WO2020042410A1 - 防护组件、封盖以及箱体 - Google Patents

防护组件、封盖以及箱体 Download PDF

Info

Publication number
WO2020042410A1
WO2020042410A1 PCT/CN2018/119124 CN2018119124W WO2020042410A1 WO 2020042410 A1 WO2020042410 A1 WO 2020042410A1 CN 2018119124 W CN2018119124 W CN 2018119124W WO 2020042410 A1 WO2020042410 A1 WO 2020042410A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
particle
temperature
particle barrier
Prior art date
Application number
PCT/CN2018/119124
Other languages
English (en)
French (fr)
Inventor
吴凯
沈聃
陈小波
陈世龙
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US16/467,374 priority Critical patent/US11228073B2/en
Priority to EP18884843.6A priority patent/EP3641013B1/en
Publication of WO2020042410A1 publication Critical patent/WO2020042410A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/392Arrangements for facilitating escape of gases with means for neutralising or absorbing electrolyte; with means for preventing leakage of electrolyte through vent holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular, to a protection component, a cover, and a case.
  • the battery module includes a plurality of secondary batteries, and the plurality of battery modules are packaged in a case to form a battery pack.
  • secondary batteries are usually provided with a pressure relief element (such as an explosion-proof valve).
  • the cover of the battery module is also provided with a pressure relief element (such as an explosion-proof valve, a one-way valve or a two-way valve, etc.).
  • the embodiments of the present application provide a protection component, a wiring harness isolation component, a cover and a box.
  • the protective component can effectively block and block high-temperature particles, prevent high-temperature particles from melting through other structural parts corresponding to the pressure relief element, and effectively improve the use safety of the energy storage device with the pressure relief element.
  • an embodiment of the present application proposes a protection assembly for an energy storage device having a pressure relief element, the pressure relief element is configured to be deformed and exploded in response to an increase in pressure inside the energy storage device, the energy storage device
  • the high-temperature particulate matter can be discharged through the pressure relief element of the burst.
  • the protective component includes: a particle barrier layer having a receiving side for receiving the high-temperature particulate matter and a connection side opposite to the receiving side; the particle barrier layer includes a plurality of bumps A particle blocking unit capable of blocking high-temperature particles; an isolation protective layer is provided on the connection side of the particle blocking layer and is connected to the particle blocking layer.
  • the protection component includes a particle barrier layer and an isolation protection layer capable of effectively intercepting high-temperature particles.
  • the particle barrier layer is closer to the pressure relief element than the isolation protection layer, and a large amount of high-temperature particulate matter discharged from the pressure relief element will be intercepted and blocked by the particle barrier layer when it encounters the particle barrier layer High-temperature particles cannot continue to move, thereby reducing the possibility that the high-temperature particles directly contact the cover or the box and cause the cover or the box to melt, effectively ensuring the safety of the use of the battery module or battery pack.
  • the isolation and protection layer can further block and block the high-temperature particles, and can also prevent the heat of the high-temperature particles from being conducted to the external structural parts.
  • the protection component of the embodiment of the present application can effectively intercept and block high-temperature particles, avoid high-temperature particles from melting through other structural components corresponding to the pressure relief element, and effectively improve the use safety of the energy storage device having the pressure relief element.
  • a cover for a battery module.
  • the battery module includes a case and a plurality of secondary batteries with pressure relief elements disposed in the case.
  • the body is hermetically connected, and includes a cover body and the protection component as described above. The protection component and the cover body are stacked.
  • a case for a battery pack according to an embodiment of the present application.
  • the battery pack includes a plurality of battery modules, including: a first case; a second case, which is hermetically connected to the first case and A receiving chamber is formed for accommodating the battery module.
  • the protective component is disposed on the surface of the first casing and / or the second casing facing the battery module.
  • FIG. 1 is a schematic diagram of an overall structure of a protection component according to an embodiment of the first embodiment of the present application
  • FIG. 2 is a partially enlarged view of A in FIG. 1; FIG.
  • FIG. 3 is a schematic diagram of a partial structure of a particle barrier layer according to an embodiment of the first embodiment of the present application
  • FIG. 4 is a schematic diagram of a partial structure of a particle barrier layer according to another embodiment of the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of a partial structure of a particle barrier layer according to still another embodiment of the first embodiment of the present application.
  • FIG. 6 is a schematic diagram of a partial structure of a particle barrier layer according to still another embodiment of the first embodiment of the present application.
  • FIG. 7 is a schematic diagram of the overall structure of a protection component according to another embodiment of the first embodiment of the present application.
  • FIG. 8 is a schematic diagram of the overall structure of a protection component according to an embodiment of the second embodiment of the present application.
  • FIG. 9 is a partially enlarged view of B in FIG. 8; FIG.
  • FIG. 10 is a schematic structural side view of a particle barrier layer included in the protection component shown in FIG. 8;
  • FIG. 11 is a schematic plan view of a part of the particle barrier layer included in the protection component shown in FIG. 8;
  • FIG. 12 is a schematic partial plan structural view of a particle barrier layer of an embodiment included in a protection component in a second embodiment of the present application.
  • FIG. 13 is a schematic diagram of the overall structure of another embodiment included in the protection component in the second embodiment of the present application.
  • FIG. 14 is a schematic diagram of the overall structure of another embodiment included in the protection component in the second embodiment of the present application.
  • FIG. 15 is a schematic exploded structure diagram of a battery module according to another embodiment of the present application.
  • 16 is a schematic exploded structure diagram of a battery module according to still another embodiment of the present application.
  • FIG. 17 is a schematic exploded structure diagram of a battery pack according to an embodiment of the present application.
  • protection assembly 100 according to the embodiment of the present application is described below with reference to FIGS. 1 to 14.
  • the energy storage device in the embodiment of the present application has a pressure relief element 92.
  • the pressure relief element 92 is configured as a structure that deforms and explodes in response to an increase in pressure inside the energy storage device.
  • the pressure relief element 92 will explode, so that the internal pressure of the energy storage device is released, and dangerous situations such as explosion of the energy storage device can be avoided.
  • the pressure relief element 92 explodes, a large amount of high-temperature particulate matter and gas are discharged from the rupture of the pressure relief element 92.
  • the energy storage device can discharge high-temperature particles and gases through the pressure relief element of the burst.
  • the high-temperature particulate matter in this embodiment refers to particulate matter in which at least a part of its surface layer is in a molten state or in which both the surface layer and the interior are in a molten state, that is, the temperature of at least a part of the particulate matter itself is greater than its melting point.
  • the energy storage device is used as the secondary battery 91 or the battery module 90 to describe the protection assembly 100 in the embodiment of the present application, but the type of the energy storage device is not limited.
  • the secondary battery 91 is provided with a pressure relief element 92.
  • the pressure relief element 92 is an explosion-proof valve.
  • the battery module 90 of this embodiment includes a cover provided corresponding to the pressure relief element 92 of the secondary battery 91.
  • the battery pack of this embodiment includes a box provided corresponding to the cover, wherein the cover itself may or may not have the pressure release element 92.
  • the pressure relief element 92 may be an explosion-proof valve, a one-way valve, or a two-way valve.
  • the one-way valve or two-way valve works normally, the gas can pass smoothly, and the pressure balance of the battery module is maintained.
  • the check valve or two-way valve may burst.
  • the protection component 100 includes a particle barrier layer 110 and an isolation protection layer 120 connected to the particle barrier layer 110.
  • the particle barrier layer 110 has a receiving side for receiving high-temperature particulate matter and a connection side disposed opposite the receiving side.
  • the particle blocking layer 110 includes a plurality of particle blocking units provided with irregularities.
  • the particle blocking unit is capable of blocking high-temperature particles.
  • the isolation protection layer 120 is disposed on the connection side of the particle barrier layer 110 and is connected to the particle barrier layer 110.
  • the particle barrier layer 110 of this embodiment has a predetermined thickness, and the receiving side and the connection side are oppositely disposed in the thickness direction.
  • the particle blocking layer 110 of this embodiment includes a plurality of particle blocking units provided with irregularities.
  • the uneven structure refers to a structure having both a concave portion and a convex portion.
  • the particle blocking unit is configured to be capable of enriching high-temperature particles in the particle blocking unit through an enrichment method. After the high-temperature particulate matter is accumulated on the particle blocking unit, it is blocked by the particle blocking unit and no longer moves.
  • the particle blocking unit to block high-temperature particles in this embodiment.
  • One is that after the moving high-temperature particles hit the particle blocking unit, they will bounce back in the opposite direction, thus moving away from the particle blocking unit and unable to pass through the particle blocking unit. It is blocked by the particle blocking unit; the other is that the high-temperature particles are enriched in the particle blocking unit through the enrichment action, so that they are stopped by the particle blocking unit and stop moving, and then blocked by the particle blocking unit.
  • the process of particle enrichment of high-temperature particulate matter is that a part of a large amount of high-temperature particulate matter discharged in advance will directly contact and adhere to the particle blocking unit, and another part discharged later is already enriched on the particle blocking unit.
  • the high-temperature particulate matter comes into contact and attaches to the high-temperature particulate matter.
  • the outer layer portion of the high-temperature particulate matter itself is substantially in a molten state, so the high-temperature particulate matter can adhere to the particle blocking unit or other high-temperature particulate matter.
  • the isolation and protection layer 120 of this embodiment can block high-temperature particles that are not blocked by or are not enriched on the particle barrier layer 110, and thus form a double interception of high-temperature particles with the particle barrier layer 110 and improve the protection component 100.
  • the blocking probability improves the blocking effect of the protection component 100.
  • the isolation and protection layer 120 of this embodiment can also effectively isolate the heat from being conducted to the cover or the box to avoid heat Conduction to the cover or the box causes the cover or the box to heat up, thereby reducing the possibility of the cover or the box melting after heating up, and further improving the protection effect of the protective assembly 100.
  • the isolation and protection layer 120 of this embodiment can also block the high-temperature flame discharged from the pressure relief element 92, and avoid the high-temperature flame from ablating the cover or the box.
  • the protection assembly 100 includes a particle barrier layer 110 and an isolation protection layer 120 capable of effectively intercepting high-temperature particles.
  • the particle barrier layer 110 is closer to the pressure relief element 92 than the isolation protection layer 120, and a large amount of high-temperature particulates discharged from the pressure relief element 92 will firstly contact the particle barrier layer.
  • the protection assembly 100 of the embodiment of the present application is used for an energy storage device having a pressure relief element 92 to protect the energy storage device.
  • the protective assembly 100 of the embodiment of the present application can effectively block and block high-temperature particles, avoid high-temperature particles from melting through other structures such as a cover or a box corresponding to the pressure relief element 92, and effectively improve the energy storage with the pressure relief element 92. Device safety.
  • the particle blocking layer 110 included in the protection component 100 of this embodiment is a mesh structure having a predetermined thickness.
  • Each particle blocking unit includes a hole 111 extending in the thickness direction of the particle blocking layer 110 and a grid 112 surrounding the hole 111.
  • the hole 111 is a concave portion of the particle blocking unit
  • the grid 112 is a convex portion of the particle blocking unit, so that the particle blocking unit is configured as a structure provided with unevenness.
  • Both the hole wall of the hole 111 and / or the grid 112 can be used to block high-temperature particles or enrich high-temperature particles, so as to achieve the effect of blocking and blocking high-temperature particles.
  • the grid 112 may be a connection between two adjacent holes 111.
  • the hole wall of the hole 111 and the grid 112 can form a blocking effect on high-temperature particles. Specifically, when the high-temperature particles discharged from the pressure relief element 92 hit the hole wall or the grid 112, some of the high-temperature particles change the original moving direction and speed due to the impact, so that the high-temperature particles are blocked by the particle blocking layer 110; part of the high temperature The high-temperature particulates discharged earlier in the particulate matter will be intercepted by the hole wall and / or the grid 112 first, so that enrichment occurs on the hole wall or the grid 112, and the high-temperature particulate matter discharged later will continue to be enriched in the previously intercepted On the high-temperature particulate matter, the phenomenon of particle enrichment is formed.
  • a plurality of high-temperature particles are enriched to form a raised structure, and a plurality of the raised structures can be formed on the hole wall or the grid 1
  • the mesh structure may be directly processed to manufacture the holes 111 on the sheet blank, for example, processed by stamping or drilling, thereby facilitating the processing and manufacturing of the particle barrier layer 110.
  • the mesh structure can also be manufactured by weaving.
  • the warp and weft are woven to form a rectangular hole 111.
  • the adjacent two warp and adjacent weft are spaced apart, so that the two adjacent warp A hole 111 may be formed together with two adjacent parallels.
  • two adjacent holes 111 in the particle blocking layer 110 in the embodiment of the present application satisfy the formula (1),
  • the straight line connecting line between the center points of two adjacent holes 111 is marked as L.
  • r is the hole diameter along the straight line connecting the center point of one of the two adjacent holes 111 along the line
  • R is The size of a wall connecting two adjacent holes 111 from the center point of one to the other along a straight line.
  • high-temperature particles may be discharged at the same time as high-temperature particles are discharged from the pressure-relieving element 92.
  • the high-temperature particles or high-temperature flames have a large impact force, so the protective component 100 needs to be able to withstand a large impact No breakage occurred.
  • the width of the grid 112 between two adjacent holes 111 will be small, so that there is a weak area in the grid 112 between two adjacent holes 111.
  • the weak area of the grid 112 has a relatively low stiffness and a reduced ability to withstand impact forces, so that the weak area is susceptible to being impacted by high-temperature particles and fractured.
  • the particle barrier layer 110 blocks or enriches on the particle barrier layer 110, so that the region cannot play a role of blocking and blocking high-temperature particles.
  • the particle barrier layer 110 blocks or enriches on the particle barrier layer 110, so that the region cannot play a role of blocking and blocking high-temperature particles.
  • the width of the grid 112 between two adjacent holes 111 is appropriate relative to the size of the hole 111, so that the grid 112 itself has a stiffness and The two aspects of plasticity are relatively balanced, with both good impact resistance and good deformation ability. In this way, when high-temperature particulates or high-temperature flames with a large impact force directly impact the grid 112, the grid 112 can buffer the impact force by its own deformation, thereby reducing the possibility of the grid 112 breaking.
  • the particle barrier layer 110 can effectively block and block high-temperature particles while ensuring its structural integrity.
  • the value of r ranges from 0.01 mm to 2.5 mm.
  • the diameter of the hole 111 itself is small, high-temperature particles discharged from the pressure relief element 92 in a short time may quickly block the hole 111.
  • the high-temperature particles discharged later cannot be concentrated in the hole wall of the hole 111.
  • the interception and blocking effect of the hole wall of the hole 111 is seriously reduced; on the other hand, after the hole 111 is blocked by high-temperature particles, the pore diameter of the hole 111 becomes smaller. At this time, high-temperature particles with high impact force or a high-temperature flame act on the hole.
  • the impact force on the high-temperature particles accumulated in 111 will be superimposed with the impact force acting on the grid 112 itself, resulting in an increase in the actual impact force on the grid 112, which will make the grid 112 more easily High-impact high-temperature particles or high-temperature flames.
  • the two adjacent holes 111 will communicate with each other, resulting in a larger gap in the area, and high-temperature particles will easily pass through the gap, and will no longer be easily
  • the particle barrier layer 110 blocks or enriches on the particle barrier layer 110, so that the region cannot play a role of blocking and blocking high-temperature particles.
  • the cross-section of the structure of the hole 111 may be a circle, a rectangle, a regular triangle, or a regular hexagon.
  • the resistance temperature of the particle barrier layer 110 in the embodiment of the present application is in the range of 500 ° C. to 3000 ° C., so that the particle barrier layer 110 has good high temperature resistance performance, and the strength retention rate in the high temperature environment is better and maintained.
  • High elastic modulus so that it is not easily deformed in a high temperature environment, maintains dimensional stability, can withstand the high temperature of high temperature particles discharged from the pressure relief element 92 and the high temperature of the high temperature flame without melting, effectively ensuring its structural integrity, It still maintains good interception and blocking ability in high temperature environment.
  • the particle barrier layer 110 in the embodiment of the present application may be made of one material or a combination of two or more different materials.
  • the resistance temperature is inversely proportional to the resistance time.
  • the resistance temperature of the particle barrier layer 110 ranges from 500 ° C. to 2000 ° C., and correspondingly, the resistance time of the particle barrier layer 110 itself to melt is 2s to 3600s. In this way, the particle barrier layer 110 itself can effectively maintain good plasticity and strength in a high-temperature environment, and keep it from deforming or melting for a predetermined time, thereby effectively improving the overall resistance of the protective component 100 and the impact resistance of the protective component 100. .
  • the thickness of the particle barrier layer 110 in the embodiment of the present application ranges from 0.2 mm to 3 mm.
  • the areal density (mass per unit area) of the particle barrier layer 110 is 0.2 kg / m2 to 18.6 kg / m2.
  • the thickness of the isolation protective layer 120 ranges from 0.5 mm to 10 mm. When the thickness of the isolation protective layer 120 is less than 0.5 mm, the isolation protective layer 120 cannot withstand the instantaneous high temperature within a short period of time when the pressure relief element 92 is blasted, and thus the fusion damage occurs and the isolation ability is lost. When the thickness of the isolation protection layer 120 is greater than 10 mm, the isolation protection layer 120 will affect the overall assembly and quality of the protection component 100.
  • the protection assembly 100 When the protection assembly 100 is applied to the battery module 90 or the battery pack, the protection assembly 100 reduces the energy density of the battery module 90 or the battery pack.
  • the thermal conductivity of the isolation and protection layer 120 is below 0.04 W ⁇ m -1 ⁇ K -1 . In this way, the isolation and protection layer 120 can better function as a heat insulator. Under high temperature conditions, the temperature difference between two opposing surfaces of the isolation and protection layer 120 in the thickness direction can be 100 ° C. to 150 ° C. and above, which significantly delays or even prevents heat diffusion.
  • the material of the particle barrier layer 110 in the embodiment of the present application may be a high melting point metal material such as iron and its alloys, copper and its alloys, and nickel alloys; it may also be carbon fiber, aramid, etc. that have good strength and dimensional stability at high temperatures sexual composites.
  • the material of the isolation and protection layer 120 may be a high-temperature-resistant nitrogen-containing polymer material, an aerogel composite material, a fire-resistant fabric, or a fire-resistant coating, wherein the nitrogen-containing polymer material may be a melamine foam, a polyurethane foam, or a polyimide foam;
  • the fireproof fabric can be fireproof cloth, glass fiber cloth, aramid fabric, ceramic fiber fabric, and the like.
  • the material of the isolation and protection layer 120 is preferably a nitrogen-containing polymer material, such as a melamine-based polymer material, polyamide (PA, commonly known as nylon), polyparaphenylene terephthalamide (PPTA, commonly known as aramid), and poly One or more of imides (PI).
  • a nitrogen-containing polymer material such as a melamine-based polymer material, polyamide (PA, commonly known as nylon), polyparaphenylene terephthalamide (PPTA, commonly known as aramid), and poly One or more of imides (PI).
  • PA polyamide
  • PPTA polyparaphenylene terephthalamide
  • PI poly One or more of imides
  • the non-combustible gas not only plays a role in diluting the concentration of flammable gas generated by the decomposition of oxygen and high-molecular materials inside the battery module 90 by heating, but also can react with oxygen and flammable gas to convert oxygen and flammable gas into nitrogen Non-combustible gases such as nitrogen oxides and water vapor.
  • the combustion-supporting materials and combustible materials required to maintain combustion are blocked and consumed, which causes the flame density in the combustion area to decrease, and finally the combustion reaction speed is reduced and the combustion is ended, thereby achieving a good flame retardant and heat insulation effect.
  • the nitrogen-containing polymer material is preferably a melamine-based polymer material, such as a melamine formaldehyde resin and a derivative thereof.
  • Melamine-based polymer materials can generate more nitrogen, nitrogen oxides, water vapor and other non-combustible gases when thermally decomposed, and can form glassy or stable foam coatings at high temperatures (usually 400 ° C to 600 ° C). It plays a role of blocking out the escape of oxygen and flammable gas.
  • the particle barrier layer 110 and the isolation protection layer 120 are stacked.
  • the particle barrier layer 110 and the isolation and protection layer 120 are adhered to each other. There is no gap or a small gap formed between the particle barrier layer 110 and the isolation protection layer 120.
  • the particle barrier layer 110 is restricted by the isolation and protection layer 120, so that the particle barrier layer 110 will not deform toward the isolation and protection layer 120 when it is impacted by the high-temperature particles, thereby blocking the particles
  • the layer 110 does not break due to its own deformation.
  • the particle barrier layer 110 and the isolation and protection layer 120 may be connected and fixed by an adhesive method or a fastening connector.
  • the protection assembly 100 further includes an insulating layer 130 connected to the particle blocking layer 110.
  • the insulating layer 130 and the isolation protection layer 120 are respectively disposed on two sides of the particle barrier layer 110 so that the particle barrier layer 110 is located between the insulation layer 130 and the isolation protection layer 120.
  • the insulating layer 130 covers a particle blocking unit included in the particle blocking layer 110.
  • the insulating layer 130 can insulate and isolate the particle barrier layer 110 from the external structure.
  • the material of the insulating layer 130 may be plastic or rubber.
  • the material of the insulating layer 130 in the embodiment of the present application may be an insulating material such as silicone mica, silicone rubber, aramid, etc., which has high temperature resistance and self-flammability.
  • an insulating material such as silicone mica, silicone rubber, aramid, etc.
  • the insulation layer 130 will not burn during impact, so that the insulation layer 130 will not spread flames or the Mars will drop onto the energy storage device below and cause the energy storage device to fail.
  • the following uses specific embodiments to further describe the technical solution of the present application.
  • the following embodiments take the case where the protection assembly 100 is applied to a battery module 90 or a battery pack as an example, but the protection scope of the present application is not limited to the following embodiments.
  • the particle blocking unit included in the particle blocking layer 110 of this embodiment is a mesh structure.
  • the pore diameter r of the pore 111 included in the particle blocking unit ranges from 0.038 mm to 4.75 mm.
  • the material of the particle barrier layer 110 is a barbed wire.
  • the thickness of the isolation and protection layer 120 ranges from 0.5 mm to 10 mm, and the material is a melamine foam.
  • the protection assembly 100 of this embodiment includes the particle blocking layer 110 and the isolation protection layer 120 described above. The protective assembly 100 of this embodiment has been actually tested. When the pressure relief element 92 explodes, the cover of the battery module 90 or the case of the battery pack does not melt through.
  • the pressure relief element 92 of the secondary battery 91 faces the cover of the battery module 90
  • the pressure relief element 92 of the battery module 90 faces the case of the battery pack or the pressure relief element of the secondary battery 91 included in the battery module 92 is facing the box of the battery pack.
  • the secondary battery 91 is triggered out of control by heating, acupuncture, or overcharging. Monitor the temperature of the area of the pressure relief element 92 and the cover, or the temperature of the area of the pressure relief element 92 and the box, and observe and record the structural changes of the cover or box.
  • Comparative Example 1 Only the particle barrier layer 110 is provided, the aperture r of the particle barrier layer 110 is 0.85 mm, the material is a barbed wire, and there is no isolation protective layer 120.
  • Comparative Example 2 Only the isolation and protection layer 120 is provided.
  • the thickness of the isolation and protection layer 120 is 10 mm, the material is melamine foam, and there is no particle barrier layer 110.
  • the structure of the protective assembly 100 has been described. In this embodiment, the differences from the first embodiment are mainly described. The same structure and the same technical effects are not repeated in this embodiment.
  • the particle barrier layer 110 includes a sheet-like body 113 and a plurality of protrusions 114 spaced from each other and protruding from one surface in the thickness direction of the body 113.
  • Each particle blocking unit includes two adjacent protrusions 114 and a recess 115 between the two adjacent protrusions 114.
  • the concave portion 115 is a concave portion of the particle blocking unit
  • the protrusion 114 is a convex portion of the particle blocking unit, so that the particle blocking unit is configured as a structure provided with unevenness.
  • the isolation protection layer 120 is disposed on a surface of the body 113 away from the protrusion 114.
  • the particle barrier layer 110 of the embodiment of the present application can effectively intercept high-temperature particles through the particle barrier unit.
  • two adjacent protrusions 114 in the particle blocking layer 110 in the embodiment of the present application satisfy the formula (2).
  • two adjacent protrusions 114 each have a projection on the surface of the body 113, and a straight connecting line between the projection centers of the two adjacent protrusions 114 is denoted by H, and d in Equation (2) is adjacent
  • H a straight connecting line between the projection centers of the two adjacent protrusions 114
  • d in Equation (2) is adjacent
  • D is the projection center of one of the two adjacent protrusions 114 along the straight line H to the other The size of the projected edge.
  • the value of D needs to satisfy D ⁇ 6d / 5, or D is a fixed value, and the value of d must satisfy d> 5D / 6.
  • the distance between two adjacent protrusions 114 will be small, so that the high-temperature particulate matter permeability or airflow permeability between the two adjacent protrusions 114 becomes poor.
  • the high-temperature particles may fill the gap between two adjacent protrusions 114, so that the protrusions 114 cannot well accumulate a large amount of high-temperature particles or achieve the effect of dispersing the air flow, so that the high-temperature particles cannot be enriched well.
  • the particle blocking layer 110 further reduces the effect of the particle blocking layer 110 on blocking and blocking high-temperature particles.
  • the thickness of the part of the particle barrier layer 110 corresponding to the recess 115 is thinner than the thickness of the part corresponding to the protrusion 114, when the part of the particle barrier layer 110 and the recess 115 is directly impacted by a large amount of high-temperature particles or high-temperature flame, It is prone to cracking or destruction, so that high-temperature particles can pass through the cracks, and will not be intercepted and blocked by the particle barrier layer 110, so that the particle barrier layer 110 cannot effectively play a role of blocking and blocking high-temperature particles.
  • the distance between two adjacent protrusions 114 is appropriate, so that the high-temperature particles passing between the two adjacent protrusions 114 or
  • the air flow and the strength of the corresponding portion of the particle barrier layer 110 and the recessed portion 115 are relatively balanced. It has both good enrichment and flow-conducting effects, and good impact resistance.
  • the particle barrier layer 110 can withstand the direct impact force of high-temperature particles, and at the same time, part of the high-temperature particles discharged from the pressure relief element 92 will be directly concentrated on the protrusions 114, and some will be disturbed by the protrusions 114 to change the flow direction and velocity.
  • the particle barrier layer 110 can effectively block and block high-temperature particles while ensuring its structural integrity.
  • the value of d ranges from 0.01 mm to 2.5 mm.
  • the size of the protrusion 114 is less than 0.01 mm, the overall structure of the protrusion 114 is thin and its strength is low. High-temperature particles discharged from the pressure relief element 92 in a short time may impact the protrusion 114 and cause the protrusion 114 to be distorted. Deformation or bending, so that the protrusion 114 loses the function of blocking and blocking high-temperature particles or dispersing airflow.
  • the size of the protrusions 114 is greater than 2.5 mm, the number of the protrusions 114 that can be set in a unit area is reduced, and the blocking and blocking effect of the high-temperature particles by the protrusions 114 is reduced.
  • the projection of the protrusion 114 may be a regular triangle, a rectangle, a regular pentagon, a regular hexagon, a circle, or the like.
  • the projection center of each protrusion 114 is the center of gravity of the projected image.
  • the projection center is the geometric center of each shape.
  • the overall structure of the protrusion 114 is a frustum, a cone, a pyramid, a strip or a corrugated structure.
  • the protrusion 114 shown in FIG. 8 has a frustum structure.
  • the protrusion 114 shown in FIG. 12 is a hexagonal pyramid.
  • the protrusion 114 shown in FIG. 13 is a long structure having a triangular cross section.
  • the protrusion 114 shown in FIG. 14 is an elongated structure having a trapezoidal cross section.
  • the protection assembly 100 in the embodiment of the present application can intercept and block high-temperature particles through the particle blocking unit included in the application, so that the high-temperature particles can no longer be in contact with other structural components and cause ablation of other structural components. In this way, the protection assembly 100 in the embodiment of the present application can protect other structural components.
  • the isolation and protection layer 120 included in the protection component 100 can effectively prevent heat conduction, thereby preventing the heat of high-temperature particles from being transmitted to other structural components, and further improving the protection capability of the protection component 100.
  • the protection assembly 100 of the embodiment of the present application When the protection assembly 100 of the embodiment of the present application is applied to a battery module 90 or a battery pack, the protection assembly 100 can effectively block the high temperature discharged from the pressure relief element 92 of the secondary battery 91 or the pressure relief element 92 of the battery module 90 Particulate matter to reduce the possibility of melting of the cover of the battery module 90 or the case of the battery pack.
  • an embodiment of the present application further provides a cover 93 for the battery module 90.
  • the cover 93 of this embodiment includes a cover body 930 and a protection assembly 100. The protection component and the cover body are stacked.
  • the battery module 90 of this embodiment includes a case, a plurality of secondary batteries 91 having a pressure relief element 92 provided in the case, and a cover 93 of this embodiment.
  • the secondary battery 91 of this embodiment includes a pressure relief element 92.
  • the cover 93 of this embodiment is used to be connected to the case, and the pressure relief element 92 of the secondary battery 91 faces the cover 93.
  • the cover body 930 of this embodiment includes a first surface 930 a and a second surface 930 b disposed opposite to the first surface 930 a.
  • the first surface 930a of the cover body 930 faces the secondary battery 91
  • the second surface 930b faces away from the secondary battery 91.
  • the protection assembly 100 and the cover body 930 are stacked, and the protection assembly 100 is disposed on the first surface 930a side.
  • the isolation protection layer 120 included in the protection assembly 100 is connected to the cover body 930.
  • the protection assembly 100 can be disposed near the secondary battery 91 and covers the pressure relief element 92.
  • the protection assembly 100 of this embodiment can abut the secondary battery 91 and cover the pressure relief element 92.
  • the pressure relief element 92 bursts due to the abnormal operation of the secondary battery 91
  • the high-temperature particulate matter discharged from the pressure relief element 92 will be intercepted and blocked by the particle blocking layer 110, and the isolation protective layer 120 can block the heat of the high temperature particulate matter Conducted to the cover 93, so that the high-temperature particles will not directly contact the cover 93 and ablate the cover 93, and the heat of the intercepted high-temperature particles will not be transmitted to the cover 93, which will cause the temperature of the cover 93 to exceed High and melting occurs.
  • This embodiment includes a manner in which the cover 93 of the protection component 100 is disposed in the battery module 90.
  • the protection component 100 can be protected by the cover 93 without being scratched by other structural members, thereby ensuring the overall structure of the protection component 100. Integrity, which in turn guarantees that their own protection is not affected.
  • the protection assembly 100 further includes an insulating layer 130.
  • the insulating layer 130 is connected to the particle barrier layer 110. After the protection assembly 100 completes the installation and fixing work, the insulating layer 130 can isolate the bus bar and the particle blocking layer 110 included in the secondary battery 91. When the particle barrier layer 110 is manufactured using a conductive material, the insulating layer 130 can reduce the possibility of a short circuit between the respective secondary batteries 91.
  • the protection assembly 100 is disposed on a side of the second surface 930 b of the cover body 930.
  • the particle blocking layer 110 included in the protection assembly 100 is connected to the cover body 930 and the particle blocking unit is disposed toward the second surface 930 b of the cover body 930.
  • the protection assembly 100 covers the pressure relief element 92 on the secondary battery 91 and the cover body 930.
  • the pressure relief element 92 on the body 930 may be an explosion-proof valve, a one-way valve, or a two-way valve.
  • the isolating protective layer 120 can prevent the heat of high-temperature particles from being transmitted to other structural members, so that the high-temperature particles will not ablate and melt other structural members adjacent to the cover 93, and the heat of the high-temperature particles after being intercepted is also It will be conducted to other structural members disposed adjacent to the cover 93.
  • other structural components refer to a box that houses the battery module.
  • the protective assembly 100 and the cover body 930 are connected to each other in an adhesive manner.
  • the cover 93 of the embodiment of the present application When the cover 93 of the embodiment of the present application is applied to the battery module 90, it can effectively intercept high-temperature particles discharged from the pressure relief element 92 of the secondary battery 91, thereby reducing the scattering of high-temperature particles from the battery module 90 to the battery module.
  • the possibility of melting through the structural members outside the group 90 and adjacent to the battery module 90 effectively improves the use safety of the battery module 90.
  • an embodiment of the present application further provides a case 95 for a battery pack 94.
  • the box 95 in the embodiment of the present application includes a first casing 950, a second casing 960 connected to the first casing 950, and a protection assembly 100 disposed on the first casing 950 and / or the second casing 960.
  • the first casing 950 is hermetically connected to the second casing 960 and forms a receiving chamber for receiving the battery module 90.
  • the protection assembly 100 is disposed on a surface of the first casing 950 and / or the second casing 960 facing the receiving chamber.
  • the battery pack 94 of this embodiment includes a plurality of battery modules 90 arranged side by side, and a box body 95 corresponding to the cover 93 of the battery module 90.
  • the box 95 of this embodiment is used to cover the cover 93 of the battery module 90 to protect the battery module 90.
  • the battery module 90 of the present embodiment includes a secondary battery 91 having a pressure relief element 92.
  • the pressure relief element 92 may be an explosion-proof valve.
  • the pressure relief element 92 of the secondary battery 91 is provided corresponding to the cover 93.
  • a pressure relief element 92 is disposed on the cover 93 of the battery module 90.
  • the pressure relief element 92 on the cover 93 is provided corresponding to the case 95.
  • the first housing 950 of the present embodiment has a receiving recess.
  • the case 95 is assembled with the battery module 90, a part of the battery module 90 is placed in the receiving recess of the first case 950.
  • the protection assembly 100 of this embodiment is disposed on a surface of the first casing 950 facing the battery module 90.
  • the protection assembly 100 of this embodiment is provided corresponding to the pressure relief element 92, so that when an abnormal situation occurs in the battery pack 94 and the pressure relief element 92 explodes, the protection assembly 100 can effectively block and block the high-temperature particulate matter and high-temperature gas discharged from the pressure relief element 92, avoid the high-temperature particulate matter and high-temperature gas from ablating and melting through the first case 950, and effectively improve the use safety of the battery pack 94.
  • the isolation protection layer 120 of the protection assembly 100 and the first housing 950 included in the first housing 950 are connected to each other in an adhesive manner.
  • the second casing 960 of the present embodiment has a receiving recess.
  • the protection assembly 100 of this embodiment is disposed on a surface of the second casing 960 facing the battery module 90.
  • the protective assembly 100 can effectively block and block the high-temperature particulate matter and high-temperature gas discharged from the pressure relief element 92, and avoid the high-temperature particulate matter and high-temperature gas from ablating and melting the second casing 960 , Effectively improve the safety of the use of the battery pack 94.
  • the isolation protection layer 120 of the protection assembly 100 and the second casing 960 included in the second casing 960 are connected to each other in an adhesive manner.
  • a protective assembly 100 is provided on each of the first casing 950 and the second casing 960.
  • the protective assembly 100 can effectively block and block the high-temperature particulate matter and high-temperature gas discharged from the pressure relief element 92, so as to prevent the high-temperature particulate matter and high-temperature gas from binding the first shell 950 and the second shell
  • the body 960 is ablated and melted through, effectively improving the use safety of the battery pack 94.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

公开了一种防护组件、封盖以及箱体。防护组件用于具有泄压元件(92)的储能装置,泄压元件(92)被配置为响应储能装置内部的压力增加而变形并直至爆破的结构,储能装置能够通过爆破的泄压元件排出高温颗粒物。防护组件包括颗粒阻挡层(110)和隔离防护层(120),颗粒阻挡层(110)具有用于接收高温颗粒物的接收侧以及与接收侧相对设置的连接侧;颗粒阻挡层(110)包括多个凹凸设置的颗粒阻挡单元,颗粒阻挡单元能够阻挡高温颗粒物;隔离防护层(120)设置于所述颗粒阻挡层(110)的所述连接侧并与所述颗粒阻挡层(110)相连接。该防护组件能够有效拦截阻挡高温颗粒物,避免高温颗粒物熔穿与泄压元件相对应设置的其它结构件,有效提升储能装置的使用安全性。

Description

防护组件、封盖以及箱体
相关申请的交叉引用
本申请要求享有于2018年08月31日提交的名称为“防护组件、封盖以及箱体”的中国专利申请201811013917.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种防护组件、封盖以及箱体。
背景技术
随着科学技术的发展,对二次电池高能量密度的要求越来越高,二次电池轻量化得到越来越多企业的重视。二次电池同体积的情况下提高能量密度是目前的发展趋势。电池模组包括多个二次电池,多个电池模组封装于箱体内形成电池包。目前,二次电池上通常设置有泄压元件(如防爆阀)。电池模组的封盖上也设置有泄压元件(如防爆阀、单向阀或双向阀等)。在二次电池或电池模组受到碰撞、过充或者高温等条件下由于内部气压增大从而引发泄压元件开启,当大量气压冲击泄压元件时容易引发泄压元件爆破。此时,从泄压元件处同时排出大量的高温颗粒物。通过二次电池组装形成电池模组时,高温颗粒物能够将电池模组上与二次电池相对应设置的封盖熔穿。通过电池模组形成电池包时,高温颗粒物能够将电池包的箱体熔穿。这样,电池模组或电池包会存在安全隐患。
发明内容
本申请实施例提供一种防护组件、线束隔离组件、封盖以及箱体。防护组件能够有效拦截阻挡高温颗粒物,避免高温颗粒物熔穿与泄压元件相 对应设置的其他结构件,有效提升具有泄压元件的储能装置的使用安全性。
一方面,本申请实施例提出了一种防护组件,用于具有泄压元件的储能装置,泄压元件被配置为响应储能装置内部的压力增加而变形并直至爆破的结构,储能装置能够通过爆破的泄压元件排出高温颗粒物,防护组件包括:颗粒阻挡层,颗粒阻挡层具有用于接收高温颗粒物的接收侧以及与接收侧相对设置的连接侧;颗粒阻挡层包括多个凹凸设置的颗粒阻挡单元,颗粒阻挡单元能够阻挡高温颗粒物;隔离防护层,设置于所述颗粒阻挡层的所述连接侧并与所述颗粒阻挡层相连接。
根据本申请实施例的防护组件,其包括的颗粒阻挡层和隔离防护层能够有效拦截高温颗粒物。在防护组件与泄压元件对应地设置时,颗粒阻挡层相对于隔离防护层更靠近泄压元件,从泄压元件排出的大量的高温颗粒物在遇到颗粒阻挡层时会被颗粒阻挡层拦截阻挡,高温颗粒物不能继续移动,进而降低高温颗粒物直接与封盖或箱体发生接触而导致封盖或箱体发生熔化的可能性,有效保证电池模组或电池包的使用安全性。同时,隔离防护层能够进一步拦截阻挡高温颗粒物,也能够阻止高温颗粒物所具有的热量向外部结构件传导。综上,本申请实施例的防护组件能够有效拦截阻挡高温颗粒物,避免高温颗粒物熔穿与泄压元件相对应设置的其他结构件,有效提升具有泄压元件的储能装置的使用安全性。
另一个方面,根据本申请实施例提供一种封盖,用于电池模组,电池模组包括壳体以及设置于壳体内的多个具有泄压元件的二次电池,封盖用于与壳体密封连接,其包括:盖本体以及如上述的防护组件,防护组件与盖本体层叠设置。
再一个方面,根据本申请实施例提供一种箱体,用于电池包,电池包包括多个电池模组,其包括:第一壳体;第二壳体,与第一壳体密封连接并形成用于容纳电池模组的容纳腔室;如上述的防护组件,防护组件设置于第一壳体和/或第二壳体朝向电池模组的表面。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请第一实施例中一实施例的防护组件的整体结构示意图;
图2是图1中A处局部放大图;
图3是本申请第一实施例中一实施例的颗粒阻挡层局部结构示意图;
图4是本申请第一实施例中另一实施例的颗粒阻挡层局部结构示意图;
图5是本申请第一实施例中又一实施例的颗粒阻挡层局部结构示意图;
图6是本申请第一实施例中再一实施例的颗粒阻挡层局部结构示意图;
图7是本申请第一实施例中另一实施例的防护组件整体结构示意图;
图8是本申请第二实施例中一实施例的防护组件的整体结构示意图;
图9是图8中B处局部放大图;
图10是图8所示的防护组件所包括的颗粒阻挡层侧视结构示意图;
图11是图8所示的防护组件所包括的颗粒阻挡层的局部俯视结构示意图;
图12是本申请第二实施例中防护组件所包括的一实施例的颗粒阻挡层的局部俯视结构示意图;
图13是本申请第二实施例中防护组件所包括的另一实施例的整体结构示意图;
图14是本申请第二实施例中防护组件所包括的又一实施例的整体结构示意图;
图15是本申请又一实施例的电池模组的分解结构示意图;
图16是本申请再一实施例的电池模组的分解结构示意图;
图17是本申请一实施例的电池包的分解结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
100、防护组件;110、颗粒阻挡层;111、孔;112、栅格;113、本 体;114、凸起;115、凹部;120、隔离防护层;130、绝缘层;90、电池模组;91、二次电池;92、泄压元件;93、封盖;930、盖本体;930a、第一表面;930b、第二表面;94、电池包;95、箱体;950、基体;960、封装体。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图14对本申请实施例的防护组件100进行描述。
本申请实施例的储能装置具有泄压元件92。泄压元件92被配置为响应储能装置内部的压力增加而变形并直至爆破的结构。在储能装置自身内部压力达到泄压元件92的预设压力时,泄压元件92会发生爆破,从而使得储能装置内部泄压,避免储能装置发生爆炸等危险情况。泄压元件92发生爆破时,会伴随有大量的高温颗粒物和气体从泄压元件92的破裂处排出。储能装置能够通过爆破的泄压元件排出高温颗粒物和气体。本实施 例中的高温颗粒物指的是自身表层的至少一部分处于熔化状态或者表层和内部均处于熔化状态的颗粒物,也即颗粒物自身的至少一部分的温度大于自身的熔点。
在本申请的下述实施例中以储能装置为二次电池91或者电池模组90对本申请实施例的防护组件100进行说明,但并不限定储能装置的类型。本申请实施例中,二次电池91上设置有泄压元件92。可选地,泄压元件92为防爆阀。本实施例的电池模组90包括与二次电池91的泄压元件92相对应设置的封盖。本实施例的电池包包括与封盖相对应设置的箱体,其中,封盖自身可以具有泄压元件92,也可以不具有泄压元件92。可选地,当电池模组90具有泄压元件92时,泄压元件92可以是防爆阀、单向阀或者双向阀。单向阀或双向阀正常工作时气体能够顺利通过,维持电池模组的压力平衡。当电池模组的压力过大时,单向阀或双向阀会发生爆破。
参见图1和图2所示,本申请实施例的防护组件100包括颗粒阻挡层110以及与颗粒阻挡层110相连接的隔离防护层120。颗粒阻挡层110具有用于接收高温颗粒物的接收侧以及与接收侧相对设置的连接侧。颗粒阻挡层110包括多个凹凸设置的颗粒阻挡单元。颗粒阻挡单元能够阻挡高温颗粒物。隔离防护层120设置于颗粒阻挡层110的连接侧并与颗粒阻挡层110相连接。本实施例的颗粒阻挡层110具有预定厚度,在厚度方向上,接收侧和连接侧相对设置。
本实施例的颗粒阻挡层110包括多个凹凸设置的颗粒阻挡单元。凹凸设置指的是同时具有凹部和凸部的结构。泄压元件92发生爆破时,泄压元件92排出的高温颗粒物能够沿颗粒阻挡层110的接收侧至连接侧的方向移动,也即沿颗粒阻挡层110的厚度方向移动。颗粒阻挡单元能够阻挡高温颗粒物。
在一个实施例中,颗粒阻挡单元被构造为能够使高温颗粒物通过富集方式富集于颗粒阻挡单元的结构。高温颗粒物富集于颗粒阻挡单元上后,从而被颗粒阻挡单元阻挡,不再发生移动。
本实施例的颗粒阻挡单元阻挡高温颗粒物的方式有两种,一种是移动 的高温颗粒物撞击到颗粒阻挡单元后,自身会向反方向反弹,从而远离颗粒阻挡单元移动,无法穿过颗粒阻挡单元而被颗粒阻挡单元所阻挡;另一种是高温颗粒物通过富集作用富集于颗粒阻挡单元,从而被颗粒阻挡单元拦截而停止运动,进而被颗粒阻挡单元所阻挡。其中,高温颗粒物的颗粒富集的过程是,大量高温颗粒物中提前排出的一部分会直接与颗粒阻挡单元发生接触并附着于颗粒阻挡单元上,后续排出的另一部分与已经富集于颗粒阻挡单元上的高温颗粒物发生接触并附着于高温颗粒物上。在一个示例中,高温颗粒物自身的外层部分大致会处于熔融状态,因此高温颗粒物可以粘附于颗粒阻挡单元上或者其他高温颗粒物上。
本实施例的隔离防护层120能够阻挡未被颗粒阻挡层110阻挡或未富集于颗粒阻挡层110上的高温颗粒物,从而与颗粒阻挡层110共同对高温颗粒物形成双重拦截,提高防护组件100的拦截几率,提升防护组件100的拦截效果。在高温颗粒物富集于颗粒阻挡层110上时,颗粒阻挡层110以及高温颗粒物会释放大量的热量,而本实施例的隔离防护层120也能够有效隔离热量向封盖或箱体传导,避免热量向封盖或箱体传导而导致封盖或箱体升温,从而降低封盖或箱体升温后发生熔融的可能性,进一步提高防护组件100的防护效果。另外,在一些情况下,泄压元件92发生爆破时,同时会有高温火焰排出。本实施例的隔离防护层120也能够阻断泄压元件92排出的高温火焰,避免高温火焰烧蚀封盖或箱体。
本申请实施例的防护组件100,其包括的颗粒阻挡层110和隔离防护层120能够有效拦截高温颗粒物。在防护组件100与泄压元件92彼此位置对应地设置时,颗粒阻挡层110相对于隔离防护层120更靠近泄压元件92,从泄压元件92排出的大量的高温颗粒物会首先与颗粒阻挡层110发生接触并被颗粒阻挡层110阻挡和/或富集于颗粒阻挡层110,从而使得高温颗粒物朝远离颗粒阻挡层110的方向移动或停止移动,进而降低高温颗粒物直接与封盖或箱体发生接触而导致封盖或箱体发生熔融的可能性,有效保证电池模组90或电池包的使用安全性。同时,隔离防护层120能够进一步拦截阻挡高温颗粒物,也能够阻止高温颗粒物所具有的热量封盖或箱体传导。综上,本申请实施例的防护组件100用于具有泄压元件92的 储能装置,以对储能装置形成防护。本申请实施例的防护组件100能够有效拦截阻挡高温颗粒物,避免高温颗粒物将与泄压元件92相对应设置的封盖或箱体等其他结构件熔穿,有效提升具有泄压元件92的储能装置的使用安全性。
以下通过具体实施例来对本申请实施例的防护组件100的技术方案进行进一步描述,但以下实施例并不限定本申请的保护范围。
第一实施例:
参见图1至图6所示,本实施例的防护组件100所包括的颗粒阻挡层110为具有预定厚度的网状结构体。每个颗粒阻挡单元包括在颗粒阻挡层110的厚度方向上延伸的孔111和围合该孔111的栅格112。该孔111为颗粒阻挡单元的凹部,而栅格112为颗粒阻挡单元的凸部,从而使得颗粒阻挡单元构造为凹凸设置的结构体。该孔111的孔壁和/或栅格112都能够用于阻挡高温颗粒物或富集高温颗粒物,以实现拦截阻挡高温颗粒物的作用。
在一个实施例中,栅格112可以是相邻两个孔111之间的连接处。孔111的孔壁以及栅格112能够对高温颗粒物形成拦截作用。具体地,当泄压元件92排出的高温颗粒物撞击到孔壁或栅格112时,部分高温颗粒物由于撞击而改变原来的移动方向和移动速度,使得高温颗粒物被颗粒阻挡层110所阻挡;部分高温颗粒物中较早排出的高温颗粒物会先被孔壁和/或栅格112拦截,从而在孔壁或者栅格112上发生富集,而排出时间较晚的高温颗粒物会不断富集于先前被拦截的高温颗粒物上,形成颗粒富集现象。在一个示例中,多个高温颗粒物富集后形成一个隆起结构,而孔壁或者栅格112上能够形成多个该隆起结构。
在一个实施例中,网状结构体可以是在板材坯料上直接加工制造出孔111,例如采用冲压或钻削等方式加工制造,从而便于颗粒阻挡层110的加工制造。网状结构体也可以通过编织方式制造加工,如使用经线和纬线编织而成并形成矩形形状的孔111,相邻两条经线和相邻两条纬线均间隔设置,从而相邻的两条经线和相邻的两条纬线之间可以共同形成一个孔111。
参见图3至图6所示,为了保证颗粒阻挡层110所包括的颗粒阻挡单元能够有效拦截阻挡高温颗粒物,本申请实施例的颗粒阻挡层110中相邻两个孔111满足式(1),
0.005≤r/(R-r)≤5             (1)
其中,相邻两个孔111的中心点直线连接线标示为L,式(1)中r为相邻两个孔111中一者的中心点沿直线连接线至自身孔壁的孔径,R为相邻两个孔111中由一者的中心点沿直线连接线至另一者的孔壁的尺寸。
由于泄压元件92发生爆破时,从泄压元件92排出高温颗粒物的同时可能也会排出高温火焰,而高温颗粒物或高温火焰具有较大的冲击力,从而防护组件100需要能够承受较大冲击力且不发生断裂。
当r/(R-r)>5时,在r为定值,R取值需要满足R<6r/5,或者,R为定值,r取值需要满足r>5R/6。在上述两种取值情况下,相邻两个孔111之间的栅格112宽度会偏小,从而使得相邻两个孔111之间的栅格112存在薄弱区域。该栅格112的薄弱区域刚度较小,抵抗冲击力能力降低,从而该薄弱区域容易受到高温颗粒物的冲击而发生断裂。网状结构体所包括的部分栅格112发生断裂损坏后,会使得相邻两个孔111相互连通,从而导致该区域空隙变大,高温颗粒物会容易地穿过该空隙,不再容易地被颗粒阻挡层110所阻挡或在颗粒阻挡层110上发生富集,进而导致该区域无法起到拦截阻挡高温颗粒物的作用。
当0.005>r/(R-r)时,在r为定值,R取值需要满足R>201r,或者,R为定值,r取值需要满足r<R/201。在上述两种取值情况下,相邻两个孔111之间的栅格112宽度会偏大,使得栅格112的整体刚度增强但栅格112的塑性降低,从而导致栅格112的可变形能力降低,受到瞬间冲击力时易于发生断裂。此时,具有较大冲击力的高温颗粒物或高温火焰可能会直接将栅格112冲断。网状结构体所包括的部分栅格112发生断裂损坏后,会使得相邻两个孔111相互连通,从而导致该区域空隙变大,高温颗粒物会容易地穿过该空隙,不再容易地被颗粒阻挡层110所阻挡或在颗粒阻挡层110上发生富集,进而导致该区域无法起到拦截阻挡高温颗粒物的作用。
本申请实施例中,当0.005≤r/(R-r)≤5时,相邻两个孔111之间的 栅格112宽度相对于孔111的尺寸适当,从而使得栅格112自身在刚度与塑性两个方面较为平衡,既具有良好的抗冲击能力也具有良好的变形能力。这样,具有较大冲击力的高温颗粒物或高温火焰直接冲击栅格112时,栅格112可以通过自身变形来缓冲冲击力,从而降低栅格112发生断裂的可能性。具有较小冲击力的高温颗粒物或高温火焰直接冲击栅格112时,由于栅格112具有良好的抗冲击能力,因此栅格112能够承受该冲击力的冲击,不需要通过自身变形来进行缓冲。综上,该颗粒阻挡层110能够在保证自身结构完整性的前提下有效拦截阻挡高温颗粒物。
在一个实施例中,r的取值范围为0.01mm至2.5mm。当孔111自身的孔径较小时,从泄压元件92短时间内排出的高温颗粒物可能会迅速阻塞该孔111,一方面,导致较晚排出的高温颗粒物不能富集于孔111的孔壁内,严重降低孔111的孔壁的拦截阻挡效果;另一方面,孔111被高温颗粒物阻塞后,会导致孔111的孔径变小,此时,具有较大冲击力的高温颗粒物或高温火焰作用于孔111内聚集的高温颗粒物上的冲击力会与作用于栅格112本身上的冲击力叠加,从而导致栅格112所受到的实际冲击力增大,进而使得栅格112更为容易地被具有较大冲击力的高温颗粒物或高温火焰冲断。网状结构体所包括的部分栅格112发生断裂损坏后,会使得相邻两个孔111相互连通,从而导致该区域空隙变大,高温颗粒物会容易地穿过该空隙,不再容易地被颗粒阻挡层110所阻挡或在颗粒阻挡层110上发生富集,进而导致该区域无法起到拦截阻挡高温颗粒物的作用。当孔111自身的孔径较大时,高温颗粒物会较为容易地直接从该孔111穿过而不会富集于孔111的孔壁上,严重降低孔111的孔壁的拦截阻挡效果,使得该孔111的孔壁不能很好地拦截阻拦高温颗粒物。
在一个实施例中,孔111的结构的横截面可以是圆形、矩形、正三角形或正六边形等形状。
本申请实施例的颗粒阻挡层110的耐受温度的范围为500℃至3000℃,从而使得颗粒阻挡层110具有较好的抗高温性能,并且在高温环境中的强度保持率较好并保持较高的弹性模量,从而在高温环境中其自身不易变形,保持尺寸稳定能够承受从泄压元件92排出的高温颗粒物的高 温以及高温火焰的高温而不发生熔融,有效保证自身的结构完整性,在高温环境下仍然保持良好的拦截阻挡能力。
本申请实施例的颗粒阻挡层110可以为一种材料或者两种以上不同材料复合制备而成。对于同一颗粒阻挡层110,其耐受温度与耐受时间成反比。在一个实施例中,颗粒阻挡层110的耐受温度的范围为500℃至2000℃,并且相对应地,颗粒阻挡层110自身发生熔融的耐受时间为2s至3600s。这样,颗粒阻挡层110自身在高温环境下能够有效保持良好的塑性和强度,并保持预定时间不发生变形、熔融,从而有效提高防护组件100整体的耐受性,提升防护组件100的抗冲击能力。
本申请实施例的颗粒阻挡层110的厚度范围为0.2mm至3mm。在一个实施例中,颗粒阻挡层110的面密度(单位面积的质量):0.2kg/㎡至18.6kg/㎡。隔离防护层120的厚度范围为0.5mm至10mm。隔离防护层120的厚度小于0.5mm时,在泄压元件92发生爆破的短时间内,隔离防护层120无法承受瞬间高温,从而自身发生熔融破损情况而失去隔离能力。隔离防护层120的厚度大于10mm时,隔离防护层120会影响防护组件100整体装配以及质量。在防护组件100应用于电池模组90或电池包时,防护组件100会降低电池模组90或电池包的能量密度。在一个实施例中,隔离防护层120的导热系数在0.04W·m -1·K -1以下。这样,隔离防护层120能够更好地起到隔热作用。在高温情况下,可以使得隔离防护层120在厚度方向上相对的两个表面之间的温度差为100℃~150℃及以上,显著延缓甚至是阻止热量扩散。
本申请实施例的颗粒阻挡层110的材质可以是铁及其合金、铜及其合金、镍合金等高熔点的金属材料;也可以是碳纤维、芳纶等在高温下具有良好的强度和尺寸稳定性的复合材料。隔离防护层120的材料可以为耐高温的含氮高分子材料、气凝胶复合材料、防火织物或防火涂料,其中,含氮高分子材料可以是三聚氰胺泡沫、聚氨酯泡沫、聚酰亚胺泡沫;防火织物可以是防火布、玻纤布、芳纶织物和陶瓷纤维织物等。
上述隔离防护层120的材料优选为含氮高分子材料,如三聚氰胺类高分子材料、聚酰胺(PA,俗称尼龙)、聚对苯二甲酰对苯二胺(PPTA, 俗称芳纶)及聚酰亚胺(PI)中的一种或多种。含氮高分子材料在高温下受热分解后,容易放出氮气、氮氧化物及水蒸气等不燃性气体,含氮高分子材料的分解吸热与不燃性气体的生成消耗大量的热量,能够极大地降低隔离防护层120的表面温度。上述不燃性气体不仅起到了稀释电池模组90内部氧气及高分子材料受热分解产生可燃性气体的浓度的作用,而且能够与氧气及可燃性气体发生反应,将氧气及可燃性气体转化成氮气、氮氧化物及水蒸气等不燃性气体。根据燃烧的链反应理论,维持燃烧所需要的助燃物和可燃物被阻隔和消耗,使得燃烧区域的火焰密度下降,最终使得燃烧反应速度下降并结束燃烧,从而达到良好的阻燃隔热作用。上述含氮高分子材料优选为三聚氰胺类高分子材料,如三聚氰胺甲醛树脂及其衍生物等。三聚氰胺类高分子材料受热分解时能够产生较多的氮气、氮氧化物及水蒸气等不燃性气体,并在高温(通常是400℃~600℃)下还能够形成玻璃状或稳定的泡沫覆盖层,起到隔绝氧气和可燃性气体向外逸出的作用。
在一个实施例中,颗粒阻挡层110与隔离防护层120层叠设置。颗粒阻挡层110与隔离防护层120之间相互贴合设置。颗粒阻挡层110与隔离防护层120之间不会存在间隙或形成的间隙较小。高温颗粒物撞击到颗粒阻挡层110时,由于颗粒阻挡层110受到隔离防护层120的限制,因此使得颗粒阻挡层110在受到高温颗粒物的冲击力时不会朝向隔离防护层120发生变形,从而颗粒阻挡层110不会出现由于自身变形而发生断裂的情况。另外,由于颗粒阻挡层110与隔离防护层120两者之间不存在空隙或形成的间隙较小,高温颗粒物不会通过颗粒阻挡层110而聚集在颗粒阻挡层110与隔离防护层120之间而导致隔离防护层120温升过高,从而将隔离防护层120烧蚀熔穿。在一个示例中,颗粒阻挡层110与隔离防护层120可以通过粘接的方式或者使用紧固连接件的方式实现连接固定。
参见图7所示,本申请实施例的防护组件100还包括与颗粒阻挡层110相连接的绝缘层130。绝缘层130与隔离防护层120分别设置于颗粒阻挡层110的两侧,以使颗粒阻挡层110位于绝缘层130和隔离防护层120之间。绝缘层130覆盖颗粒阻挡层110所包括的颗粒阻挡单元。绝缘层130能够将颗粒阻挡层110与外部结构件绝缘隔离。在一个实施例中,绝 缘层130的材质可以是塑料或橡胶等。在泄压元件92发生爆破时,高温颗粒物或高温火焰会首先将绝缘层130熔化,进而后续的高温颗粒物会在颗粒阻挡层110上发生富集。本申请实施例的绝缘层130的材质可以是有机硅云母、硅橡胶、芳纶等具有耐高温且自阻燃性能的绝缘材料。一方面,当高温颗粒物碰撞接触到绝缘层130时,在受到高温冲击时的绝缘层130不易快速被高温颗粒物熔穿,有效提升防护组件的阻挡能力,延长阻挡时间;另一方面,在受到高温冲击时的绝缘层130不会出现燃烧情况,从而绝缘层130不会出现火焰蔓延的情况或者不会出现火星滴落至下方的储能装置上而引起储能装置失效的情况。
以下使用具体实施例来进一步描述本申请的技术方案,以下实施例以防护组件100应用于电池模组90或电池包的情况为例,但本申请的保护范围并不限于以下实施例。
实施例1:
本实施例的颗粒阻挡层110所包括的颗粒阻挡单元为网状结构体。颗粒阻挡单元所包括的孔111的孔径r范围为0.038mm至4.75mm。颗粒阻挡层110的材质为铁丝网。隔离防护层120的厚度范围为0.5mm至10mm,其材质为三聚氰胺泡沫。本实施例的防护组件100包括上述的颗粒阻挡层110和隔离防护层120。本实施例的防护组件100经实际测试,在泄压元件92爆破时,电池模组90的封盖或电池包的箱体不会发生熔穿情况。
实施例2至13:
实施例2至13与实施例1的部分参数不同,但能够达到相同的技术效果。各个实施例的防护组件100经实际测试,在泄压元件92爆破时,电池模组90的封盖或电池包的箱体不会发生熔穿情况。具体参见表1:
表1
Figure PCTCN2018119124-appb-000001
Figure PCTCN2018119124-appb-000002
另外,本申请实施例的防护组件100的防护测试:
将电池模组90或电池包充满电能。二次电池91的泄压元件92正对电池模组90的封盖、电池模组90的泄压元件92正对电池包的箱体或者电池模组所包括的二次电池91的泄压元件92正对电池包的箱体。然后以加热、针刺或过充等方式触发二次电池91失控。监测泄压元件92区域和封盖的温度,或者,泄压元件92区域和箱体的温度,同时观察记录封盖或者箱体的结构变化情况。
对比例1:仅设置颗粒阻挡层110,颗粒阻挡层110的孔径r为0.85mm,材质为铁丝网,无隔离防护层120。
对比例2:仅设置隔离防护层120,隔离防护层120的厚度为10mm,材质为三聚氰胺泡沫,无颗粒阻挡层110。
上述实施例1至13、对比例1以及对比例2的试验数据,具体参见表2:
表2
Figure PCTCN2018119124-appb-000003
Figure PCTCN2018119124-appb-000004
第二实施例:
在第一实施例中,对防护组件100的结构进行了说明。在本实施例中,主要说明与第一实施例的不同之处,相同的结构和相同的技术效果在本实施例中不再重复说明。
参见图8至图14所示,本申请实施例的颗粒阻挡层110包括片状本体113及由本体113的厚度方向上的一个表面突出形成的、相互间隔的多个凸起114。每个颗粒阻挡单元包括相邻两个凸起114和相邻两个凸起114之间的凹部115。该凹部115为颗粒阻挡单元的凹部,而凸起114为颗粒阻挡单元的凸部,从而使得颗粒阻挡单元构造为凹凸设置的结构体。隔离防护层120设置于本体113上远离凸起114一侧的表面。
由于从泄压元件92内排出的高温颗粒物大多数沿直线移动,因此一方面,当高温颗粒物遇到颗粒阻挡单元时,高温颗粒物会撞击到凸起或者凹部而被反弹,从而改变移动方向和移动速度;另一方面,当高温颗粒物遇到颗粒阻挡单元所包括的凸起114时,一部分高温颗粒物会直接附着于凸起114的外表面上,另一部分高温颗粒物会受到凸起114的阻挡而改变移动方向和移动速度,从而进入到两个凸起114之间的凹部115并附着于凹部115上。另外,后续的高温颗粒物也会不断富集于被拦截的高温颗粒物上并形成隆起结构。这样,本申请实施例的颗粒阻挡层110能够通过颗粒阻挡单元有效拦截高温颗粒物。
参见图11和图12所示,为了保证颗粒阻挡层110所包括的颗粒阻挡单元能够有效拦截阻挡高温颗粒物,本申请实施例的颗粒阻挡层110中相邻两个凸起114满足式(2),
0.005≤d/(D-d)≤5              (2)
其中,相邻两个凸起114各自具有在本体113的表面上的投影,相邻两个凸起114各自的投影中心之间的直线连接线标示为H,式(2)中d为相邻两个凸起114中的一者的投影中心沿直线连接线H至自身投影的边缘的尺寸,D为相邻两个凸起114中由一者的投影中心沿直线连接线H至另一者的投影边缘的尺寸。
由于泄压元件92发生爆破时,从泄压元件92排出高温颗粒物的同时也排出高温火焰,因此高温颗粒物或高温火焰都会受到凸起114的阻挡。
当d/(D-d)>5时,在d为定值,D取值需要满足D<6d/5,或者,D为定值,d取值需要满足d>5D/6。在上述两种取值情况下,相邻两个凸起114之间的间距会偏小,从而使得相邻两个凸起114之间的高温颗粒物通过性或气流通过性变差。这样,高温颗粒物可能会填塞相邻两个凸起114之间的间隙,使得凸起114不能很好地富集大量的高温颗粒物或实现分散气流的作用,从而导致高温颗粒物无法很好地富集于颗粒阻挡层110,进而使得颗粒阻挡层110拦截阻挡高温颗粒物的作用下降。
当0.005>d/(D-d)时,在d为定值,D取值需要满足D>201d,或者,D为定值,d取值需要满足d<D/201。在上述两种取值情况下,相邻两个凸起114之间的间距会偏大,易于导致大量高温颗粒物或者高温火焰直接冲击相邻两个凸起114之间的凹部115,以对凹部115施加较大的冲击力。由于颗粒阻挡层110与凹部115相对应部分的厚度相对于与凸起114相对应部分的厚度偏薄,因此颗粒阻挡层110与凹部115相对应部分在受到大量高温颗粒物或者高温火焰直接冲击时,易于发生开裂或破坏,从而导致高温颗粒物能够穿过裂缝,不会被颗粒阻挡层110拦截阻挡,进而使得颗粒阻挡层110无法有效起到拦截阻挡高温颗粒物的作用。
本申请实施例中,当0.005≤d/(D-d)≤5时,相邻两个凸起114之间的间距适当,从而使得相邻两个凸起114之间的高温颗粒物通过性或气流通过性以及颗粒阻挡层110与凹部115相对应部分的强度两个方面较为平衡,既具有良好的富集作用和导流作用,也具有良好的抗冲击能力。这样,颗粒阻挡层110能够承受高温颗粒物的直接撞击力,同时从泄压元件92排出的高温颗粒物一部分会直接富集到凸起114上,一部分会被凸起114干扰而改变流向和流速,然后再富集于凹部115,从而对颗粒阻挡层110与凹部115相对应部分冲击力下降。另外,从泄压元件92排出的高温火焰会被凸起114干扰而改变流向和流速,从而高温火焰的能量被分散,降低对颗粒阻挡层110的冲击力。综上,该颗粒阻挡层110能够在保证自身结构完整性的前提下有效拦截阻挡高温颗粒物。
在一个实施例中,d的取值范围为0.01mm至2.5mm。当凸起114自身的尺寸小于0.01mm时,凸起114整体结构较细,自身强度偏低,从泄压元件92短时间内排出的高温颗粒物可能会冲击凸起114而导致凸起114出现扭曲变形或弯折的情况,从而凸起114失去拦截阻挡高温颗粒物或分散气流的作用。当凸起114自身的尺寸大于2.5mm时,会使得单位面积内可设置的凸起114数量减少,会降低通过凸起114对高温颗粒物的拦截阻挡效果。
在一个实施例中,凸起114的投影可以为正三角形、矩形、正五边形、正六边形或圆形等。每个凸起114的投影中心为投影图像的重心。例如,投影为正三角形、矩形、正五边形、圆心或正六边形时,投影中心为各个形状的几何中心。可选地,凸起114的整体结构为锥台、锥体、棱台、长条状或者波纹状结构。例如,图8所示的凸起114为锥台结构。图12所示的凸起114为六棱锥体。图13所示的凸起114为截面是三角形的长条状结构。图14所示的凸起114为截面是梯形的长条状结构。
本申请实施例的防护组件100能够通过自身所包括的颗粒阻挡单元来拦截阻挡高温颗粒物,从而使得高温颗粒物不再能够与其它结构件发生接触而导致其它结构件发生烧蚀情况。这样,本申请实施例的防护组件100能够对其它结构件形成保护。另外,防护组件100所包括的隔离防护层120能够有效阻止热量传导,从而阻止高温颗粒物的热量向其它结构件传导,进一步提升防护组件100的防护能力。在本申请实施例的防护组件100应用于电池模组90或电池包时,防护组件100能够有效拦截阻挡二次电池91的泄压元件92或电池模组90的泄压元件92内排出的高温颗粒物,以降低电池模组90的封盖或电池包的箱体发生熔融的可能性。
参见图15和图16所示,本申请实施例还提出一种用于电池模组90的封盖93。本实施例的封盖93包括盖本体930以及防护组件100。防护组件与盖本体层叠设置。本实施例的电池模组90包括壳体、设置于壳体内的多个具有泄压元件92的二次电池91以及本实施例的封盖93。本实施例的二次电池91具有泄压元件92。本实施例的封盖93用于与壳体连接、且二次电池91的泄压元件92朝向封盖93。
在一个实施例中,参见图15所示,本实施例的盖本体930包括第一表面930a以及与第一表面930a相对设置的第二表面930b。本实施例的封盖93应用于电池模组90时,盖本体930的第一表面930a朝向二次电池91,第二表面930b背向二次电池91。防护组件100与盖本体930层叠设置且防护组件100设置于第一表面930a一侧。防护组件100所包括的隔离防护层120与盖本体930相连接。防护组件100能够靠近二次电池91设置且覆盖泄压元件92。本实施例的防护组件100能够抵靠于二次电池91且覆盖泄压元件92。这样,在二次电池91出现工作异常情况而导致泄压元件92爆破时,从泄压元件92排出的高温颗粒物会被颗粒阻挡层110所拦截阻挡,同时隔离防护层120能够阻止高温颗粒物的热量传导至封盖93,从而高温颗粒物不会直接与封盖93直接发生接触而烧蚀封盖93,同时被拦截后的高温颗粒物的热量也不会传导至封盖93而导致封盖93温度过高而发生熔融。
本实施例包括防护组件100的封盖93设置于电池模组90内的方式,防护组件100能够受到封盖93的保护而不会被其它结构件刮擦碰撞,从而保证防护组件100的整体结构完整性,进而保证自身的防护能力不会受到影响。
本实施例中,防护组件100还包括绝缘层130。绝缘层130与颗粒阻挡层110相连接。防护组件100完成安装固定工作后,绝缘层130能够将二次电池91所包括的汇流排和颗粒阻挡层110隔离开。当使用可导电材料加工制造颗粒阻挡层110时,绝缘层130能够降低各个二次电池91之间发生短路的可能性。
在另一个实施例中,参见图16所示,防护组件100设置于盖本体930的第二表面930b一侧。防护组件100所包括的颗粒阻挡层110与盖本体930相连接且颗粒阻挡单元朝向盖本体930的第二表面930b设置。防护组件100覆盖二次电池91上和盖本体930上的泄压元件92。可选地,本体930上的泄压元件92可以是防爆阀、单向阀或双向阀。这样,在二次电池91出现工作异常情况而导致泄压元件92爆破时,从泄压元件92排出的高温颗粒物会首先将封盖93熔融,后续的高温颗粒物会被颗粒阻挡层110 所拦截阻挡,同时隔离防护层120能够阻止高温颗粒物的热量传导至其它结构件,从而高温颗粒物不会将与封盖93相邻设置的其它结构件烧蚀熔融,同时被拦截后的高温颗粒物的热量也不会传导至与封盖93相邻设置的其它结构件。在电池模组应用于电池包时,其它结构件指的是容纳电池模组的箱体。在一个实施例中,防护组件100和盖本体930以粘接的方式相互连接。
本申请实施例的封盖93应用于电池模组90时,能够有效拦截从二次电池91具有的泄压元件92内排出的高温颗粒物,从而降低高温颗粒物从电池模组90内散射到电池模组90外并将与电池模组90相邻近的结构件熔穿的可能性,有效提升电池模组90的使用安全性。
参见图17所示,本申请实施例还提出一种用于电池包94的箱体95。本申请实施例的箱体95包括第一壳体950、与第一壳体950相连接的第二壳体960以及设置于第一壳体950和/或第二壳体960上的防护组件100。第一壳体950与第二壳体960密封连接并形成用于容纳电池模组90的容纳腔室。防护组件100设置于第一壳体950和/或第二壳体960上朝向容纳腔室的表面上。本实施例的电池包94包括多个并排设置的电池模组90以及与电池模组90的封盖93相对应设置的箱体95。本实施例的箱体95用于覆盖电池模组90的封盖93,以对电池模组90形成防护。在一个示例中,本实施例的电池模组90包括具有泄压元件92的二次电池91。可选地,泄压元件92可以是防爆阀。二次电池91的泄压元件92与封盖93相对应设置。在另一个实施例中,电池模组90的封盖93上设置有泄压元件92。封盖93上的泄压元件92与箱体95相对应设置。
在一个实施例中,参见图17所示,本实施例的第一壳体950具有容纳凹部。在箱体95与电池模组90装配时,电池模组90的一部分置于第一壳体950的容纳凹部。本实施例的防护组件100设置于第一壳体950上朝向电池模组90的表面。本实施例的箱体95应用于电池包时,本实施例的防护组件100与泄压元件92相对应地设置,从而当电池包94出现异常情况而导致泄压元件92发生爆破时,防护组件100能够有效拦截阻挡从泄压元件92内排出的高温颗粒物和高温气体,避免高温颗粒物和高温气体 将第一壳体950烧蚀熔穿,有效提升电池包94的使用安全性。在一个实施例中,防护组件100的隔离防护层120和第一壳体950所包括的第一壳体950以粘接的方式相互连接。
在一个实施例中,本实施例的第二壳体960具有容纳凹部。本实施例的防护组件100设置于第二壳体960上朝向电池模组90的表面。本实施例的箱体95应用于电池包时,防护组件100能够有效拦截阻挡从泄压元件92内排出的高温颗粒物和高温气体,避免高温颗粒物和高温气体将第二壳体960烧蚀熔穿,有效提升电池包94的使用安全性。在一个实施例中,防护组件100的隔离防护层120和第二壳体960所包括的第二壳体960以粘接的方式相互连接。
在一个实施例中,在第一壳体950和第二壳体960上均设置防护组件100。本实施例的箱体95应用于电池包时,防护组件100能够有效拦截阻挡从泄压元件92内排出的高温颗粒物和高温气体,避免高温颗粒物和高温气体将第一壳体950和第二壳体960烧蚀熔穿,有效提升电池包94的使用安全性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种防护组件,用于具有泄压元件的储能装置,所述泄压元件被配置为响应所述储能装置内部的压力增加而变形并直至爆破的结构,所述储能装置能够通过爆破的所述泄压元件排出高温颗粒物,所述防护组件包括:
    颗粒阻挡层,所述颗粒阻挡层具有用于接收所述高温颗粒物的接收侧以及与所述接收侧相对设置的连接侧,所述颗粒阻挡层包括多个凹凸设置的颗粒阻挡单元,所述颗粒阻挡单元能够阻挡所述高温颗粒物;
    隔离防护层,设置于所述颗粒阻挡层的所述连接侧并与所述颗粒阻挡层相连接。
  2. 根据权利要求1所述的防护组件,其中,所述颗粒阻挡单元被构造为能够使所述高温颗粒物通过富集方式富集于所述颗粒阻挡单元的结构。
  3. 根据权利要求1所述的防护组件,其中,所述颗粒阻挡层与所述隔离防护层层叠设置。
  4. 根据权利要求1所述的防护组件,其中,所述隔离防护层的导热系数在0.04W·m -1·K -1以下。
  5. 根据权利要求1所述的防护组件,其中,所述颗粒阻挡层为网状结构体,每个所述颗粒阻挡单元包括在所述颗粒阻挡层的厚度方向上延伸的孔和围合所述孔的栅格。
  6. 根据权利要求5所述的防护组件,其中,所述颗粒阻挡层中相邻两个所述孔满足式(1),
    0.005≤r/(R-r)≤5  (1)
    其中,相邻两个所述孔的中心点直线连接线标示为L,所述式(1)中r为相邻两个所述孔中一者的所述中心点沿所述直线连接线至自身孔壁的孔径,R为相邻两个所述孔中由所述一者的所述中心点沿所述直线连接线至另一者的孔壁的尺寸。
  7. 根据权利要求6所述的防护组件,其中,所述r的取值范围为 0.01mm至2.5mm。
  8. 根据权利要求1所述的防护组件,其中,所述颗粒阻挡层包括片状本体及由所述本体的厚度方向上的一个表面突出形成的、相互间隔的多个凸起,每个所述颗粒阻挡单元包括相邻两个所述凸起和相邻两个所述凸起之间的凹部,所述隔离防护层设置于所述本体远离所述凸起的一侧表面,所述颗粒阻挡层中相邻两个所述凸起满足式(2),
    0.005≤d/(D-d)≤5  (2)
    其中,相邻两个所述凸起各自具有在所述本体的所述表面上的投影,相邻两个所述凸起各自的投影的投影中心之间直线连接线标示为H,所述式(2)中d为相邻两个所述凸起中的一者的所述投影中心沿所述直线连接线至自身投影的边缘的尺寸,D为相邻两个所述凸起中由所述一者的所述投影中心沿所述直线连接线至另一者的投影的边缘的尺寸。
  9. 根据权利要求1至8任一项所述的防护组件,其中,所述颗粒阻挡层的耐受温度的范围为500℃至3000℃。
  10. 根据权利要求1至8任一项所述的防护组件,其中,所述颗粒阻挡层的耐受温度与耐受时间成反比,所述颗粒阻挡层的所述耐受温度的范围为500℃至2000℃,并且相对应地,所述颗粒阻挡层发生熔融的所述耐受时间为2s至3600s。
  11. 根据权利要求1至8任一项所述的防护组件,其中,所述颗粒阻挡层的材料为铁及其合金、铜及其合金、镍合金、碳纤维或芳纶。
  12. 根据权利要求1至8任一项所述的防护组件,其中,所述隔离防护层的厚度范围为0.5mm至10mm。
  13. 根据权利要求1至8任一项所述的防护组件,其中,所述隔离防护层的材料为有机泡沫、气凝胶复合材料、防火织物或防火涂料。
  14. 根据权利要求1至8任一项所述的防护组件,其中,所述防护组件还包括与所述颗粒阻挡层相连接的绝缘层,所述绝缘层与所述隔离防护层分别设置于所述颗粒阻挡层的两侧,所述绝缘层覆盖所述颗粒阻挡单元。
  15. 一种封盖,用于电池模组,所述电池模组包括壳体以及设置于所 述壳体内的多个具有泄压元件的二次电池,所述封盖用于与所述壳体连接,其中,所述封盖包括:
    盖本体;
    如权利要求1至14任一项所述的防护组件,所述防护组件与所述盖本体层叠设置。
  16. 一种箱体,用于电池包,所述电池包包括多个电池模组,其中,所述箱体包括:
    第一壳体;
    第二壳体,所述第二壳体与所述第一壳体密封连接并形成用于容纳所述电池模组的容纳腔室;
    如权利要求1至14任一项所述的防护组件,所述防护组件设置于所述第一壳体和/或所述第二壳体朝向所述电池模组的表面。
PCT/CN2018/119124 2018-08-31 2018-12-04 防护组件、封盖以及箱体 WO2020042410A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/467,374 US11228073B2 (en) 2018-08-31 2018-12-04 Protection assembly, cover and housing
EP18884843.6A EP3641013B1 (en) 2018-08-31 2018-12-04 Protective assembly, sealing cover, and container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811013917.X 2018-08-31
CN201811013917.XA CN110875443B (zh) 2018-08-31 2018-08-31 防护组件、封盖以及箱体

Publications (1)

Publication Number Publication Date
WO2020042410A1 true WO2020042410A1 (zh) 2020-03-05

Family

ID=67437368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119124 WO2020042410A1 (zh) 2018-08-31 2018-12-04 防护组件、封盖以及箱体

Country Status (4)

Country Link
US (1) US11228073B2 (zh)
EP (1) EP3641013B1 (zh)
CN (1) CN110875443B (zh)
WO (1) WO2020042410A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909398A (zh) * 2020-10-19 2021-06-04 江苏时代新能源科技有限公司 电池、用电设备、制备电池的方法和设备
CN115332717A (zh) * 2022-08-22 2022-11-11 欣旺达电动汽车电池有限公司 导流结构及电池包

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102353367B1 (ko) * 2018-09-28 2022-01-18 주식회사 엘지에너지솔루션 배터리 셀 조립체, 이러한 배터리 셀 조립체를 포함하는 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
DE102019130097A1 (de) * 2019-11-07 2021-05-12 Audi Ag Batterie mit einer Brandschutzvorrichtung sowie Kraftfahrzeug
CN112086604B (zh) * 2020-10-19 2023-04-07 江苏时代新能源科技有限公司 电池、用电设备、制备电池的方法和装置
JP7457872B2 (ja) 2020-10-19 2024-03-28 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド 電池、電気装置、電池の製造方法および装置
KR20220075710A (ko) * 2020-11-30 2022-06-08 에스케이온 주식회사 배터리 모듈
DE102021101234A1 (de) 2021-01-21 2022-07-21 Bayerische Motoren Werke Aktiengesellschaft Energiespeichereinrichtung und Kraftfahrzeug
CN116979210A (zh) * 2022-04-21 2023-10-31 宁德时代新能源科技股份有限公司 电池和用电设备
CN115036643B (zh) * 2022-08-12 2022-12-02 江苏时代新能源科技有限公司 电池单体、电池及用电设备
CN115832569A (zh) * 2022-12-01 2023-03-21 浙大城市学院 高强度轻量化新能源汽车电池壳体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517591A (ja) * 2010-01-13 2013-05-16 リ−テック・バッテリー・ゲーエムベーハー 電気化学的エネルギー貯蔵装置のためのフレーム
CN103474599A (zh) * 2013-09-15 2013-12-25 宁德新能源科技有限公司 具有理想安全性能的锂离子电池和电池包
CN206907833U (zh) * 2017-03-23 2018-01-19 浙江谷神能源科技股份有限公司 一种锂离子电池防爆安全盖板
CN206992203U (zh) * 2017-04-28 2018-02-09 捷星新能源科技(苏州)有限公司 一种带有阀门泄压机构的动力锂电池模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300383B1 (ko) * 1996-02-15 2002-06-20 다나베 히로까즈 클래딩 재료
JP5338331B2 (ja) * 2008-02-04 2013-11-13 パナソニック株式会社 電池パック、それを備えた電子機器
JP2010080352A (ja) 2008-09-27 2010-04-08 Sanyo Electric Co Ltd バッテリシステム
JP4749513B2 (ja) * 2009-07-17 2011-08-17 パナソニック株式会社 電池モジュールとそれを用いた電池パック
JP5379238B2 (ja) * 2010-03-30 2013-12-25 パナソニック株式会社 電池パック
DE102012019676B4 (de) * 2012-10-05 2017-10-26 Stöbich Technology Gmbh Akku-Transportbehälter, Akku-Transportgebinde und Akku-Transportvorrichtung
JP6279834B2 (ja) * 2013-02-20 2018-02-14 ホーチキ株式会社 蓄電装置及びそれを使用する移動体又は施設
JP6080201B2 (ja) * 2013-02-26 2017-02-15 ホーチキ株式会社 消火装置及びこれを用いたエージング方法
ES2725901T3 (es) * 2013-08-30 2019-09-30 Gogoro Inc Dispositivo portátil de almacenamiento de energía eléctrica
CN205069724U (zh) 2015-11-17 2016-03-02 宁德时代新能源科技有限公司 电池箱
US11063317B2 (en) 2016-01-26 2021-07-13 Sanyo Electric Co., Ltd. Battery pack
JP6746962B2 (ja) * 2016-03-04 2020-08-26 トヨタ自動車株式会社 電池モジュール
US20180138478A1 (en) * 2016-11-14 2018-05-17 Anhui Xinen Technology Co., Ltd. Alleviating explosion propagation in a battery module
CN206774590U (zh) 2017-06-01 2017-12-19 宁德时代新能源科技股份有限公司 上盖及电池箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517591A (ja) * 2010-01-13 2013-05-16 リ−テック・バッテリー・ゲーエムベーハー 電気化学的エネルギー貯蔵装置のためのフレーム
CN103474599A (zh) * 2013-09-15 2013-12-25 宁德新能源科技有限公司 具有理想安全性能的锂离子电池和电池包
CN206907833U (zh) * 2017-03-23 2018-01-19 浙江谷神能源科技股份有限公司 一种锂离子电池防爆安全盖板
CN206992203U (zh) * 2017-04-28 2018-02-09 捷星新能源科技(苏州)有限公司 一种带有阀门泄压机构的动力锂电池模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641013A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909398A (zh) * 2020-10-19 2021-06-04 江苏时代新能源科技有限公司 电池、用电设备、制备电池的方法和设备
CN112909398B (zh) * 2020-10-19 2023-11-21 江苏时代新能源科技有限公司 电池、用电设备、制备电池的方法和设备
CN115332717A (zh) * 2022-08-22 2022-11-11 欣旺达电动汽车电池有限公司 导流结构及电池包
CN115332717B (zh) * 2022-08-22 2023-07-14 欣旺达电动汽车电池有限公司 导流结构及电池包

Also Published As

Publication number Publication date
EP3641013A1 (en) 2020-04-22
EP3641013A4 (en) 2020-04-22
CN110875443B (zh) 2021-06-08
CN110875443A (zh) 2020-03-10
US20210359372A1 (en) 2021-11-18
EP3641013B1 (en) 2021-08-25
US11228073B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2020042410A1 (zh) 防护组件、封盖以及箱体
EP3890053B1 (en) Battery pack
JP7488771B2 (ja) パック電池
JP6390062B2 (ja) 電池モジュール
CN110433419B (zh) 锂电热失控火灾抑制胶囊及锂离子电池
US9614211B2 (en) Lithium ion battery having desirable safety performance
EP2577768B1 (en) Method of protecting battery cells and batteries which contain battery cells and protected battery cells and batteries which contain battery cells
US20160346577A1 (en) Aerosol fire extinguishing device for installation on moving object, and aerosol fire extinguishing agent for use in same
CN106654417B (zh) 电池液冷装置和电池系统
WO2011121901A1 (ja) 電池パック
US20170301968A1 (en) Thermal isolation material and methods of making and using the same
JP2016096129A (ja) リチウムイオン電池及び電池パック
JP2023510373A (ja) 再充電可能な電気エネルギー貯蔵システムのための熱暴走バリア
CN211125725U (zh) 动力电池热防护系统
CN112382816B (zh) 灭火剂组合物和电池
EP4179595B1 (en) Battery device
JP7417725B2 (ja) 電池パック及び輸送機器
CN113572184B (zh) 储能系统的储电模块和储能系统
CN112259838A (zh) 一种电池模组结构及电池
CN219067061U (zh) 电池包
JP7460321B2 (ja) 電池収納体
CN213520164U (zh) 一种电池模组结构及电池
EP4170795A1 (en) Battery module and battery pack including same
CN102247678B (zh) 一种新型防爆泄压装置及使用该装置的气溶胶灭火器
JP2020087841A (ja) 組電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018884843

Country of ref document: EP

Effective date: 20190612

ENP Entry into the national phase

Ref document number: 2018884843

Country of ref document: EP

Effective date: 20190612

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE