WO2020045260A1 - 樹脂組成物及び成形品 - Google Patents

樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2020045260A1
WO2020045260A1 PCT/JP2019/032948 JP2019032948W WO2020045260A1 WO 2020045260 A1 WO2020045260 A1 WO 2020045260A1 JP 2019032948 W JP2019032948 W JP 2019032948W WO 2020045260 A1 WO2020045260 A1 WO 2020045260A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
boron nitride
particles
nitride particles
fluororesin
Prior art date
Application number
PCT/JP2019/032948
Other languages
English (en)
French (fr)
Inventor
弘文 迎
英樹 河野
政二 小森
浩志 伊藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201980054593.0A priority Critical patent/CN112585210B/zh
Priority to KR1020217004358A priority patent/KR102449431B1/ko
Priority to EP19855612.8A priority patent/EP3828233A4/en
Priority to JP2020539408A priority patent/JP7137089B2/ja
Priority to US17/270,700 priority patent/US11739206B2/en
Publication of WO2020045260A1 publication Critical patent/WO2020045260A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present disclosure relates to a resin composition and a molded article.
  • Patent Document 1 a resin composition containing a heat-fusible fluororesin and boron nitride particles composed of predetermined particles (A) and particles (B) at a predetermined ratio is studied.
  • Patent Document 2 discusses a resin composition containing a thermoplastic resin and boron nitride composed of spherical boron nitride particles and flat boron nitride particles at a predetermined ratio.
  • An object of the present disclosure is to provide a resin composition and a molded product that are excellent not only in heat dissipation but also in moldability.
  • the present disclosure relates to a resin composition containing a fluororesin and boron nitride particles, wherein the fluororesin is 35 to 70% by mass and the boron nitride particles are 30 to 65% by mass based on the resin composition.
  • the present invention relates to a resin composition characterized in that a melt flow rate of the resin composition is 5.0 g / 10 minutes or more.
  • the boron nitride particles have a ratio ((b) / (a) of a ratio (b) of particles having a particle size of 24.6 to 29.4 ⁇ m to a ratio (a) of particles having a particle size of 14.6 to 20.6 ⁇ m. )) Is preferably 1.0 or more.
  • the ratio (a) of particles having a particle diameter of 14.6 to 20.6 ⁇ m is preferably 5.0% or less.
  • the ratio (b) of particles having a particle diameter of 24.6 to 29.4 ⁇ m is 10.0% or less.
  • the fluororesin is preferably a meltable fluororesin.
  • the fluororesin is at least one selected from the group consisting of a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, a tetrafluoroethylene / hexafluoropropylene copolymer, and an ethylene / tetrafluoroethylene copolymer. It is preferred that
  • the resin composition has a thermal conductivity of 1.5 W / m ⁇ K or more.
  • the resin composition has a tensile strain at break of 1.0% or more.
  • the present disclosure also relates to a molded product obtained by injection molding the above resin composition.
  • the present disclosure relates to a resin composition containing a fluororesin and boron nitride particles, wherein the fluororesin is 35 to 70% by mass and the boron nitride particles are 30 to 65% by mass based on the resin composition.
  • the present invention relates to a resin composition characterized in that a melt flow rate of the resin composition is 5.0 g / 10 minutes or more.
  • the resin composition of the present disclosure has the above-described characteristics, it is excellent not only in heat dissipation but also in moldability. In particular, injection molding is possible and can be applied to various uses.
  • the resin composition of the present disclosure is also excellent in toughness and heat resistance.
  • the resin composition has a melt flow rate (MFR) of 5.0 g / 10 minutes or more.
  • MFR melt flow rate
  • a resin composition having an MFR within the above range is excellent in moldability. In particular, it has moldability that allows injection molding.
  • the MFR of the resin composition is preferably at least 7.0 g / 10 min, more preferably at least 10.0 g / 10 min. Further, it is preferably 100 g / 10 min or less, more preferably 70 g / 10 min or less, and even more preferably 50 g / 10 min or less.
  • the MFR of the resin composition is a value measured at 372 ° C. under a load of 5 kg with a die having a diameter of 2.1 mm and a length of 8 mm in accordance with ASTM D-1238.
  • the fluororesin is preferably a meltable fluororesin.
  • melt processing means that a polymer can be melted and processed using conventional processing equipment such as an extruder and an injection molding machine.
  • the fluororesin preferably has a melting point of 100 to 360 ° C, more preferably 140 to 350 ° C, and still more preferably 160 to 320 ° C.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the above-mentioned fluororesin preferably has a melt flow rate (MFR) of 10 g / 10 min or more, more preferably 20 g / 10 min or more, and preferably 200 g / 10 min or less, and 100 g / min. More preferably, it is 10 minutes or less.
  • MFR melt flow rate
  • ASTM D1238 the MFR of the fluororesin is measured using a melt indexer and measured at a temperature determined by the type of fluoropolymer (for example, 372 ° C. for PFA or FEP described later, 297 ° C.
  • fluororesin examples include tetrafluoroethylene [TFE] / perfluoro (alkyl vinyl ether) [PAVE] copolymer [PFA], TFE / hexafluoropropylene [HFP] copolymer [FEP], and ethylene [Et] / TFE.
  • the fluororesin at least one selected from the group consisting of PFA, FEP and ETFE is preferable, at least one selected from the group consisting of PFA and FEP is more preferable, and PFA is even more preferable.
  • the fluororesin is also preferably a perfluororesin.
  • the PFA is not particularly limited, but a copolymer having a molar ratio of TFE units to PAVE units (TFE units / PAVE units) of 70/30 or more and less than 99/1 is preferable.
  • a more preferable molar ratio is 70/30 or more and 98.9 / 1.1 or less, and an even more preferable molar ratio is 80/20 or more and 98.9 / 1.1 or less. If the TFE unit is too small, the mechanical properties tend to decrease, and if it is too large, the melting point tends to be too high and the moldability tends to decrease.
  • the PFA has a monomer unit derived from a monomer copolymerizable with TFE and PAVE in an amount of 0.1 to 10 mol%, and the TFE unit and the PAVE unit have a total of 90 to 99.9 mol%. It is also preferably a copolymer.
  • Examples of the monomer copolymerizable with TFE and PAVE include HFP, CZ 3 Z 4 CCZ 5 (CF 2 ) n Z 6 (wherein Z 3 , Z 4 and Z 5 are the same or different, Z 6 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents an integer of 2 to 10), and CF 2 CFCF—OCH And alkyl perfluorovinyl ether derivatives represented by 2- Rf 7 (wherein Rf 7 represents a perfluoroalkyl group having 1 to 5 carbon atoms).
  • the PFA is preferably 180 to less than 324 ° C, more preferably 230 to 320 ° C, further preferably 280 to 320 ° C.
  • the FEP is not particularly limited, but is preferably a copolymer having a molar ratio of TFE unit to HFP unit (TFE unit / HFP unit) of 70/30 or more and less than 99/1.
  • a more preferable molar ratio is 70/30 or more and 98.9 / 1.1 or less, and an even more preferable molar ratio is 80/20 or more and 98.9 / 1.1 or less. If the TFE unit is too small, the mechanical properties tend to decrease, and if it is too large, the melting point tends to be too high and the moldability tends to decrease.
  • the FEP has a monomer unit derived from a monomer copolymerizable with TFE and HFP in an amount of 0.1 to 10 mol%, and the total of the TFE unit and the HFP unit is 90 to 99.9 mol%. It is also preferably a copolymer.
  • monomers copolymerizable with TFE and HFP include PAVE and alkyl perfluorovinyl ether derivatives.
  • the melting point of the FEP is lower than the melting point of the PTFE, preferably from 150 to less than 324 ° C, more preferably from 200 to 320 ° C, even more preferably from 240 to 320 ° C.
  • ETFE a copolymer having a molar ratio of TFE units to ethylene units (TFE units / ethylene units) of 20/80 or more and 90/10 or less is preferable. A more preferable molar ratio is 37/63 or more and 85/15 or less, and a still more preferable molar ratio is 38/62 or more and 80/20 or less.
  • ETFE may be a copolymer of TFE, ethylene, and a monomer copolymerizable with TFE and ethylene.
  • CF 2 CFCFRf 3 , CF 2 CFCFORf 3 and CH 2 CCX 5 Rf 3 are preferred, and HFP, CF 2 CFCF—ORf 4 (where Rf 4 is a perfluoroalkyl having 1 to 5 carbon atoms) And a fluorine-containing vinyl monomer represented by CH 2 CCX 5 Rf 3 wherein Rf 3 is a fluoroalkyl group having 1 to 8 carbon atoms.
  • the monomer copolymerizable with TFE and ethylene may be an aliphatic unsaturated carboxylic acid such as itaconic acid and itaconic anhydride.
  • the monomer copolymerizable with TFE and ethylene is preferably 0.1 to 10 mol%, more preferably 0.1 to 5 mol%, and particularly preferably 0.2 to 4 mol%, based on the fluoropolymer. preferable.
  • the ETFE is preferably from 140 to less than 324 ° C, more preferably from 160 to 320 ° C, even more preferably from 195 to 320 ° C.
  • each monomer unit of the copolymer described above can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the content of the fluororesin is 35 to 70% by mass based on the resin composition.
  • the content is preferably 45% by mass or more, more preferably 48% by mass or more, still more preferably 50% by mass or more, and preferably 65% by mass or less. It is more preferable that the content is not more than mass%.
  • the boron nitride particles contained in the resin composition are preferably hexagonal boron nitride (hBN) particles.
  • the boron nitride particles contained in the resin composition have a 50% particle diameter (D50) of preferably 3.0 ⁇ m or less, more preferably 2.8 ⁇ m or less.
  • the 50% particle diameter is preferably 2.0 ⁇ m or more, more preferably 2.2 ⁇ m or more.
  • the particle size distribution of the boron nitride particles is measured using a laser diffraction type particle size distribution measuring device (RODOS T4.1, manufactured by Sympatec GmbH) under the following conditions.
  • Measurement condition Measurement range: R1 (0.18 to 35 ⁇ m) Dispersion pressure: 3 bar Sample amount: 1g
  • the boron nitride particles contained in the resin composition preferably have a 90% particle diameter (D90) of 9.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, and further preferably 7.0 ⁇ m or less. preferable.
  • the 90% particle size is preferably at least 3.0 ⁇ m, more preferably at least 4.0 ⁇ m, even more preferably at least 5.0 ⁇ m. This makes it possible to achieve both higher heat dissipation and higher moldability of the resin composition.
  • the 90% particle size can be determined from the particle size distribution measured using a laser diffraction type particle size distribution measuring device.
  • the ratio (a) of particles having a particle diameter of 14.6 to 20.6 ⁇ m is preferably 5.0% or less, and more preferably 4.0% or less. More preferably, it is 3.0% or less, still more preferably, 2.0% or less, still more preferably, 1.0% or less.
  • the ratio (a) may be 0.01% or more. This makes it possible to achieve both higher heat dissipation and higher moldability of the resin composition.
  • the ratio (a) can be determined from the particle size distribution measured using a laser diffraction type particle size distribution measuring device.
  • the ratio (b) of particles having a particle diameter of 24.6 to 29.4 ⁇ m is preferably 10.0% or less, and more preferably 5.0% or less. More preferably, it is still more preferably 2.0% or less, particularly preferably 1.5% or less.
  • the ratio (b) may be 0.1% or more. This makes it possible to achieve both higher heat dissipation and higher moldability of the resin composition.
  • the ratio (b) can be determined from the particle size distribution measured using a laser diffraction type particle size distribution measuring device.
  • the ratio of the ratio (b) of the particles having a particle size of 24.6 to 29.4 ⁇ m to the ratio (a) of the particles having a particle size of 14.6 to 20.6 ⁇ m is as follows.
  • (B) / (a)) is preferably 1.0 or more, and more preferably 1.1 or more.
  • the ratio is preferably 20.0 or less, more preferably 10.0 or less, and even more preferably 5.0 or less.
  • the thermal conductivity of the resin composition can be increased, and the heat dissipation can be improved. it can.
  • the above ratio can be calculated based on the ratios (a) and (b) determined from the particle size distribution measured using a laser diffraction type particle size distribution measuring device.
  • the boron nitride particles contained in the resin composition preferably contain substantially no particles having a particle diameter of 35.0 ⁇ m or more, and more preferably substantially do not contain particles having a particle diameter of 30.0 ⁇ m or more. . This makes it possible to achieve both higher heat dissipation and higher moldability of the resin composition.
  • the fact that the boron nitride particles do not substantially contain particles having the particle size range means that the ratio of the particles having the particle size range in the particle size distribution measured by using a laser diffraction type particle size distribution measuring device is 0.1% or less.
  • the boron nitride particles in the resin composition When the particle size distribution of the boron nitride particles in the resin composition is in each of the ranges described above, the boron nitride particles can be densely present in the resin composition, and an increase in melt viscosity can be suppressed. it can. In addition, since boron nitride particles having a certain size are present, excellent thermal conductivity is exhibited. As a result, a resin composition having excellent heat radiation properties and maintaining fluidity (excellent moldability) is obtained.
  • the particle size distribution of the boron nitride particles in the resin composition may be obtained by measuring the boron nitride particles of the residue obtained by incineration of the resin composition.
  • the content of the boron nitride particles is 30 to 65% by mass based on the resin composition.
  • the content is preferably 35% by mass or more, more preferably 38% by mass or more, and preferably 60% by mass or less, and more preferably 55% by mass or less.
  • the resin composition of the present disclosure is excellent in moldability even if it contains a relatively large amount of boron nitride particles as described above.
  • the resin composition of the present disclosure may include other components as necessary.
  • the other components are not particularly limited, but include whiskers such as potassium titanate, glass fibers, asbestos fibers, carbon fibers, ceramic fibers, potassium titanate fibers, aramid fibers, and fibrous reinforcing materials such as other high-strength fibers.
  • Inorganic fillers such as talc, mica, clay, carbon powder, graphite and glass beads; coloring agents; commonly used inorganic or organic fillers such as flame retardants; lubricants such as silicone oil and molybdenum disulfide; pigments; Conductive agents such as carbon black; impact resistance improvers such as rubber; lubricants such as magnesium stearate; ultraviolet absorbers such as benzotriazole compounds; and other additives can be used. These additives can be blended within a range that does not impair the effects of the present invention.
  • the resin composition of the present disclosure can be produced, for example, by mixing the fluororesin, the boron nitride particles, and other components as necessary.
  • the mixing can be performed using a single screw or twin screw extruder or the like.
  • the resin composition is preferably obtained by melt-kneading in that it can achieve both higher heat dissipation and better moldability.
  • the resin composition is obtained by melt-kneading, it is preferable to use boron nitride aggregate particles as the raw material boron nitride particles.
  • the MFR of the obtained resin composition can be easily controlled in the above-mentioned range.
  • the particle size distribution of the boron nitride particles in the obtained resin composition can be easily controlled within the above-described preferable range.
  • the agglomerated particles are obtained by aggregating primary particles of boron nitride.
  • the raw material boron nitride particles preferably have an aspect ratio (major axis / minor axis) of 1.0 to 3.0, more preferably 1.0 to 2.5.
  • the aspect ratio can be calculated from the major axis and the minor axis measured by a scanning electron microscope (SEM), and an average value of the aspect ratios measured for 30 samples is employed.
  • raw material boron nitride particles include UHP-G1H manufactured by Showa Denko KK, CF600 manufactured by Momentive, and FS-3 manufactured by Mizushima Alloy Iron Co., Ltd.
  • the melting and kneading temperature is preferably higher than the melting point of the fluororesin, and more preferably 5 ° C. or higher than the melting point of the fluororesin.
  • the resin composition may be in any form such as a powder, a granule, and a pellet. However, the resin composition is preferably a pellet because it is easily provided for injection molding.
  • the resin composition of the present disclosure preferably has a thermal conductivity of 1.5 W / m ⁇ K or more, more preferably 2.0 W / m ⁇ K or more, and more preferably 2.5 W / m ⁇ K or more. More preferably, it is particularly preferably at least 3.0 W / m ⁇ K.
  • the thermal conductivity can be calculated from the product of the thermal diffusivity, specific heat capacity and density measured by the following method.
  • the resin composition of the present disclosure was subjected to injection molding at a cylinder temperature of 380 ° C and a mold temperature of 200 ° C using a 15t injection molding machine (M26 / 15B, manufactured by Sumitomo Heavy Industries, Ltd.) to comply with ASTM D790. It is preferable that a test piece can be obtained. Such a resin composition is more excellent in injection moldability.
  • the tensile strength at break of the resin composition of the present disclosure is preferably 1.0% or more, and more preferably 1.1% or more. When the tensile breaking strain is within the above range, the resin composition is more excellent in toughness.
  • the tensile breaking strain can be measured by performing a tensile test on a test piece using Type V in accordance with ASTM D 638.
  • a molded product can be obtained by molding the resin composition of the present disclosure.
  • the method for molding the resin composition is not particularly limited, and examples thereof include an injection molding method, an extrusion molding method, a compression molding method, a blow molding method, a film molding method, and a wire coating molding method. Since the resin composition of the present disclosure has excellent fluidity, it can be suitably molded by an injection molding method.
  • a molded article obtained by injection-molding the resin composition of the present disclosure is one of the preferable embodiments of the present disclosure.
  • the shape of the molded article is not particularly limited, and may be various shapes such as a sheet, a film, a rod, and a pipe.
  • the resin composition of the present disclosure is excellent in heat dissipation, and is also excellent in moldability, and is used after being molded into various shapes in fields requiring heat dissipation such as electric / electronic devices, automobiles, and LEDs. It is possible. Further, it can also be used for a covering material of an electric wire, a motor member, a motor insulator, an LED lamp socket, and a lithium ion battery member.
  • MFR MFR
  • a measurement temperature for example, 372 ° C. for PFA or FEP, 297 ° C. for ETFE
  • a load for example, PFA, FEP and ETFE
  • Thermal conductivity was calculated from the product of the thermal diffusivity, specific heat capacity and density measured by the following method.
  • Thermal diffusivity Apparatus: aiphase mobile1 manufactured by i-Phase Measurement temperature: 25 ° C
  • Sample: Measured with a 0.5 mm t plate N 3 obtained by press molding, and the average value was used. * Sample press molding condition equipment: IMC-11FA heat press machine IMC Molding temperature: 360 ° C Pressure: 10MPa Pressurization time: 2 minutes (specific heat capacity) The measurement was performed according to JIS K 7123, and the value at 25 ° C. was adopted. (density) It was measured according to JIS Z 8807.
  • test piece was measured by performing a tensile test using Type V.
  • Judgment was made based on whether or not a test specimen conforming to ASTM D790 could be molded.
  • the injection molding was performed at a cylinder temperature of 380 ° C. and a mold temperature of 200 ° C. using a 15 t injection molding machine M26 / 15B manufactured by Sumitomo Heavy Industries, Ltd.
  • x x
  • Example 1 60 parts by mass of a fluororesin (PFA1) and 40 parts by mass of boron nitride (BN1) were melt-kneaded to prepare a resin composition. Melt kneading was carried out at 380 ° C. using a twin screw extruder (MFU20TW manufactured by Technovel). Boron nitride was supplied from a side feeder. Evaluation was performed using the obtained resin composition. Table 1 shows the results.
  • PFA1 fluororesin
  • BN1 boron nitride
  • Examples 2 to 6 and Comparative Examples 1 and 2 A resin composition was prepared and evaluated in the same manner as in Example 1 except that the types and amounts of the fluororesin and boron nitride were changed as shown in Table 1. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

放熱性だけでなく成形性にも優れた樹脂組成物及び成形品を提供する。フッ素樹脂及び窒化ホウ素粒子を含む樹脂組成物であって、前記樹脂組成物に対し、前記フッ素樹脂が35~70質量%、前記窒化ホウ素粒子が30~65質量%であり、前記樹脂組成物のメルトフローレートが5.0g/10分以上であることを特徴とする樹脂組成物である。

Description

樹脂組成物及び成形品
本開示は、樹脂組成物及び成形品に関する。
電気・電子機器、自動車等の分野では、高出力化に伴い発熱量が増大しており、放熱特性を良好にするため、熱伝導性に優れた放熱部材が求められている。
特許文献1では、熱溶融性フッ素樹脂と、所定の粒子(A)及び粒子(B)から構成される窒化ホウ素粒子とを所定の割合で含む樹脂組成物が検討されている。
特許文献2では、熱可塑性樹脂と、球状窒化ホウ素粒子及び扁平状窒化ホウ素粒子から構成される窒化ホウ素とを所定の割合で含む樹脂組成物が検討されている。
特開2016-98301号公報 特開2015-168783号公報
本開示は、放熱性だけでなく成形性にも優れた樹脂組成物及び成形品を提供することを目的とする。
本開示は、フッ素樹脂及び窒化ホウ素粒子を含む樹脂組成物であって、上記樹脂組成物に対し、上記フッ素樹脂が35~70質量%、上記窒化ホウ素粒子が30~65質量%であり、上記樹脂組成物のメルトフローレートが5.0g/10分以上であることを特徴とする樹脂組成物に関する。
上記窒化ホウ素粒子は、粒子径が14.6~20.6μmの粒子の割合(a)に対する粒子径が24.6~29.4μmの粒子の割合(b)の比((b)/(a))が1.0以上であることが好ましい。
上記窒化ホウ素粒子は、粒子径が14.6~20.6μmの粒子の割合(a)が5.0%以下であることが好ましい。
上記窒化ホウ素粒子は、粒子径が24.6~29.4μmの粒子の割合(b)が10.0%以下であることが好ましい。
上記フッ素樹脂は、溶融加工可能なフッ素樹脂であることが好ましい。
上記フッ素樹脂は、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、及び、エチレン/テトラフルオロエチレン共重合体からなる群より選択される少なくとも1種であることが好ましい。
上記樹脂組成物は、熱伝導率が1.5W/m・K以上であることが好ましい。
上記樹脂組成物は、引張破断歪が1.0%以上であることが好ましい。
本開示は、上記樹脂組成物を射出成形して得られる成形品にも関する。
本開示によれば、放熱性だけでなく成形性にも優れた樹脂組成物及び成形品を提供することができる。
以下、本開示を具体的に説明する。
本開示は、フッ素樹脂及び窒化ホウ素粒子を含む樹脂組成物であって、上記樹脂組成物に対し、上記フッ素樹脂が35~70質量%、上記窒化ホウ素粒子が30~65質量%であり、上記樹脂組成物のメルトフローレートが5.0g/10分以上であることを特徴とする樹脂組成物に関する。
従来、放熱性を高めるために窒化ホウ素等の放熱フィラーをフッ素樹脂に多量に配合すると、溶融粘度が極めて高くなり、成形、特に、射出成形が困難となり、用途が極めて限定されるという問題があった。
本開示の樹脂組成物は、上述した特徴を有することにより、放熱性だけでなく成形性にも優れる。特に、射出成形が可能であり、多様な用途に適用することができる。
本開示の樹脂組成物は、また、靭性及び耐熱性にも優れる。
上記樹脂組成物は、メルトフローレート(MFR)が5.0g/10分以上である。MFRが上記範囲内にある樹脂組成物は、成形性に優れる。特に、射出成形が可能な成形性を有する。
上記樹脂組成物のMFRは、7.0g/10分以上であることが好ましく、10.0g/10分以上であることがより好ましい。また、100g/10分以下であることが好ましく、70g/10分以下であることがより好ましく、50g/10分以下であることが更に好ましい。
上記樹脂組成物のMFRは、ASTM D-1238に準拠して、直径2.1mmで長さが8mmのダイにて、荷重5kg、372℃で測定した値である。
上記フッ素樹脂は、溶融加工可能なフッ素樹脂であることが好ましい。本明細書において、溶融加工可能であるとは、押出機及び射出成形機等の従来の加工機器を用いて、ポリマーを溶融して加工することが可能であることを意味する。
上記フッ素樹脂は、融点が100~360℃であることが好ましく、140~350℃であることがより好ましく、160~320℃であることが更に好ましい。
本明細書において、融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
上記フッ素樹脂は、メルトフローレート(MFR)が10g/10分以上であることが好ましく、20g/10分以上であることがより好ましく、また、200g/10分以下であることが好ましく、100g/10分以下であることがより好ましい。
上記フッ素樹脂のMFRは、ASTM D1238に従って、メルトインデクサーを用いて、フルオロポリマーの種類によって定められた測定温度(例えば、後述するPFAやFEPの場合は372℃、ETFEの場合は297℃)、荷重(例えば、PFA、FEP及びETFEの場合は5kg)において内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。
上記フッ素樹脂としては、テトラフルオロエチレン〔TFE〕/パーフルオロ(アルキルビニルエーテル)〔PAVE〕共重合体〔PFA〕、TFE/ヘキサフルオロプロピレン〔HFP〕共重合体〔FEP〕、エチレン〔Et〕/TFE共重合体〔ETFE〕、Et/TFE/HFP共重合体〔EFEP〕、ポリクロロトリフルオロエチレン〔PCTFE〕、クロロトリフルオロエチレン〔CTFE〕/TFE共重合体、Et/CTFE共重合体、ポリフッ化ビニル〔PVF〕、ポリフッ化ビニリデン〔PVDF〕等が挙げられる。
上記フッ素樹脂としては、なかでも、PFA、FEP及びETFEからなる群より選択される少なくとも1種が好ましく、PFA及びFEPからなる群より選択される少なくとも1種がより好ましく、PFAが更に好ましい。
上記フッ素樹脂は、パーフルオロ樹脂であることも好ましい。
PFAとしては、特に限定されないが、TFE単位とPAVE単位とのモル比(TFE単位/PAVE単位)が70/30以上99/1未満である共重合体が好ましい。より好ましいモル比は、70/30以上98.9/1.1以下であり、更に好ましいモル比は、80/20以上98.9/1.1以下である。TFE単位が少なすぎると機械物性が低下する傾向があり、多すぎると融点が高くなりすぎ成形性が低下する傾向がある。上記PFAは、TFE及びPAVEと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びPAVE単位が合計で90~99.9モル%である共重合体であることも好ましい。TFE及びPAVEと共重合可能な単量体としては、HFP、CZ=CZ(CF(式中、Z、Z及びZは、同一若しくは異なって、水素原子又はフッ素原子を表し、Zは、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、及び、CF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられる。
上記PFAは、180~324℃未満であることが好ましく、230~320℃であることがより好ましく、280~320℃であることが更に好ましい。
FEPとしては、特に限定されないが、TFE単位とHFP単位とのモル比(TFE単位/HFP単位)が70/30以上99/1未満である共重合体が好ましい。より好ましいモル比は、70/30以上98.9/1.1以下であり、更に好ましいモル比は、80/20以上98.9/1.1以下である。TFE単位が少なすぎると機械物性が低下する傾向があり、多すぎると融点が高くなりすぎ成形性が低下する傾向がある。上記FEPは、TFE及びHFPと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びHFP単位が合計で90~99.9モル%である共重合体であることも好ましい。TFE及びHFPと共重合可能な単量体としては、PAVE、アルキルパーフルオロビニルエーテル誘導体等が挙げられる。
上記FEPは、融点が上記PTFEの融点よりも低く、150~324℃未満であることが好ましく、200~320℃であることがより好ましく、240~320℃であることが更に好ましい。
ETFEとしては、TFE単位とエチレン単位とのモル比(TFE単位/エチレン単位)が20/80以上90/10以下である共重合体が好ましい。より好ましいモル比は37/63以上85/15以下であり、更に好ましいモル比は38/62以上80/20以下である。ETFEは、TFE、エチレン、並びに、TFE及びエチレンと共重合可能な単量体からなる共重合体であってもよい。共重合可能な単量体としては、下記式
CH=CXRf、CF=CFRf、CF=CFORf、CH=C(Rf
(式中、Xは水素原子又はフッ素原子、Rfはエーテル結合を含んでいてもよいフルオロアルキル基を表す。)で表される単量体が挙げられ、なかでも、CF=CFRf、CF=CFORf及びCH=CXRfで表される含フッ素ビニルモノマーが好ましく、HFP、CF=CF-ORf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)及びRfが炭素数1~8のフルオロアルキル基であるCH=CXRfで表される含フッ素ビニルモノマーがより好ましい。また、TFE及びエチレンと共重合可能な単量体としては、イタコン酸、無水イタコン酸等の脂肪族不飽和カルボン酸であってもよい。TFE及びエチレンと共重合可能な単量体は、含フッ素重合体に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましく、0.2~4モル%が特に好ましい。
上記ETFEは、140~324℃未満であることが好ましく、160~320℃であることがより好ましく、195~320℃であることが更に好ましい。
上述した共重合体の各単量体単位の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。
上記フッ素樹脂の含有量は、上記樹脂組成物に対し、35~70質量%である。上記含有量は、45質量%以上であることが好ましく、48質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、また、65質量%以下であることが好ましく、62質量%以下であることがより好ましい。
上記樹脂組成物に含まれる窒化ホウ素粒子は、六方晶窒化ホウ素(hBN)の粒子であることが好ましい。
上記樹脂組成物に含まれる窒化ホウ素粒子は、50%粒子径(D50)が3.0μm以下であることが好ましく、2.8μm以下であることがより好ましい。上記50%粒子径は、また、2.0μm以上であることが好ましく、2.2μm以上であることがより好ましい。
上記樹脂組成物に含まれる窒化ホウ素粒子の50%粒子径を上記範囲内に制御することで、上記樹脂組成物のMFRを、上述した範囲内とすることができ、上記樹脂組成物が射出成形性に優れたものとなる。また、比較的大きな粒子の割合が少なくなるため、応力を分散させることができ、上記樹脂組成物の引張破断歪を高くすることができ、靭性を向上させることができる。
上記50%粒子径は、レーザー回折式粒子径分布測定装置を用いて測定した粒度分布から求めることができる。
本明細書において、窒化ホウ素粒子の粒度分布は、レーザー回折式粒子径分布測定装置(Sympatec GmbH社製、RODOS T4.1)を用いて以下の条件にて測定するものである。
(測定条件)
測定レンジ:R1(0.18~35μm)
分散圧:3bar
サンプル量:1g
上記樹脂組成物に含まれる窒化ホウ素粒子は、90%粒子径(D90)が9.0μm以下であることが好ましく、8.0μm以下であることがより好ましく、7.0μm以下であることが更に好ましい。上記90%粒子径は、また、3.0μm以上であることが好ましく、4.0μm以上であることがより好ましく、5.0μm以上であることが更に好ましい。
これにより、上記樹脂組成物の放熱性及び成形性を一層高いレベルで両立させることができる。
上記90%粒子径は、レーザー回折式粒子径分布測定装置を用いて測定した粒度分布から求めることができる。
上記樹脂組成物に含まれる窒化ホウ素粒子は、粒子径が14.6~20.6μmの粒子の割合(a)が5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることが更に好ましく、2.0%以下であることが更により好ましく、1.0%以下であることが特に好ましい。上記割合(a)は、また、0.01%以上であってよい。
これにより、上記樹脂組成物の放熱性及び成形性を一層高いレベルで両立させることができる。
上記割合(a)は、レーザー回折式粒子径分布測定装置を用いて測定した粒度分布から求めることができる。
上記樹脂組成物に含まれる窒化ホウ素粒子は、粒子径が24.6~29.4μmの粒子の割合(b)が10.0%以下であることが好ましく、5.0%以下であることがより好ましく、2.0%以下であることが更に好ましく、1.5%以下であることが特に好ましい。上記割合(b)は、また、0.1%以上であってよい。
これにより、上記樹脂組成物の放熱性及び成形性を一層高いレベルで両立させることができる。
上記割合(b)は、レーザー回折式粒子径分布測定装置を用いて測定した粒度分布から求めることができる。
上記樹脂組成物に含まれる窒化ホウ素粒子は、粒子径が14.6~20.6μmの粒子の割合(a)に対する粒子径が24.6~29.4μmの粒子の割合(b)の比((b)/(a))が1.0以上であることが好ましく、1.1以上であることがより好ましい。上記比は、また、20.0以下であることが好ましく、10.0以下であることがより好ましく、5.0以下であることが更に好ましい。
上記樹脂組成物に含まれる窒化ホウ素粒子の比(b)/(a)を上記範囲内に制御することで、上記樹脂組成物のMFRを、上述した範囲内とすることができ、上記樹脂組成物が射出成形性に優れたものとなる。また、熱伝導性に寄与する粒子径24.6~29.4μmの比較的大きな粒子がある程度存在するため、上記樹脂組成物の熱伝導率を高くすることができ、放熱性を向上させることができる。
上記比は、レーザー回折式粒子径分布測定装置を用いて測定した粒度分布から求めた割合(a)及び(b)に基づいて算出することができる。
上記樹脂組成物に含まれる窒化ホウ素粒子は、粒子径が35.0μm以上の粒子を実質的に含まないことが好ましく、粒子径が30.0μm以上の粒子を実質的に含まないことがより好ましい。
これにより、上記樹脂組成物の放熱性及び成形性を一層高いレベルで両立させることができる。
上記窒化ホウ素粒子が上記粒子径範囲の粒子を実質的に含まないことは、レーザー回折式粒子径分布測定装置を用いて測定した粒度分布における上記粒子径範囲の粒子の割合が0.1%以下であることを意味する。
上記樹脂組成物中の上記窒化ホウ素粒子の粒度分布が上述した各範囲内にある場合、樹脂組成物中に上記窒化ホウ素粒子が密に存在することができ、溶融粘度の増大を抑制することができる。また、ある程度大きな窒化ホウ素粒子が存在するので、優れた熱伝導性が発現する。その結果、放熱性に優れ、かつ流動性が維持された(成形性に優れる)樹脂組成物となる。
本明細書において、上記樹脂組成物中の上記窒化ホウ素粒子の粒度分布は、上記樹脂組成物を灰化させた残渣の窒化ホウ素粒子について測定したものであってよい。
上記窒化ホウ素粒子の含有量は、上記樹脂組成物に対し、30~65質量%である。上記含有量は、35質量%以上であることが好ましく、38質量%以上であることがより好ましく、また、60質量%以下であることが好ましく、55質量%以下であることがより好ましい。
本開示の樹脂組成物は、上記のように窒化ホウ素粒子を比較的多量に含んでいても成形性に優れる。
本開示の樹脂組成物は、必要に応じて他の成分を含んでいてもよい。上記他の成分としては特に限定されないが、チタン酸カリウム等のウィスカ、ガラス繊維、アスベスト繊維、カーボン繊維、セラミック繊維、チタン酸カリウム繊維、アラミド繊維、その他の高強度繊維等の繊維状の強化材;タルク、マイカ、クレイ、カーボン粉末、グラファイト、ガラスビーズ等の無機充填材;着色剤;難燃剤等通常使用される無機又は有機の充填材;シリコーンオイル、二硫化モリブデン等の潤滑剤;顔料;カーボンブラック等の導電剤;ゴム等の耐衝撃性向上剤;ステアリン酸マグネシウム等の滑剤;ベンゾトリアゾール化合物等の紫外線吸収剤;その他の添加剤等を用いることができる。
これらの添加剤は、本願の効果を損なわない範囲で配合することができる。
本開示の樹脂組成物は、例えば、上記フッ素樹脂、上記窒化ホウ素粒子、及び必要に応じて他の成分を混合することにより製造することができる。上記混合は、単軸及び二軸押出機等を用いて行うことができる。
上記樹脂組成物は、放熱性及び成形性を一層高いレベルで両立させることができる点で、溶融混練により得られることが好ましい。
上記樹脂組成物を溶融混練により得る場合は、原料窒化ホウ素粒子として、窒化ホウ素の凝集体粒子を使用することが好ましい。このような原料窒化ホウ素粒子を上記フッ素樹脂とともに溶融混練することにより、得られる樹脂組成物のMFRを上述の範囲に容易に制御することができる。また、得られる樹脂組成物における窒化ホウ素粒子の粒度分布を、上述した好ましい範囲に容易に制御することもできる。
上記凝集体粒子は、窒化ホウ素の一次粒子が凝集したものである。
上記原料窒化ホウ素粒子は、アスペクト比(長径/短径)が1.0~3.0であることが好ましく、1.0~2.5であることがより好ましい。
上記アスペクト比は、走査型電子顕微鏡(SEM)により測定する長径及び短径から算出することができ、30個のサンプルについて測定したアスペクト比の平均値を採用する。
上記原料窒化ホウ素粒子の具体例としては、昭和電工株式会社製のUHP-G1H、Momentive社製のCF600、水島合金鉄社製のFS-3等が挙げられる。
上記溶融混練の温度は、上記フッ素樹脂の融点より高いことが好ましく、上記フッ素樹脂の融点より5℃以上高い温度であることがより好ましい。
上記樹脂組成物は、粉末、顆粒、ペレット等の形態の別を問わないものであるが、射出成形に供しやすい点で、ペレットであることが好ましい。
本開示の樹脂組成物は、熱伝導率が1.5W/m・K以上であることが好ましく、2.0W/m・K以上であることがより好ましく、2.5W/m・K以上であることが更に好ましく、3.0W/m・K以上であることが特に好ましい。熱伝導率が上記範囲内にあると、上記樹脂組成物が放熱性に一層優れる。
上記熱伝導率は、下記の方法で測定する熱拡散率と比熱容量と密度との積により算出することができる。
(熱拡散率)
装置:アイフェイズ社製ai phase mobile1
測定温度:25℃
サンプル:プレス成形によって得た0.5mmtプレート
N=3で測定しその平均値を用いる。
※サンプルのプレス成形条件
装置:井元製作所社製熱プレス機IMC-11FA
成形温度:360℃
圧力:10MPa
加圧時間:2分
(比熱容量)
JIS K 7123に従って測定を行い、25℃の値を採用する。
(密度)
JIS Z 8807に従って測定する。
本開示の樹脂組成物は、15t射出成形機(住友重機械工業社製、M26/15B)を用いて、シリンダー温度380℃、金型温度200℃で射出成形することにより、ASTM D790に準拠した試験片を得ることが可能なものであることが好ましい。このような樹脂組成物は、射出成形性に一層優れる。
本開示の樹脂組成物は、引張破断歪が1.0%以上であることが好ましく、1.1%以上であることがより好ましい。引張破断歪が上記範囲内にあると、上記樹脂組成物が靭性に一層優れる。
上記引張破断歪は、ASTM D 638に準拠し、試験片はTypeVを用いて引張試験を行うことにより、測定することができる。
本開示の樹脂組成物を成形することにより、成形品を得ることができる。上記樹脂組成物を成形する方法は特に限定されず、射出成形法、押出成形法、圧縮成形法、ブロー成形法、フィルム成形法、電線被覆成形法等が挙げられる。本開示の樹脂組成物は、流動性に優れることから、射出成形法により好適に成形できる。
本開示の樹脂組成物を射出成形して得られる成形品は、本開示の好適な態様の1つである。
上記成形品の形状としては特に限定されず、例えば、シート状;フィルム状;ロッド状;パイプ状等の種々の形状にすることができる。
本開示の樹脂組成物は、放熱性に優れ、更に成形性にも優れることから、電気・電子機器、自動車、LED等の放熱性が要求される分野において、多様な形状に成形して利用することが可能である。また、電線の被覆材、モーター部材、モーターインシュレーター、LEDランプソケット、リチウムイオン電池部材にも利用することが可能である。
次に実施例を挙げて本開示を更に詳しく説明するが、本開示はこれらの実施例のみに限定されるものではない。
実施例及び比較例の各物性は以下の方法により測定した。
MFR
ASTM D1238に従って、メルトインデクサーを用いて、フルオロポリマーの種類によって定められた測定温度(例えば、PFAやFEPの場合は372℃、ETFEの場合は297℃)、荷重(例えば、PFA、FEP及びETFEの場合は5kg)において内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として求めた。
熱伝導率
下記の方法で測定する熱拡散率と比熱容量と密度との積により算出した。
(熱拡散率)
装置:アイフェイズ社製ai phase mobile1
測定温度:25℃
サンプル:プレス成形によって得た0.5mmtプレート
N=3で測定しその平均値を用いた。
※サンプルのプレス成形条件
装置:井元製作所社製熱プレス機IMC-11FA
成形温度:360℃
圧力:10MPa
加圧時間:2分
(比熱容量)
JIS K 7123に従って測定を行い、25℃の値を採用した。
(密度)
JIS Z 8807に従って測定した。
引張破断歪
ASTM D 638に準拠し、試験片はTypeVを用いて引張試験を行うことにより、測定した。
射出成形性
ASTM D790に準拠した試験片が成形できるかどうかで判定した。射出成形は、住友重機械工業社の15t射出成形機M26/15Bを用いて、シリンダー温度380℃、金型温度200℃で行った。
上記試験片が成形できた場合は〇、成形できなかった場合は×とした。
樹脂組成物中の窒化ホウ素粒子の粒度分布
ニッケル製のるつぼに樹脂組成物のペレットを5g入れ、電気マッフル炉(アドバンテック社製、FUW222PA)にて600℃で2時間過熱し、樹脂を焼き飛ばし灰分残渣を得た。
得られた残渣について、レーザー回折式粒子径分布測定装置(Sympatec GmbH社製、RODOS T4.1)を用いて以下の条件にて測定した。
(測定条件)
測定レンジ:R1(0.18~35μm)
分散圧:3bar
サンプル量:1g
実施例及び比較例では、以下の原料を使用した。
(フッ素樹脂)
PFA1:テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、MFR=72g/10分
PFA2:テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、MFR=28g/10分
FEP:テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、MFR=40g/10分
(窒化ホウ素)
BN1:昭和電工株式会社製UHP-G1H、凝集窒化ホウ素粒子、平均粒径50μm
BN2:Momentive社製PTX60、凝集窒化ホウ素粒子、平均粒径55~65μm
BN3:デンカ社製MGP、鱗片状窒化ホウ素粒子、平均粒径10μm
実施例1
フッ素樹脂(PFA1)60質量部と窒化ホウ素(BN1)40質量部を溶融混練して樹脂組成物を作製した。溶融混練は、二軸押し出し機(テクノベル社製MFU20TW)を使用し、380℃で実施した。窒化ホウ素はサイドフィーダーから供給した。得られた樹脂組成物を用いて評価を行なった。結果を表1に示す。
実施例2~6及び比較例1~2
フッ素樹脂及び窒化ホウ素の種類及び量を表1に示すように変更したこと以外は実施例1と同様にして樹脂組成物を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1. フッ素樹脂及び窒化ホウ素粒子を含む樹脂組成物であって、
    前記樹脂組成物に対し、前記フッ素樹脂が35~70質量%、前記窒化ホウ素粒子が30~65質量%であり、
    前記樹脂組成物のメルトフローレートが5.0g/10分以上である
    ことを特徴とする樹脂組成物。
  2. 前記窒化ホウ素粒子は、粒子径が14.6~20.6μmの粒子の割合(a)に対する粒子径が24.6~29.4μmの粒子の割合(b)の比((b)/(a))が1.0以上である請求項1記載の樹脂組成物。
  3. 前記窒化ホウ素粒子は、粒子径が14.6~20.6μmの粒子の割合(a)が5.0%以下である請求項1又は2記載の樹脂組成物。
  4. 前記窒化ホウ素粒子は、粒子径が24.6~29.4μmの粒子の割合(b)が10.0%以下である請求項1、2又は3記載の樹脂組成物。
  5. 前記フッ素樹脂は、溶融加工可能なフッ素樹脂である請求項1、2、3又は4記載の樹脂組成物。
  6. 前記フッ素樹脂は、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、及び、エチレン/テトラフルオロエチレン共重合体からなる群より選択される少なくとも1種である請求項1、2、3、4又は5記載の樹脂組成物。
  7. 熱伝導率が1.5W/m・K以上である請求項1、2、3、4、5又は6記載の樹脂組成物。
  8. 引張破断歪が1.0%以上である請求項1、2、3、4、5、6又は7記載の樹脂組成物。
  9. 請求項1、2、3、4、5、6、7又は8記載の樹脂組成物を射出成形して得られる成形品。
PCT/JP2019/032948 2018-08-28 2019-08-23 樹脂組成物及び成形品 WO2020045260A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980054593.0A CN112585210B (zh) 2018-08-28 2019-08-23 树脂组合物和成型品
KR1020217004358A KR102449431B1 (ko) 2018-08-28 2019-08-23 수지 조성물 및 성형품
EP19855612.8A EP3828233A4 (en) 2018-08-28 2019-08-23 RESIN COMPOSITION AND MOLDED ARTICLE
JP2020539408A JP7137089B2 (ja) 2018-08-28 2019-08-23 樹脂組成物及び成形品
US17/270,700 US11739206B2 (en) 2018-08-28 2019-08-23 Resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018159219 2018-08-28
JP2018-159219 2018-08-28

Publications (1)

Publication Number Publication Date
WO2020045260A1 true WO2020045260A1 (ja) 2020-03-05

Family

ID=69644207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032948 WO2020045260A1 (ja) 2018-08-28 2019-08-23 樹脂組成物及び成形品

Country Status (7)

Country Link
US (1) US11739206B2 (ja)
EP (1) EP3828233A4 (ja)
JP (1) JP7137089B2 (ja)
KR (1) KR102449431B1 (ja)
CN (1) CN112585210B (ja)
TW (1) TWI738041B (ja)
WO (1) WO2020045260A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026170A (zh) * 2019-07-16 2022-02-08 大金工业株式会社 电路基板用树脂组合物、电路基板用成型体、电路基板用层积体和电路基板
CN115210315A (zh) * 2020-03-10 2022-10-18 大金工业株式会社 树脂组合物、成型品和成型品的制造方法
WO2023282183A1 (ja) * 2021-07-08 2023-01-12 ダイキン工業株式会社 押出成形用樹脂組成物、シート及びシートの製造方法
WO2023163025A1 (ja) * 2022-02-28 2023-08-31 Agc株式会社 組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115624A1 (ja) * 2013-01-24 2014-07-31 ダイキン工業株式会社 組成物、並びに、発泡成形体及び電線の製造方法
JP2015168783A (ja) 2014-03-07 2015-09-28 三井・デュポンフロロケミカル株式会社 高熱伝導性樹脂組成物
JP2016098301A (ja) 2014-11-20 2016-05-30 三井・デュポンフロロケミカル株式会社 熱伝導性に優れた熱溶融性フッ素樹脂組成物、該組成物から製造された成形品および、その製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI302372B (en) 2006-08-30 2008-10-21 Polytronics Technology Corp Heat dissipation substrate for electronic device
JP2013176981A (ja) * 2012-02-08 2013-09-09 Nitto Denko Corp 熱伝導性シートの製造方法
TWI637012B (zh) * 2016-03-15 2018-10-01 華越科技股份有限公司 Method for preparing heat-dissipating coating and metal heat-dissipating composite film made thereof
US20190300771A1 (en) * 2016-09-28 2019-10-03 Teijin Limited Heat dissipation sheet
CN114026170A (zh) * 2019-07-16 2022-02-08 大金工业株式会社 电路基板用树脂组合物、电路基板用成型体、电路基板用层积体和电路基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115624A1 (ja) * 2013-01-24 2014-07-31 ダイキン工業株式会社 組成物、並びに、発泡成形体及び電線の製造方法
JP2015168783A (ja) 2014-03-07 2015-09-28 三井・デュポンフロロケミカル株式会社 高熱伝導性樹脂組成物
JP2016098301A (ja) 2014-11-20 2016-05-30 三井・デュポンフロロケミカル株式会社 熱伝導性に優れた熱溶融性フッ素樹脂組成物、該組成物から製造された成形品および、その製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026170A (zh) * 2019-07-16 2022-02-08 大金工业株式会社 电路基板用树脂组合物、电路基板用成型体、电路基板用层积体和电路基板
EP3988300A4 (en) * 2019-07-16 2023-08-02 Daikin Industries, Ltd. PRINTED CIRCUIT BOARD RESIN COMPOSITION, PRINTED CIRCUIT BOARD MOLDED BODY, PRINTED CIRCUIT BOARD LAMINATED BODY, AND PRINTED CIRCUIT BOARD
US11939450B2 (en) 2019-07-16 2024-03-26 Daikin Industries, Ltd. Resin composition for circuit board, molded body for circuit board, layered body for circuit board, and circuit board
CN115210315A (zh) * 2020-03-10 2022-10-18 大金工业株式会社 树脂组合物、成型品和成型品的制造方法
EP4108723A4 (en) * 2020-03-10 2024-03-20 Daikin Industries, Ltd. RESIN COMPOSITION, MOLDED BODY AND METHOD FOR PRODUCING A MOLDED BODY
WO2023282183A1 (ja) * 2021-07-08 2023-01-12 ダイキン工業株式会社 押出成形用樹脂組成物、シート及びシートの製造方法
JP2023009982A (ja) * 2021-07-08 2023-01-20 ダイキン工業株式会社 押出成形用樹脂組成物、シート及びシートの製造方法
JP7469673B2 (ja) 2021-07-08 2024-04-17 ダイキン工業株式会社 押出成形用樹脂組成物、シート及びシートの製造方法
WO2023163025A1 (ja) * 2022-02-28 2023-08-31 Agc株式会社 組成物

Also Published As

Publication number Publication date
KR20210032446A (ko) 2021-03-24
KR102449431B1 (ko) 2022-10-11
TW202016199A (zh) 2020-05-01
CN112585210B (zh) 2023-06-20
EP3828233A1 (en) 2021-06-02
CN112585210A (zh) 2021-03-30
JP7137089B2 (ja) 2022-09-14
US20210332229A1 (en) 2021-10-28
EP3828233A4 (en) 2022-04-20
JPWO2020045260A1 (ja) 2021-08-26
TWI738041B (zh) 2021-09-01
US11739206B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP7137089B2 (ja) 樹脂組成物及び成形品
KR101433495B1 (ko) 불소중합체 성형 방법 및 불소중합체 성형품
CN107109011B (zh) 具有优异导热性的可熔融加工的含氟聚合物组合物、由该组合物制造的模制品及其制造方法
JP2015168783A (ja) 高熱伝導性樹脂組成物
JP6978707B2 (ja) 回路基板用樹脂組成物、回路基板用成形体、回路基板用積層体及び回路基板
US20210206970A1 (en) Resin composition
CN112154188B (zh) 树脂组合物
JP7089207B2 (ja) 樹脂組成物、成形品及び成形品の製造方法
JP7469673B2 (ja) 押出成形用樹脂組成物、シート及びシートの製造方法
CN116783249A (zh) 氟聚合物组合物
WO2024024688A1 (ja) 非黒色導電性ポリテトラフルオロエチレン組成物、及び、成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004358

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020539408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855612

Country of ref document: EP

Effective date: 20210223