WO2020042538A1 - 掩膜板排版方法 - Google Patents

掩膜板排版方法 Download PDF

Info

Publication number
WO2020042538A1
WO2020042538A1 PCT/CN2019/072960 CN2019072960W WO2020042538A1 WO 2020042538 A1 WO2020042538 A1 WO 2020042538A1 CN 2019072960 W CN2019072960 W CN 2019072960W WO 2020042538 A1 WO2020042538 A1 WO 2020042538A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
distance
evaporation
edge
vapor deposition
Prior art date
Application number
PCT/CN2019/072960
Other languages
English (en)
French (fr)
Inventor
王恩霞
欧凌涛
李伟丽
吕孝鹏
甘帅燕
王亚
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020042538A1 publication Critical patent/WO2020042538A1/zh
Priority to US16/816,276 priority Critical patent/US11021784B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present application relates to the technical field of display panels, and in particular, to a mask layout method.
  • OLED displays have been widely used in computers and mobile phones due to their advantages such as self-luminous, thin and light, low power consumption, high contrast, high color gamut, and flexible display. And other electronic products.
  • the OLED display device includes a cathode layer, an organic material functional layer, an anode layer, etc.
  • the organic material functional layer generally uses a mask plate, and the vapor deposition material is vapor-deposited to a predetermined position of the vapor deposition back plate by vapor deposition.
  • the structural design of the mask is unreasonable, which leads to a low layout density of the mask, which leads to a low utilization rate of the evaporation effective area of the substrate to be evaporated, which seriously affects the number of single screen bodies produced by a substrate to be evaporated.
  • the embodiment of the present application provides a mask layout method.
  • the mask layout method can ensure the accuracy of the screen of the vapor deposition mask, improve the layout density of the vapor deposition mask, and thereby increase the output of the display panel.
  • an embodiment of the present application proposes a mask layout method, which includes:
  • the frame with preset areas that are set at intervals, positioning areas between two adjacent preset areas, and fixed areas that are offset from the preset area and positioning area.
  • the spacing between two adjacent preset areas is A predetermined distance L1; a cover mask is provided corresponding to the positioning area, and the center distance between the edge of the cover mask and the positioning area is a second predetermined distance L2; the evaporation mask is set in a fixed area according to a preset condition, and The distance between two adjacent fixed areas is a third predetermined distance L3, and the third predetermined distance L3 is equal to the difference between the first predetermined distance L1 and the second predetermined distance L2.
  • the preset conditions include: the frame has a structure for connecting the vapor deposition mask.
  • connection area of the diaphragm is within a fixed area, the distance from the edge of the connection area to the edge of the evaporation mask is a first distance D1, and the edge of the evaporation area of the evaporation mask is The edge distance is a second distance D2; the first distance D1 is smaller than the second distance D2.
  • the first distance D1 is 1 to 1.5 mm.
  • the second distance D2 is greater than 1.5 mm.
  • the preset condition further includes: the cover mask and the evaporation mask have a partial overlap, and the edge of the cover mask near the evaporation area and the edge of the evaporation area have a first Three distances D3; there is a fourth distance D4 between the edge of the positioning area and the edge of the cover mask, and the third distance D3 is greater than or equal to the fourth distance D4.
  • the width of the fixed area is smaller than the width of the preset area.
  • the evaporation region has an auxiliary pixel evaporation region, and a distance between an edge of the auxiliary pixel evaporation region and an edge of the evaporation mask is a second distance D2.
  • the frame includes a protrusion provided in the fixing area and a groove provided in the positioning area, the evaporation mask is fixed on the protrusion, and the covering mask is provided in the groove.
  • a solder joint is provided in the connection area, the evaporation mask is fixed to the protrusion through the solder joint, and a distance between the edge of the solder joint and the edge of the evaporation mask is a first distance D1.
  • the evaporation mask is strip-shaped.
  • the plurality of preset regions are disposed at intervals along a width direction of the evaporation mask.
  • the mask layout method provided in the present application uses the preset area as a reference to accurately place and fix the vapor deposition mask on a fixed area according to preset conditions.
  • each evaporation mask is beneficial to reduce the gap between two adjacent evaporation masks, and can greatly improve the layout of the evaporation mask in the mask assembly. Quantity, and at the same time ensure the accuracy of the screen, so that a larger number of display panels can be produced on a large glass substrate, which improves the output of the display panel and saves costs.
  • FIG. 1 is a flowchart of a mask layout method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an assembly structure of a frame and a cover mask according to an embodiment of the present application
  • FIG. 3 is an enlarged schematic view at A in FIG. 2; FIG.
  • FIG. 4 is a schematic diagram of a partial assembly structure of a frame, an overlay mask, and an evaporation mask in an embodiment of the present application;
  • FIG. 5 is a schematic partial structural diagram of a mask plate assembly according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an overall structure of a mask plate assembly according to an embodiment of the present application.
  • FIG. 7 is an enlarged schematic view at a position B in FIG. 6.
  • 101 frame; 101a, preset area; 101b, positioning area; 101c, fixed area; 101d, connection area; 1011, protrusion; 1012, groove; 1012a, long side;
  • a vapor deposition mask 1021; a vapor deposition area; 1021a; an auxiliary pixel vapor deposition area;
  • X first direction
  • Y second direction
  • an embodiment of the present application provides a mask layout method, which includes:
  • a frame 101 is provided.
  • the frame 101 has a plurality of preset regions 101a arranged at intervals, a positioning region 101b between two adjacent preset regions 101a, and a fixed region 101c provided offset from the preset region 101a and the positioning region 101b.
  • a distance between two adjacent preset areas 101a is a first predetermined distance L1.
  • the offset setting of the fixed area 101c, the preset area 101a, and the positioning area 101b in this embodiment refers to an area where the fixed area 101c and the preset area 101a do not overlap each other or only partially overlap in the first direction X.
  • the fixed area 101c and the positioning area 101b do not overlap each other or only partially overlap each other in the first direction X.
  • a cover mask 106 is provided corresponding to the positioning region 101b, and the edge of the cover mask 106 is spaced from the center of the positioning region 101b at a second predetermined distance L2.
  • the evaporation mask 102 is set in the fixed area 101c according to a preset condition, and a distance between two adjacent fixed areas 101c is a third predetermined distance L3, and the third predetermined distance L3 is equal to the first predetermined distance L1 and the second predetermined The difference in distance L2.
  • the preset conditions include: the frame 101 has a connection area 101d for connecting the vapor deposition mask 102, the connection area 101d is within the fixed area 101c, and a distance between the edge of the connection area 101d and the edge of the vapor deposition mask 102 is a first distance D1, the distance between the edge of the evaporation region 1021 of the evaporation mask 102 and the edge of the evaporation mask 102 is a second distance D2; the first distance D1 is smaller than the second distance D2.
  • the preset area 101 a in the above embodiment is a reference area for placing the evaporation mask 102.
  • the positioning area 101b is used to provide precise positioning for placing the cover mask 106.
  • the fixed region 101c is a region for finally fixing the vapor deposition mask 102.
  • the preset area 101 a, the positioning area 101 b, the fixed area 101 c, and the connection area 101 d are the areas shown by dashed boxes in FIG. 2. Each of the above areas is a virtual area and does not limit the structure of the frame 101.
  • the gap between two adjacent vapor deposition masks 102 is related to the third predetermined distance L3.
  • the gap between two adjacent evaporation masks 102 is smaller than the first predetermined distance L1.
  • the mask layout method provided in this application uses the preset area 101a as a reference to accurately place and fix the vapor deposition mask 102 on the fixed area 101c according to the preset conditions.
  • each evaporation mask plate 102 is conducive to reducing the gap between two adjacent evaporation mask plates 102, so that the evaporation mask plates in the mask plate assembly can be greatly improved.
  • the number of typesettings of 102 while ensuring the accuracy of the screen, so that a larger number of display panels can be produced on a large glass substrate, which improves the output of the display panel and saves costs.
  • the first distance D1 is 1 to 1.5 mm.
  • the first distance D1 is 1 to 1.1 mm.
  • the second distance D2 is greater than 1.5 mm. In this way, the accuracy of the screen opening of the vapor deposition mask 102 can be ensured, and the possibility of warping of the edges of the vapor deposition mask 102 can be reduced.
  • the preset conditions further include: the cover mask 106 and the vapor deposition mask 102 have a partial overlap, and the edge of the cover mask 106 near the vapor deposition region 1021 and the edge of the vapor deposition region 1021 have The third distance D3, and there is a fourth distance D4 between the edge of the positioning area 101b and the edge of the cover mask 106, and the third distance D3 is greater than or equal to the fourth distance D4.
  • the third distance D3 is 0.3 to 0.5 mm
  • the fourth distance D4 is 0.3 mm.
  • the width of the fixed area 101c is smaller than the width of the preset area 101a.
  • a dimension of the fixed region 101 c in the first direction X is a width dimension.
  • the size of the preset area 101a in the first direction X is a width size.
  • the size of the vapor deposition mask 102 corresponds to the size of the fixed area 101c, so the size of the vapor deposition mask 102 itself in the first direction X can be reduced, thereby being within a unit area.
  • a larger number of vapor deposition masks 102 can be provided, and the typesetting rate per unit area of the vapor deposition masks 102 can be increased.
  • the vapor deposition region 1021 has an auxiliary pixel vapor deposition region 1021a.
  • the distance between the edge of the auxiliary pixel evaporation region 1021a and the edge of the evaporation mask 102 is a second distance D2.
  • the auxiliary pixel evaporation area 1021 a provided on the evaporation mask 102 is used to vaporize the auxiliary pixels.
  • the vapor deposition region 1021 of the vapor deposition mask 102 further includes a display pixel vapor deposition region adjacent to the auxiliary pixel vapor deposition region 1021 a.
  • the display pixel evaporation area provided on the evaporation mask plate 102 is used to vaporize the display pixels.
  • the frame 101 includes a protrusion 1011 provided in the fixed area 101c and a groove 1012 provided in the positioning area 101b.
  • the evaporation mask plate 102 is fixed to the protrusion 1011, and the covering mask plate 106 is disposed in the groove 1012.
  • the distance between the edge of the cover mask 106 and the center of the groove 1012 is a second predetermined distance L2.
  • a solder joint 104 is provided in the connection area 101d.
  • the vapor deposition mask 102 is fixed to the bump 1011 by a solder joint.
  • the distance from the edge of the solder joint 104 to the edge of the evaporation mask 102 is a first distance D1.
  • the evaporation mask 102 is a bar-shaped structure having a predetermined width and length.
  • the plurality of predetermined regions 101 a are disposed at intervals along the width direction of the vapor deposition mask 102.
  • FIG. 5 is a partial structure of a mask assembly according to an embodiment of the present application.
  • the mask assembly includes a frame 101, an evaporation mask 102, and a solder joint 104.
  • the frame 101 has a frame structure.
  • the number of the vapor deposition masks 102 is plural.
  • a plurality of vapor deposition masks 102 are sequentially disposed on the frame 101 along the first direction X.
  • the number of the solder joints 104 is plural, and the solder joints 104 fix the vapor deposition mask 102 to the frame 101.
  • the vapor deposition mask 102 has a plurality of vapor deposition holes 105.
  • the vapor deposition hole 105 closest to the gap 103 and the edge of the vapor deposition mask 102 have the shortest second distance D2 in the first direction X.
  • the first distance D1 is smaller than the second distance D2.
  • the organic light emitting display panel has a stacked structure.
  • the emission layer is inserted between the anode and the cathode and realizes color based on the principle that holes and electrons injected into the emission layer from the anode and the cathode emit light in combination.
  • the emissive layer material is evaporated using the evaporation mask 102 to manufacture an organic light emitting display panel.
  • the organic light emitting display panel is manufactured on a large glass substrate, and the large glass substrate can form multiple organic light emitting display panels at the same time. Cutting is performed after forming a plurality of organic light emitting display panels.
  • the mask plate assembly corresponds to the large-sized glass substrate, and the luminescent material is vapor-deposited onto the large-sized glass substrate through the evaporation hole 105 of the mask plate component.
  • the mask assembly of this embodiment includes a frame 101.
  • the frame 101 is generally a frame-shaped structure.
  • the hollow area of the frame-shaped structure is provided corresponding to the effective evaporation area on the large glass substrate.
  • a plurality of organic light-emitting display panels formed by evaporation are located in an evaporation effective area.
  • FIG. 5 schematically illustrates a rectangular frame 101, but the shape of the frame 101 in this embodiment is not limited to a rectangle, and may be other shapes.
  • the frame 101 is used for supporting and fixing a plurality of vapor deposition masks 102.
  • the plurality of evaporation masks 102 in this embodiment are sequentially disposed on the frame 101 along the first direction X.
  • the evaporation mask 102 may be a fine metal mask (FMM), which has a thin thickness and a small thermal expansion coefficient, and has high evaporation accuracy.
  • the vapor deposition mask 102 has a plurality of vapor deposition holes 105.
  • One vapor deposition hole 105 can vapor-deposit more than one pixel on the glass substrate.
  • the light-emitting material is vapor-deposited onto the glass substrate through the vapor-deposition hole 105 to form a light-emitting pixel.
  • the gap 103 there is usually a gap 103 between the plurality of evaporation masks 102 arranged in order in the first direction X.
  • the gap 103 cannot usually be made small.
  • a larger gap 103 will reduce the number of the evaporation masks 102 arranged in a unit area on the frame 101, resulting in an organic light emitting display produced on a large glass substrate. Fewer panels.
  • the vapor deposition mask 102 has opposite ends.
  • the vapor deposition mask 102 is usually welded to the frame 101, so a plurality of solder joints 104 are distributed at both ends of the vapor deposition mask 102, so that the vapor deposition The mask plate 102 is fixed to the frame 101.
  • each of the vapor deposition masks 102 has two opposite edges.
  • the outermost solder joint 104 of the plurality of solder joints 104 on each evaporation mask 102 has two distances from both edges of the evaporation mask 102.
  • the shortest of the two distances is the first distance D1 described above.
  • the outermost evaporation hole 105 of the plurality of evaporation holes 105 on each evaporation mask 102 has two distances from both edges of the evaporation mask 102.
  • the shortest of the two distances is the second distance D2 described above.
  • the first distance D1 is 1 to 1.5 mm
  • the second distance D2 is greater than 1.5 mm. In this way, the accuracy of the screen opening of the vapor deposition mask 102 can be ensured, and the possibility of warping of the edges of the vapor deposition mask 102 can be reduced.
  • the structure of the evaporation mask plate 102 is reasonable, and it can reduce the size of two adjacent evaporation mask plates while satisfying the accuracy of the screen of the evaporation mask plate 102.
  • the gap 103 between 102 can greatly increase the number of layouts of the evaporation mask 102 in the mask assembly, so that a larger number of display panels can be produced on a large glass substrate, and the output of the display panel can be improved. cut costs.
  • the shape of the evaporation mask 102 may be a strip shape.
  • the vapor deposition mask 102 has a predetermined width and length.
  • the width direction of the vapor deposition mask 102 is the first direction X.
  • the stripe-shaped vapor deposition mask 102 includes vapor deposition holes 105 for vapor deposition of a plurality of organic light emitting display panels.
  • the extension direction of the vapor deposition mask 102 is the second direction Y.
  • the extension direction of the vapor deposition mask 102 is a strip-shaped extension direction.
  • the second direction Y and the first direction X intersect each other, that is, a plurality of evaporation mask plates 102 are sequentially arranged along the first direction X, and each of the evaporation mask plates 102 extends along the second direction Y.
  • the first direction X and the second direction Y are perpendicular.
  • the frame 101 may be set as a rectangle, and the long and short sides of the rectangle are parallel to the first direction X and the second direction Y, respectively.
  • the extending direction of the vapor deposition mask 102 is a second direction Y, that is, the vapor deposition mask 102 extends along a direction of one side of the rectangular frame.
  • the plurality of vapor deposition masks 102 are sequentially arranged along the direction of the other side of the rectangular frame 101. This setting manner can realize the optimal arrangement of the vapor deposition masks 102, and more vapor deposition masks 102 can be arranged on the frame 101 of a specific shape.
  • one end in the extending direction of the vapor deposition mask 102 may be connected by a plurality of solder joints 104 arranged regularly.
  • the solder joints 104 are distributed in an array at two ends of the evaporation mask 102 along the second direction Y, respectively.
  • the column and row directions of the array are parallel to the first direction X and the second direction Y, respectively.
  • the solder joints 104 (the row direction is the second direction Y) in the same row and the closest gap 103 may have the same distance, and the edges of the vapor deposition mask 102 may have the same shortest first
  • the distance D1 can be beneficial to reduce the gap between the two vapor deposition masks 102, a larger number of vapor deposition masks 102 can be set in a unit area, and the typesetting rate per unit area of the vapor deposition masks 102 can be increased. .
  • FIG. 6 is an overall structure of a mask assembly provided in an embodiment of the present application.
  • FIG. 7 is an enlarged schematic view of an area A in FIG. 6. Referring to FIG. 6 and FIG. 7 together, the same parts as those in the above embodiment are not described here again, and the mask plate assembly of this embodiment may further include a mask plate 106.
  • the cover mask 106 is used to cover the gap 103 between the adjacent evaporation masks 102 and prevent the organic light-emitting material from being evaporated onto the glass substrate through the gap 103 between the adjacent evaporation masks during the evaporation process.
  • the covering mask plate 106 can also be used to provide a supporting force for the evaporation mask plate 102, prevent the evaporation mask plate 102 from sagging, avoid deformation of the evaporation holes 105 on the evaporation mask plate 102, and ensure that the evaporation mask plate 102 The vapor deposition accuracy of the upper vapor deposition hole 105.
  • the cover mask 106 is also fixed to the frame 101 by welding. In order to completely cover the gap 103, there is a partial overlap between the cover mask 106 and the evaporation mask 102. There is a third distance D3 in the first direction X between the edge of the covering mask plate 106 near the evaporation hole 105 and the evaporation hole closest to the gap, and the third distance D3 is 0.3 to 0.5 mm.
  • one covering mask plate 106 has two opposite edges.
  • the two edges of a cover mask 106 are stacked with two adjacent vapor deposition masks 102, respectively.
  • the distance between one of the plurality of evaporation holes 105 provided on one evaporation mask plate 102 closest to one edge of the adjacent covering mask plate 106 is the aforementioned third distance D3.
  • the covering mask plate 106 is in a strip shape and completely covers the gap 103 between the adjacent evaporation mask plates 102.
  • the extending direction of the strip-shaped cover mask 106 is the second direction Y, that is, the same as the extending direction of the vapor deposition mask 102.
  • the covering mask plate 106 can also be fixed to the frame 101 by welding.
  • the frame and the evaporation mask plate 102 can be fixed.
  • a plurality of protrusions 1011 are provided.
  • the plurality of protrusions 1011 can be arranged along the first direction X.
  • the evaporation mask 102 is fixed to the plurality of protrusions of the frame 101. 1011 on.
  • one evaporation mask 102 may be fixed on one protrusion 1011 at one end of the evaporation mask 102, respectively.
  • the vapor deposition mask 102 Since the vapor deposition mask 102 has a strip shape and extends along the second direction Y, the vapor deposition mask 102 is fixed on the protrusions 1011 oppositely disposed in the second direction Y, and the cover mask 106 is fixed. In the groove 1012 between the adjacent protrusions 1011.
  • the groove 1012 is formed by a certain distance between two adjacent protrusions 1011, so the groove 1012 has a long side 1012a formed by the adjacent protrusions 1011.
  • the long side 1012a is the edge of the protrusion 1011 constituting the groove 1012.
  • the extending direction of the long side 1012a may be the second direction Y.
  • the covering mask plate 106 is formed by the long side 1012a.
  • the long side 1012 a is closest to one edge of the covering mask plate 106
  • the fourth side D12 is in the first direction X between the long side 1012 a and the edge of the closest covering mask plate 106.
  • the fourth distance D4 may be 0.3 mm, and the edge covering the mask plate 106 is an edge extending along the second direction Y.
  • the fourth distance D4 it is advantageous to reduce the gap between the two vapor deposition masks 102, and a larger number of vapor deposition masks 102 can be set in a unit area to improve the vapor deposition masks. 102 unit area typesetting rate.
  • the embodiment of the present application further provides a vapor deposition method, which includes placing any of the foregoing mask plate assemblies on a target substrate, where the target substrate is the large-sized glass substrate in the foregoing embodiment, and passes through the mask.
  • the membrane plate assembly vapor-deposits a target substrate.
  • the mask plate assembly and the evaporation method provided in the present application because the structure of the evaporation mask plate 102 is reasonable, can meet the precision of the evaporation mask plate 102 while reducing the size of two adjacent evaporation masks.
  • the gap 103 between the plates 102 can greatly increase the number of layouts of the evaporation mask 102 in the mask assembly, and improve the accuracy of the screen, so that a larger number of display panels can be produced on a large glass substrate. Increase the output of display panels and save costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种掩膜板排版方法,包括:提供框架(101),具有间隔设置的预设区域(101a)、定位区域(101b)以及与预设区域(101a)和定位区域(101b)错位设置的固定区域(101c),相邻两个预设区域(101a)的间距为第一预定距离L1;对应于定位区域(101b)设置覆盖掩膜板(106),覆盖掩膜板(106)的边缘距离定位区域(101b)的中心间距为第二预定距离L2;根据预设条件将蒸镀掩膜板(102)设置于固定区域(101c),相邻两个固定区域(101c)的间距为第三预定距离L3,第三预定距离L3为第一预定距离L1与第二预定距离L2差值;预设条件包括:框架(101)具有用于连接蒸镀掩膜板(102)的连接区域(1011),连接区域(1011)在固定区域(101c)内,连接区域(1011)的边缘至蒸镀掩膜板(102)的边缘间距为第一距离D1,蒸镀掩膜板(102)的蒸镀区域(1021)的边缘与蒸镀掩膜板(102)的边缘间距为第二距离D2;第一距离D1小于第二距离D2。

Description

掩膜板排版方法
相关申请的交叉引用
本申请要求享有于2018年8月31日提交的名称为“掩膜板排版方法”的中国专利申请201811014280.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示面板技术领域,特别是涉及一种掩膜板排版方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)显示器因其具有自发光性、轻薄、功耗低、高对比度、高色域、可实现柔性显示等优点,已被广泛地应用于包括电脑、手机等电子产品在内的各种电子设备中。OLED显示器件包括阴极层、有机材料功能层以及阳极层等,其中,有机材料功能层一般利用掩膜版,采用蒸镀的方式将蒸镀材料蒸镀至蒸镀用背板的预设位置。
目前,掩模版的结构设计不合理,导致掩膜版排版密度低,从而导致待蒸镀基板的蒸镀有效区利用率低,严重影响一张待蒸镀基板产出单个屏体的数量。
发明内容
本申请实施例提供一种掩膜板排版方法。掩膜板排版方法能够保证蒸镀掩膜板的张网精度,提升蒸镀掩膜板的排版密度,从而提升显示面板的产量。
一方面,本申请实施例提出了一种掩膜板排版方法,其包括:
提供框架,具有间隔设置的预设区域、相邻两个预设区域之间的定位 区域以及与预设区域和定位区域错位设置的固定区域,相邻两个预设区域之间的间距为第一预定距离L1;对应于定位区域设置覆盖掩膜板,覆盖掩膜板的边缘距离定位区域的中心间距为第二预定距离L2;根据预设条件将蒸镀掩膜板设置于固定区域,相邻两个固定区域之间的间距为第三预定距离L3,第三预定距离L3等于第一预定距离L1与第二预定距离L2的差值;预设条件包括:框架具有用于连接蒸镀掩膜板的连接区域,连接区域在固定区域内,连接区域的边缘至蒸镀掩膜板的边缘间距为第一距离D1,蒸镀掩膜板的蒸镀区域的边缘与蒸镀掩膜板的边缘间距为第二距离D2;第一距离D1小于第二距离D2。
根据本申请实施例的一个方面,第一距离D1为1~1.5mm
根据本申请实施例的一个方面,第二距离D2大于1.5mm。
根据本申请实施例的一个方面,预设条件还包括:覆盖掩膜板与蒸镀掩膜板具有部分交叠,覆盖掩膜板靠近蒸镀区域的边缘与蒸镀区域的边缘之间具有第三距离D3;定位区域的边缘与覆盖掩膜板的边缘之间具有第四距离D4,第三距离D3大于等于第四距离D4。
根据本申请实施例的一个方面,固定区域的宽度小于预设区域的宽度。
根据本申请实施例的一个方面,蒸镀区域具有辅助像素蒸镀区,辅助像素蒸镀区的边缘与蒸镀掩膜板的边缘间距为第二距离D2。
根据本申请实施例的一个方面,框架包括设置于固定区域的凸起以及设置于定位区域的凹槽,蒸镀掩膜板固定于凸起,覆盖掩膜板设置于凹槽内。
根据本申请实施例的一个方面,连接区域内设置焊点,蒸镀掩膜板通过焊点固定于凸起,焊点的边缘至蒸镀掩膜板的边缘间距为第一距离D1。
根据本申请实施例的一个方面,蒸镀掩膜板为条形。
根据本申请实施例的一个方面,多个预设区域沿蒸镀掩膜板的宽度方向间隔设置。
本申请所提供的掩膜板排版方法,其通过以预设区域为参照,将蒸镀 掩膜板根据预设条件精准放置并固定于固定区域。使得各个蒸镀掩膜板在满足张网精度的前提下,有利于缩小相邻两个蒸镀掩膜板之间的间隙,因而能够大幅度提升掩膜板组件中蒸镀掩膜板的排版数量,同时保证张网精度,从而在一个大张玻璃基板上能够制作更多数量的显示面板,提升显示面板的产量,节省成本。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请实施例的掩膜板排版方法流程图;
图2为本申请实施例的框架和覆盖掩膜板装配结构示意图;
图3为图2中A处的放大示意图;
图4为本申请实施例的框架、覆盖掩膜板和蒸镀掩膜板局部装配结构示意图;
图5为本申请实施例的掩膜板组件的局部结构示意图;
图6为本申请实施例的掩膜板组件的整体结构示意图;
图7为图6中B处的放大示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
101、框架;101a、预设区域;101b、定位区域;101c、固定区域;101d、连接区域;1011、凸起;1012、凹槽;1012a、长条边;
102、蒸镀掩膜板;1021、蒸镀区域;1021a、辅助像素蒸镀区;
103、间隙;
104、焊点;
105、蒸镀孔;
106、覆盖掩膜板;
D1、第一距离;
D2、第二距离;
D3、第三距离;
D4、第四距离;
L1、第一预定距离;
L2、第二预定距离;
L3、第三预定距离;
X、第一方向;Y、第二方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的掩膜板组件的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图4根据本申请实施例的掩膜板排版方法进行详细描述。
参见图1至图3所示,本申请实施例提供一种掩膜板排版方法,其包括:
提供框架101,该框架101具有多个间隔设置的预设区域101a、相邻两个预设区域101a之间的定位区域101b以及与预设区域101a和定位区 域101b错位设置的固定区域101c,相邻两个预设区域101a之间的间距为第一预定距离L1。参见图3所示,本实施例的固定区域101c与预设区域101a和定位区域101b错位设置指的是固定区域101c与预设区域101a在第一方向X上彼此不重叠或仅有部分重叠区域,固定区域101c与定位区域101b在第一方向X上彼此不重叠或仅有部分重叠区域。
对应于定位区域101b设置覆盖掩膜板106,覆盖掩膜板106的边缘距离定位区域101b的中心间距为第二预定距离L2。
根据预设条件将蒸镀掩膜板102设置于固定区域101c,相邻两个固定区域101c之间的间距为第三预定距离L3,第三预定距离L3等于第一预定距离L1与第二预定距离L2的差值。
预设条件包括:框架101具有用于连接蒸镀掩膜板102的连接区域101d,连接区域101d在固定区域101c内,连接区域101d的边缘至蒸镀掩膜板102的边缘间距为第一距离D1,蒸镀掩膜板102的蒸镀区域1021的边缘与蒸镀掩膜板102的边缘间距为第二距离D2;第一距离D1小于第二距离D2。
上述实施例中的预设区域101a是用于放置蒸镀掩膜板102的参考区域。定位区域101b用于为放置覆盖掩膜板106提供精确定位。固定区域101c是用于实现最终固定蒸镀掩膜板102的区域。预设区域101a、定位区域101b、固定区域101c和连接区域101d如图2中虚线框示出的区域,上述各区域均为虚拟区域,并不限定框架101的结构。在将蒸镀掩膜板102设置于固定区域101c后,相邻两个蒸镀掩膜板102的间隙与第三预定距离L3相关。相邻两个蒸镀掩膜板102的间隙小于第一预定距离L1。
本申请所提供的掩膜板排版方法,其通过以预设区域101a为参照,将蒸镀掩膜板102根据预设条件精准放置并固定于固定区域101c。使得各个蒸镀掩膜板102在满足张网精度的前提下,有利于缩小相邻两个蒸镀掩膜板102之间的间隙,因而能够大幅度提升掩膜板组件中蒸镀掩膜板102的排版数量,同时保证张网精度,从而在一个大张玻璃基板上能够制作更多数量的显示面板,提升显示面板的产量,节省成本。
在一个实施例中,参见图4所示,第一距离D1为1~1.5mm。优选地, 第一距离D1为1~1.1mm。第二距离D2大于1.5mm。这样,能够保证蒸镀掩膜板102的张网精度,同时也降低蒸镀掩膜板102的边缘发生翘曲的可能性。
本实施例中,预设条件还包括:覆盖掩膜板106与蒸镀掩膜板102具有部分交叠,覆盖掩膜板106靠近蒸镀区域1021的边缘与蒸镀区域1021的边缘之间具有第三距离D3,而定位区域101b的边缘与覆盖掩膜板106的边缘之间具有具有第四距离D4,第三距离D3大于等于第四距离D4。这样,能够有利于缩小两个蒸镀掩膜板102之间的间隙,或者,减小蒸镀掩膜板102自身尺寸,在单位面积内能够设置更多数量的蒸镀掩膜板102,提高蒸镀掩膜板102的单位面积排版率。在一个实施例中,第三距离D3为0.3~0.5mm,第四距离D4为0.3mm。
本实施例中,固定区域101c的宽度小于预设区域101a的宽度。参见图2所示,固定区域101c在第一方向X上的尺寸为宽度尺寸。预设区域101a在第一方向X上的尺寸为宽度尺寸。这样,在本实施例中,蒸镀掩膜板102的尺寸与固定区域101c的尺寸相对应,因此可以减小蒸镀掩膜板102自身在第一方向X上的尺寸,从而在单位面积内能够设置更多数量的蒸镀掩膜板102,提高蒸镀掩膜板102的单位面积排版率。
本实施例中,蒸镀区域1021具有辅助像素蒸镀区1021a。辅助像素蒸镀区1021a的边缘与蒸镀掩膜板102的边缘间距为第二距离D2。蒸镀掩膜板102上设置的辅助像素蒸镀区1021a用于蒸镀辅助像素。蒸镀掩膜板102的蒸镀区域1021还具有与辅助像素蒸镀区1021a相邻的显示像素蒸镀区。蒸镀掩膜板102上设置的显示像素蒸镀区用于蒸镀显示像素。
本实施例中,框架101包括设置于固定区域101c的凸起1011以及设置于定位区域101b的凹槽1012。蒸镀掩膜板102固定于凸起1011,而覆盖掩膜板106设置于凹槽1012内。覆盖掩膜板106的边缘距离凹槽1012的中心间距为第二预定距离L2。
在一个实施例中,连接区域101d内设置焊点104。蒸镀掩膜板102通过焊点固定于凸起1011。焊点104的边缘至蒸镀掩膜板102的边缘间距为第一距离D1。
在一个实施例中,蒸镀掩膜板102为具有预定宽度和长度的条形结构体。多个预设区域101a沿蒸镀掩膜板102的宽度方向间隔设置。
为了更好地理解本申请,下面结合图5至图7根据本申请实施例的掩膜板排版方法完成蒸镀掩膜板102排版后形成的掩膜板组件进行详细描述。
图5为本申请实施例的掩膜板组件的局部结构。参考图5,掩膜板组件包括框架101,蒸镀掩膜板102以及焊点104。框架101为框形结构。蒸镀掩膜板102的数量为多个。多个蒸镀掩膜板102沿第一方向X依次设置于框架101上。相邻两个蒸镀掩膜板102之间具有间隙103。焊点104的数量为多个,焊点104将蒸镀掩膜板102固定于框架101。在一个蒸镀掩膜板102中,最靠近间隙103的焊点104与蒸镀掩膜板102的边缘之间在第一方向X上具有最短的第一距离D1。蒸镀掩膜板102具有多个蒸镀孔105,最靠近间隙103的蒸镀孔105与蒸镀掩膜板102的边缘之间在第一方向X上具有最短的第二距离D2。第一距离D1小于第二距离D2。
有机发光显示面板具有堆叠结构。在该堆叠结构中,发射层插入在阳极和阴极之间并基于如下原理实现颜色:从阳极和阴极注入到发射层中的空穴和电子会复合发射光。在本实施例中,使用蒸镀掩模板102蒸镀发射层材料,以制造有机发光显示面板。
通常有机发光显示面板制作在大张玻璃基板上,大张的玻璃基板可以同时形成多个有机发光显示面板。形成多个有机发光显示面板后进行切割。在蒸镀发光材料的过程中,将掩膜板组件与大张的玻璃基板对应,发光材料通过掩膜板组件的蒸镀孔105蒸镀到大张的玻璃基板上。
本实施例的掩膜板组件包括框架101。框架101一般为框形结构。框形结构的中空区域对应大张的玻璃基板上的蒸镀有效区设置。蒸镀形成的多个有机发光显示面板位于蒸镀有效区内。图5示意性地示出了矩形的框架101,但本实施例的框架101的形状不限于矩形,还可以是其他的形状。框架101用于支撑和固定多个蒸镀掩膜板102。
本实施例的多个蒸镀掩膜板102沿着第一方向X依次设置于框架101 上。蒸镀掩膜板102可以为精细金属掩膜板(Fine Metal Mask,FMM),厚度很薄、热膨胀系数小,具有较高的蒸镀精度。蒸镀掩膜板102上具有多个蒸镀孔105。一个蒸镀孔105可以在玻璃基板上蒸镀一个以上的像素。发光材料通过蒸镀孔105蒸镀到玻璃基板上,从而形成发光像素。
本实施例中,在第一方向X上依次排列的多个蒸镀掩膜板102之间通常具有间隙103。该间隙103通常无法做到很小,较大的间隙103会使得在框架101上单位面积内排布的蒸镀掩膜板102数量变少,从而导致大张玻璃基板上产出的有机发光显示面板变少。
在第二方向Y上,蒸镀掩膜板102具有相对的两端。为了实现蒸镀掩膜板102和框架101的固定,通常将蒸镀掩膜板102焊接到框架101上,因而多个焊点104分布于蒸镀掩膜板102的两端,以将蒸镀掩膜板102固定于框架101上。
如图5所示,在第一方向X上,每个蒸镀掩膜板102具有相对的两个边缘。在X方向上,每个蒸镀掩膜板102上的多个焊点104中处于最外侧的焊点104到蒸镀掩膜板102的两个边缘具有两个距离。两个距离中最短的距离为上述的第一距离D1。在Y方向上,每个蒸镀掩膜板102上的多个蒸镀孔105中处于最外侧的蒸镀孔105到蒸镀掩膜板102的两个边缘具有两个距离。两个距离中最短的距离为上述的第二距离D2。
在一个实施例中,第一距离D1为1~1.5mm,第二距离D2大于1.5mm。这样,能够保证蒸镀掩膜板102的张网精度,同时也降低蒸镀掩膜板102的边缘发生翘曲的可能性。
本申请所提供的掩膜板组件和蒸镀方法,蒸镀掩膜板102的结构设计合理,能够在满足蒸镀掩膜板102张网精度的同时,缩小相邻两个蒸镀掩膜板102之间的间隙103,因而能够大幅度提升掩膜板组件中蒸镀掩膜板102的排版数量,从而在一个大张玻璃基板上能够制作更多数量的显示面板,提升显示面板的产量,节省成本。
继续参考图5,蒸镀掩膜板102的形状可以为条形。蒸镀掩膜板102具有预定宽度和长度。蒸镀掩膜板102的宽度方向为第一方向X。条形的蒸镀掩膜板102上包括为多个有机发光显示面板进行蒸镀的蒸镀孔105。 蒸镀掩膜板102的延伸方向为第二方向Y,这里蒸镀掩膜板102的延伸方向即为条形的延伸方向。第二方向Y与第一方向X相互交叉,即多个蒸镀掩膜板102沿着第一方向X依次排列,并且每个蒸镀掩膜板102沿着第二方向Y延伸。可选地,第一方向X和第二方向Y垂直。可选地,框架101可以设置为矩形,并且该矩形的长边和短边分别平行于第一方向X和第二方向Y。蒸镀掩膜板102的延伸方向为第二方向Y,即蒸镀掩膜板102沿着矩形框架的一条边的方向延伸。多个蒸镀掩膜板102沿着矩形框架101的另一条边的方向依次排布。这种设置方式能够实现蒸镀掩膜板102的最佳排布方式,在特定形状的框架101上能够排布更多的蒸镀掩膜板102。
为了更好的实现蒸镀掩膜板102和框架101之间的固定连接,可以在蒸镀掩膜板102延伸方向上的一端通过规则排布的多个焊点104进行连接。可选地,焊点104在蒸镀掩膜板102的沿第二方向Y的两端分别呈阵列分布。该阵列的列行方向分别平行于第一方向X和第二方向Y。在这种条件下,位于同一行的焊点104(行方向为第二方向Y)与最靠近的间隙103可以具有相同距离,与蒸镀掩膜板102的边缘可以具有相同的最短的第一距离D1,从而能够有利于缩小两个蒸镀掩膜板102之间的间隙,在单位面积内能够设置更多数量的蒸镀掩膜板102,提高蒸镀掩膜板102的单位面积排版率。
图6为本申请实施例提供的掩膜板组件的整体结构。图7为图6中A区域的放大示意图。一并参考图6和图7,与上述实施方式中相同的部分此处不再赘述,本实施例的掩膜板组件还可以包括覆盖掩膜板106。覆盖掩膜板106用于覆盖相邻蒸镀掩膜板102之间的间隙103,防止在蒸镀过程中有机发光材料通过相邻蒸镀掩模板之间的间隙103蒸镀到玻璃基板上。覆盖掩模板106也能够用于为蒸镀掩膜板102提供支撑力,阻止蒸镀掩膜板102下垂,避免蒸镀掩膜板102上的蒸镀孔105变形,保证蒸镀掩膜板102上的蒸镀孔105的蒸镀精度。覆盖掩模板106同样通过焊接的方式固定到框架101,为了完全覆盖住间隙103,覆盖掩模板106与蒸镀掩模板102之间具有部分交叠。覆盖掩模板106靠近蒸镀孔105的边缘与最靠近间隙的蒸镀孔之间在第一方向X上具有第三距离D3,第三距离D3为 0.3~0.5mm。
如图7所示,在第一方向X上,一个覆盖掩膜板106具有相对的两个边缘。一个覆盖掩膜板106的两个边缘分别与两个相邻的蒸镀掩膜板102层叠设置。一个蒸镀掩膜板102上设置的多个蒸镀孔105中最靠近相邻的覆盖掩膜板106的一个边缘的距离为上述的第三距离D3。
本实施例中,通过设置覆盖掩模板106靠近蒸镀孔105的边缘与最靠近间隙103的蒸镀孔105之间在第一方向X上具有第三距离D3为0.3~0.5mm,能够有利于缩小两个蒸镀掩膜板102之间的间隙,或者,减小蒸镀掩膜板102自身在第一方向X上的尺寸,在单位面积内能够设置更多数量的蒸镀掩膜板102,提高蒸镀掩膜板102的单位面积排版率。可选地,在本实施例中,覆盖掩膜板106为条形,并完全覆盖相邻蒸镀掩膜板102之间的间隙103。条形的覆盖掩膜板106的延伸方向为第二方向Y,即与蒸镀掩膜板102的延伸方向相同。
本实施例中,与蒸镀掩膜板102类似的方式,覆盖掩膜板106同样可以通过焊接与框架101实现固定,框架101上,在框架与蒸镀掩膜板102进行固定的部分上可以设置多个凸起1011,多个凸起1011可以沿着第一方向X排布,相邻的凸起1011之间具有凹槽1012,蒸镀掩膜板102固定到框架101的多个凸起1011上。可选地,一个蒸镀掩膜板102可以分别在蒸镀掩膜板102的一个端部固定在一个凸起1011上。由于蒸镀掩膜板102为条形并且沿着第二方向Y延伸,因而蒸镀掩膜板102固定于在第二方向Y上相对设置的凸起1011之上,而覆盖掩膜板106固定于相邻的凸起1011之间的凹槽1012内。
可以理解地,凹槽1012是由相邻的两个凸起1011之间具有一定的距离形成的,因此凹槽1012具有由相邻的凸起1011构成的长条边1012a。该长条边1012a即为构成凹槽1012的凸起1011的边缘,长条边1012a的延伸方向可以为第二方向Y,如图7所示,覆盖掩膜板106位于长条边1012a所构成的凹槽1012内,长条边1012a最靠近覆盖掩膜板106的一个边缘,长条边1012a与最靠近的覆盖掩膜板106的边缘之间在第一方向X上具有第四距离D4。第四距离D4可以为0.3mm,覆盖掩膜板106的边缘 为沿着第二方向Y延伸的边缘。通过设置第四距离D4为0.3mm,能够有利于缩小两个蒸镀掩膜板102之间的间隙,在单位面积内能够设置更多数量的蒸镀掩膜板102,提高蒸镀掩膜板102的单位面积排版率。
进一步地,本申请实施例还提供了一种蒸镀方法,包括将上述任一种掩膜板组件放置于目标基板上方,这里目标基板即前述实施方式中的大张的玻璃基板,通过上述掩膜板组件对目标基板进行蒸镀。
本申请所提供的掩膜板组件和蒸镀方法,由于蒸镀掩膜板102的结构设计合理,能够在满足蒸镀掩膜板102张网精度的同时,缩小相邻两个蒸镀掩膜板102之间的间隙103,因而能够大幅度提升掩膜板组件中蒸镀掩膜板102的排版数量,提升张网精度,从而在一个大张玻璃基板上能够制作更多数量的显示面板,提升显示面板的产量,节省成本。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种掩膜板排版方法,包括:
    提供框架,具有间隔设置的预设区域、位于相邻两个所述预设区域之间的定位区域以及与所述预设区域和所述定位区域错位设置的固定区域,相邻两个所述预设区域之间的间距为第一预定距离L1;
    对应于所述定位区域设置覆盖掩膜板,所述覆盖掩膜板的边缘距离所述定位区域的中心间距为第二预定距离L2;
    根据预设条件将蒸镀掩膜板设置于所述固定区域,相邻两个所述固定区域之间的间距为第三预定距离L3,所述第三预定距离L3等于所述第一预定距离L1与所述第二预定距离L2的差值;
    所述预设条件包括:所述框架具有用于连接所述蒸镀掩膜板的连接区域,所述连接区域在所述固定区域内,所述连接区域的边缘至所述蒸镀掩膜板的边缘间距为第一距离D1,所述蒸镀掩膜板的蒸镀区域的边缘与所述蒸镀掩膜板的边缘间距为第二距离D2;所述第一距离D1小于所述第二距离D2。
  2. 根据权利要求1所述的掩膜板排版方法,其中,所述第一距离D1为1~1.5mm。
  3. 根据权利要求1或2所述的掩膜板排版方法,其中,所述第二距离D2大于1.5mm。
  4. 根据权利要求1或2所述的掩膜板排版方法,其中,所述预设条件还包括:所述覆盖掩膜板与所述蒸镀掩膜板具有部分交叠,所述覆盖掩膜板靠近所述蒸镀区域的边缘与所述蒸镀区域的边缘之间具有第三距离D3;所述定位区域的边缘与所述覆盖掩膜板的边缘之间具有第四距离D4,所述第三距离D3大于等于所述第四距离D4。
  5. 根据权利要求4所述的掩膜板排版方法,其中,所述第三距离D3为0.3~0.5mm。
  6. 根据权利要求4所述的掩膜板排版方法,其中,所述第四距离D4为0.3mm。
  7. 根据权利要求1或2所述的掩膜板排版方法,其中,所述固定区域的宽度小于所述预设区域的宽度。
  8. 根据权利要求1或2所述的掩膜板排版方法,其中,所述蒸镀掩膜板的宽度与所述固定区域的宽度相等。
  9. 根据权利要求1或2所述的掩膜板排版方法,其中,所述蒸镀区域具有辅助像素蒸镀区,所述辅助像素蒸镀区的边缘与所述蒸镀掩膜板的边缘间距为所述第二距离D2。
  10. 根据权利要求1或2所述的掩膜板排版方法,其中,所述框架包括设置于所述固定区域的凸起以及设置于所述定位区域的凹槽,所述蒸镀掩膜板固定于所述凸起上,所述覆盖掩膜板设置于所述凹槽内。
  11. 根据权利要求10所述的掩膜板排版方法,其中,所述连接区域内设置焊点,所述蒸镀掩膜板通过所述焊点固定于所述凸起,所述焊点的边缘至所述蒸镀掩膜板的边缘间距为所述第一距离D1。
  12. 根据权利要求11所述的掩膜板排版方法,其中,所述焊点的数量为多个,最靠近所述覆盖掩膜版的所述焊点的边缘至所述蒸镀掩膜板的边缘间距为所述第一距离D1。
  13. 根据权利要求11所述的掩膜板排版方法,其中,所述凸起的数量为多个,多个所述凸起沿所述蒸镀掩膜板的宽度方向排布,相邻两个所述凸起之间具有所述凹槽,多个所述蒸镀掩膜板分别固定于多个所述凸起上。
  14. 根据权利要求1或2所述的掩膜板排版方法,其中,所述蒸镀掩膜板为条形。
  15. 根据权利要求14所述的掩膜板排版方法,其中,多个所述预设区域沿所述蒸镀掩膜板的宽度方向间隔设置。
  16. 根据权利要求14所述的掩膜板排版方法,其中,多个所述蒸镀掩膜板沿着自身宽度方向依次设置于所述框架上,相邻两个所述蒸镀掩膜板之间的间隙,所述覆盖掩膜板用于覆盖所述间隙。
  17. 根据权利要求16所述的掩膜板排版方法,其中,相邻两个所述蒸镀掩膜板的所述间隙小于所述第一预定距离L1。
PCT/CN2019/072960 2018-08-31 2019-01-24 掩膜板排版方法 WO2020042538A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/816,276 US11021784B2 (en) 2018-08-31 2020-03-12 Method of mask layout

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811014280.6 2018-08-31
CN201811014280.6A CN109182964B (zh) 2018-08-31 2018-08-31 掩膜板排版方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/816,276 Continuation US11021784B2 (en) 2018-08-31 2020-03-12 Method of mask layout

Publications (1)

Publication Number Publication Date
WO2020042538A1 true WO2020042538A1 (zh) 2020-03-05

Family

ID=64917360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072960 WO2020042538A1 (zh) 2018-08-31 2019-01-24 掩膜板排版方法

Country Status (4)

Country Link
US (1) US11021784B2 (zh)
CN (1) CN109182964B (zh)
TW (1) TWI687529B (zh)
WO (1) WO2020042538A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182964B (zh) * 2018-08-31 2019-11-15 云谷(固安)科技有限公司 掩膜板排版方法
KR20200096877A (ko) 2019-02-06 2020-08-14 다이니폰 인사츠 가부시키가이샤 증착 마스크 장치, 마스크 지지 기구 및 증착 마스크 장치의 제조 방법
CN110098239B (zh) 2019-05-17 2021-11-02 京东方科技集团股份有限公司 像素结构、显示基板、掩模板及蒸镀方法
CN111074205B (zh) * 2020-01-22 2022-04-08 京东方科技集团股份有限公司 掩膜板组件及其制作方法
CN111206215A (zh) * 2020-02-28 2020-05-29 云谷(固安)科技有限公司 一种掩膜版
CN111666923B (zh) * 2020-07-02 2023-06-02 武汉华星光电半导体显示技术有限公司 显示面板以及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346356A (ja) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd マスクユニットおよびそれを用いた成膜装置
CN1722918A (zh) * 2004-07-15 2006-01-18 三星Sdi株式会社 掩模框架组件以及使用该组件制作的有机发光显示装置
CN102586726A (zh) * 2011-01-11 2012-07-18 三星移动显示器株式会社 用于薄膜沉积的掩模框架组件
KR20120123918A (ko) * 2011-05-02 2012-11-12 삼성디스플레이 주식회사 분할 마스크 및 이를 이용한 마스크 프레임 조립체의 조립방법
CN107523788A (zh) * 2017-08-31 2017-12-29 京东方科技集团股份有限公司 一种掩模板及其制作方法
CN107723659A (zh) * 2017-11-28 2018-02-23 信利(惠州)智能显示有限公司 用于蒸镀的掩膜板及制备方法
CN207109080U (zh) * 2017-08-30 2018-03-16 信利(惠州)智能显示有限公司 掩膜板
CN109182964A (zh) * 2018-08-31 2019-01-11 云谷(固安)科技有限公司 掩膜板排版方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837624B1 (ko) 2011-05-06 2018-03-13 삼성디스플레이 주식회사 박막 증착용 마스크 프레임 조립체 및 그 제조방법
CN104317158B (zh) * 2014-11-14 2018-05-22 京东方科技集团股份有限公司 一种掩膜板、掩膜板组、彩膜基板及显示装置
CN104651778B (zh) * 2015-03-13 2016-04-27 京东方科技集团股份有限公司 一种金属掩膜板及其制作出的有机电致发光显示器件
CN105586568B (zh) * 2016-03-18 2018-01-26 京东方科技集团股份有限公司 一种掩膜板框架模组、蒸镀方法、阵列基板
CN106373982B (zh) * 2016-09-06 2017-11-24 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置
CN206340548U (zh) * 2016-12-26 2017-07-18 云谷(固安)科技有限公司 Oled像素排布结构、金属掩膜板及oled显示屏
CN106676469B (zh) * 2017-01-09 2019-03-26 昆山国显光电有限公司 蒸镀掩膜板及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346356A (ja) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd マスクユニットおよびそれを用いた成膜装置
CN1722918A (zh) * 2004-07-15 2006-01-18 三星Sdi株式会社 掩模框架组件以及使用该组件制作的有机发光显示装置
CN102586726A (zh) * 2011-01-11 2012-07-18 三星移动显示器株式会社 用于薄膜沉积的掩模框架组件
KR20120123918A (ko) * 2011-05-02 2012-11-12 삼성디스플레이 주식회사 분할 마스크 및 이를 이용한 마스크 프레임 조립체의 조립방법
CN207109080U (zh) * 2017-08-30 2018-03-16 信利(惠州)智能显示有限公司 掩膜板
CN107523788A (zh) * 2017-08-31 2017-12-29 京东方科技集团股份有限公司 一种掩模板及其制作方法
CN107723659A (zh) * 2017-11-28 2018-02-23 信利(惠州)智能显示有限公司 用于蒸镀的掩膜板及制备方法
CN109182964A (zh) * 2018-08-31 2019-01-11 云谷(固安)科技有限公司 掩膜板排版方法

Also Published As

Publication number Publication date
TW201920722A (zh) 2019-06-01
US11021784B2 (en) 2021-06-01
CN109182964B (zh) 2019-11-15
CN109182964A (zh) 2019-01-11
US20200208252A1 (en) 2020-07-02
TWI687529B (zh) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2020042538A1 (zh) 掩膜板排版方法
WO2021136051A1 (zh) 掩膜板及其制作方法
US9343708B2 (en) Mask strips and method for manufacturing organic light emitting diode display using the same
US20190144987A1 (en) Mask assembly and manufacturing method thereof
US10604833B2 (en) Metal mask plate and fabrication method thereof
JP2018044247A (ja) 多面付け蒸着マスクの製造方法及びこれにより得られる多面付け蒸着マスク並びに有機半導体素子の製造方法
US20130337588A1 (en) Mask for deposition and method for manufacturing organic light emitting diode display using the same
JP2001236907A (ja) 隔壁リブを用いた3極管カーボンナノチューブ電界放出素子及びその製造方法
KR20030046090A (ko) 유기 전자 발광 소자의 박막 증착용 마스크 프레임 조립체
JP2004014513A (ja) 有機電子発光素子の薄膜蒸着用マスクフレーム組立体
US20210404049A1 (en) Mask and manufacturing method thereof, fine metal mask, mask device and use method thereof
WO2021047610A1 (zh) 掩膜装置及其制造方法、蒸镀方法、显示装置
CN110343999B (zh) 掩模装置及其制造方法、蒸镀方法
KR20130060125A (ko) 성막장치 및 성막방법 및 그것들에 사용되는 마스크 유닛
US7253533B2 (en) Divided shadow mask for fabricating organic light emitting diode displays
CN110541144A (zh) 掩模框架、掩模板以及掩模结构
JP2004039589A (ja) 表示装置
WO2020056666A1 (zh) 有机发光二极管背板及其制作方法
US20230374648A1 (en) Mask and mask assembly
CN111500981B (zh) 掩膜版
US20210207257A1 (en) Mask sheet, mask plate and assembling method thereof
CN111041416B (zh) 掩膜板组件及制作掩膜板组件的方法
JP2002334670A (ja) 表示装置
JP2654570B2 (ja) 平板状ディスプレイ装置及びその製造方法
US20220372615A1 (en) Mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853724

Country of ref document: EP

Kind code of ref document: A1