WO2020045266A1 - 表面硬化材料の製造方法 - Google Patents

表面硬化材料の製造方法 Download PDF

Info

Publication number
WO2020045266A1
WO2020045266A1 PCT/JP2019/032980 JP2019032980W WO2020045266A1 WO 2020045266 A1 WO2020045266 A1 WO 2020045266A1 JP 2019032980 W JP2019032980 W JP 2019032980W WO 2020045266 A1 WO2020045266 A1 WO 2020045266A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
nitrogen
producing
cooling
less
Prior art date
Application number
PCT/JP2019/032980
Other languages
English (en)
French (fr)
Inventor
中島 隆
伊藤 太郎
竜也 松川
正昭 別府
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to MX2021001758A priority Critical patent/MX2021001758A/es
Priority to US17/270,960 priority patent/US11332818B2/en
Priority to EP19853464.6A priority patent/EP3825438A4/en
Priority to CN201980040442.XA priority patent/CN112469842A/zh
Publication of WO2020045266A1 publication Critical patent/WO2020045266A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • C23C12/02Diffusion in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/44Carburising
    • C23C8/46Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a method for producing a surface-hardened material hardened to a deep position by performing a predetermined treatment on a steel material having a solid solution of nitrogen on the surface.
  • Patent Literature 1 discloses a method in which a steel is subjected to a soft nitriding treatment, a nitride layer having a predetermined thickness is formed on the surface, and then heated at 1000 to 1200 ° C. for 30 to 120 minutes. Further, in Patent Document 2, the surface of a mold material is heated after nitriding treatment, and is performed at a cooling rate of 30 ° C./sec or less to a martensitic transformation start temperature or less at a critical cooling rate of martensitic transformation. There is disclosed a method of cooling to reduce or eliminate nitrogen compounds on the surface and diffuse and solid-dissolve nitrogen therein to make the surface hardened layer deeper than the nitriding treatment alone.
  • an object of the present invention is to solve the above-mentioned problem, and to provide a method for producing a surface hardened material having a hard surface up to a deep position.
  • the present invention includes the following. (1) an immersion step of immersing a steel material having a solid solution of nitrogen on the surface thereof in a melt containing chloride at a temperature of 650 ° C. to 900 ° C. A cooling step of cooling the immersed steel material at a cooling rate equal to or higher than the lower critical cooling rate at which martensitic transformation starts, to a martensitic transformation start temperature or lower, A method for producing a surface-hardened material, comprising: (2) The method for producing a surface-hardened material according to (1) above, wherein the steel material in which nitrogen is dissolved in the surface further includes an iron-nitrogen compound layer as a surface layer; (3) The method for producing a surface-hardened material according to the above (1) or (2), wherein the steel material in which nitrogen is dissolved in the surface has carbon also dissolved in the surface; (4) The method for producing a surface-hardened material according to the above (1) or (2), further comprising a nitriding treatment step in which nitrogen is dissolved in the surface by
  • the steel material which forms a solid solution of nitrogen on the surface (performs the nitriding treatment) is C is 0.01% or more and 1.5% or less, 3% or less of Si, Mn of 2% or less, 5% or less in total of Cr, Mo, Cu and Ni, 1% or less of Nb, Ti, V and B in total; P is 0.1% or less, S is 0.05% or less,
  • the method for producing a surface-hardened material according to the present invention comprises: a dipping step of dipping a steel material having a solid solution of nitrogen on the surface in a molten material containing chloride at a temperature of 650 ° C. to 900 ° C .; Cooling the material at a cooling rate equal to or higher than the lower critical cooling rate at which martensitic transformation starts, to a temperature equal to or lower than the martensitic transformation start temperature.
  • a specific description will be given.
  • Steel material with a solid solution of nitrogen on the surface means a material in which nitrogen is in a solid solution state on the surface of the steel material.
  • the steel material for dissolving nitrogen on the surface is not particularly limited as long as it contains at least iron and carbon and contains 70% by mass or more (preferably 80% by mass or more) of iron.
  • rolled steel for general structure, cold rolled steel and steel strip, carbon steel for machine structure, alloy steel for machine structure, carbon tool steel, high speed tool steel, spring steel, high carbon chromium Bearing steel materials and the like are included.
  • a steel material having a plating film having the same composition as that of the steel material may be a target. In this case, the steel material and the plating film may have the same composition or may have different compositions.
  • the steel material may include other elements in addition to iron and carbon.
  • the other elements include Si, Mn, Cr, Mo, Cu, Ni, Nb, Ti, V, B, P, S, and O. One or more of these may be included in the steel material, or all may be included in the steel material.
  • the content of each element contained in the steel material will be described.
  • the content of C (carbon) is generally in the range of 0.01% by mass to 1.5% by mass, and preferably in the range of 0.4% by mass to 1.0% by mass.
  • the content of Si (silicon) is usually 3% by mass or less, preferably 1% by mass or less.
  • the content of Mn (manganese) is usually 2% by mass or less, preferably 0.6% by mass or less.
  • the total content of Cr (chromium), Mo (molybdenum), Cu (copper), Ni (nickel) and the like is usually 5% by mass or less.
  • the total content of Nb (niobium), Ti (titanium), V (vanadium), B (boron) and the like may be 1% by mass or less, but is preferably at an impurity level.
  • the content of P (phosphorus) is usually 0.1% by mass or less, preferably 0.05% by mass or less.
  • the content of S (sulfur) is usually 0.05% by mass or less, and preferably 0.03% by mass or less.
  • the content of O (oxygen) is preferably at the impurity level.
  • preferred steel materials include C in the range of 0.01% by mass or more and 1.5% by mass or less; Si 3% by mass or less; Mn 2% by mass or less; Cr, Mo, Cu, and Ni is 5% by mass or less; Nb, Ti, V and B are 1% by mass or less; P is 0.1% by mass or less; S is 0.05% by mass or less; and Fe is 70.0% by mass. % Or more and 99.5% by mass or less, or the balance includes Fe and inevitable impurities.
  • JIS steel types include SPCC, S10C, S45C, S55C, SK65 (SK7), SK105 (SK3), SUJ2, SCM420, SCM440, and the like. These steel materials may have been previously subjected to annealing or spheroidizing annealing.
  • a nitriding treatment on the steel material for example, a nitriding treatment on the steel material can be mentioned.
  • the method for producing a surface hardened material according to the present invention may further include a “nitriding step of dissolving nitrogen in the surface by nitriding the steel material before the dipping step”. Further, after the nitriding treatment step and before the immersion step described below, the steel material having a solid solution of nitrogen on the surface is cooled, or the steel material having a solid solution of nitrogen on the surface is cooled and then washed. Or you may.
  • the nitriding of the steel material is not particularly limited as long as it is a conventionally known method.
  • Examples thereof include gas nitriding, gas nitrocarburizing, plasma nitriding, and salt bath nitrocarburizing. it can.
  • a carbonitriding process may be performed as a nitriding process. By performing these nitriding treatments, on the surface of the steel material, a nitrogen diffusion layer in which nitrogen is dissolved, or a composite layer of the nitrogen diffusion layer and an iron-nitrogen compound layer formed on the nitrogen diffusion layer is formed. It is formed.
  • the nitrogen in the nitrogen diffusion layer is usually 0.05% by mass or more, but is not limited to this value.
  • the iron-nitrogen compound in the iron-nitrogen compound layer is, for example, ⁇ -Fe 2-3 N; ⁇ ′-Fe 4 N; Fex (N, C) [x is an arbitrary numerical value. ]; CrN, Cr 2 N, TiN, Si 3 N 4, MxN of VN such [M: a metal element contained in the steel material, for example, Cr, Ti, Si, V, etc., x is is any numerical value . ].
  • the thickness of the iron-nitrogen compound layer is usually formed in the range of 1 ⁇ m or more and 50 ⁇ m or less.
  • the conditions of the nitriding treatment vary depending on the type of the steel material, the treatment method, and the like. And within a range of 5 minutes to 120 minutes. More specifically, in the case of the salt bath nitrocarburizing treatment, the temperature is preferably in the range of 550 ° C to 600 ° C, more preferably in the range of 570 ° C to 590 ° C.
  • the processing time is preferably in the range of 60 minutes to 120 minutes.
  • the thickness of the iron-nitrogen compound layer can be measured by a light microscope or a scanning electron microscope on a cross section of a steel material having a surface in which nitrogen is dissolved, which is obtained by nitriding the steel material.
  • the composition of the iron-nitrogen compound layer can be measured by EPMA (Electron Beam Microanalyzer) analysis.
  • the thickness of the nitrogen diffusion layer may be a layer in which nitrogen is simply dissolved in iron, a composite layer in which nitrides of alloy elements (Cr, V, Nb, Ti, Al) are dispersed and precipitated in a matrix in which nitrogen is dissolved, Can be measured by EPMA (Electron Beam Microanalyzer) analysis.
  • the method for producing a surface-hardened material according to the present invention may further include a “carburizing treatment step of performing a carburizing treatment on a steel material” before the dipping step, more specifically, before the nitriding treatment step.
  • a “carburizing treatment step of performing a carburizing treatment on a steel material” before the dipping step, more specifically, before the nitriding treatment step.
  • examples of the carburizing treatment include solid carburizing treatment; liquid carburizing treatment such as salt bath carburizing treatment; gas carburizing treatment; vacuum carburizing treatment (vacuum gas carburizing treatment); plasma carburizing treatment (ion carburizing treatment);
  • the present invention is not limited to these.
  • the conditions of the carburizing treatment such as the temperature and the time, vary depending on the type of the steel material, the treatment method, the depth of the carbon penetration, and the like, but are appropriately set so that the carbon is solid-dissolved on the surface of the steel material.
  • the method for producing a surface-hardened material according to the present invention includes a step of performing quenching, tempering, and the like under suitable conditions to improve the surface hardness of the steel material after the carburizing step and before the nitriding step. May be further performed.
  • the steel material in which nitrogen is dissolved in the surface of the immersion step is then immersed in a melt containing chloride.
  • a melt containing chloride By this immersion step, more nitrogen dissolved in the surface can be penetrated deeply, and the surface layer can be prevented from being oxidized. Strength can also be improved.
  • the chloride contained in the melt include, but are not limited to, NaCl, KCl, BaCl 2 and the like. These chlorides may be used alone or in a combination of two or more.
  • the melt may contain a metal nitrate and / or a metal carbonate such as Na, K, Ba, etc., but may not contain it.
  • the temperature for immersion in the melt (immersion temperature) is usually in the range of 650 ° C to 900 ° C.
  • the reason for limiting to this temperature range is that the surface hardness of the surface hardened material cannot be sufficiently increased to a deep position unless it is immersed in this temperature range.
  • the time for immersion in the melt varies depending on the type of steel material for dissolving nitrogen on the surface, the immersion temperature, etc., but is usually 5 minutes to 60 minutes, preferably 5 minutes to 30 minutes. .
  • the condition of cooling is not particularly limited as long as the cooling speed is equal to or higher than the lower critical cooling speed at which martensitic transformation starts (occurs). preferable.
  • the lower critical cooling rate and the upper critical cooling rate vary depending on the composition of the steel material to be immersed, but are generally 20 ° C./sec to 30 ° C./sec or more.
  • the cooling temperature is not particularly limited as long as it is equal to or lower than the martensite transformation start temperature.
  • the method of cooling is not particularly limited, but it is preferable to immerse in a cooling medium such as water, salt water, aqueous polymer dispersion, oil, salt bath, and lead bath.
  • a cooling medium such as water, salt water, aqueous polymer dispersion, oil, salt bath, and lead bath.
  • the cooled steel material may be washed with water, or may be further tempered after washing with water.
  • Tempering can be performed under the conditions usually performed.
  • the conditions such as the tempering temperature and time vary depending on the composition of the cooled steel material and the intended use. For example, the temperature is in the range of 150 ° C. or more and 180 ° C. or less, and in the range of 60 minutes or more and 90 minutes or less. And the like.
  • test piece 1 A test piece 1 was prepared by annealing carbon steel S45C for machine structure at 850 ° C. for 4 hours and forming it into a diameter of 20 mm ⁇ a length of 50 mm by machining.
  • Test piece 2 A test piece 2 was prepared by cutting a 1 mm-thick ultra mild steel sheet for automobiles SPCC into 70 mm x 150 mm.
  • Test piece 3 S10C was annealed at 900 ° C.
  • Test piece 4 S55C was annealed at 850 ° C. for 4 hours, and was machined to form a test piece 4 having a diameter of 20 mm and a length of 50 mm.
  • Test piece 5 and test piece 6 The SCM420 was annealed at 850 ° C. for 4 hours, and formed into a diameter of 20 mm and a length of 50 mm by machining to prepare a test piece 5. This test piece was carburized at 930 ° C. for 180 minutes in a carburizing furnace while injecting a propane modified gas (RX gas) and a propane enriched gas.
  • RX gas propane modified gas
  • propane enriched gas propane enriched gas
  • test piece 6 was formed to a size of 50 mm and provided with a carburized layer on the surface.
  • the effective hardened layer depth was measured based on “Method for measuring the depth of carburized hardened layer of steel” in JIS G 0557: 2006. (6)
  • Test piece 7 The SCM440 was spheroidized and annealed and machined to form a test piece having a diameter of 20 mm and a length of 50 mm.
  • Test pieces 1 for producing evaluation materials 1 to 5 were immersed in a salt bath nitrocarburizing agent (manufactured by Parker Heat Treatment Industry; NS-2), and subjected to a salt bath nitrocarburizing treatment at 570 ° C. for 120 minutes.
  • a salt bath nitrocarburizing agent manufactured by Parker Heat Treatment Industry; NS-2
  • the iron-nitrogen compound layer was about 15 ⁇ m thick from the surface, and the nitrogen diffusion layer was about 200 ⁇ m below the iron-nitrogen compound layer. It was confirmed that a composite layer was formed at a thickness of.
  • the test piece 1 subjected to the salt bath nitrocarburizing treatment was immersed in a salt bath agent containing a chloride metal salt, and heated in a salt bath at 600 to 1000 ° C. for 30 minutes.
  • a salt bath agent GS540 (melting point: 540 ° C.) manufactured by Parker Heat Treatment Industry is used when heating at 600 ° C. or 650 ° C.
  • GS660 melting point: Parking Heat Treatment Industry
  • the test piece 1 was immersed in a 5% aqueous NaCl solution at 20 to 30 ° C. and cooled (hereinafter referred to as “water cooling”). Evaluation materials 1 to 5 were produced. The cooling rate at this time was approximately 170 ° C./sec.
  • test specimens 1 prepared for the evaluation materials 6 to 10 were subjected to the plasma nitriding treatment, and the specimens 1 subjected to the plasma nitriding treatment were observed by an optical microscope and EPMA analysis.
  • the plasma nitriding treatment was performed at 570 ° C. for 6 hours while adjusting the volume ratio of N 2 gas and H 2 gas in the furnace to be 1: 4, reducing the pressure to 3 torr.
  • the iron-nitrogen compound layer was formed discontinuously on the surface, and that the nitrogen diffusion layer was formed with a thickness of about 200 ⁇ m below or from the surface of the iron-nitrogen compound layer. .
  • the surface of the test piece 1 subjected to the plasma nitriding treatment was mechanically polished to remove a slight iron-nitrogen compound layer formed discontinuously on the surface, and immersed in a salt bath and water-cooled as described above. No. Evaluation materials of 6 to 10 were produced.
  • Characteristic evaluation No The characteristics (surface oxidation, cross-sectional hardness) of the evaluation materials 1 to 10 were evaluated.
  • the surface oxidation includes the presence or absence of peeling or falling off of oxides and the like from the surface of the test piece 1 during water cooling, and the thickness of the oxide scale on the surface when a cross section of each evaluation material is observed with a metallographic microscope (observation magnification: 500 times). Was confirmed and evaluated.
  • observation magnification 500 times
  • the surface oxidation was evaluated as “Yes”.
  • the section hardness is mirror-finished by mechanical polishing, and then the depth from the surface is measured using a micro hardness tester (Micro Vickers) at a measurement load of 0.3 kgf.
  • the microhardness (HV) at a position of 300 ⁇ m was measured. Table 2 shows the results.
  • Evaluation materials 11 and 12 were produced.
  • the cooling rate at this time was approximately 100 ° C./sec.
  • the test piece 1 or 6 subjected to the salt bath nitrocarburizing treatment was heated in an electric furnace at 800 ° C. for 5 minutes or 30 minutes (electric furnace heating). After heating, the test piece 1 or 6 was cooled with water or oil. 13 to 15 evaluation materials were produced.
  • the test piece 6 subjected to the salt bath nitrocarburizing treatment was heated at 800 ° C. for 0.5 to 5 minutes using a high frequency power supply (maximum output: 30 kW, frequency: 70 kHz) (IH). After heating, the test piece 6 was oil-cooled. 16 to 18 evaluation materials were produced. No. Properties of 11 to 18 evaluation materials were evaluated in the same manner as described above. Table 3 shows the results.
  • test piece 6 subjected to the salt bath nitrocarburizing treatment was heated in a salt bath at 850 ° C. for 5 minutes, left in a room at 20 ° C., cooled to 20 ° C. Twenty evaluation materials were produced. The cooling rate at this time was about 10 ° C./sec. No. The characteristics of the evaluation materials 19 to 26 were evaluated in the same manner as described above. Table 4 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

表面に窒素が固溶された鉄鋼材料を、塩化物を含む溶融物に650℃~900℃の範囲内で浸漬する浸漬ステップと、浸漬した前記鉄鋼材料を、マルテンサイト変態が開始する下部臨界冷却速度以上の冷却速度にて、マルテンサイト変態開始温度以下まで冷却する冷却ステップと、を含む、表面硬化材料の製造方法。

Description

表面硬化材料の製造方法
 本発明は、表面に窒素が固溶された鉄鋼材料に所定の処理を施すことにより、深い位置まで硬化させた表面硬化材料の製造方法に関する。
 鉄鋼材料の表面硬化処理法として、従来、様々な方法が開発されている。例えば、特許文献1には、鋼に軟窒化処理を施し、表面に所定の厚さの窒化物層を形成し、次いで、1000~1200℃で30~120分加熱する方法が開示されている。また、特許文献2には、金型材に対して窒化処理を行った後に表面の加熱を行い、マルテンサイト変態の臨界冷却速度以上30℃/sec以下の冷却速度にてマルテンサイト変態開始温度以下まで冷却し、表面の窒素化合物を減少ないしは消滅させかつ内部に窒素を拡散・固溶させ、表面硬化層を窒化処理単独に比べて深くする方法が開示されている。
特開2015-59248号公報 特開平7-138733号公報
 しかし、特許文献1及び2に記載の方法では、表面に窒素が固溶された鉄鋼材料に対し、多くの窒素を深くまで浸透させることができなかったり、表層が酸化したりして、深い位置まで硬質な表面を形成できない場合があった。そこで、本発明の目的は、上記問題を解決するものであり、深い位置まで硬質な表面を有する表面硬化材料を製造する方法を提供することである。
 すなわち、本発明は、以下のものを含む。
(1)表面に窒素が固溶された鉄鋼材料を、塩化物を含む溶融物に650℃~900℃の範囲内で浸漬する浸漬ステップと、
 浸漬した前記鉄鋼材料を、マルテンサイト変態が開始する下部臨界冷却速度以上の冷却速度にて、マルテンサイト変態開始温度以下まで冷却する冷却ステップと、
を含む、表面硬化材料の製造方法;
(2)表面に窒素が固溶された鉄鋼材料は、表層として鉄窒素化合物層を更に含む、上記(1)に記載の表面硬化材料の製造方法;
(3)表面に窒素が固溶された鉄鋼材料は、表面に炭素も固溶されている、上記(1)又は(2)に記載の表面硬化材料の製造方法;
(4)鉄鋼材料を窒化処理することにより、表面に窒素を固溶する窒化処理ステップを更に含む、上記(1)又は(2)に記載の表面硬化材料の製造方法;
(5)前記窒化処理が、ガス窒化処理、ガス軟窒化処理、プラズマ窒化処理、又は塩浴軟窒化処理である、上記(4)に記載の表面硬化材料の製造方法;
(6)前記窒化処理ステップの前に、鉄鋼材料に浸炭処理を施す浸炭処理ステップを更に含む、上記(4)又は(5)に記載の表面硬化材料の製造方法;
(7)表面に窒素を固溶する(前記窒化処理を行う)鉄鋼材料が、質量%で、
 Cを0.01%以上1.5%以下、
 Siを3%以下、
 Mnを2%以下、
 Cr、Mo、Cu及びNiを合計で5%以下、
 Nb、Ti、V及びBを合計で1%以下、
 Pを0.1%以下、
 Sを0.05%以下、
 Feを70.0%以上99.5%以下
の範囲内で含む、上記(1)~(6)のいずれかに記載の表面硬化材料の製造方法;
(8)表面に窒素を固溶する(前記窒化処理を行う)鉄鋼材料が、質量%で、
 Cを0.01%以上1.5%以下、
 Siを3%以下、
 Mnを2%以下、   
 Cr、Mo、Cu及びNiを合計で5%以下、
 Nb、Ti、V及びBを合計で1%以下、
 Pを0.1%以下、
 Sを0.05%以下
の範囲内で含み、Feおよび不可避不純物を残部として更に含む、上記(1)~(6)のいずれかに記載の表面硬化材料の製造方法。
 本発明によれば、深い位置まで硬質な表面を有する表面硬化材料を製造する方法を提供することができる。
 本発明に係る表面硬化材料の製造方法は、表面に窒素が固溶された鉄鋼材料を、塩化物を含む溶融物に650℃~900℃の範囲内で浸漬する浸漬ステップと、浸漬した前記鉄鋼材料を、マルテンサイト変態が開始する下部臨界冷却速度以上の冷却速度にて、マルテンサイト変態開始温度以下まで冷却する冷却ステップと、を含む。以下、具体的に説明する。
 表面に窒素が固溶された鉄鋼材料とは、鉄鋼材料の表面において窒素が固溶状態にあるものを意味する。表面に窒素を固溶するための鉄鋼材料としては、少なくとも鉄と炭素を含み、鉄が70質量%以上(好ましくは80質量%以上)含まれるものであれば特に制限されるものではなく、具体的には、一般構造用圧延鋼材、冷間圧延鋼材及び鋼帯、機械構造用炭素鋼鋼材、機械構造用合金鋼鋼材、炭素工具鋼鋼材、高速度工具鋼鋼材、ばね鋼鋼材、高炭素クロム軸受鋼鋼材などが挙げられる。なお、鉄鋼材料と同様の組成で構成されているめっき被膜を有する鉄鋼材料も対象となり得る。この場合、鉄鋼材料とめっき被膜は同一組成からなるものであっても、異なる組成からなるものであってもよい。また、鉄鋼材料は、鉄及び炭素以外に他の元素を含むものであってもよい。他の元素としては、例えば、Si、Mn、Cr、Mo、Cu、Ni、Nb、Ti、V、B、P、S、O等が挙げられる。これらのうち、1種又は2種以上が鉄鋼材料に含まれていてもよいし、全部が鉄鋼材料に含まれていてもよい。
 鉄鋼材料に含まれる各元素の含有量について説明する。C(炭素)の含有量は、通常0.01質量%以上1.5質量%以下の範囲内であり、好ましくは0.4質量%以上1.0質量%以下の範囲内である。Si(ケイ素)の含有量は、通常3質量%以下であり、好ましくは1質量%以下である。Mn(マンガン)の含有量は、通常2質量%以下であり、好ましくは0.6質量%以下である。Cr(クロム)、Mo(モリブデン)、Cu(銅)、Ni(ニッケル)等の合計含有量は、通常5質量%以下である。Nb(ニオブ)、Ti(チタン)、V(バナジウム)、B(ホウ素)等の合計含有量は、1質量%以下であればよいが、不純物レベルであることが好ましい。P(燐)の含有量は、通常0.1質量%以下であり、好ましくは0.05質量%以下である。S(硫黄)の含有量は、通常0.05質量%以下であり、好ましくは0.03質量%以下である。O(酸素)の含有量は、不純物レベルであることが好ましい。
 本実施の形態において、好ましい鉄鋼材料としては、Cを0.01質量%以上1.5質量%以下の範囲内;Siを3質量%以下;Mnを2質量%以下;Cr、Mo、Cu及びNiを合計で5質量%以下;Nb、Ti、V及びBを合計で1質量%以下;Pを0.1質量%以下;Sを0.05質量%以下;および、Feを70.0質量%以上99.5質量%以下、または、残部としてFeおよび不可避不純物;を含むものである。具体的には、JIS鋼種でいえば、SPCC、S10C、S45C、S55C、SK65(SK7)、SK105(SK3)、SUJ2、SCM420、SCM440などが挙げられる。これらの鉄鋼材料は、予め焼鈍や球状化焼鈍が施されたものであってもよい。
 鉄鋼材料の表面に窒素を固溶する方法としては、例えば、鉄鋼材料に対する窒化処理を挙げることができる。本発明に係る表面硬化材料の製造方法は、「浸漬ステップの前に、鉄鋼材料を窒化処理することにより、表面に窒素を固溶する窒化処理ステップ」を更に含んでもよい。また、窒化処理ステップの後であって、後述の浸漬ステップの前に、表面に窒素が固溶された鉄鋼材料を冷却したり、表面に窒素が固溶された鉄鋼材料を冷却した後洗浄したりしてもよい。鉄鋼材料に対する窒化処理としては、従来知られている方法であれば特に制限されるものではなく、例えば、ガス窒化処理、ガス軟窒化処理、プラズマ窒化処理、塩浴軟窒化処理等を挙げることができる。また、後述の浸炭処理ステップを行う場合には、窒化処理として浸炭窒化処理を行ってもよい。これらの窒化処理を行うことにより、鉄鋼材料の表面において、窒素が固溶された窒素拡散層、あるいは、その窒素拡散層と該窒素拡散層上に形成される鉄窒素化合物層との複合層が形成される。
 上記窒素拡散層中の窒素は、通常0.05質量%以上であるが、この値に限定されるものではない。また、鉄窒素化合物層中の鉄窒素化合物は、例えば、ε-Fe2-3N;γ’-FeN;Fex(N,C)[xは任意の数値である。];CrN、CrN、TiN、Si、VN等のMxN[M:鉄鋼材料に含まれる金属元素、例えば、Cr、Ti、Si、V等であり、xは任意の数値である。]などである。鉄窒素化合物層の厚さは、通常1μm以上50μm以下の範囲内で形成される。窒化処理の、温度及び時間等の条件は、鉄鋼材料の種類、処理の方法等によって異なるが、一般的には、A1変態点以下の温度で所定時間行われ、例えば、300℃以上600℃以下の範囲内で、かつ、5分間以上120分間以下の範囲内で行われる。より具体的には、塩浴軟窒化処理の場合、温度は、550℃以上600℃以下の範囲内であることが好ましく、570℃以上590℃以下の範囲内であることがより好ましい。処理時間は、60分間以上120分間以下の範囲内であることが好ましい。
 鉄窒素化合物層の厚さは、鉄鋼材料を窒化処理することにより得られる、表面に窒素が固溶された鉄鋼材料、の断面を光学顕微鏡または走査型電子顕微鏡により測定できる。鉄窒素化合物層の組成はEPMA(電子線マイクロアナライザ)分析により測定できる。窒素拡散層の厚さは、鉄に窒素が単に固溶した層、あるいは窒素を固溶した母相に合金元素(Cr、V、Nb、Ti、Al)の窒化物を分散析出した複合層、の厚さとして、EPMA(電子線マイクロアナライザ)分析により測定できる。
 本発明に係る表面硬化材料の製造方法は、浸漬ステップの前、より具体的には、上記窒化処理ステップの前に、「鉄鋼材料に浸炭処理を施す浸炭処理ステップ」を更に含んでもよい。この浸炭処理ステップを行うことにより、鉄鋼材料の表面に炭素を固溶することができる。また、この浸炭処理ステップと窒化処理ステップを行うことにより、表面に炭素と窒素が固溶化された鉄鋼材料を得ることができる。ここで、浸炭処理としては、例えば、固体浸炭処理;塩浴浸炭処理等の液体浸炭処理;ガス浸炭処理;真空浸炭処理(真空ガス浸炭処理);プラズマ浸炭処理(イオン浸炭処理);等を挙げることができるが、これらに限定されるものではない。浸炭処理の、温度及び時間等の条件は、鉄鋼材料の種類、処理の方法、炭素を浸透させる深さ等によって異なるが、鉄鋼材料の表面に炭素が固溶されるように適宜設定される。なお、本発明に係る表面硬化材料の製造方法は、浸炭処理ステップを行った後、窒化処理ステップ前に、鉄鋼材料の表面硬さを向上させるため、適した条件下で、焼入れ、焼き戻し等の処理を更に行ってもよい。
浸漬ステップ
 表面に窒素が固溶された鉄鋼材料は、次に塩化物を含む溶融物に浸漬される。この浸漬ステップにより、より多くの、表面に固溶された窒素を深くまで浸透させることができ、かつ、表層が酸化されるのを防ぐことができるため、後述の冷却ステップにより、深い位置まで表面強度も向上させることができるようになる。溶融物に含まれる塩化物としては、例えば、NaCl、KCl、BaCl等を挙げることができるがこれらに限定されるものではない。これらの塩化物は、1種を単独で用いてもよいが、2種以上を混合して用いてもよい。溶融物には、Na、K、Ba等の、硝酸金属塩および/または炭酸金属塩が含まれていてもよいが、含まれていなくてもよい。溶融物に浸漬する温度(浸漬温度)は、通常、650℃以上900℃以下の範囲内である。この温度範囲に限定した理由は、この温度範囲で浸漬しないと、表面硬化材料における表面硬度を深い位置まで十分に高めることができないからである。溶融物に浸漬する時間は、表面に窒素を固溶するための鉄鋼材料の種類、浸漬温度等によって異なるが、通常、5分間以上60分間以下であり、好ましくは5分間以上30分間以下である。
冷却ステップ
 浸漬ステップで浸漬した上記鉄鋼材料を急冷することにより、表面部にマルテンサイト変態を生じさせ、深い位置まで硬質な表面を有する表面硬化材料を製造することができる。冷却(急冷)の条件としては、マルテンサイト変態が開始する(生じる)下部臨界冷却速度以上の冷却速度であれば特に制限されるものではないが、上部臨界冷却速度以上の冷却速度であることが好ましい。下部臨界冷却速度及び上部臨界冷却速度は、浸漬する上記鉄鋼材料の組成によって異なるが、一般的に、20℃/秒~30℃/秒以上である。なお、冷却する温度としては、マルテンサイト変態開始温度以下であれば特に制限されるものではない。また、冷却(急冷)方法は、特に制限されるものではないが、水、塩水、ポリマー分散水溶液、油、塩浴、鉛浴などの冷却媒体に浸漬することが好ましい。冷却ステップを行った後、冷却した上記鉄鋼材料に対し、水洗したり、水洗後さらに焼き戻しを行ったりしてもよい。焼き戻しを行うことにより、靭性を向上させた表面硬化材料を製造することが可能となる。焼き戻しは、通常行われる条件で行うことができる。焼き戻しの温度及び時間等の条件は、冷却した上記鉄鋼材料の組成や使用用途により異なるが、例えば、150℃以上180℃以下の範囲内の温度、及び、60分間以上90分間以下の範囲内の時間等を挙げることができる。
 本発明による製造方法の効果を確認するために、7種類の試験片を作製した。なお、試験片の作製に用いた各JIS鋼種の成分組成を表1に示す。残部は鉄および不純物、単位は質量%である。
(1)試験片1
 機械構造用炭素鋼鋼材S45Cを850℃にて4時間の焼鈍を行い、機械加工により、直径20mm×長さ50mmに成形し、試験片1を作製した。
(2)試験片2
 板厚1mmの自動車用極軟鋼薄鋼板SPCCを70mm×150mmに切断し、試験片2を作製した。
(3)試験片3
 S10Cを900℃で4時間の焼鈍を行い、機械加工により、直径20mm×長さ50mmに成形し、試験片3を作製した。
(4)試験片4
 S55Cを850℃で4時間の焼鈍を行い、機械加工により、直径20mm×長さ50mmに成形し、試験片4を作製した。
(5)試験片5及び試験片6
 SCM420を850℃で4時間の焼鈍を行い、機械加工により、直径20mm×長さ50mmに成形し、試験片5を作製した。この試験片を、プロパン変成ガス(RXガス)及びプロパンエンリッチガスを注入しながら浸炭炉内にて、930℃で180分間浸炭処理を行った。その後、850℃まで温度を下げてから油冷(焼入れ)を行い、有効硬化層深さ(550HV)が0.8mmとなるように焼き戻しを行い、表面を機械研磨して直径20mm×長さ50mmに成形し、表面に浸炭層を備えた試験片6を作製した。なお、有効硬化層深さは、JIS G 0557:2006における「鋼の浸炭硬化層深さ測定方法」に基づき測定した。
(6)試験片7
 SCM440を球状化焼鈍し、機械加工により、直径20mm×長さ50mmに成形し、試験片を作製した。
Figure JPOXMLDOC01-appb-T000001
No.1~5の評価材料の作製
 試験片1を塩浴軟窒化剤(パーカー熱処理工業製;NS-2)に浸漬し、570℃で120分間塩浴軟窒化処理を行った。塩浴軟窒化処理を行った試験片1を、光学顕微鏡及びEPMA分析により観察したところ、鉄窒素化合物層が表面から約15μmの厚さで、鉄窒素化合物層の下に窒素拡散層が約200μmの厚さで、複合層が形成されているのが確認できた。塩浴軟窒化処理を行った試験片1を、塩化物金属塩を含む塩浴剤に浸漬し、600℃~1000℃で30分間塩浴加熱を行った。塩浴剤としては、600℃又は650℃で加熱する場合には、パーカー熱処理工業製GS540(融点540℃)を使用し、800~1000℃で加熱する場合には、パーカー熱処理工業製GS660(融点660℃)を使用した。塩浴加熱を行った後、試験片1を20~30℃の5%NaCl水溶液中に浸漬して冷却し(以下、「水冷」という)、No.1~5の評価材料を作製した。この際の冷却速度は、概ね170℃/秒であった。
No.6~10の評価材料の作製
 試験片1に対してプラズマ窒化処理を行い、プラズマ窒化処理を行った試験片1を、光学顕微鏡及びEPMA分析により観察した。なお、プラズマ窒化処理は、炉内のNガスとHガスの体積比が1:4となるように調整し、3torrに減圧して570℃で6時間行った。光学顕微鏡の観察の結果、鉄窒素化合物層が表面において不連続に形成し、また、窒素拡散層が鉄窒素化合物層の下あるいは表面から約200μmの厚さで形成されているのが確認できた。プラズマ窒化処理を行った試験片1の表面を機械研磨して、表面に不連続に形成した僅かな鉄窒素化合物層を除去し、上述と同様に、塩浴剤への浸漬及び水冷を行い、No.6~10の評価材料を作製した。
特性評価
 No.1~10の評価材料の特性(表面酸化、断面硬さ)を評価した。表面酸化は、水冷時に試験片1の表面から酸化物等の剥離や脱落の有無と、各評価材料を金属顕微鏡により断面観察(観察倍率500倍)した場合における、表面の酸化スケールの厚さと、を確認し、評価した。剥離や脱落がなく、酸化スケールの厚さが2μm未満である場合は実用化レベルと判断し、表面酸化が「無」と評価した。その他の場合、すなわち、剥離や脱落が確認された場合、又は酸化スケールの厚さが2μm以上である場合は、表面酸化が「有」と評価した。
 断面硬さは、各評価材料を切断した後、断面を機械研磨により鏡面仕上げし、続いて、微小硬さ試験機(マイクロビッカース)を用いて、測定荷重0.3kgfにて、表面から深さ300μmの位置における微小硬さ(HV)を測定した。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
No.11~18の評価材料の作製
 上述と同様に塩浴軟窒化処理を行った試験片1又は6を、光学顕微鏡及びEPMA分析により観察した。光学顕微鏡の観察の結果、鉄窒素化合物層が表面から約15μmの厚さで、鉄窒素化合物層の下に窒素拡散層が約200μmの厚さで形成されているのが確認できた。
 塩浴軟窒化処理を行った試験片6に対し、800℃で5分間または30分間塩浴加熱を行った後、30~40℃のコールドクエンチ油(出光製;ダフニーマスタークエンチA)中に浸漬して冷却し(以下、「油冷」という)、No.11及び12の評価材料を作製した。この際の冷却速度は、概ね約100℃/秒であった。
 また、塩浴軟窒化処理を行った試験片1又は6を、電気炉内において800℃で5分間または30分間加熱した(電気炉加熱)。加熱後、試験片1又は6を水冷または油冷し、No.13~15の評価材料を作製した。
 塩浴軟窒化処理した試験片6を、高周波電源装置(最大出力:30kW、周波数:70kHz)を用いて800℃で0.5~5分間加熱した(IH)。加熱後、試験片6を油冷し、No.16~18の評価材料を作製した。
 No.11~18の評価材料に対し、上述の同様に特性の評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
No.19~26の評価材料の作製
 上述と同様に、塩浴軟窒化処理を行った試験片1~7を、光学顕微鏡及びEPMA分析により観察した。光学顕微鏡の観察の結果、鉄窒素化合物層が表面から約15μmの厚さで、鉄窒素化合物層の下に窒素拡散層が約200μmの厚さで形成されているのが確認できた。塩浴軟窒化処理を行った試験片1~7に対し、850℃で5分間塩浴加熱を行った後、水冷又は油冷し、No.19及びNo.21~26の評価材料を作製した。また、塩浴軟窒化処理を行った試験片6に対し、850℃で5分間塩浴加熱を行った後、20℃の部屋に放置し、20℃になるまで冷却し、No.20の評価材料を作製した。この際の冷却速度は、概ね約10℃/秒であった。No.19~26の評価材料に対し、上述の同様に特性の評価を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004

 

Claims (5)

  1.  表面に窒素が固溶された鉄鋼材料を、塩化物を含む溶融物に650℃~900℃の範囲内で浸漬する浸漬ステップと、
     浸漬した前記鉄鋼材料を、マルテンサイト変態が開始する下部臨界冷却速度以上の冷却速度にて、マルテンサイト変態開始温度以下まで冷却する冷却ステップと、
    を含む、表面硬化材料の製造方法。
  2.  表面に窒素が固溶された鉄鋼材料は、表層として鉄窒素化合物層を更に含む、請求項1に記載の表面硬化材料の製造方法。
  3.  鉄鋼材料を窒化処理することにより、表面に窒素を固溶する窒化処理ステップを更に含む、請求項1又は2に記載の表面硬化材料の製造方法。
  4.  表面に窒素が固溶された鉄鋼材料は、表面に炭素も固溶されている、請求項1又は2に記載の表面硬化材料の製造方法。
  5.  前記窒化処理ステップの前に、鉄鋼材料に浸炭処理を施す浸炭処理ステップを更に含む、請求項3に記載の表面硬化材料の製造方法。
     
PCT/JP2019/032980 2018-08-31 2019-08-23 表面硬化材料の製造方法 WO2020045266A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2021001758A MX2021001758A (es) 2018-08-31 2019-08-23 Metodo para producir un material con una superficie endurecida.
US17/270,960 US11332818B2 (en) 2018-08-31 2019-08-23 Method for producing surface-hardened material
EP19853464.6A EP3825438A4 (en) 2018-08-31 2019-08-23 PROCESS FOR THE PRODUCTION OF SURFACE HARDENED MATERIAL
CN201980040442.XA CN112469842A (zh) 2018-08-31 2019-08-23 表面硬化材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163627A JP7178832B2 (ja) 2018-08-31 2018-08-31 表面硬化材料の製造方法
JP2018-163627 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045266A1 true WO2020045266A1 (ja) 2020-03-05

Family

ID=69644195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032980 WO2020045266A1 (ja) 2018-08-31 2019-08-23 表面硬化材料の製造方法

Country Status (6)

Country Link
US (1) US11332818B2 (ja)
EP (1) EP3825438A4 (ja)
JP (1) JP7178832B2 (ja)
CN (1) CN112469842A (ja)
MX (1) MX2021001758A (ja)
WO (1) WO2020045266A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459045B1 (ja) * 1967-12-20 1970-04-01
JPS6240362A (ja) * 1985-08-14 1987-02-21 Toyota Central Res & Dev Lab Inc 鉄合金材料の表面処理方法
JPS6270561A (ja) * 1985-09-24 1987-04-01 Toyota Central Res & Dev Lab Inc 鉄合金材料の表面処理方法
JPH07138733A (ja) 1993-11-16 1995-05-30 Nissan Motor Co Ltd 金型の表面硬化熱処理方法
JP2015059248A (ja) 2013-09-19 2015-03-30 新日鐵住金株式会社 鋼の熱処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA850055A (en) * 1970-08-25 L. Hewson Robert Heat-treatment of steel
GB1185640A (en) * 1966-12-21 1970-03-25 Ici Ltd Process for Casehardening Steels
AU582000B2 (en) * 1985-06-17 1989-03-09 Toyota Chuo Kenkyusho K.K. Treating the surface of iron alloy materials
RU2003732C1 (ru) * 1992-09-30 1993-11-30 Михаил Александрович Шелагуров Способ обработки стальных деталей
JPH11158603A (ja) * 1997-11-28 1999-06-15 Maizuru:Kk 表面硬化オーステナイト鋼製品およびその製法
JP2001025843A (ja) * 1999-07-13 2001-01-30 Maizuru:Kk 鍛造品の製法およびそれに用いる鍛造用金型
JP3748425B2 (ja) * 2002-09-04 2006-02-22 パーカー熱処理工業株式会社 耐食性を強化された金属部材の塩浴窒化方法
DE102006026883B8 (de) * 2006-06-09 2007-10-04 Durferrit Gmbh Verfahren zum Härten von Edelstahl und Salzschmelze zur Durchführung des Verfahrens
JP5260460B2 (ja) * 2009-10-02 2013-08-14 株式会社神戸製鋼所 肌焼鋼部品およびその製造方法
JP2012031480A (ja) * 2010-07-30 2012-02-16 Daito Kogyo Kk 鉄合金材料の表面処理方法
CN102605315B (zh) 2011-01-25 2014-12-17 湖南大学 提高钢材料工件氮碳共渗强化层性能的热处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459045B1 (ja) * 1967-12-20 1970-04-01
JPS6240362A (ja) * 1985-08-14 1987-02-21 Toyota Central Res & Dev Lab Inc 鉄合金材料の表面処理方法
JPS6270561A (ja) * 1985-09-24 1987-04-01 Toyota Central Res & Dev Lab Inc 鉄合金材料の表面処理方法
JPH07138733A (ja) 1993-11-16 1995-05-30 Nissan Motor Co Ltd 金型の表面硬化熱処理方法
JP2015059248A (ja) 2013-09-19 2015-03-30 新日鐵住金株式会社 鋼の熱処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3825438A4

Also Published As

Publication number Publication date
JP2020033634A (ja) 2020-03-05
EP3825438A1 (en) 2021-05-26
CN112469842A (zh) 2021-03-09
MX2021001758A (es) 2021-04-19
US11332818B2 (en) 2022-05-17
EP3825438A4 (en) 2022-03-16
US20210214833A1 (en) 2021-07-15
JP7178832B2 (ja) 2022-11-28

Similar Documents

Publication Publication Date Title
US3885995A (en) Process for carburizing high alloy steels
EP2548986B1 (en) Steel for nitrocarburization and production method of a nitrocarburized steel part
EP3118346B1 (en) Nitriding method and nitrided part production method
WO2011013559A1 (ja) 複合熱処理方法及び焼入れ鉄鋼部材
MX2013003264A (es) Acero templado superficialmente y metodo para su produccion.
WO2017150738A1 (ja) ステンレス鋼部材およびその製造方法、ならびに、ステンレス鋼部品およびその製造方法
WO2012035900A1 (ja) 窒素化合物層を有する鉄鋼部材、及びその製造方法
RU2381295C2 (ru) Сталь для деталей машин, способ изготовления деталей машин из этой стали и изготовленные детали машин
JP6314648B2 (ja) 表面硬化処理部品及び表面硬化処理部品の製造方法
JP2007113027A (ja) 鋼の熱処理方法、転がり支持装置の製造方法、転がり支持装置
JP2010222648A (ja) 炭素鋼材料の製造方法および炭素鋼材料
JP2021113338A (ja) 鋼部品及びその製造方法
WO2020045266A1 (ja) 表面硬化材料の製造方法
JP6639839B2 (ja) 耐白色組織変化はく離寿命に優れる軸受用鋼
JP2010222649A (ja) 炭素鋼材料の製造方法および炭素鋼材料
WO2016158375A1 (ja) 浸炭窒化用鋼材および浸炭窒化部品
JP2013044036A (ja) 鉄系材料の製造方法
JP2000073156A (ja) 窒化ステンレス鋼材の製造方法
JP5582296B2 (ja) 鉄系材料およびその製造方法
JPH01283430A (ja) 転動疲労寿命特性に優れた軸受
WO2023203838A1 (ja) 歯車
JP2012219317A (ja) 鉄系材料およびその製造方法
JP2009079253A (ja) シャフト及びその製造方法
Vatavuk et al. The effect of nitriding on the toughness and bending resistance of tool steels
Kuppuraj et al. Plasma (Ion) Nitriding of Low Alloy Steel (EN19 grade) and Investigation of Its Physico-Mechanical Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2101001135

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2019853464

Country of ref document: EP

Effective date: 20210219

NENP Non-entry into the national phase

Ref country code: DE