによって変換器8に接触する媒体の温度を下げる冷却器(冷却用の熱交換器)であってもよい。この場合には、熱音響装置1は、例えば、熱源から熱交換器3に供給される熱を用いて媒体を冷却することができる。
 実施形態に係る熱音響装置1において、例えば、励振器7によって導波管2に充填された気体Gを所定の周波数で振動させる。例えば、気体Gが、熱交換器3において温度勾配保持部6の低温側から高温側へ移動する。ここで、気体Gは、温度勾配保持部6によって保持された温度勾配によって加熱されて膨張する。
 次に、気体Gは、熱交換器3において温度勾配保持部6の高温側から低温側へ移動する。ここで、気体Gは、温度勾配保持部6によって保持された温度勾配によって冷却されて収縮する。このように、熱交換器3における気体Gの膨張および収縮の繰り返しによって導波管2に充填された気体Gの音波が増幅されて、熱エネルギーが気体Gの音波の音響エネルギーに変換される。
 ここで、例えば、励振器7によって導波管2に充填された気体Gに生じる音波を所定の周波数で励振させることができる。気体Gに生じる音波は、導波管2内において共振することによって安定化される。気体Gに生じた音波が変換器8に到達すると、変換器8は、気体Gに生じた音波の音響エネルギーを所定のエネルギーに変換すると共にその所定のエネルギーを取り出すことができる。
 図2Aは、実施形態に係る熱音響装置1に含まれる熱交換器3の高温部5および熱伝導部材11の一例を示す図である。図2Bは、実施形態に係る熱音響装置1に含まれる熱伝導部材11の一例を示す図である。
 図2Aに示すように、熱交換器3の高温部5は、例えば、略円筒の形状を有する。熱交換器3の高温部5の中心軸の方向(X軸方向)における厚さは、例えば、1cm以上2cm以下である。熱交換器3の高温部5は、例えば、中心軸の方向(X軸方向)に対して直交すると共に互いに直交する複数のフィン5a,5bを有する。すなわち、熱交換器3の高温部5は、格子状のフィン5a,5bを有する。
 複数のフィン5a,5bは、例えば、金属で形成される。この場合には、複数のフィン5a,5bの熱伝導率を大きくすることができる。複数のフィン5a,5bを形成する金属は、例えば、銅である。この場合には、複数のフィン5a,5bのコストを低減することができる。複数のフィン5a,5bの厚さは、例えば、100μm以下である。複数のフィン5a,5bの間の間隔は、例えば、0.4mm以上1.5mm以下である。
 熱交換器3の低温部4は、熱交換器3の高温部5の構造と同一または類似の構造を有する。
 図2Aおよび図2Bに示すように、実施形態に係る熱音響装置1は、熱伝導部材11を備える。熱伝導部材11は、熱交換器3の高温部5の中央部の温度を変化させる。熱伝導部材11は、例えば、上述したような相対的に高い温度の熱源に接続される。熱伝導部材11は、例えば、相対的に高い温度の熱源から供給される熱を熱交換器3の高温部5の中央部に供給することによって、熱交換器3の高温部5の温度を上昇させることができる。
 従来の技術においては、熱交換器の高温部の外周から熱を供給する。よって、例えば、音波の音響エネルギーの出力を増加させるために導波管の径を増加させる場合には、熱交換器の高温部の中央部にまで熱を伝達することが困難であることがあった。それに応じて、熱交換器の低温部と高温部との間に所望の温度勾配を生じさせることが困難であることがあった。
 よって、従来の技術においては、熱エネルギーを音波の音響エネルギーに変換する効率が低いことがあった。例えば、100℃以下の熱源の温度と室温との温度勾配によって熱エネルギーを音波の音響エネルギーに変換する効率が低いことがあった。
 実施形態に係る熱音響装置1は、熱交換器3の高温部5の中央部の温度を変化させる熱伝導部材11を備えるため、熱交換器3の高温部5の外周から熱を供給するのではなく熱交換器3の高温部5の中央部から熱を供給する。
 例えば、音波の音響エネルギーの出力を増加させるために導波管2の径を増加させる場合であっても、実施形態に係る熱音響装置1は、熱伝導部材11を介して、熱交換器3の高温部5の中央部から外周まで熱を供給することができる。
 よって、熱音響装置1は、熱交換器3の低温部4と高温部5との間に所望の温度勾配を生じさせることができる。それに応じて、実施形態に係る熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率を高めることができる。
 例えば、実施形態に係る熱音響装置1は、熱交換器3の低温部4および高温部5にそれぞれ室温の熱源および100℃以下の温度の熱源を接続する場合にも、低温部4と高温部5との間に温度勾配を適切に生じさせることができる。よって、熱音響装置1は、100℃以下の温度の熱源からの熱、例えば、廃熱を、例えば、発電または冷却に、効率良く利用することができる。
 実施形態に係る熱音響装置1においては、熱伝導部材11は、例えば、金属で形成される。この場合には、熱伝導部材11の熱伝導率を大きくすることができる。熱伝導部材11を形成する金属は、例えば、銅である。この場合には、熱伝導部材11のコストを低減することができる。
 図2Aおよび図2Bに示すように、実施形態に係る熱音響装置1においては、熱伝導部材11は、熱交換器3の高温部5の中心軸に対して回転対称に設けられる。この場合には、熱音響装置1は、熱交換器3の高温部5において、より均一に熱を供給することができる。よって、熱音響装置1は、熱交換器3の低温部4と高温部5との間により均一な温度勾配を生じさせることができる。
 図2Aおよび図2Bに示すように、実施形態に係る熱音響装置1においては、熱伝導部材11は、熱交換器3の高温部5の中心軸の方向(X軸方向)に対して直交すると共に互いに直交する二つの方向(例えば、Y軸方向およびZ軸方向)に延びる部材である。すなわち、熱伝導部材11は、熱交換器3の高温部5の中心軸の方向(X軸方向)から見たとき実質的に十字の形状を有する。
 この場合には、熱交換器3の高温部5の中心軸の方向(X軸方向)に対して直交すると共に互いに直交する二つの方向(例えば、Y軸方向およびZ軸方向)に均一に熱を供給することができる。よって、熱音響装置1は、熱伝導部材11の形状を単純化すると共に熱交換器3の低温部4と高温部5との間に所望の温度勾配を生じさせることができる。
 図2Aおよび図2Bに示すように、実施形態に係る熱音響装置1においては、熱伝導部材11は、熱交換器3の高温部5の中心まで延びる部材である。この場合には、熱交換器3の高温部5の中央部から外周まで熱をより確実に供給することができる。よって、熱音響装置1は、熱交換器3の低温部4と高温部5との間に所望の温度勾配をより確実に生じさせることができる。
 図2Aおよび図2Bに示すように、熱伝導部材11は、熱交換器3の温度勾配保持部6の反対側における熱交換器3の高温部5の表面に部分的に接触するように設けられる。この場合には、熱交換器3の高温部5の表面において熱伝導部材11が熱交換器3の高温部5を通じた気体Gの移動を妨げ難くすることができる。
 よって、熱音響装置1は、導波管2における音波の共振をより安定化させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率を高めることができる。
 図2Bに示すように、実施形態に係る熱音響装置1は、熱伝導部材11が導波管2と接触する位置に熱伝導部材11と導波管2との間における熱伝導を低くする断熱部材12を備える。
 断熱部材12は、熱伝導部材11と導波管2との間における熱伝導を低くすることによって、熱伝導部材11と熱交換器3の高温部5との間における熱伝導率を大きくすることができる。よって、熱伝導部材11は、熱交換器3の高温部5により効率的に熱を供給することができる。それに応じて、熱音響装置1は、熱交換器3の低温部4と高温部5との間に温度勾配をより効率的に生じさせることができる。
 図3は、実施形態に係る熱音響装置1に含まれる熱伝導部材11a,11b,11c,11dの別の例を示す図である。図3に示すように、熱伝導部材11aおよび11bは、
熱交換器3の高温部5の中心軸の方向(X軸方向)に対して直交する第1の方向(例えば、Y軸方向)に延びる部材である。熱伝導部材11cおよび11dは、熱交換器3の高温部5の中心軸の方向(X軸方向)および第1の方向(例えば、Y軸方向)に直交する第2の方向(例えば、Z軸方向)に延びる部材である。
 図3に示すように、熱伝導部材11a,11b,11c,11dは、熱交換器3の高温部5の中心を囲むように配置される。図2Aおよび図2Bに示す熱伝導部材11と同様にして、熱伝導部材11a,11b,11c,11dもまた熱交換器3の高温部5の中央部の温度を変化させることができる。以下、熱伝導部材11a,11b,11c,11dをまとめて熱伝導部材11と記載することにする。
 実施形態に係る熱音響装置1は、熱交換器3の高温部5の中央部の温度を変化させる熱伝導部材11を備えるとしたが、熱音響装置1は、熱交換器3の低温部4の中央部の温度を変化させる熱伝導部材を備えるとしてもよい。熱伝導部材は、例えば、上述したような相対的に低い温度の熱源に接続される。熱伝導部材は、例えば、熱交換器3の低温部4の中央部から相対的に低い温度の熱源に熱を移動させることによって、熱交換器3の低温部4の温度を下降させることができる。
 あるいは、熱音響装置1は、熱交換器3の低温部4の中央部の温度を変化させる熱伝導部材および高温部5の中央部の温度を変化させる熱伝導部材を備えるとしてもよい。
 図4は、実施形態に係る熱音響装置1に含まれる熱交換器3の温度勾配保持部6の一例を示す図である。図4に示すように、熱交換器3の温度勾配保持部6は、例えば、略円筒の形状を有する。
 熱交換器3の温度勾配保持部6の中心軸の方向(X軸方向)における長さは、例えば、1cm以上2cm以下である。この場合には、音波の有効な大きさの振幅を得ることによって、温度勾配保持部6の熱エネルギーから変換された、音波の音響エネルギーの有効な出力を得ることができる。
 熱交換器3の温度勾配保持部6は、例えば、中心軸の方向(X軸方向)に対して直交すると共に互いに平行である複数のフィン6aを有する。熱交換器3の温度勾配保持部6は、例えば、複数のフィン6aの間に設けられた複数の仕切り6bを有する。
 複数のフィン6aおよび複数の仕切り6bは、例えば、熱伝導率の低いセラミックやガラスで形成される。この場合には、複数のフィン6aおよび複数の仕切り6bの熱伝導率を小さくすることができる。よって、熱交換器3の温度勾配保持部6における温度勾配の低減を小さくすることができる。それに応じて、温度勾配保持部6は、熱交換器3の低温部4と高温部5との間に生じた温度勾配を良好に保持することができる。
 複数のフィン6aおよび複数の仕切り6bを形成するセラミックは、例えば、ジルコニア、チタニア、またはステアタイトである。この場合には、複数のフィン6aおよび複数の仕切り6bから気体Gへの熱伝導率に対して複数のフィン6aおよび複数の仕切り6bにおける熱伝導率を良好に小さくすることができる。よって、温度勾配保持部6は、複数のフィン6aおよび複数の仕切り6bから気体Gへの熱伝導を高めることができる。それに応じて、温度勾配保持部6は、熱交換器3の低温部4と高温部5との間に所望の温度勾配を容易に保持することができる。
 複数のフィン6aの厚さは、例えば、100μm以下である。複数のフィン6a間の間隔は、例えば、0.4mm以上1.5mm以下である。複数の仕切り6bの厚さ、および仕切り6bの間隔は、適宜決定される。複数の仕切り6bの素材が複数のフィン6aと同じ場合には一体で整形、作製されていても良い。
 実施形態に係る熱音響装置1においては、導波管2は気体Gが充填されるとしたが、導波管2は、気体G以外の媒体が充填されるとしてもよい。例えば、導波管2は、音波が有効に生成、増幅される範囲において液体が充填されるとしてもよい。
 実施形態に係る熱音響装置1においては、導波管2が単一のループの形状を有するとしたが、導波管2は、例えば、少なくとも一つの管で連結された複数のループの形状を有するとしてもよい。この場合には、熱音響装置1は、導波管2の同一のループまたは異なるループに複数の変換器8を有するものであってもよい。
 実施形態に係る熱音響装置1においては、励振器7によって導波管2に充填された気体Gを振動または励振させるようにしたが、熱音響装置1は、励振器7を含まないものであってもよい。
 この場合には、熱交換器3の低温部4と高温部5との間に温度勾配が生じる際に、導波管2に存在する1/fノイズを音源として気体Gに音波が生じる。気体Gに生じる音波は、熱交換器3の低温部4と高温部5との間に生じる温度勾配によって増幅されると共に導波管2内において安定して共振する。
 このように、熱音響装置1が励振器7を含まない場合であっても、熱音響装置1は、例えば、熱交換器3に供給される熱エネルギーを気体Gに生じる音波の音響エネルギーに変換することができる。
 図5Aおよび図5Bは、実施形態に係る熱音響装置1に含まれる熱交換器3の高温部5および熱伝導部材11の別の例(熱伝導部材11A)を示す図である。図5Aおよび図5Bに示すような熱交換器3の高温部5は、図2Aおよび図2Bに示すような熱交換器3の高温部5の構成と同様の構成を有する。図5Aおよび図5Bに示すような熱伝導部材11Aは、図2Aおよび図2Bに示すような熱伝導部材11の構成と同様の構成を有する。
 しかしながら、図5Aおよび図5Bに示すような熱交換器3の高温部5は、中空管13内に挿入される。図5Aおよび図5Bに示すような熱伝導部材11Aは、中空管13に設けられた穴を通じて延びる部材である。
 中空管13は、少なくとも熱交換器3の低温部4、温度勾配保持部6、および高温部5の外周を覆う。すなわち、少なくとも熱交換器3の低温部4、温度勾配保持部6、および高温部5が中空管13内に挿入される。
 中空管13は、熱交換器3において移動する気体Gが熱交換器3から漏れ難くするために、少なくとも熱交換器3の低温部4、温度勾配保持部6、および高温部5を封止する。中空管13は、少なくとも複数のフィン5a,5bを有する高温部5および低温部4が周囲の空気によって酸化され難くする。
 中空管13の材料は、熱交換器3の低温部4、温度勾配保持部6、および高温部5の各々の温度における変化を小さくするために、好ましくは、低い熱伝導率の材料である。中空管13の材料は、例えば、塩化ビニルのようなプラスチック材料である。
 図5Aおよび図5Bに示すように、熱交換器3の低温部4(図1参照)、温度勾配保持部6、および高温部5と中空管13との間に断熱部材12Aが設けられる。すなわち、断熱部材12Aは、熱交換器3の低温部4、温度勾配保持部6、および高温部5の外周を覆うと共に中空管13の内周を覆うように、設けられる。
 断熱部材12Aは、熱交換器3の低温部4、温度勾配保持部6、および高温部5の各々の温度における変化を小さくするために、熱交換器3の低温部4、温度勾配保持部6、および高温部5と中空管13との間における熱伝導を低くする。
 断熱部材12Aは、好ましくは、約300℃の高温に対する耐久性を有する材料である。断熱部材12Aの材料は、例えば、セラミックファイバーまたはロックウール繊維などである。
 図5Aおよび図5Bに示すように、中空管13に設けられた穴を通じて延びる熱伝導部材11Aは、断熱部材12Bによって中空管13に固定される。断熱部材12Bは、熱伝導部材11Aが中空管13に設けられた穴に挿入される位置の付近における中空管13の表面(例えば、外面および内面)に設けられる。
 断熱部材12Bは、熱伝導部材11Aの温度における変化を小さくするために、熱伝導部材11Aと中空管13との間における熱伝導を低くする。断熱部材12Bは、熱伝導部材11Aを挿入するために設けられた中空管13の穴から熱交換器3において移動する気体Gが漏れ難くするために、中空管13に設けられた穴を封止する。
 断熱部材12Bは、好ましくは、約300℃の高温に対する耐久性を有する材料である。断熱部材12Bの材料は、例えば、セラミック接着剤などである。
 図5Aおよび図5Bに示すように、熱伝導部材11Aの少なくとも一部は、熱交換器3の高温部5を構成する一つのフィン5aおよび一つのフィン5aに直交する一つのフィン5bに接続する。熱伝導部材11Aの少なくとも一部は、一つのフィン5aおよび一つのフィン5bと整列する。
 図5Aに示すように、熱交換器3の高温部5は、熱交換器3の高温部5の中心軸の方向(X軸方向)に対して直交する一つの方向(例えば、Y軸方向)において奇数個の(例えば、5個の)フィン5aを有する。熱交換器3の高温部5は、熱交換器3の高温部5の中心軸の方向(X軸方向)およびそれに対して直交する一つの方向(例えば、Y軸方向)の両方に直交する方向(例えば、Z軸方向)において奇数個の(例えば、5個の)フィン5bを有する。この場合には、図5Aおよび図5Bに示すように、熱伝導部材11Aの少なくとも一部は、熱交換器3の高温部5の中心軸の付近に位置する中央のフィン5a,5bと整列するように、中央のフィン5a,5bに接続される。
 熱交換器3の高温部5を構成する一つのフィン5a,5bに熱伝導部材11Aを接続する方法については、例えば、半田等を使用することで一つのフィン5a,5bに熱伝導部材11Aを接続する方法、一つのフィン5a,5bに熱伝導部材11Aをレーザー接合する方法などが挙げられる。
 図5Cは、実施形態に係る熱音響装置1に含まれる熱交換器3の高温部5を構成するフィン5aの厚さと熱伝導部材11Aの厚さとの間の関係を示す図である。図5Dは、実施形態に係る熱音響装置1に含まれる熱交換器3の高温部5を構成するフィン5bの幅と熱伝導部材11Aの幅との間の関係を示す図である。
 図5Cに示すように、熱交換器3の高温部5の中心軸の方向(X軸方向)に対して直交する方向(例えば、Y軸方向)において、熱伝導部材11Aの厚さT11Aは、中央のフィン5aの厚さT5Aの約2倍から3倍である。例えば、中央のフィン5aの厚さT5Aが約2mmであるとすれば、熱伝導部材11Aの厚さT11Aは、約4mmから6mmまでである。
 図5Dに示すように、熱交換器3の高温部5の中心軸の方向(X軸方向)において、熱伝導部材11Aの幅W11Aは、中央のフィン5bの幅W5Bと略同一である。例えば、中央のフィン5bの幅W5Bが約5mmであるとすれば、熱伝導部材11Aの幅W11Aもまた約5mmである。
 図6は、実施形態に係る熱音響装置1に含まれる熱交換器3の高温部5および熱伝導部材11のさらに別の例(熱伝導部材11B1、11B2、11B3、11B4)を示す図である。図6に示すような熱交換器3の高温部5は、図5Aに示すような熱交換器3の高温部5の構成と同様の構成を有する。
 しかしながら、図6に示すような熱交換器3の高温部5に含まれるフィンの数は、図5Aに示すような熱交換器3の高温部5に含まれるフィンの数と異なる。図6に示すような熱伝導部材11B1、11B2、11B3、11B4の構成は、図5Aに示すような熱伝導部材11Aの構成と異なる。
 図6に示すように、熱伝導部材11B1、11B2の各々の少なくとも一部は、熱交換器3の高温部5を構成する一つのフィン5aに接続する。熱伝導部材11B1、11B2の各々の少なくとも一部は、一つのフィン5aと整列する。熱伝導部材11B3、11B4の各々の少なくとも一部は、熱交換器3の高温部5を構成する一つのフィン5aに直交する一つのフィン5bに接続する。熱伝導部材11B3、11B4の各々の少なくとも一部は、一つのフィン5bと整列する。
 図6に示すように、熱交換器3の高温部5は、熱交換器3の高温部5の中心軸の方向(X軸方向)に対して直交する一つの方向(例えば、Y軸方向)において偶数個の(例えば、4個の)フィン5aを有する。熱交換器3の高温部5は、熱交換器3の高温部5の中心軸の方向(X軸方向)およびそれに対して直交する一つの方向(例えば、Y軸方向)の両方に直交する方向(例えば、Z軸方向)において偶数個の(例えば、4個の)フィン5bを有する。この場合には、図5Aおよび図5Bに示すように、熱伝導部材11Aの少なくとも一部は、熱交換器3の高温部5の中心軸の付近に位置する中央のフィン5a,5bと整列するように、中央のフィン5a,5bに接続される。
 この場合には、図6に示すように、熱伝導部材11B1、11B2の各々の少なくとも一部は、熱交換器3の高温部5の中心軸の最も近くに位置する中央付近のフィン5aの一部と整列するように、中央付近のフィン5aの一部に接続される。熱伝導部材11B3、11B4の各々の少なくとも一部は、熱交換器3の高温部5の中心軸の最も近くに位置する中央付近のフィン5bの一部と整列するように、中央付近のフィン5bの一部に接続される。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1  熱音響装置
 2  導波管
 3  熱交換器
 4  低温部
 5  高温部
 5a,5b  フィン
 6  温度勾配保持部
 6a  フィン
 6b  仕切り
 7  励振器
 8  変換器
 11,11a,11b,11c,11d,11A,11B1,11B2,11B3,11B4  熱伝導部材
 12,12A,12B  断熱部材
 13  中空管
 G  気体

Claims (7)

  1.  媒体が充填されるループ状の導波管と、
     前記導波管内に設けられ、温度勾配を生じる低温部および高温部を有する熱交換器と、
     前記低温部および前記高温部の少なくとも一方の中央部の温度を変化させる熱伝導部材と、
     を備える、熱音響装置。
  2.  前記熱伝導部材は、前記低温部および前記高温部の少なくとも一方の中心軸に対して回転対称に設けられる、
     請求項1に記載の熱音響装置。
  3.  前記熱伝導部材は、前記低温部および前記高温部の少なくとも一方の中心軸の方向に対して直交すると共に互いに直交する二つの方向に延びる部材である、
     請求項2に記載の熱音響装置。
  4.  前記熱伝導部材は、前記低温部および前記高温部の少なくとも一方の少なくとも中心まで延びる部材である、
     請求項1から3のいずれか一項に記載の熱音響装置。
  5.  前記熱伝導部材が前記導波管と接触する位置に前記熱伝導部材と前記導波管との間における熱伝導を低減する断熱部材
     をさらに備える、
     請求項1から4のいずれか一項に記載の熱音響装置。
  6.  前記熱交換器は、前記低温部と前記高温部との間に設けられ、前記温度勾配を保持する温度勾配保持部をさらに有する、請求項1から5のいずれか一項に記載の熱音響装置。
  7.  前記熱伝導部材は、前記低温部および前記高温部の少なくとも一方を構成する少なくとも一つのフィンと整列するように、前記少なくとも一つのフィンに接続される部材である、
     請求項1から6のいずれか一項に記載の熱音響装置。
PCT/JP2019/034307 2018-08-31 2019-08-30 熱音響装置 WO2020045675A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020506847A JPWO2020045675A1 (ja) 2018-08-31 2019-08-30 熱音響装置
CN201980047059.7A CN112425185A (zh) 2018-08-31 2019-08-30 热声装置
US17/263,120 US20210204072A1 (en) 2018-08-31 2019-08-30 Thermoacoustic device
EP19855523.7A EP3846497A4 (en) 2018-08-31 2019-08-30 THERMOACOUSTIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164014 2018-08-31
JP2018164014 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045675A1 true WO2020045675A1 (ja) 2020-03-05

Family

ID=69643131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034307 WO2020045675A1 (ja) 2018-08-31 2019-08-30 熱音響装置

Country Status (5)

Country Link
US (1) US20210204072A1 (ja)
EP (1) EP3846497A4 (ja)
JP (1) JPWO2020045675A1 (ja)
CN (1) CN112425185A (ja)
WO (1) WO2020045675A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324932A (ja) 2002-04-26 2003-11-14 Denso Corp 熱音響発電機
JP2005274101A (ja) * 2004-03-26 2005-10-06 Doshisha 熱音響装置
JP2006105009A (ja) * 2004-10-04 2006-04-20 Japan Aerospace Exploration Agency 流体機械の流体振動若しくは流体騒音抑制装置
JP2008101910A (ja) * 2008-01-16 2008-05-01 Doshisha 熱音響装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667517A5 (de) * 1985-01-22 1988-10-14 Sulzer Ag Thermoakustische vorrichtung.
US7062921B2 (en) * 2002-12-30 2006-06-20 Industrial Technology Research Institute Multi-stage thermoacoustic device
CN100366991C (zh) * 2003-03-26 2008-02-06 学校法人同志社 冷却装置
JP4522191B2 (ja) * 2004-08-13 2010-08-11 学校法人同志社 熱音響装置
TWI259265B (en) * 2004-12-27 2006-08-01 Ind Tech Res Inst Radial acoustic driving device and application thereof to thermoacoustic cooling device
JP4652822B2 (ja) * 2005-01-07 2011-03-16 学校法人同志社 熱音響装置
JP2010071559A (ja) * 2008-09-18 2010-04-02 Toyoda Gosei Co Ltd 熱音響冷却装置
US20110146302A1 (en) * 2009-12-21 2011-06-23 Newman Michael D Cryogenic heat exchanger for thermoacoustic refrigeration system
CN102734098B (zh) * 2011-04-01 2014-11-05 中科力函(深圳)热声技术有限公司 一种双作用单级行波热声系统
JP2013148282A (ja) * 2012-01-19 2013-08-01 Honda Motor Co Ltd 熱音響機関
CN104797816B (zh) * 2012-09-19 2017-11-21 埃塔里姆有限公司 具有传输管道的热声换能器装置
JP6291390B2 (ja) * 2014-09-19 2018-03-14 日本碍子株式会社 熱・音波変換ユニット
JP6291392B2 (ja) * 2014-09-30 2018-03-14 日本碍子株式会社 熱・音波変換部品および熱・音波変換ユニット
JP6717460B2 (ja) * 2016-08-09 2020-07-01 株式会社ジェイテクト 熱音響冷却装置
CN110234523B (zh) * 2017-02-10 2022-10-18 日本碍子株式会社 冷风暖风产生系统
JP7019468B2 (ja) * 2018-03-13 2022-02-15 三菱重工業株式会社 励振源および熱音響装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324932A (ja) 2002-04-26 2003-11-14 Denso Corp 熱音響発電機
JP2005274101A (ja) * 2004-03-26 2005-10-06 Doshisha 熱音響装置
JP2006105009A (ja) * 2004-10-04 2006-04-20 Japan Aerospace Exploration Agency 流体機械の流体振動若しくは流体騒音抑制装置
JP2008101910A (ja) * 2008-01-16 2008-05-01 Doshisha 熱音響装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846497A4

Also Published As

Publication number Publication date
EP3846497A1 (en) 2021-07-07
US20210204072A1 (en) 2021-07-01
JPWO2020045675A1 (ja) 2020-09-03
CN112425185A (zh) 2021-02-26
EP3846497A4 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP4652822B2 (ja) 熱音響装置
US10976114B2 (en) Heat storage unit
JPWO2004085934A1 (ja) 冷却装置
JP5711907B2 (ja) 熱電気音響冷凍機及びその使用方法
WO2018074501A1 (ja) 熱音響装置
JP2011033025A (ja) 熱電気音響エンジン及びその使用方法
JP5651947B2 (ja) 熱音響機関
WO2020045675A1 (ja) 熱音響装置
JP2017219273A (ja) 熱音響エンジン、及び、熱音響エンジンの設計方法
JPWO2019102564A1 (ja) 熱音響エンジン
WO2021152798A1 (ja) 熱音響装置
JP4443971B2 (ja) 音響暖房装置、及び音響暖房システム
JP2011179720A (ja) 熱音響機関
WO2020045600A1 (ja) 熱音響装置
JP2010071559A (ja) 熱音響冷却装置
US10480832B2 (en) Thermoacoustic energy converting element part and thermoacoustic energy converter
WO2021084868A1 (ja) 熱音響装置
JP6386230B2 (ja) 熱音響装置用の蓄熱器
JP2000337724A (ja) 音響冷凍装置
Hamood et al. Two-stage thermoacoustic electricity generator for waste heat recovery
JP6894050B1 (ja) 熱音響装置
JP2013117324A (ja) 熱音響冷凍装置
JP2002031423A (ja) 熱音響エンジン
JP2016183844A (ja) 熱音響機関
WO2022024426A1 (ja) 熱音響装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506847

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855523

Country of ref document: EP

Effective date: 20210331