WO2020045258A1 - チップ抵抗器およびその製造方法 - Google Patents

チップ抵抗器およびその製造方法 Download PDF

Info

Publication number
WO2020045258A1
WO2020045258A1 PCT/JP2019/032940 JP2019032940W WO2020045258A1 WO 2020045258 A1 WO2020045258 A1 WO 2020045258A1 JP 2019032940 W JP2019032940 W JP 2019032940W WO 2020045258 A1 WO2020045258 A1 WO 2020045258A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
resistor
chip resistor
protective
chip
Prior art date
Application number
PCT/JP2019/032940
Other languages
English (en)
French (fr)
Inventor
優 坂口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020539406A priority Critical patent/JPWO2020045258A1/ja
Publication of WO2020045258A1 publication Critical patent/WO2020045258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/032Housing; Enclosing; Embedding; Filling the housing or enclosure plural layers surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material

Definitions

  • the present invention relates to a chip resistor provided with a resistor made of a metal plate and a method of manufacturing the same.
  • FIG. 4 is a cross-sectional view of a conventional chip resistor 500.
  • the chip resistor 500 is formed by molding a resistor 1 made of a plate-shaped metal, a pair of electrodes 2 formed at both ends of the lower surface of the resistor 1, and a resin covering the resistor 1.
  • a trimming groove 3 for adjusting a resistance value is formed in the resistor 1.
  • a conventional chip resistor similar to the chip resistor 500 is disclosed in, for example, Patent Document 1.
  • the chip resistor includes a resistor made of a plate-like metal, a pair of electrodes provided at both ends of the lower surface of the resistor, and a protective film made of a resin covering the resistor.
  • a trimming groove for adjusting the resistance value of the resistor is formed in the resistor.
  • the protective film has a first protective layer covering at least a portion of the resistor provided with the trimming groove, and a second protective layer covering the periphery of the first protective layer.
  • the first protective layer has higher heat resistance than the second protective layer.
  • the second protective layer has a higher fluidity than the first protective layer.
  • This chip resistor can improve the heat resistance of the protective film and stabilize the shape of the protective film.
  • FIG. 1A is a top view of the chip resistor according to the embodiment.
  • FIG. 1B is a cross-sectional view of the chip resistor taken along line 1B-1B of FIG. 1A.
  • FIG. 2 is a top view of a main part of the chip resistor shown in FIG. 1A.
  • FIG. 3 is a cross-sectional view of another chip resistor according to the embodiment.
  • FIG. 4 is a sectional view of a conventional chip resistor.
  • FIG. 1A is a cross-sectional view of the chip resistor 1000 according to the embodiment.
  • FIG. 1B is a cross-sectional view of the chip resistor taken along line 1B-1B of FIG. 1A.
  • FIG. 2 is a top view of a main part of the chip resistor 1000.
  • the chip resistor 100 includes a resistor 11 having a plate shape having an upper surface 11 e and a lower surface 11 f, a pair of electrodes 12 a and 12 b formed on both ends 11 f 1 and 11 f 2 of the lower surface 11 f of the resistor 11, respectively, And a protective film 14 made of a resin covering the protective film 11. Both ends 11f1 and 11f2 of the resistor 11, that is, the electrodes 12a and 12b are arranged in the longitudinal direction D11.
  • the resistor 11 is made of metal.
  • a trimming groove 13 for adjusting the resistance value of the resistor 11 is formed in the resistor 11.
  • the electrodes 12a and 12b are arranged in the longitudinal direction D11. Therefore, although a current locally flows in the resistor 11 in a direction intersecting with the longitudinal direction D11, a current generally flows along the longitudinal direction D11.
  • FIG. 1A shows the protective film 14 and the electrodes 12a and 12b by dotted lines.
  • the protection film 14 has a protection layer 14a covering the resistor 11 and a protection layer 14b covering the periphery of the protection layer 14a.
  • the protective layer 14a is omitted and the protective layer 14b is shown as being transparent.
  • the resistor 11 is formed of a metal plate made of nichrome, copper nickel, manganin, or the like.
  • the resistor 11 has a rectangular shape when viewed from above.
  • a trimming groove 13 penetrating the resistor 11 is formed on the resistor 11 by laser irradiation or punching in order to adjust the resistance value.
  • the resistor 11 has side surfaces 11a and 11b connected to the upper surface 11e and the lower surface 11f, and end surfaces 11c and 11d connected to the upper surface 11e and the lower surface 11f.
  • the side faces 11a and 11b are located on opposite sides, and the end faces 11c and 11d are located on opposite sides.
  • the side surfaces 11a and 11b extend in the longitudinal direction D11, and the end surfaces 11c and 11d extend in the width direction D12 perpendicular to the longitudinal direction D11.
  • the side surfaces 11a and 11b are arranged in the width direction D12, and the end surfaces 11c and 11d are arranged in the longitudinal direction D11.
  • the trimming groove 13 is formed so as to extend from the side surface 11a of the resistor 11 to the side surface 11b or from the side surface 11b to the side surface 11a.
  • the heat concentrated portion 15 of the resistor 11 between the tip of the trimming groove 13 and the side surfaces 11a and 11b of the resistor 11 generates the largest heat when the resistor 11 is energized.
  • the width of the resistor 11 in the width direction D12 is locally small in the heat concentration portion 15.
  • the density of the current flowing between the electrodes 12a and 12b is locally increased in the heat concentrating portion 15, and the current is concentrated.
  • the concentrated current causes the heat concentrating portion 15 to generate the largest heat in the resistor 11.
  • the pair of electrodes 12a and 12b are formed of a conductor separate from the resistor 11, and are made of a metal such as Cu which is more conductive than the resistor 11. Further, the pair of electrodes 12a and 12b are connected to both ends 11f1 and 11f2 of the lower surface 11f of the resistor 11 in the longitudinal direction D11 by welding, cladding, or the like. In FIGS. 1B and 2, a part of the upper surfaces of the pair of electrodes 12 a and 12 b is exposed from the resistor 11 in a top view, but may not be exposed.
  • a tin plating layer is formed around the pair of electrodes 12a and 12b by electroplating or dip, whereby the chip resistor is mounted on the mounting substrate.
  • the protective film 14 is formed so as to cover portions of the upper surface 11 e and the lower surface 11 f of the resistor 11 where the electrodes 12 a and 12 b are not formed. That is, the protective film 14 is formed of the electrode 12 a on the lower surface 11 f of the resistor 11. , 12b, the upper surface 11e of the resistor 11, the side surfaces 11a, 11b, and the upper surfaces of the electrodes 12a, 12b exposed from the resistor 11.
  • the protective film 14 is formed by heating and curing a resin, and has a protective layer 14a and a protective layer 14b covering the protective layer 14a.
  • the protective layer 14a is formed directly on the upper surface 11e, the lower surface 11f, and the side surfaces 11a and 11b of the resistor 11 so as to cover at least a portion of the resistor 11 where the trimming groove 13 is formed, for example, the heat concentration portion 15. .
  • the protective layer 14a is formed by molding or dispensing an insulating resin such as a polyamide resin or an epoxy resin.
  • FIG. 3 is a cross-sectional view of another chip resistor 1001 according to the embodiment.
  • the same parts as those of the chip resistor 1000 shown in FIGS. 1A to 2 are denoted by the same reference numerals.
  • the protection layer 14a is formed by coating only around the heat concentration part 15. The portion of the upper surface 11e and the lower surface 11f of the resistor 11 other than the heat concentration portion 15 is not covered with the protective layer 14a and is exposed from the protective layer 14a. Portions of the upper surface 11e and the lower surface 11f of the resistor 11 that are exposed from the protective layer 14a are completely covered with the protective layer 14b.
  • the protection layer 14a may extend to the entire surface of one of the upper surface 11e and the lower surface 11f of the resistor 11, and may also be formed on the end surface 11c of the resistor 11.
  • the protective layer 14b is formed so as to completely cover the periphery of the protective layer 14a. That is, the protective layer 14a is not exposed from the protective layer 14b.
  • the protective layer 14b is formed by molding an insulating resin such as a liquid crystal polymer or an epoxy resin to seal the protective layer 14a.
  • the polyamide resin constituting the protective layer 14a has a higher thermal decomposition temperature and a higher melting temperature than the liquid crystal polymer resin constituting the protective layer 14b, and has higher heat resistance.
  • the thermal decomposition temperature of the protective layer 14a is desirably 20 ° C. or more higher than the thermal decomposition temperature of the protective layer 14b.
  • the protective layer 14a may contain a base material component such as a polyamide resin and a secondary material component such as an epoxy resin mixed with the base material component.
  • the protective layer 14b may contain a base material component such as a liquid crystal polymer resin and a secondary material component such as an epoxy resin mixed with the base material component.
  • the content of the base material component in each of the protective layers 14a and 14b is, for example, 70% by weight or more.
  • the base material component of the protective layer 14a is different from the base material component of the protective layer 14b.
  • the auxiliary material components in the protective layers 14a and 14b may be the same as each other.
  • the protective layers 14a and 14b further contain fillers 114a and 114b made of a powder made of a heat transfer material such as alumina or metal. It is preferable that the protective layer 14a and the protective layer 14b have substantially the same thermal conductivity. The thermal conductivity of the protective layer 14a and the thermal conductivity of the protective layer 14b may be different. The protective layer 14a may have higher thermal conductivity than the protective layer 14b, and the thermal conductivity of the protective layer 14a may be, for example, 0.5 W / m ⁇ K to 10 W / m ⁇ K.
  • another protective layer may be formed between the protective layer 14a and the protective layer 14b.
  • the protective layer 14a is the innermost layer that directly covers the resistor 11 or the heat concentration portion 15 of the resistor 11, and the protective layer 14b is the outermost layer exposed to the outside of the chip resistor 1000.
  • the heat resistance of the protective film 14 is increased by the protective layer 14a, and the fluidity of the protective film 14 is increased by the protective layer 14b to stabilize the shape of the protective film 14. be able to.
  • the protective film 14 since the heat resistance of the protective film 14 is improved by the protective layer 14a having a higher thermal decomposition temperature and a higher melting temperature than the protective layer 14b, even if the heat concentration portion 15 becomes extremely high during energization, the protective film 14
  • the protective layer 14a which has a higher fluidity than the protective layer 14a, completely covers the protective layer 14a, so that defects such as insufficient filling of the resin during molding are less likely to occur, and the shape is stabilized. be able to.
  • the resistor 11 can be prevented from being deformed by forming the resin a plurality of times.
  • the content of the filler 114a contained in the protective layer 14a made of a polyamide resin may be larger than the content of the filler 114b contained in the protective layer 14b made of a liquid crystal polymer resin.
  • the resin constituting the protective layer 14a and the protective layer 14b may be made of the same material, and the content of the filler 114a contained in the protective layer 14a may be larger than the content of the filler 114b contained in the protective layer 14b. Generally, when the content of the filler is large, the heat resistance increases, but the fluidity decreases.
  • terms indicating directions such as “upper surface” and “lower surface” indicate relative directions determined only by the relative positional relationship of steel members of chip resistors such as resistors and electrodes, and the vertical direction. It does not indicate an absolute direction such as.
  • the chip resistor and the method of manufacturing the same according to the present invention can improve the heat resistance of the protective film, and can stabilize the shape of the protective film. It becomes useful when applied to a chip resistor or the like as a resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

チップ抵抗器は、板状の金属で構成された抵抗体と、抵抗体の下面の両端部に設けられた一対の電極と、抵抗体を覆う樹脂で構成された保護膜とを備える。抵抗体には抵抗体の抵抗値を調整するためのトリミング溝が形成されている。保護膜は、抵抗体の少なくともトリミング溝が設けられた部分を覆う第1の保護層と、第1の保護層の周囲を覆う第2の保護層とを有する。第1の保護層は第2の保護層より高い耐熱性を有する。第2の保護層は第1の保護層より高い流動性を有する。このチップ抵抗器は、保護膜の耐熱性を向上させ、かつ保護膜の形状を安定させることができる。

Description

チップ抵抗器およびその製造方法
 本発明は、金属板よりなる抵抗体を備えたチップ抵抗器およびその製造方法に関する。
 図4は従来のチップ抵抗器500の断面図である。チップ抵抗器500は、板状の金属で構成された抵抗体1と、抵抗体1の下面の両端部に形成された一対の電極2と、抵抗体1を覆う樹脂を成形することによって構成された保護膜4とを備える。抵抗体1には抵抗値を調整するためのトリミング溝3が形成されている。
 チップ抵抗器500に類似する従来のチップ抵抗器は、例えば、特許文献1に開示されている。
特開2011-96814号公報
 チップ抵抗器は、板状の金属で構成された抵抗体と、抵抗体の下面の両端部に設けられた一対の電極と、抵抗体を覆う樹脂で構成された保護膜とを備える。抵抗体には抵抗体の抵抗値を調整するためのトリミング溝が形成されている。保護膜は、抵抗体の少なくともトリミング溝が設けられた部分を覆う第1の保護層と、第1の保護層の周囲を覆う第2の保護層とを有する。第1の保護層は第2の保護層より高い耐熱性を有する。第2の保護層は第1の保護層より高い流動性を有する。
 このチップ抵抗器は、保護膜の耐熱性を向上させ、かつ保護膜の形状を安定させることができる。
図1Aは実施の形態におけるチップ抵抗器の上面図である。 図1Bは図1Aに示すチップ抵抗器の線1B-1Bにおける断面図である。 図2は図1Aに示すチップ抵抗器の主要部の上面図である。 図3は実施の形態における他のチップ抵抗器の断面図である。 図4は従来のチップ抵抗器の断面図である。
 図1Aは実施の形態におけるチップ抵抗器1000の断面図である。図1Bは図1Aに示すチップ抵抗器の線1B-1Bにおける断面図である。図2はチップ抵抗器1000の主要部の上面図である。
 チップ抵抗器100は、上面11eと下面11fとを有する板形状を有する抵抗体11と、抵抗体11の下面11fの両端部11f1、11f2にそれぞれ形成された一対の電極12a、12bと、抵抗体11を覆う樹脂で構成された保護膜14とを備えている。抵抗体11の両端部11f1、11f2すなわち電極12a、12bは長手方向D11に隊列されている。抵抗体11は金属よりなる。抵抗体11には、抵抗体11の抵抗値を調整するためのトリミング溝13が形成されている。電極12a、12bは長手方向D11に配列されている。したがって、抵抗体11には局部的には長手方向D11と交差する方向に電流は流れるが、全体的には長手方向D11に沿って電流が流れる。図1Aは保護膜14と電極12a、12bを点線で示す。
 保護膜14は、抵抗体11を覆う保護層14aと、保護層14aの周囲を覆う保護層14bとを有する。図2は、保護層14aを省略し、保護層14bを透過させて示す。
 抵抗体11は、ニクロム、銅ニッケル、マンガニン等からなる金属板で構成されている。また、抵抗体11は上面視にて矩形状を有する。
 抵抗体11には抵抗値を調整するために、抵抗体11を貫通するトリミング溝13がレーザ照射や打ち抜きによって形成されている。抵抗体11は上面11eと下面11fとに繋がる側面11a、11bと、上面11eと下面11fとに繋がる端面11c、11dとを有する。側面11a、11bは互いに反対側に位置し、端面11c、11dは互いに反対側に位置する。側面11a、11bは長手方向D11に延び、端面11c、11dは長手方向D11に直角の幅方向D12に延びている。側面11a、11bは幅方向D12に配列され、端面11c、11dは長手方向D11に配列されている。トリミング溝13は、抵抗体11の側面11aから側面11bに向かう、または、側面11bから側面11aに向かうように形成している。トリミング溝13の先端部と抵抗体11の側面11a、11bとの間の抵抗体11の熱集中部15は、抵抗体11が通電されると最も大きく発熱する。抵抗体11の幅方向D12での幅が熱集中部15において局部的に小さい。電極12a、12b間に流れる電流の密度が熱集中部15で局部的に大きくなって電流が集中し、集中した電流により抵抗体11の中で熱集中部15が最も大きい熱を発生する。
 一対の電極12a、12bは、抵抗体11とは別体の導電体で形成され、抵抗体11より導電性のよいCu等の金属で構成されている。さらに、一対の電極12a、12bはそれぞれ、抵抗体11の下面11fの長手方向D11の両端部11f1、11f2に、溶接、クラッド等の方法で接続されている。また、図1B、図2では上面視で一対の電極12a、12bの上面の一部は抵抗体11から露出しているが、露出させなくてもよい。
 一対の電極12a、12bの周囲には電気めっきまたはディップにてすずめっき層が施されており、これにより、チップ抵抗器は実装用基板に実装される。
 保護膜14は、抵抗体11の上面11eと下面11fの電極12a、12bが形成されていない部分を覆うように形成されている、すなわち、保護膜14は、抵抗体11の下面11fにおける電極12a、12b間と、抵抗体11の上面11eと、側面11a、11bと、抵抗体11から露出した電極12a、12bの上面に形成されている。
 また、保護膜14は樹脂を加熱、硬化させることによって構成され、保護層14aと、保護層14aを覆う保護層14bを有する。
 保護層14aは、少なくとも抵抗体11のトリミング溝13が形成された部分、例えば熱集中部15を覆うように、抵抗体11の上面11eと、下面11f、側面11a、11bに直接形成されている。保護層14aは、ポリアミド樹脂、エポキシ樹脂等の絶縁樹脂をモールド成形またはディスペンサー等によって形成されている。
 図3は実施の形態における他のチップ抵抗器1001の断面図である。図3において図1Aから図2に示すチップ抵抗器1000と同じ部分には同じさ参照番号を付す。図3に示すチップ抵抗器1001では、熱集中部15周辺のみに保護層14aが塗布して形成されている。抵抗体11の上面11eと下面11fのうちの熱集中部15以外の部分は保護層14aで覆われず保護層14aから露出している。抵抗体11の上面11eと下面11fのうちの保護層14aから露出している部分は保護層14bで完全に覆われている。保護層14aは抵抗体11の上面11eと下面11fのうちどちらか一方の面の全面まで延在していてもよく、さらに、抵抗体11の端面11cにも形成されていてもよい。
 保護層14bは、保護層14aの周囲を完全に覆うように形成されている。すなわち、保護層14aは保護層14bから露出しない。また、保護層14bは、液晶ポリマー、エポキシ樹脂等の絶縁樹脂をモールド成形して保護層14aを封止する。
 保護層14aを構成するポリアミド樹脂は、保護層14bを構成する液晶ポリマー樹脂より、高い熱分解温度、高い融解温度を有しており高い耐熱性を有する。この場合、保護層14aの熱分解温度は、保護層14bの熱分解温度より20℃以上高いことが望ましい。
 保護層14aは、ポリアミド樹脂等のベース材料成分と、ベース材料成分に混合されたエポキシ樹脂等の副次材料成分とを含有してもよい。保護層14bは、液晶ポリマー樹脂等のベース材料成分と、ベース材料成分に混合されたエポキシ樹脂等の副次材料成分とを含有してもよい。実施の形態において、保護層14a、14bのそれぞれにおいて、ベース材料成分の含有率は、例えば70重量%以上である。保護層14aのベース材料成分は保護層14bのベース材料成分と異なる。保護層14a、14bで副次材料成分は互いに同じであってもよい。
 なお、保護層14a、保護層14bは、アルミナまたは金属等の伝熱材よりなる粉体で構成されたフィラー114a、114bをそれぞれさらに含有している。また、保護層14aと保護層14bとは熱伝導率が略等しいことが好ましい。保護層14a、保護層14bの熱伝導率が異なるようにしてもよい。保護層14aが保護層14bより熱伝導率を高くし、かつ保護層14aの熱伝導率を例えば0.5W/m・K~10W/m・Kとしてもよい。
 また、保護層14aと保護層14bとの間に、他の保護層を形成してもよい。この場合でも、保護層14aが抵抗体11または抵抗体11の熱集中部15を直接覆う最内層であり、保護層14bはチップ抵抗器1000の外部に露出する最外層である。
 図4に示す従来のチップ抵抗器500は、保護膜4に耐熱性を要求された場合、保護膜4の流動性が低くなる傾向がある。したがって、モールド成形時に樹脂の充填不足が発生し、その形状を安定させることができない可能性がある。また、保護膜4の形状を安定させるために流動性を高くすると、その耐熱性が低下する可能性がある。
 実施の形態におけるチップ抵抗器1000においては、保護層14aによって保護膜14の耐熱性を高くし、さらに、保護層14bによって保護膜14の流動性を高くして、保護膜14の形状を安定させることができる。
 すなわち、保護層14bより熱分解温度、融解温度が高い保護層14aによって保護膜14の耐熱性を向上させているため、通電時の熱集中部15が非常に高温になっても、保護膜14に不具合が生じにくくなり、保護層14aより流動性の高い保護層14bで保護層14aを完全に覆うことによって、成形時の樹脂の充填不足等の不具合が発生しにくくし、その形状を安定させることができる。
 したがって、耐熱性を確保しつつ形状の安定したチップ抵抗器1000の外装を形成することができる。
 さらに、抵抗体11が薄く、また、複数のトリミング溝13が形成された場合でも、樹脂を複数回形成することによって、抵抗体11が変形するのを防ぐことができる。
 ポリアミド樹脂で構成された保護層14aに含まれるフィラー114aの含有量を、液晶ポリマー樹脂で構成された保護層14bに含まれるフィラー114b含有量より多くしてもよい。
 また、保護層14a、保護層14bを構成する樹脂を同じ材料とし、保護層14aに含まれるフィラー114aの含有量を、保護層14bに含まれるフィラー114bの含有量より多くしてもよい。一般に、フィラーの含有量が多いと、耐熱性は高くなるが流動性は低下する。
 実施の形態において、「上面」「下面」等の方向を示す用語は、抵抗体や電極等のチップ抵抗器の鋼製部材の相対的な位置関係でのみ決まる相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 本発明に係るチップ抵抗器およびその製造方法は、保護膜の耐熱性を向上させ、かつ保護膜の形状を安定させることができ、特に各種電子機器の電流値検出等に使用される金属板を抵抗体としたチップ抵抗器等に適用することにより有用となる。
11  抵抗体
12a,12b  電極
13  トリミング溝
14  保護膜
14a  保護層(第1の保護層)
14b  保護層(第2の保護層)

Claims (6)

  1. 板状の金属で構成された抵抗体と、
    前記抵抗体の両端部に設けられた一対の電極と、
    前記抵抗体を覆う樹脂で構成された保護膜と、
    を備え、
    前記抵抗体には前記抵抗体の抵抗値を調整するためのトリミング溝が形成されており、
    前記保護膜は、
       前記抵抗体の少なくとも前記トリミング溝が設けられた部分を覆う第1の保護層と、
       前記第1の保護層の周囲を覆う第2の保護層と、
    を有し、
    前記第1の保護層は前記第2の保護層より高い耐熱性を有し、
    前記第2の保護層は前記第1の保護層より高い流動性を有する、チップ抵抗器。
  2. 前記第1の保護層の熱分解温度は、前記第2の保護層の熱分解温度より20℃以上高い、請求項1に記載のチップ抵抗器。
  3. 前記第1の保護層の熱伝導率は0.5W/m・K~10W/m・Kである、請求項1に記載のチップ抵抗器。
  4. 前記第1の保護層は第1のベース材料成分を含有し、
    前記第2の保護層は、前記第1ベース材料成分と異なる第2のベース材料成分を含有する、請求項1に記載のチップ抵抗器。
  5. トリミング溝が設けられた抵抗体を準備するステップと、
    前記抵抗体の前記トリミング溝に面する部分を覆うように、前記抵抗体に第1の保護層を形成するステップと、
    前記第1の保護層の周囲を完全に覆うように第2の保護層を形成するステップと、
    を含む、チップ抵抗器の製造方法。
  6. 前記抵抗体に前記第1の保護層を形成する前記ステップは、前記抵抗体の前記トリミング溝に面する部分を覆うように、前記抵抗体に前記第1の保護層をモールド成形またはディスペンサーによって形成するステップを含み、
    前記第2の保護層を形成する前記ステップは、前記第1の保護層の周囲を完全に覆うように前記第2の保護層をモールド成形によって形成するステップを含む、チップ抵抗器の製造方法。
PCT/JP2019/032940 2018-08-29 2019-08-23 チップ抵抗器およびその製造方法 WO2020045258A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539406A JPWO2020045258A1 (ja) 2018-08-29 2019-08-23 チップ抵抗器およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018159822 2018-08-29
JP2018-159822 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045258A1 true WO2020045258A1 (ja) 2020-03-05

Family

ID=69645104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032940 WO2020045258A1 (ja) 2018-08-29 2019-08-23 チップ抵抗器およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2020045258A1 (ja)
WO (1) WO2020045258A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232007A (ja) * 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2002367804A (ja) * 2001-06-11 2002-12-20 K-Tech Devices Corp 抵抗器
JP2003173905A (ja) * 2001-12-05 2003-06-20 Hitachi Ltd シャント抵抗を備えた電力変換装置
JP2003282301A (ja) * 2002-03-26 2003-10-03 Koa Corp チップ抵抗器およびその製造方法
WO2010113341A1 (ja) * 2009-04-01 2010-10-07 釜屋電機株式会社 電流検出用金属板抵抗器及びその製造方法
JP2017157767A (ja) * 2016-03-04 2017-09-07 パナソニックIpマネジメント株式会社 チップ抵抗器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232007A (ja) * 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2002367804A (ja) * 2001-06-11 2002-12-20 K-Tech Devices Corp 抵抗器
JP2003173905A (ja) * 2001-12-05 2003-06-20 Hitachi Ltd シャント抵抗を備えた電力変換装置
JP2003282301A (ja) * 2002-03-26 2003-10-03 Koa Corp チップ抵抗器およびその製造方法
WO2010113341A1 (ja) * 2009-04-01 2010-10-07 釜屋電機株式会社 電流検出用金属板抵抗器及びその製造方法
JP2017157767A (ja) * 2016-03-04 2017-09-07 パナソニックIpマネジメント株式会社 チップ抵抗器

Also Published As

Publication number Publication date
JPWO2020045258A1 (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
US10141088B2 (en) Resistor
JP7336636B2 (ja) チップ抵抗器
US10134510B2 (en) Chip resistor and method for manufacturing same
JP4510858B2 (ja) チップヒューズ及びその製造方法
KR20180047411A (ko) 저항 소자 및 저항 소자 어셈블리
JP5706186B2 (ja) チップ抵抗器およびその製造方法
US10083779B2 (en) Chip resistor and mounting structure thereof
WO2020045258A1 (ja) チップ抵抗器およびその製造方法
KR101075664B1 (ko) 칩 저항기 및 이의 제조 방법
JP6763008B2 (ja) 配線基板の製造方法、およびサーマルヘッドの製造方法
JP6500210B2 (ja) 金属板抵抗器
US9287696B2 (en) PTC device
JP2013197002A (ja) 回路保護素子
JP7117114B2 (ja) チップ抵抗器
JP2008270599A (ja) 金属板抵抗器
JP2018133440A (ja) チップ抵抗器
JP7470899B2 (ja) 抵抗器およびその製造方法
CN113826173B (zh) 电阻器
WO2023053594A1 (ja) チップ抵抗器
CN114207764B (zh) 芯片型电流熔断器
WO2023079876A1 (ja) チップ抵抗器
US20200343025A1 (en) Chip resistor
JP2007335488A (ja) チップ抵抗器の製造方法
JP2020088073A (ja) 抵抗器
JP2007335488A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855022

Country of ref document: EP

Kind code of ref document: A1