WO2011121901A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2011121901A1
WO2011121901A1 PCT/JP2011/001386 JP2011001386W WO2011121901A1 WO 2011121901 A1 WO2011121901 A1 WO 2011121901A1 JP 2011001386 W JP2011001386 W JP 2011001386W WO 2011121901 A1 WO2011121901 A1 WO 2011121901A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
heat
heat insulating
insulating layer
battery
Prior art date
Application number
PCT/JP2011/001386
Other languages
English (en)
French (fr)
Inventor
杉田 康成
智彦 横山
啓介 清水
藤川 万郷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011538189A priority Critical patent/JP5379238B2/ja
Priority to US13/257,500 priority patent/US8592076B2/en
Priority to EP20110755231 priority patent/EP2555276A1/en
Priority to CN201180001439.0A priority patent/CN102356483B/zh
Publication of WO2011121901A1 publication Critical patent/WO2011121901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack provided with a plurality of batteries, and more particularly to improvement of the structure of the battery pack.
  • Patent Document 1 In a battery pack that houses such a battery, there has been proposed a structure for suppressing transmission of heat to an adjacent battery when a specific battery abnormally generates heat for some reason.
  • Patent Document 1 it is proposed to dispose a separator made of resin such as polypropylene and polycarbonate having insulating properties and heat insulating properties between a plurality of batteries. By this separator, the heat of a specific battery that has abnormally generated heat is prevented from being transmitted to an adjacent battery.
  • Patent Document 2 it is proposed to use an inorganic refractory material such as mica or ceramics in order to increase the flame retardance of the separator.
  • Patent Document 3 it is proposed to provide a lumen in a separator made of a flammable resin such as polyethylene and polypropylene, and to fill the lumen with a fire extinguishing agent such as ammonium dihydrogen phosphate.
  • a fire extinguishing agent such as ammonium dihydrogen phosphate.
  • Patent Documents 1 to 3 have a low volumetric efficiency because a certain amount of thickness is required when producing the battery pack. Therefore, it is difficult to reduce the size of the battery pack. In addition, if a large amount of heat generated by abnormal heating of a specific battery in a battery pack is concentrated locally and propagates to a separator, the separator is damaged and the heat propagates to adjacent batteries. There is a case.
  • the present invention has a high heat insulating effect, and a large amount of heat is locally concentrated in the battery pack due to abnormal heat generation of any of the batteries stored in the battery pack. Even so, a highly safe, small and lightweight battery pack capable of effectively suppressing heat conduction to other batteries is provided.
  • the present invention provides a battery pack comprising a plurality of batteries, a housing for housing the plurality of batteries, and at least one separator for isolating the plurality of batteries from each other.
  • the separator includes a metal mesh body and a heat insulating layer disposed on both surfaces of the metal mesh body, and the heat insulating layer includes a foam material that can be foamed at a temperature of 110 ° C. or higher and lower than 200 ° C. The thickness of the heat insulation layer is increased by foaming.
  • the separator when the separator with the heat insulating layer disposed on both sides of the metal mesh body is heated, the foam material in the heat insulating layer is foamed, a large number of bubbles are generated, and the heat insulating layer expands.
  • the separator provides excellent heat insulation. Since the separator includes a metal mesh body, heat can be efficiently dispersed by the separator. Therefore, by arranging a separator between adjacent batteries, any of the batteries stored in the battery pack abnormally generates heat, and a large amount of heat is locally concentrated in the battery pack. Even so, heat conduction to other batteries can be effectively suppressed. Moreover, since a heat insulation layer is stably hold
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the present invention relates to a battery pack including a plurality (two or more) of batteries, a housing for storing the plurality of batteries, and at least one separator for isolating the plurality of batteries from each other.
  • the at least one separator may be disposed between at least the side surfaces of the adjacent batteries.
  • the cylindrical battery include a cylindrical shape and a rectangular shape.
  • a cylindrical battery or a prismatic battery is a cylindrical body or a quadrangular prism body, and is provided with a positive electrode terminal on one end face and a negative electrode terminal on the other end face.
  • a separator is disposed between the side surfaces.
  • a separator may or may not be disposed between the end surfaces.
  • the separator has the following characteristics (1) to (3).
  • the separator is composed of a heat transfer layer and a heat insulating layer disposed on both sides of the heat transfer layer.
  • the heat transfer layer is a metal mesh body.
  • the heat insulating layer includes a foamable material that can be foamed at a temperature of 110 ° C. or higher and lower than 200 ° C. (hereinafter referred to as a first temperature), and the thickness of the heat insulating layer increases due to foaming of the foamed material.
  • the separator in the battery pack of the present invention can perform heat diffusion and heat absorption in a well-balanced and effective manner by combining a heat insulating layer containing a metal mesh body and a foamed material. Is greatly improved. Specifically, by absorbing heat effectively with two heat insulation layers and effectively diffusing heat with a metal mesh body, the heat of an abnormally heated battery is propagated to adjacent batteries. Can be suppressed. Even when a large amount of heat is concentrated locally and propagates to the separator, the separator is not damaged, and the heat can be reliably prevented from propagating to the adjacent battery.
  • the heat insulating layer includes a material that foams at the first temperature.
  • the first temperature is the temperature of the heat insulation layer when the battery generates heat abnormally and the heat insulation layer is heated. From the viewpoint of the usage environment of the battery pack and the battery temperature when the battery abnormally generates heat, it is necessary to use a foam material that can be foamed at 110 ° C. or higher.
  • the temperature at which the alkali metal silicate described below foams is 110 ° C. or more and less than 200 ° C.
  • the first temperature is preferably 150 ° C. or below.
  • the heat insulation layer does not expand and exists as a thin layer.
  • the insulation layer that comes into contact with or close to the battery is heated and the foamed material foams, generating numerous bubbles inside the insulation layer. And the thickness of a heat insulation layer increases. Due to the large number of bubbles, excellent heat insulating properties are exhibited, and heat can be effectively suppressed from being transferred to adjacent normal batteries. Even when a large amount of heat is locally concentrated and propagated to the separator due to high-temperature gas jetting from the battery that has abnormally heated, the separator can efficiently dissipate heat with the metal mesh body. Not damaged.
  • the heat transfer layer is a mesh body, heat can be efficiently dispersed by the separator, and the local concentration of heat by the separator can be effectively suppressed. Since the heat transfer layer is a metal mesh body and the heat insulating layer is stably held on the metal mesh body, the separator can be made thin. Therefore, the battery pack can be reduced in size and weight.
  • a separator made of a heat insulating layer containing a metal mesh body and a foam material is generally cheaper and lighter than a separator containing an inorganic refractory material such as mica or ceramics as a main material, and its manufacture is also Since it is easy, it is possible to reduce the weight and cost of a battery pack having a high heat insulating effect.
  • a foaming material is used for the material which comprises a heat insulation layer, even when using an inorganic refractory material, sufficient heat insulation effect is acquired by use of a small amount of inorganic refractory materials.
  • the battery pack 1 of the present embodiment includes a battery 3 and a battery 4 that are cylindrical secondary batteries, and a rectangular resin housing 2 that houses the batteries 3 and 4. , And a separator 5 disposed between the battery 3 and the battery 4.
  • the separator plate 5 includes a sheet-shaped metal mesh body 6 and a heat insulating layer 7 a and a heat insulating layer 7 b disposed on both surfaces of the metal mesh body 6.
  • the heat insulation layer 7a is arranged on the battery 3 side, and the heat insulation layer 7b is arranged on the battery 4 side.
  • the battery pack is not limited to the above, but is a member for electrically connecting the battery 3 and the battery 4 (such as a lead) and a member for extracting electricity from the battery pack to the outside (such as an external terminal).
  • a member necessary for the configuration of the battery pack is provided.
  • those conventionally used in battery packs may be appropriately used.
  • Battery 3 and battery 4 are cylindrical bodies, each having one end face provided with a positive electrode terminal and the other end face provided with a negative electrode terminal.
  • the battery 3 and the battery 4 are arranged in the same direction with the side surfaces facing each other.
  • a separator 5 is disposed between the side surfaces of the battery 3 and the battery 4. Since the end faces of the battery 3 and the battery 4 do not face each other, heat conduction between the end faces of the battery 3 and the battery 4 hardly occurs.
  • the metal mesh body 6 is preferably made of at least one selected from the group consisting of stainless steel, iron, nickel, aluminum, titanium, and copper.
  • stainless steel is particularly preferable from the viewpoints of the strength of the metal mesh body, the reduction in size and weight of the battery pack, and the cost. Even when a large amount of heat is locally concentrated and propagated to the separator (heat insulating layer), for example, when high-temperature gas is ejected from the abnormally heated battery, the heat can be efficiently absorbed and dispersed. Therefore, damage to the separator 5 due to a large amount of heat locally concentrated and propagated can be suppressed.
  • the metal mesh body 6 is preferably 5 to 65 mesh.
  • the metal mesh body is, for example, a wire mesh having a large number of meshes (holes) made of a metal wire.
  • Examples of the wire mesh include woven wire meshes such as plain weave wire mesh, twill wire mesh, and turtle shell wire mesh.
  • the diameter of the wire constituting the wire net is constant, and the shape and size of the net are constant. From the viewpoint of thermal diffusibility and strength of the metal mesh body, the diameter of the wire is preferably 0.02 to 0.7 mm.
  • the shape of the mesh examples include a square such as a square, a rectangle, and a rhombus, and a polygon such as a hexagon (tortoise shape).
  • the mesh shape is preferably quadrangular.
  • the mesh size (opening) is preferably 0.02 to 4.38 mm.
  • the metal mesh opening ratio is preferably 25 to 75%.
  • the battery temperature when the battery abnormally generates heat becomes very high.
  • a material having a high melting point such as stainless steel and titanium for the metal mesh body 6.
  • the heat insulating layer 7a and the heat insulating layer 7b mainly contain an alkali metal silicate.
  • the alkali metal is preferably at least one selected from the group consisting of sodium (Na), potassium (K), and lithium (Li) because it is inexpensive and easy to produce silicate. From the viewpoint of binding strength, the order is Na>K> Li, and from the viewpoint of water resistance, the order is Li>K> Na.
  • These three types of alkali metal silicates may be used alone or in combination of two or more types in accordance with the equipment used for the battery pack.
  • Alkali metal silicates have a lot of crystal water.
  • the alkali metal silicate having crystal water has, for example, a composition represented by the formula: M 2 O.nSiO 2 .xH 2 O.
  • M is at least one selected from the group consisting of Na, K, and Li.
  • n is 0.5-4.
  • n is 0.4 to 4.
  • x is a value indicating the amount of water of crystallization, and can take an arbitrary value depending on the amount of water of crystallization.
  • Li and n 1.
  • the alkali metal silicate with crystal water When the alkali metal silicate with crystal water is exposed to high temperatures, the alkali metal silicate begins to release crystal water from around 110 ° C. and simultaneously begins to foam. For this reason, many bubbles are formed inside the heat insulating layer 7a and the heat insulating layer 7b, the thickness thereof is increased, and the heat insulating property is improved.
  • the battery pack 1 when the battery 3 abnormally generates heat and the heat insulating layer 7 a and the heat insulating layer 7 b are heated to the first temperature, the alkali metal silicate in the heat insulating layer 7 a and the heat insulating layer 7 b is foamed. The heat insulating layer 7a and the heat insulating layer 7b expand while generating bubbles.
  • the heat of the battery 3 that has abnormally generated heat propagates in the order of the heat insulating layer 7a, the metal mesh body 6, and the heat insulating layer 7b. Since the heat propagated from the heat insulating layer 7a to the metal mesh body 6 diffuses throughout the separator, the heat insulating layer 7b can efficiently absorb the heat. Even if a large amount of heat locally propagates to the separator 5 due to, for example, high-temperature gas ejected from the battery 3 that has abnormally generated heat, the heat is dispersed in the metal mesh body 6, so that a large amount of heat is generated in the separator. Damage to the separator due to concentrated propagation is suppressed.
  • the expansion coefficient in the thickness direction of the heat insulating layer 7 a and the heat insulating layer 7 b is preferably 30 to 600%, and more preferably 50 to 300%.
  • the degree of expansion of the heat insulating layer can be adjusted, for example, according to the type and content ratio of the foam material and the content ratio of the foaming accelerator described later.
  • the thickness of a heat insulation layer points out the thickness dimension along the thickness direction of a separator.
  • the heat insulation layer 7a and the heat insulation layer 7b also have an effect of cooling the battery with latent heat when the alkali metal silicate releases crystal water. Therefore, alkali metal silicate is very preferable as a material constituting the heat insulating layer.
  • the foamed material is an alkali metal silicate, not only the heat insulating effect due to foaming of the foamed material but also the above cooling effect is obtained, so that the heat of the battery 3 can be further suppressed from being transmitted to the battery 4.
  • the separator plate 5 is mainly composed of a non-combustible material having no ignition point or flash point, it is suitable for improving the reliability of the battery pack 1. In the separator plate 5, both surfaces of the metal mesh body are covered with a heat insulating layer having an insulating property, so that the separator plate 5 does not cause an external short circuit of the battery.
  • the heat insulating layer 7a and the heat insulating layer 7b are further 200 ° C. so that the heat insulating layer can be more effectively insulated when the heat insulating layer is heated to a temperature exceeding the first temperature at which the alkali metal silicate foams.
  • a foaming accelerator capable of foaming at the above temperature (hereinafter referred to as the second temperature).
  • the foaming accelerator it is preferable to use a material that releases gas at a temperature higher than the temperature at which alkali metal silicate releases crystal water and foams as water vapor. The foam accelerator releases gas when the heat insulation layer is heated until it exceeds the first temperature due to abnormal heat generation of the battery.
  • the thickness after the foamed material of the heat insulation layer 7a and the heat insulation layer 7b can foam can be increased more.
  • the heat insulation effect of the heat insulation layer 7a and the heat insulation layer 7b can further be improved.
  • the foaming accelerator it is more preferable to use at least one selected from the group consisting of aluminum hydroxide, calcium hydroxide, magnesium hydroxide, alum, sodium sulfate, calcium carbonate, magnesium carbonate, and barium carbonate.
  • aluminum hydroxide or magnesium hydroxide is selected for sodium silicate.
  • Sodium silicate releases crystal water when heated to about 130-150 ° C., which foams as water vapor.
  • aluminum hydroxide is heated to about 200 to 300 ° C.
  • water vapor is generated by thermal decomposition.
  • Magnesium hydroxide generates water vapor by thermal decomposition when heated to about 400 ° C. or higher.
  • the content ratio Wa of the foaming accelerator in the heat insulating layer 7a and the heat insulating layer 7b is preferably 5 to 95 parts by mass, and 20 to 80 parts by mass with respect to 100 parts by mass of the alkali metal silicate (not including crystal water). More preferably, it is a part.
  • the content ratio Wa of the foam accelerator in the heat insulating layer 7a and the heat insulating layer 7b is set to 5 parts by mass or more with respect to 100 parts by mass of the alkali metal silicate (not including crystal water).
  • the foam material is relatively A sufficient proportion can be secured. Therefore, the heat insulation effect by the heat insulation layer 7a and the heat insulation layer 7b is fully acquired. Moreover, when using the structural material mentioned later, the ratio which a structural material occupies relatively can be ensured enough, and the binding force of the heat insulation layer 7a and the heat insulation layer 7b is fully obtained. As a result, partial peeling of the heat insulating layer 7a and the heat insulating layer 7b from the metal mesh body 6 can be prevented.
  • the heat insulating layer 7a and the heat insulating layer 7b further include a structural material made of inorganic particles that do not foam at the second temperature. It is more preferable that the heat insulating layer 7a and the heat insulating layer 7b further include both a foaming accelerator and a structural material.
  • the inorganic particles are uniformly dispersed in the heat insulating layer.
  • the inorganic particles are preferably ceramic particles from the viewpoints of heat resistance and shape stability of the heat insulating layer.
  • Ceramics include aluminum silicate, sodium silicofluoride, bentonite, montmorillonite, kaolinite, mullite, diatomaceous earth, alumina, silica, mica, titanium oxide, vermiculite, perlite, maglite, sepiolite, talc, calcium silicate, magnesium silicate, calcium sulfate, More preferably, at least one selected from the group consisting of cement and cement is used.
  • the particle shape examples include a spherical shape, a flaky shape, and a fibrous shape.
  • the structural material is fibrous, an average fiber length of 0.1 to 100 ⁇ m and an average fiber diameter of 0.01 to 10 ⁇ m are preferable.
  • the structural material is spherical, an average particle size of 0.1 to 100 ⁇ m is preferable.
  • the structural material is flaky, for example, a thickness of 0.01 to 10 ⁇ m and a maximum diameter of 0.05 to 100 ⁇ m are preferable.
  • the content ratio Wb of the structural material in the heat insulating layer 7a and the heat insulating layer 7b is preferably 5 to 70 parts by mass with respect to 100 parts by mass of the alkali metal silicate (not including crystal water). More preferably, it is a part.
  • the content ratio Wb of the structural material in the heat insulating layer 7a and the heat insulating layer 7b is set to 5 parts by mass or more with respect to 100 parts by mass of the alkali metal silicate (not including crystal water).
  • the heat insulation effect by the obtained foam layer is sufficiently obtained.
  • the content ratio Wb of the structural material in the heat insulating layer 7a and the heat insulating layer 7b is set to 50 parts by mass or less with respect to 100 parts by mass of the alkali metal silicate (not including crystal water), the foam material and the foam accelerator It is possible to secure a sufficient proportion of Therefore, the heat insulation effect by the heat insulation layer 7a and the heat insulation layer 7b is fully acquired.
  • the battery pack can be reduced in size and weight. Further, at the time of manufacturing the separator, the holes in the metal mesh body 6 are densely filled with a heat insulating layer forming composition to be described later, and a heat insulating layer (not shown) is formed in the holes in the metal mesh body 6.
  • the heat insulating layer 7a and the heat insulating layer 7b are integrated with each other through the heat insulating layer formed in the hole. Therefore, the heat insulating layer 7 a and the heat insulating layer 7 b are stably held by the metal mesh body 6. Peeling and falling off of the heat insulating layer 7a and the heat insulating layer 7b from the metal mesh body 6 are suppressed.
  • the heat insulating layer can be uniformly filled in the holes. Therefore, in the surface direction of the separator 5, the heat diffusibility of the metal mesh body and the heat absorbability of the heat insulating layer can be made uniform.
  • the heat transfer layer is a porous body (foam)
  • the shape and size of the holes are not formed uniformly. There are pores that are small on the surface of the porous body and do not extend in the thickness direction. Moreover, the porous body has a small proportion of pores.
  • the thickness of the metal mesh body 6 is preferably 0.02 mm to 1 mm. In addition, the thickness of this metal mesh body 6 points out the largest thickness dimension in the cross section along the thickness direction of the metal mesh body 6. FIG.
  • the thickness of the metal mesh body 6 is more preferably 0.02 to 0.5 mm, and particularly preferably 0.02 to 0.1 mm.
  • the thickness of the heat insulating layer 7a (thickness before foaming material is foamed) and the thickness of the heat insulating layer 7b (thickness before foaming material is foamed) are The thickness is preferably 0.04 to 2 mm, more preferably 0.04 to 1 mm, and particularly preferably 0.04 to 0.5 mm.
  • the thickness of the separator plate 5 is preferably 0.1 to 5 mm. In addition, the thickness of this separator 5 points out the thickness dimension before a foaming material foams. When the thickness of the separator plate 5 is 0.1 mm or more, the heat insulating property of the separator plate 5 can be sufficiently secured. When the thickness of the separator plate 5 is 5 mm or less, it is easy to reduce the size and weight of the battery pack. The thickness of the separator plate 5 is more preferably 0.1 to 2.5 mm.
  • the width of the separator 5 (the length of the separator in the surface direction in the plane perpendicular to the battery axial direction) is the diameter of the battery (battery installation surface (inner bottom surface of the housing) in the state in which the battery 3 and the battery 4 are stored. ))) Or more). Thereby, the heat insulation effect by the heat insulation layer 7a and the heat insulation layer 7b is heightened more.
  • the length of the separator 5 in the axial direction of the battery is preferably set to a dimension equal to or larger than the length in the axial direction of the battery. Thereby, the heat insulation effect by the heat insulation layer 7a and the heat insulation layer 7b is heightened more.
  • the width of the separator plate 5 (the length in the surface direction of the separator plate 5 in the plane perpendicular to the axial direction of the battery) is the installation surface of the square battery. It is preferable that the height be equal to or greater than the height from (the inner bottom surface of the housing).
  • the method for manufacturing the battery pack 1 is, for example, (A) preparing the housing 2; (B) producing a heat insulating layer forming composition containing an alkali metal silicate; (C) After applying the heat insulation layer forming composition produced in the step (B) so as to form a layer with a certain thickness on both surfaces of the metal mesh body 6, the heat insulation layer 7a and the heat insulation layer 7b are formed by drying.
  • the housing is obtained, for example, by resin molding.
  • the resin material used for molding the casing it is preferable to use a flame retardant resin of UL-94 standard V-0 or higher.
  • the above flame retardant resin is used for the resin material of the housing. It is recommended.
  • a flame retardant polymer material as the constituent material of the housing.
  • the polymer material it is preferable to use a material obtained by subjecting any one of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) and the like to a flame retardant treatment.
  • the composition for forming a heat insulating layer can be obtained, for example, by adding a solvent or a dispersion medium to an alkali metal silicate. As needed, you may add at least one of a foaming accelerator and a structural material to the composition for thermal insulation layer formation further.
  • a solvent or a dispersion medium for example, water or an organic solvent is used as the solvent or the dispersion medium.
  • water glass an aqueous solution of sodium silicate
  • As the water glass for example, sodium silicate of No. 1 to No. 3 of JIS standard (JIS K 1408) is used.
  • the metal mesh body 6 is coated with the composition for forming a heat insulating layer, formed a coating film, dried, and then the solvent or dispersion medium in the coating film is removed, thereby removing the metal mesh body 6.
  • the heat insulation layer 7a and the heat insulation layer 7b are formed.
  • a heat insulating layer containing solid sodium silicate having crystal water can be formed.
  • Conventionally known coating methods such as a dip coating method, a roller coating method, a spray coating method, a doctor blade coating method and the like are used as a coating method of the heat insulating layer forming composition.
  • the composition can be easily filled not only on both surfaces of the metal mesh body but also in the holes of the metal mesh body. Therefore, not only the heat insulating layer 7a and the heat insulating layer 7b are formed on both surfaces of the metal mesh body 6, but also a heat insulating layer (not shown) can be easily formed in the hole of the metal mesh body 6, and the heat insulating layer 7a. And the heat insulation layer 7b can be firmly held by the metal mesh body 6.
  • step (D) for example, in the step (A), when the casing 2 is constituted by a case main body and a lid, the battery 3 and the battery 4 are accommodated from the opening of the case main body. After inserting the separator plate 5 between them, a lid is attached to the case body by an adhesive or heat welding. In this way, the battery 3, the battery 4, and the separator plate 5 are accommodated in the housing 2.
  • step (A) when forming a groove for fitting the end of the separator at a predetermined position on the inner surface of the case body, before storing the battery in the case body in the step (D),
  • the end of the separator may be fitted in the groove in advance, and the separator may be installed at a predetermined position of the case body.
  • Example 1 Production of Separating Plate A heat insulating layer on both sides of a nickel mesh body having a length of 65 mm, a width of 20 mm, and a thickness of 0.4 mm (manufactured by Nilaco Corporation, nickel / wire net, 20 mesh, product number NI-3182020) The forming composition was uniformly applied, allowed to stand for one day and night, and naturally dried to form a heat insulating layer (thickness 0.3 mm per layer) containing sodium silicate having crystal water. In this way, a separator A (thickness 1.0 mm) was produced.
  • the heat insulating layer forming composition As the heat insulating layer forming composition, an aqueous solution of sodium silicate obtained by adding 20 parts by mass of water to 80 parts by mass of sodium silicate (manufactured by Osaka Shoso Co., Ltd., trade name: No. 3 sodium silicate) was used.
  • the molar ratio of Na 2 O: SiO 2 was 1: 3.
  • Example 2 Accessory Co., Ltd. Access Co., Ltd. on both sides of a stainless steel mesh body (length: 0.25 mm, length: 65 mm, Nilaco Corporation, stainless steel SUS304 / wire mesh, 30 mesh, product number NI-758030) F (sodium silicate base, containing structural material, etc.) was applied, left to stand overnight, and naturally dried to form a heat insulating layer (thickness 0.3 mm per layer) containing sodium silicate having crystal water. Thus, the separator B (thickness 0.85 mm) was obtained. The molar ratio of Na 2 O: SiO 2 was 1: 3.2. An evaluation pack was produced in the same manner as in Example 1 except that the separator B was used instead of the separator A.
  • a stainless steel mesh body length: 0.25 mm, length: 65 mm, Nilaco Corporation, stainless steel SUS304 / wire mesh, 30 mesh, product number NI-758030
  • F sodium silicate base, containing structural material, etc.
  • Comparative Example 1 As the separator C, a polycarbonate (PC) plate (length 65 mm, width 20 mm, thickness 1 mm) was prepared. An evaluation pack was produced in the same manner as in Example 1 except that the separator C was used instead of the separator A.
  • PC polycarbonate
  • Examples 1 to 2 and Comparative Example 1 were evaluated as follows.
  • a ceramic heater manufactured by Sakaguchi Electric Heat Co., Ltd., MS-M5
  • the lid was removed from the housing, a plate-like heating element of a ceramic heater was brought into contact with one end surface of one cylindrical body, and a pair of lead wires extending from the heating element was connected to a power source having an inter-terminal voltage of 6V.
  • the heater temperature was set at 700 ° C.
  • Example 1 and 2 the thickness before expansion
  • Expansion rate (%) (thickness after expansion of heat insulation layer ⁇ thickness before expansion of heat insulation layer) / (thickness before expansion of heat insulation layer) ⁇ 100 The results are shown in Table 1.
  • the expansion coefficient of the heat insulation layer of Table 1 was taken as the average value of the expansion coefficients of the two heat insulation layers arranged on both surfaces of the metal mesh body.
  • the battery pack according to the present invention can effectively suppress conduction of heat to adjacent batteries when a specific battery generates heat due to an abnormality. It is useful as a battery pack for mobile phones. Further, it can be applied to uses such as a package of a large stationary battery or an electric vehicle battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

 電池パックは、複数個の電池、複数個の電池を収納する筐体、および複数個の電池を相互に隔離する、少なくとも1つの隔離板を備える。少なくとも1つの隔離板は、金属メッシュ体、および金属メッシュ体の両面に配された断熱層を含む。断熱層は、110℃以上200℃未満の温度で発泡可能な発泡材料を含み、発泡材料の発泡により断熱層の厚みが増大する。これにより、電池パック内に収納された電池のいずれかが異常に発熱しても、他の電池への熱伝導を効果的に抑えることができる。

Description

電池パック
 本発明は、複数の電池を備えた電池パックに関し、特に、電池パックの構造の改良に関する。
 近年、ノート型パーソナルコンピュータ、携帯電話等のポータブル機器の普及により、その電源である電池の需要が高まっている。特に、小型かつ軽量で、エネルギー密度が高く、繰り返し充放電が可能な二次電池の需要が高まっている。
 このような需要に対して、非水電解質二次電池の研究開発が活発に行われている。この非水電解質二次電池は、ポータブル機器の高機能化に伴って、より大きなエネルギーを保有するようになってきており、異常時に発熱する量も大きなものとなっている。
 このような電池を収納する電池パックにおいて、特定の電池がなんらかの原因で異常に発熱した際、その熱が隣接する電池に伝わることを抑制するための構造が提案されている。
 特許文献1では、複数の電池間に、絶縁性および断熱性を有する、ポリプロピレンおよびポリカーボネートのような樹脂製の隔離板を配置することが提案されている。この隔離板により、異常発熱した特定の電池の熱が、隣接する電池に伝わるのが抑制される。
 特許文献2では、隔離板の難燃性を高めるために、マイカやセラミックスなどの無機耐火材料を用いることが提案されている。
 特許文献3では、ポリエチレンおよびポリプロピレンのような可燃性樹脂製の隔離板に内腔を設け、その内腔にリン酸二水素アンモニウム等の消火剤を充填することが提案されている。異常発熱した電池の熱により、隔離板の一部(低融点部)が溶解して開口すると、その開口から外部へ消火剤が流出し、空洞となった隔離板の内腔が断熱部となる。
特開2008-192570号公報 特開2008-218210号公報 特開2009-4362号公報
 特許文献1~3の隔離板は、電池パック作製時においてある程度の厚みを要するため、体積効率が低い。よって、電池パックのサイズを小さくすることが困難である。
 また、電池パック内にて特定の電池が異常に発熱することにより生じた多量の熱が局所的に集中して隔離板に伝播すると、隔離板が損傷し、隣接する電池へその熱が伝播する場合がある。
 そこで、本発明は、高い断熱効果を有し、電池パック内に収納された電池のうちのいずれかが異常に発熱することにより電池パック内にて多量の熱が局所的に集中して生じたとしても、他の電池への熱伝導を効果的に抑えることができる、安全性が高く、小型軽量の電池パックを提供する。
 本発明は、複数個の電池、前記複数個の電池を収納する筐体、および前記複数個の電池を相互に隔離する、少なくとも1つの隔離板を備えた電池パックであって、前記少なくとも1つの隔離板は、金属メッシュ体、および前記金属メッシュ体の両面に配された断熱層を含み、前記断熱層は、110℃以上200℃未満の温度で発泡可能な発泡材料を含み、前記発泡材料の発泡により当該断熱層の厚みが増大することを特徴とする。
 本発明によれば、金属メッシュ体の両面に断熱層が配された隔離板が熱せられると、断熱層内の発泡材料が発泡し、多数の気泡が発生し、断熱層が膨張することにより、隔離板は優れた断熱性を発揮する。隔離板は金属メッシュ体を含むため、隔離板にて熱を効率よく分散させることができる。よって、隣り合う電池の間に隔離板を配置することにより、電池パック内に収納された電池のいずれかが異常に発熱することにより電池パック内にて多量の熱が局所的に集中して生じたとしても、他の電池への熱伝導を効果的に抑えることができる。また、断熱層は金属メッシュ体に安定して保持されるため、隔離板の厚みを薄くすることができる。このような隔離板を用いることにより、高い断熱効果を有し、安全性が高く、小型軽量の電池パックを提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態である電池パックの概略縦断面図である。 図1のII-II線に沿った断面図である。
 本発明は、複数個(2個以上)の電池、前記複数個の電池を収納する筐体、および前記複数個の電池を相互に隔離する、少なくとも1つの隔離板を備えた電池パックに関する。
 複数個の筒状の電池を、隣り合う電池の側面同士が向かい合うように筐体内に収納する場合、前記少なくとも1つの隔離板を、前記隣り合う電池の少なくとも前記側面の間に配置すればよい。
 筒状の電池としては、例えば、円筒型、角型等が挙げられる。円筒型電池または角型電池は、円柱体または四角柱体であり、その一端面に正極端子およびその他端面に負極端子が設けられている。複数個の円筒型電池または角型電池が、隣り合う電池の側面同士が向かい合うように横一列に配置される場合、前記側面の間に隔離板が配置される。隣り合う電池の端面同士が向かい合う場合、前記端面の間には、隔離板を配置してもよく、配置しなくてもよい。
 本発明は、上記の隔離板が下記(1)~(3)の特徴を有する。
(1)隔離板が、伝熱層、および伝熱層の両面に配された断熱層で構成されている。
(2)伝熱層が、金属メッシュ体である。
(3)断熱層が、110℃以上200℃未満の温度(以下、第1の温度)で発泡可能な発泡材料を含み、その発泡材料の発泡により断熱層の厚みが増大する。
 本発明の電池パックにおける隔離板は、金属メッシュ体および発泡材料を含む断熱層を組み合わせることにより、バランス良く、効果的に、熱拡散および熱吸収を行うことが可能であり、電池パックの安全性が大幅に向上する。具体的には、2つの断熱層で熱を効果的に吸収し、金属メッシュ体にて熱を効果的に拡散させることにより、異常に発熱した電池の熱が、隣接する電池に伝播するのを抑制することができる。多量の熱が局所的に集中して隔離板に伝播した場合でも、隔離板は損傷することがなく、その熱が隣接する電池に伝播するのを確実に抑制することができる。
 断熱層は、第1の温度で発泡する材料を含む。第1の温度とは、電池が異常に発熱して断熱層が熱せられた際の断熱層の温度である。電池パックの使用環境、および電池が異常に発熱した際の電池温度の観点から、110℃以上で発泡可能な発泡材料を用いる必要がある。後述するアルカリ金属の珪酸塩が発泡する温度は、110℃以上200℃未満である。断熱層の温度を、電池が自己発熱する温度以下とするためには、第1の温度は150℃以下であるのが好ましい。
 正常状態には、発泡材料は発泡しないので、断熱層は膨張することなく、薄い層として存在する。電池パックに収納された複数の電池のうちのいずれかが異常発熱をしたときには、その電池に接し、または近接する断熱層が熱せられて発泡材料が発泡し、断熱層内部に多数の気泡が発生し、断熱層の厚みが増大する。その多数の気泡によって、優れた断熱性が発揮され、隣り合う正常な電池に熱が伝わることを効果的に抑制することができる。
 異常発熱した電池から高温ガスが噴出する等により、隔離板に多量の熱が局所的に集中して伝播した場合でも、金属メッシュ体にて熱を効率よく分散させることができるため、隔離板は損傷しない。
 伝熱層がメッシュ体であるため、隔離板にて熱を効率よく分散させることができ、隔離板にて局所的に熱が集中するのを効果的に抑制することができる。
 伝熱層が金属メッシュ体であり、また、金属メッシュ体に断熱層が安定して保持されるため、隔離板を薄くすることができる。よって、電池パックの小型軽量化が可能である。
 金属メッシュ体および発泡材料を含む断熱層からなる隔離板は、マイカやセラミックスのような無機耐火材料を主材料として含む隔離板に比べて、一般的に安価かつ軽量であり、また、その製造も容易であることから、高い断熱効果を有する電池パックの軽量化、低価格化を可能とする。
 また、本発明では、断熱層を構成する材料に発泡材料を用いるため、無機耐火材料を用いる場合でも、少量の無機耐火材料の使用で十分な断熱効果が得られる。
 以下、本発明に係る一実施形態を、図面を参照しながら説明するが、本発明は、以下の実施形態に限定されるものではない。
 本実施形態の電池パック1は、図1および2に示すように、円筒型二次電池である電池3および電池4と、電池3および電池4を収納する角型の樹脂製の筐体2と、電池3と電池4との間に配された隔離板5とを備える。隔離板5は、シート状の金属メッシュ体6、および金属メッシュ体6の両面に配された断熱層7aおよび断熱層7bからなる。断熱層7aが電池3側に、断熱層7bが電池4側に、それぞれ配される。金属メッシュ体6の両面に断熱層7aおよび断熱層7bが配されるため、電池3および電池4のどちらが異常に発熱しても、効率よく熱を吸収することができる。なお、図示しないが、電池パックは、上記以外にも、電池3および電池4の電気的な接続のための部材(リード等)および電池パックから外部へ電気を取り出すための部材(外部端子等)のような電池パックの構成に必要な部材を備える。これらの部材には、従来から電池パックで用いられているものを適宜用いればよい。
 電池3および電池4は、円柱体であり、その一端面に正極端子が設けられ、その他端面に負極端子が設けられている。電池3および電池4は、互いに側面同士を対向させて、同じ向きに配置されている。電池3および電池4の側面同士の間に隔離板5が配置されている。電池3および電池4の端面同士は互いに対向しないので、電池3および電池4の端面同士の間での熱伝導は起こり難い。
 金属メッシュ体6は、ステンレス鋼、鉄、ニッケル、アルミニウム、チタン、および銅からなる群より選択される少なくとも1種からなるのが好ましい。これらのなかでも、金属メッシュ体の強度、電池パックの小型軽量化、およびコストの面から、これらの中でも、ステンレス鋼が特に好ましい。
 異常発熱した電池から高温ガスが噴出する等により、多量の熱が隔離板(断熱層)に局所的に集中して伝播した場合でも、熱を効率よく吸収し、分散させることができる。よって、多量の熱が局所的に集中して伝播することによる隔離板5の損傷を抑制することができる。
 金属メッシュ体の断熱層保持性および強度の観点から、金属メッシュ体6は、5~65メッシュであるのが好ましい。金属メッシュ体は、例えば、金属の線材からなる、多数の網目(孔)を有する金網である。金網としては、平織金網、綾織金網、および亀甲金網のような織金網が挙げられる。金属メッシュ体の面方向において均一な熱拡散性を得るためには、金網を構成する線材の直径が一定であり、網目の形状およびサイズが一定であるのが好ましい。金属メッシュ体の熱拡散性および強度の観点から、線材の直径は、0.02~0.7mmが好ましい。網目の形状は、正方形、長方形、菱形などの四角形および六角形(亀甲形)のような多角形が挙げられる。金属メッシュ体の熱拡散性および断熱層保持性の観点から、これらの中でも、網目形状は、四角形が好ましい。金属メッシュ体の熱拡散性および断熱層保持性の観点から、網目の大きさ(目開き)は、0.02~4.38mmが好ましい。金属メッシュ体の熱拡散性および断熱層保持性の観点から、金属メッシュの開口率は、25~75%が好ましい。また、金属メッシュ体として、エキスパンドメタルを用いてもよい。
 Liと合金化可能な負極活物質を用いた非水電解質二次電池のような、容量が比較的大きい電池を用いる場合、電池が異常に発熱した際の電池温度が非常に高くなる。このような電池を用いる場合、金属メッシュ体6には、ステンレス鋼およびチタンのような融点の高い材料を用いるのが好ましい。
 断熱層7aおよび断熱層7bは、主に、アルカリ金属の珪酸塩を含む。安価であり、珪酸塩を製造し易い点から、そのアルカリ金属は、ナトリウム(Na)、カリウム(K)、およびリチウム(Li)からなる群より選択される少なくとも1種であるのが好ましい。
 結着力の観点からはNa>K>Liの順であり、耐水性の観点からはLi>K>Naの順である。これら3種のアルカリ金属の珪酸塩を、電池パックの使用機器にあわせて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アルカリ金属の珪酸塩は、多くの結晶水を有する。結晶水を有するアルカリ金属の珪酸塩は、例えば、式:M2O・nSiO2・xH2Oで表される組成を有する。式中、Mは、Na、K、およびLiからなる群より選択される少なくとも1種である。MがNaまたはLiの場合、nは0.5~4である。MがKの場合、nは0.4~4である。xは、結晶水の量を示す値であり、結晶水の量により任意の値を取り得る。例えば、メタ珪酸ナトリウムの場合、M=Naおよびn=1である。メタ珪酸カリウムの場合、M=Kおよびn=1である。メタ珪酸リチウムの場合、M=Liおよびn=1である。
 結晶水を有するアルカリ金属の珪酸塩が高温に曝されると、アルカリ金属の珪酸塩は約110℃付近から結晶水を放し始め、それと同時に発泡し始める。このため、断熱層7aおよび断熱層7bの内部に気泡が多数形成され、その厚みが増大して、その断熱性が高められる。
 例えば、電池パック1において、電池3が異常に発熱した場合、断熱層7aおよび断熱層7bが第1の温度に熱せられると、断熱層7aおよび断熱層7b中のアルカリ金属の珪酸塩が発泡し、断熱層7aおよび断熱層7bは気泡を生じながら膨張する。その結果、気泡を多数含む、膨張した断熱層7aおよび断熱層7bによって、電池3から隣接する電池4への熱伝導が抑制され、電池3の異常な発熱が電池4に及ぶことが阻止される。
 異常発熱した電池3の熱は、断熱層7a、金属メッシュ体6、および断熱層7bの順に伝播する。断熱層7aより金属メッシュ体6に伝播した熱は隔離板全体に拡散するため、断熱層7bにて、効率よく熱を吸収することができる。たとえ、異常発熱した電池3から高温ガスが噴出する等により、隔離板5に多量の熱が局所的に伝播した場合でも、金属メッシュ体6において熱が分散するため、隔離板に多量の熱が集中して伝播することによる隔離板の損傷が抑制される。
 電池パック1のスペースおよび隔離板5の断熱性の観点から、断熱層7aおよび断熱層7bの厚み方向の膨張率は、30~600%が好ましく、50~300%がより好ましい。
 なお、膨張率は、下記式で表される。
 膨張率(%)=(断熱層の膨張後の厚み-断熱層の膨張前の厚み)/(断熱層の膨張前の厚み)×100
 断熱層の膨張の程度は、例えば、発泡材料の種類および含有割合、ならびに後述する発泡促進剤の含有割合に応じて調整することができる。なお、断熱層の厚みは、隔離板の厚み方向に沿った厚み寸法を指す。
 さらに、断熱層7aおよび断熱層7bは、アルカリ金属の珪酸塩が結晶水を放つ際の潜熱で電池を冷却する効果も有する。よって、アルカリ金属の珪酸塩は、断熱層を構成する材料として非常に好ましい。発泡材料がアルカリ金属の珪酸塩である場合、発泡材料の発泡による断熱効果だけでなく、さらに上記の冷却効果が得られるため、電池3の熱が電池4へ伝わるのをより抑制することができる。
 隔離板5は、発火点、引火点を有さない不燃材料で主に構成されているため、電池パック1の信頼性を高める上で適したものである。隔離板5において、金属メッシュ体の両面は、絶縁性を有する断熱層で覆われるため、隔離板5により電池の外部短絡を生じることはない。
 アルカリ金属の珪酸塩が発泡する第1の温度を超える温度に断熱層が熱せられた場合に、より効果的に断熱することができるように、断熱層7aおよび断熱層7bは、さらに、200℃以上の温度(以下、第2の温度)で発泡可能な発泡促進剤を含むのが好ましい。
 発泡促進剤には、アルカリ金属の珪酸塩が結晶水を放し、それが水蒸気となって発泡する温度より高い温度で気体を放出する材料を用いるのが好ましい。発泡促進剤は、電池の異常発熱により第1の温度を超えるまで断熱層が熱せられた時に気体を放出する。これにより、断熱層7aおよび断熱層7bにおいて発泡に寄与する気体がより多く発生する。このため、断熱層が発泡促進剤を含まない場合に比べて、断熱層7aおよび断熱層7bの発泡材料が発泡した後の厚みをより増大させることができる。これにより、断熱層7aおよび断熱層7bの断熱効果をさらに高めることができる。
 発泡促進剤としては、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、明礬、硫酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、および炭酸バリウムからなる群より選択される少なくとも1種を用いることがより好ましい。なお、発泡促進剤としてアルカリ金属の珪酸塩が結晶水を放し、気体が供給されて発泡する温度より、高い温度(第2の温度)で気体を放出する材料を選択するのが好ましい。
 発泡材料と発泡促進剤との組み合わせの代表例として、ナトリウムの珪酸塩に対して水酸化アルミニウムや水酸化マグネシウムが選択される。ナトリウムの珪酸塩は約130~150℃に加熱されると結晶水を放し、それが水蒸気となって発泡する。これに対して、水酸化アルミニウムは約200~300℃程度に加熱されると熱分解により水蒸気を生じる。また、水酸化マグネシウムは約400℃以上に加熱されると熱分解により水蒸気を生じる。このような組み合わせにより、断熱層の温度がナトリウムの珪酸塩が水蒸気を放出する温度を超えると、発泡促進剤である水酸化アルミニウムや水酸化マグネシウムの熱分解により水蒸気が生じる。このため、断熱層の温度がナトリウムの珪酸塩が水蒸気を放出する温度より高くなっても、断熱層内にて気泡の発生を持続させることができる。
 断熱層7aおよび断熱層7bにおける発泡促進剤の含有割合Waは、アルカリ金属の珪酸塩(結晶水を含まない)100質量部に対して5~95質量部であることが好ましく、20~80質量部であることがより好ましい。
 断熱層7aおよび断熱層7bにおける発泡促進剤の含有割合Waを、アルカリ金属の珪酸塩(結晶水を含まない)100質量部に対して5質量部以上とすることで、発泡促進剤の効果が十分に得られる。断熱層7aおよび断熱層7bにおける発泡促進剤の含有割合Waを、アルカリ金属の珪酸塩(結晶水を含まない)100質量部に対して95質量部以下とすることで、発泡材料が相対的に占める割合を十分に確保することができる。よって、断熱層7aおよび断熱層7bによる断熱効果が十分に得られる。また、後述の構造材を用いる場合、構造材が相対的に占める割合を十分に確保することができ、断熱層7aおよび断熱層7bの結着力が十分に得られる。その結果、断熱層7aおよび断熱層7bの金属メッシュ体6からの部分的な剥落等を防ぐことができる。
 高温環境下における断熱層の形状安定性を改善するために、断熱層7aおよび断熱層7bは、さらに、第2の温度で発泡しない無機粒子からなる構造材を含むことが好ましい。断熱層7aおよび断熱層7bは、さらに、発泡促進剤および構造材の両方を含むのがより好ましい。
 無機粒子は、断熱層内にて均一に分散している。無機粒子は、耐熱性および断熱層の形状安定性の観点からセラミックスの粒子であるのが好ましい。
 セラミックスには、珪酸アルミニウム、ケイフッ化ナトリウム、ベントナイト、モンモリロナイト、カオリナイト、ムライト、珪藻土、アルミナ、シリカ、雲母、酸化チタン、バーミキュライト、パーライト、マグライト、セピオライト、タルク、珪酸カルシウム、珪酸マグネシウム、硫酸カルシウム、およびセメントからなる群より選択される少なくとも1種を用いるのがより好ましい。
 粒子の形状は、例えば、球状、薄片状、繊維状が挙げられる。構造材が繊維状の場合、平均繊維長0.1~100μm、および平均繊維径0.01~10μmが好ましい。構造材が球状の場合、平均粒径0.1~100μmが好ましい。構造材が薄片状の場合、例えば、厚み0.01~10μmおよび最大径0.05~100μmが好ましい。
 断熱層7aおよび断熱層7b中の構造材の含有割合Wbは、アルカリ金属の珪酸塩(結晶水を含まない)100質量部に対して5~70質量部であることが好ましく、10~50質量部であることがさらに好ましい。
 断熱層7aおよび断熱層7b中の構造材の含有割合Wbを、アルカリ金属の珪酸塩(結晶水を含まない)100質量部に対して5質量部以上とすることで、断熱層7aおよび断熱層7bの膨張時に、断熱層7aおよび断熱層7bの厚みを均一化することができる。よって、得られる発泡層(膨張した断熱層)による断熱効果が十分に得られる。断熱層7aおよび断熱層7b中の構造材の含有割合Wbを、アルカリ金属の珪酸塩(結晶水を含まない)100質量部に対して50質量部以下とすることで、発泡材料および発泡促進剤が相対的に占める割合を十分に確保することができる。よって、断熱層7aおよび断熱層7bによる断熱効果が十分に得られる。
 金属メッシュ体6は多数の孔(網目)を有するため、電池パックの小型軽量化が可能である。また、隔離板作製時において、金属メッシュ体6の孔内に、後述する断熱層形成組成物が密に充填され、金属メッシュ体6の孔内に断熱層(図示しない)が形成される。孔内に形成された断熱層を介して、断熱層7aおよび断熱層7bは一体化している。よって、断熱層7aおよび断熱層7bは、金属メッシュ体6に安定して保持される。金属メッシュ体6からの断熱層7aおよび断熱層7bの剥がれおよび脱落が抑制される。
 金属メッシュ体6は、孔の形状およびサイズが一定であるため、その孔内に断熱層を均一に充填することができる。よって、隔離板5の面方向において、金属メッシュ体の熱拡散性および断熱層の熱吸収性を均一化することができる。
 これに対して、伝熱層が多孔質体(発泡体)である場合、孔の形状およびサイズが一定に形成されていない。多孔質体の表面で開口する部分が小さく、かつ厚み方向に延びていない孔が存在する。また、多孔質体は、孔が占める割合が少ない。よって、多孔質体の孔に断熱層を密に安定して形成することが難しく、多孔質体の表面にて断熱層を安定して保持することが難しい。多孔質体内にて断熱層を均一に充填することが難しい。多孔質体の面方向において熱拡散性および熱吸収性のばらつきを生じ易い。
 金属メッシュ体6の厚みは、0.02mm~1mmであるのが好ましい。なお、この金属メッシュ体6の厚みは、金属メッシュ体6の厚み方向に沿った断面における、最大の厚み寸法を指す。金属メッシュ体の厚みが0.02mm以上であると、異常に発熱した電池からの熱の吸収および分散を効果的に行うことができる。電池パックの小型軽量化の観点から、金属メッシュ体6の厚みが1mm以下であると、電池パックの小型軽量化が容易である。金属メッシュ体6の厚みは、より好ましくは0.02~0.5mmであり、特に好ましくは0.02~0.1mmである。
 断熱層の形状安定性および電池パックの小型軽量化の観点から、断熱層7aの厚み(発泡材料が発泡する前の厚み)、および断熱層7bの厚み(発泡材料が発泡する前の厚み)は、好ましくは0.04~2mm、より好ましくは0.04~1mm、特に好ましくは0.04~0.5mmである。
 隔離板5の厚みは、0.1~5mmであるのが好ましい。なお、この隔離板5の厚みは、発泡材料が発泡する前の厚み寸法を指す。隔離板5の厚みが0.1mm以上であると、隔離板5の断熱性を十分に確保することができる。隔離板5の厚みは5mm以下であると、電池パックの小型軽量化が容易である。隔離板5の厚みは、0.1~2.5mmであるのがより好ましい。
 隔離板5の幅(隔離板の電池の軸方向に垂直な面における面方向の長さ)は、電池3および電池4を収納した状態で電池の直径(電池の設置面(筐体の内底面)からの高さ)以上の寸法とするのが好ましい。これにより、断熱層7aおよび断熱層7bによる断熱効果がより高められる。
 隔離板5の電池の軸方向の長さは、電池の軸方向の長さ以上の寸法とするのが好ましい。これにより、断熱層7aおよび断熱層7bによる断熱効果がより高められる。
 円筒型電池の代わりに角型電池を筐体内に収納する場合、隔離板5の幅(隔離板5の電池の軸方向に垂直な面における面方向の長さ)は、角型電池の設置面(筐体の内底面)からの高さ以上の寸法とするのが好ましい。
 電池パック1の製造方法は、例えば、
(A)筐体2を準備する工程と、
(B)アルカリ金属の珪酸塩を含む断熱層形成用組成物を作製する工程と、
(C)工程(B)で作製した断熱層形成用組成物を、金属メッシュ体6の両面に一定の厚みで層状になるよう塗布した後、乾燥して断熱層7aおよび断熱層7bを形成し、隔離板5を作製する工程と、
(D)電池3と電池4との間に隔離板5が配置されるように、筐体2内に、電池3、電池4、および隔離板5を収納する工程と、
を含む。
 以下、工程(A)について説明する。
 筐体は、例えば、樹脂成型により得られる。筐体の成型に用いられる樹脂材料には、UL-94規格のV-0以上の難燃性樹脂を使用することが好ましい。「ノート型PCにおけるリチウムイオン二次電池の安全利用に関する手引書」((社)電子情報技術産業協会、(社)電池工業会)では、筐体の樹脂材料に上記の難燃性樹脂を用いることが推奨されている。筐体の構成材料には、難燃化処理された高分子材料を用いるのが好ましい。その高分子材料としては、ポリカーボネート(PC)、ポリプロピレン(PP)、およびポリエチレンテレフタレート(PET)などのいずれかに難燃化処理を施したものを用いるのが好ましい。
 以下、工程(B)について説明する。
 断熱層形成用組成物は、例えば、アルカリ金属の珪酸塩に、溶媒または分散媒を加えることにより得られる。必要に応じて、断熱層形成用組成物に、さらに発泡促進剤および構造材のうちの少なくとも一方を加えてもよい。溶媒または分散媒には、例えば、水や有機溶媒が用いられる。
 作業上の観点から、断熱層形成用組成物として、水ガラス(珪酸ナトリウムの水溶液)を用いるのが好ましい。水ガラスとしては、例えば、JIS規格(JIS K 1408)の1~3号の珪酸ナトリウムが用いられる。
 以下、工程(C)について説明する。
 例えば、金属メッシュ体6に、断熱層形成用組成物を塗布し、塗膜を形成した後、塗膜を乾燥させて、塗膜中の溶媒または分散媒を除去することにより、金属メッシュ体6に断熱層7aおよび断熱層7bを形成する。例えば、断熱層形成用組成物に水ガラスを用いる場合、結晶水を有する固形状の珪酸ナトリウムを含む断熱層を形成することができる。
 断熱層形成用組成物の塗布方法には、浸漬塗布法、ローラ塗布法、スプレー塗布法、ドクターブレード塗布法等の、従来から公知の塗布方法が用いられる。
 工程(C)により、金属メッシュ体の両面だけでなく、金属メッシュ体の孔内にも容易に組成物を充填することができる。よって、金属メッシュ体6の両面に断熱層7aおよび断熱層7bを形成するだけでなく、金属メッシュ体6の孔内にも容易に断熱層(図示しない)を形成することができ、断熱層7aおよび断熱層7bを金属メッシュ体6に強固に保持させることができる。
 以下、工程(D)について説明する。
 工程(D)では、例えば、工程(A)において、筐体2を、ケース本体および蓋体で構成する場合、ケース本体の開口部より電池3および電池4を収納し、さらに電池3と電池4との間に隔離板5を挿入した後、接着剤または熱溶着によりケース本体に蓋体を装着する。このようにして、筐体2内に電池3、電池4、および隔離板5を収納する。
 また、工程(A)において、ケース本体の内面の所定箇所に、隔離板の端部を嵌合させるための溝を形成する場合、工程(D)において、ケース本体に電池を収納する前に、予め隔離板の端部を溝に嵌合させ、隔離板をケース本体の所定位置に設置させてもよい。
 以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
 本発明の電池パックの安全性を評価するため、以下の手順で、電池の代わりに金属円柱体を用いて評価用パックを作製し、評価した。
《実施例1》
(1)隔離板の作製
 長さ65mm、幅20mm、および厚み0.4mmのニッケル製のメッシュ体((株)ニラコ製、ニッケル/金網、20メッシュ、品番NI-318020)の両面に、断熱層形成用組成物を均一塗布し、一昼夜放置して自然乾燥させ、結晶水を有する珪酸ナトリウムを含む断熱層(一層あたりの厚み0.3mm)を形成した。このようにして、隔離板A(厚み1.0mm)を作製した。断熱層形成用組成物には、珪酸ソーダ(大阪硅曹株式会社製、商品名:3号珪酸ソーダ)80質量部に水20質量部を加えて得られた珪酸ナトリウムの水溶液を用いた。Na2O:SiO2のモル比は1:3であった。
(2)評価用パックの作製
 内部空間の長さ67mm、幅41mm、深さ20mm、厚み1mmのポリカーボネート製筐体内に、電池3および4の代わりに、SUS304製の円柱体(長さ65mm、外径18mm)を2個収納した。上記で得られた隔離板Aを、筐体内の円柱体間に配置した。
 具体的には、筐体を、有底角筒状のケース本体と四角板状の蓋体とで構成した。ケース本体に円柱体の2個を収納し、さらに、2個の円柱体の間に隔離板を挿入した。その後、ケース本体に蓋体を取り付けた。このようにして、筐体内に隔離板および2個の円柱体を収納した。なお、後述の評価試験のためにケース本体と蓋体とを接合せずに電池パックを構成した。
《実施例2》
 長さ65mm、幅20mm、および厚み0.25mmのステンレス鋼製のメッシュ体((株)ニラコ製、ステンレスSUS304/金網、30メッシュ、品番NI-758030)の両面に、株式会社アクセス製のアクセラコートF(珪酸ソーダベース、構造材他含有)を塗布し、一昼夜放置して自然乾燥させ、結晶水を有する珪酸ナトリウムを含む断熱層(一層あたりの厚み0.3mm)を形成した。このようにして、隔離板B(厚み0.85mm)を得た。Na2O:SiO2のモル比は1:3.2であった。
 隔離板Aの代わりに、隔離板Bを用いた以外、実施例1と同様の方法により、評価用パックを作製した。
《比較例1》
 隔離板Cとして、ポリカーボネート(PC)製の板(長さ65mm、幅20mm、厚み1mm)を用意した。
 隔離板Aの代わりに、隔離板Cを用いた以外、実施例1と同様の方法により、評価用パックを作製した。
[評価]
 実施例1~2および比較例1について、以下の評価を行った。
 セラミックヒーター(坂口電熱(株)製、MS-M5)を準備した。筐体から蓋を取り外し、一方の円柱体の一端面にセラミックヒーターの板状の発熱体を当接し、この発熱体から延びる一対のリード線を端子間電圧6Vの電源に接続した。ヒーター温度を700℃に設定した。ヒーター温度が700℃に達してから10分後に、他方の円柱体の温度を熱電対で測定した。
 また、実施例1および2については、デジタルノギスを用いて、ヒーターにて加熱する前における断熱層の膨張前の厚み、およびヒーターにて加熱した後における断熱層の膨張後の厚みを測定した。そして、下記式より膨張率を求めた。
 膨張率(%)=(断熱層の膨張後の厚み-断熱層の膨張前の厚み)/(断熱層の膨張前の厚み)×100
 その結果を表1に示す。表1の断熱層の膨張率は、金属メッシュ体の両面に配された2つの断熱層の膨張率の平均値とした。
Figure JPOXMLDOC01-appb-T000001
 本発明の実施例1および2の評価用パックは、比較例1の評価用パックに比べて、断熱効果に優れていることがわかった。実施例1および2の隔離板を用いた場合、隣り合った電池間の熱伝導が効果的に抑制され、安全性が非常に高い電池パックが得られることがわかった。比較例1の評価用パックでは、隔離板Cが一部溶融して破損した。また、隔離板Cは発泡材料を含まないため、実施例1および2のような発泡材料の発泡による膨張は起こらなかった。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本発明に係る電池パックは、特定の電池が、万一異常により発熱が生じたとき、その熱が隣り合った電池に伝導することを効果的に抑制することができ、パーソナルコンピュータ用電池パックや携帯電話用電池パック等として有用である。また、大型の定置用電池または電気自動車用電池のパッケージ等の用途にも応用可能である。

Claims (9)

  1.  複数個の電池、前記複数個の電池を収納する筐体、および前記複数個の電池を相互に隔離する、少なくとも1つの隔離板を備えた電池パックであって、
     前記少なくとも1つの隔離板は、金属メッシュ体、および前記金属メッシュ体の両面に配された断熱層を含み、
     前記断熱層は、110℃以上200℃未満の温度で発泡可能な発泡材料を含み、前記発泡材料の発泡により当該断熱層の厚みが増大することを特徴とする電池パック。
  2.  前記発泡材料は、結晶水を有するアルカリ金属の珪酸塩を含む請求項1記載の電池パック。
  3.  前記アルカリ金属は、ナトリウム、カリウム、およびリチウムからなる群より選択される少なくとも1種である請求項2記載の電池パック。
  4.  前記断熱層が、さらに200℃以上の温度で発泡可能な発泡促進材と、200℃以上の温度で発泡しない無機粒子からなる構造材とを含む請求項1~3のいずれか1項に記載の電池パック。
  5.  前記発泡促進材は、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、明礬、硫酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、および炭酸バリウムからなる群より選択される少なくとも1種である請求項4に記載の電池パック。
  6.  前記構造材は、珪酸アルミニウム、ケイフッ化ナトリウム、ベントナイト、モンモリロナイト、カオリナイト、ムライト、珪藻土、アルミナ、シリカ、雲母、酸化チタン、バーミキュライト、パーライト、マグライト、セピオライト、タルク、珪酸カルシウム、珪酸マグネシウム、硫酸カルシウム、およびセメントからなる群より選択される少なくとも1種である請求項4に記載の電池パック。
  7.   前記金属メッシュ体は、ステンレス鋼、鉄、ニッケル、アルミニウム、チタン、および銅からなる群より選択される少なくとも1種からなる請求項1~6のいずれか1項に記載の電池パック。
  8.  前記金属メッシュ体の厚みは、0.02mm~1mmである請求項1~7のいずれか1項に記載の電池パック。
  9.  前記隔離板の前記発泡材料が発泡する前の厚みは、0.1mm~5mmである請求項1~8のいずれか1項に記載の電池パック。 
PCT/JP2011/001386 2010-03-30 2011-03-09 電池パック WO2011121901A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011538189A JP5379238B2 (ja) 2010-03-30 2011-03-09 電池パック
US13/257,500 US8592076B2 (en) 2010-03-30 2011-03-09 Battery pack
EP20110755231 EP2555276A1 (en) 2010-03-30 2011-03-09 Battery pack
CN201180001439.0A CN102356483B (zh) 2010-03-30 2011-03-09 电池包

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010076585 2010-03-30
JP2010-076585 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011121901A1 true WO2011121901A1 (ja) 2011-10-06

Family

ID=44711671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001386 WO2011121901A1 (ja) 2010-03-30 2011-03-09 電池パック

Country Status (6)

Country Link
US (1) US8592076B2 (ja)
EP (1) EP2555276A1 (ja)
JP (1) JP5379238B2 (ja)
KR (1) KR20110126714A (ja)
CN (1) CN102356483B (ja)
WO (1) WO2011121901A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161559A (ja) * 2012-02-02 2013-08-19 Nissan Motor Co Ltd 電気デバイスモジュール
JP2014022372A (ja) * 2012-07-17 2014-02-03 Robert Bosch Gmbh 遮熱装置によって電池に関連した熱の伝搬を減衰する方法および電池のための遮熱装置
WO2014103770A1 (ja) * 2012-12-26 2014-07-03 日産自動車株式会社 電池モジュール
JP2016505205A (ja) * 2013-04-29 2016-02-18 エルジー・ケム・リミテッド 自動車用バッテリーパックに含まれるバッテリーモジュール
JP2017523584A (ja) * 2014-05-21 2017-08-17 サーマル・セラミック・インコーポレイテッドThermal Ceramics, Inc. 受動的断熱材
WO2019088195A1 (ja) * 2017-10-31 2019-05-09 イビデン株式会社 組電池用断熱シートおよび組電池
JP2020119841A (ja) * 2019-01-25 2020-08-06 イビデン株式会社 熱伝達抑制部材及びその使用方法
JP2020170707A (ja) * 2015-12-15 2020-10-15 アップル インコーポレイテッドApple Inc. 微多孔質絶縁体
US11398661B1 (en) 2017-08-15 2022-07-26 Apple Inc. Polypropylene carbonate and catalysts
JP2022551802A (ja) * 2020-09-10 2022-12-14 エルジー エナジー ソリューション リミテッド バッテリーモジュール間の熱拡散防止構造を適用したバッテリーパック

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011142199A1 (ja) * 2010-05-12 2013-07-22 日本碍子株式会社 二次電池モジュール
US20130327466A1 (en) * 2012-06-08 2013-12-12 Pellegrino J. Pisacreta Insulated tubing
CN103904270A (zh) * 2012-12-28 2014-07-02 海洋王照明科技股份有限公司 一种电化学电源隔膜及其制备方法、电化学电池或电容器
DE102013215544A1 (de) 2013-08-07 2015-02-12 Robert Bosch Gmbh Reinigungsmittel und/oder Verpackungsmittel
ES2725901T3 (es) 2013-08-30 2019-09-30 Gogoro Inc Dispositivo portátil de almacenamiento de energía eléctrica
KR101491328B1 (ko) * 2013-10-14 2015-02-06 현대자동차주식회사 차량 전력전자부품 하우징용 구조물
US9042589B2 (en) 2013-10-24 2015-05-26 Logitech Europe, S.A. Custom fit in-ear monitors utilizing a single piece driver module
JP6293501B2 (ja) * 2014-01-29 2018-03-14 株式会社東芝 二次電池、及び二次電池の製造方法
CN106576201B (zh) 2014-05-30 2019-08-30 罗技加拿大股份有限公司 一种可定制耳塞
TWI613854B (zh) * 2015-02-27 2018-02-01 睿能創意公司 具有原位形成的流體通道之可攜帶式電能儲存裝置
CN111230657A (zh) * 2015-04-24 2020-06-05 工机控股株式会社 电动工具
KR101726298B1 (ko) * 2015-08-25 2017-04-12 에스케이이노베이션 주식회사 발포제의 발포방향을 제어하는 이차 전지 모듈
DE102015121107A1 (de) * 2015-12-03 2017-06-08 Airbus Defence and Space GmbH Elektrische Energiespeichervorrichtung
US11024920B2 (en) * 2016-08-24 2021-06-01 Panasonic Intellectual Property Management Co., Ltd. Battery module
CN106328874B (zh) * 2016-08-31 2018-12-21 江苏科耐尔新能源科技有限公司 锂电芯隔板及锂电池包
CN116207408A (zh) * 2016-09-27 2023-06-02 松下知识产权经营株式会社 电池模块
CN107968168B (zh) * 2016-10-19 2020-09-11 宁德时代新能源科技股份有限公司 电池模组
CN107978723A (zh) * 2016-10-21 2018-05-01 宁德时代新能源科技股份有限公司 隔热棉及其制备方法和应用该隔热棉的电池模组
CN115472995A (zh) * 2016-12-27 2022-12-13 三菱化学株式会社 分隔构件、电池组和电池组的传热控制方法
CN106785225A (zh) * 2017-03-14 2017-05-31 合肥国轩高科动力能源有限公司 被动防护电池模组结构及其制作方法
GB2561211B (en) * 2017-04-05 2019-09-04 Siemens Ag Cooling system
CN107275715B (zh) * 2017-07-03 2019-04-05 北京工业大学 一种空冷式锂离子电池组阻燃结构
DE102017213276A1 (de) * 2017-08-01 2019-02-07 Robert Bosch Gmbh Batteriemodul und Verwendung eines solchen Batteriemoduls
DE102017213281A1 (de) * 2017-08-01 2019-02-07 Robert Bosch Gmbh Batteriemodul und Verwendung eines solchen Batteriemoduls
DE102017213272A1 (de) * 2017-08-01 2019-02-07 Robert Bosch Gmbh Batteriemodul und Verwendung eines solchen Batteriemoduls
US11791467B2 (en) * 2017-08-31 2023-10-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN111316465B (zh) * 2017-11-17 2023-11-24 日东电工株式会社 电池罩
CN115038001A (zh) 2018-01-03 2022-09-09 罗技欧洲公司 形成定制耳机的设备和方法
KR102365631B1 (ko) * 2018-01-09 2022-02-21 주식회사 엘지에너지솔루션 배터리 모듈
CN111052494B (zh) * 2018-01-31 2024-05-07 松下知识产权经营株式会社 电池模块以及电池组
CN111566838B (zh) * 2018-01-31 2023-07-04 三洋电机株式会社 电池组
DE102018202946A1 (de) * 2018-02-27 2019-08-29 Bayerische Motoren Werke Aktiengesellschaft Batteriemodul für eine Batterie eines Kraftfahrzeugs sowie Batterie für ein Kraftfahrzeug
CN108550750B (zh) * 2018-06-05 2024-01-19 华霆(合肥)动力技术有限公司 加热温度可控的电池包及电池包系统
CN110875443B (zh) * 2018-08-31 2021-06-08 宁德时代新能源科技股份有限公司 防护组件、封盖以及箱体
CN109709137B (zh) * 2018-12-28 2021-12-10 湖北雷迪特冷却系统股份有限公司 一种电池水冷板温度均匀性试验设备及方法
EP3939113A1 (en) 2019-03-14 2022-01-19 Generac Power Systems, Inc. Battery module thermal management
DE102019207464A1 (de) * 2019-05-22 2020-11-26 Volkswagen Aktiengesellschaft Hochvoltbatterie für ein elektrisch betriebenes Fahrzeug sowie Karosseriestruktur für ein solches Fahrzeug
US20220384891A1 (en) * 2019-06-28 2022-12-01 Sanyo Electric Co., Ltd. Power supply device, and electric vehicle and power storage device that comprise said power supply device
CN115023853A (zh) * 2020-03-31 2022-09-06 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置
CN111613746B (zh) * 2020-05-25 2023-09-26 重庆金康动力新能源有限公司 带喷淋系统的电池包用隔离件
EP3916885A1 (en) 2020-05-25 2021-12-01 Chongqing Jinkang Power New Energy Co., Ltd. Battery pack
US11425479B2 (en) 2020-05-26 2022-08-23 Logitech Europe S.A. In-ear audio device with interchangeable faceplate
US11349147B2 (en) 2020-06-26 2022-05-31 Cadenza Innovation, Inc. Battery systems
KR20220021155A (ko) * 2020-08-13 2022-02-22 에스케이온 주식회사 배터리 모듈
EP4024589A1 (en) * 2020-12-31 2022-07-06 3M Innovative Properties Company Thermal barrier assemblies containing insulation pastes
CN113964371B (zh) * 2021-09-28 2023-07-11 上海空间电源研究所 一种拉带式高膨胀率锂离子电池组
TW202327880A (zh) 2021-10-27 2023-07-16 美商羅傑斯公司 阻燃多層材料、製備方法、包含其之電子裝置、及其用途
DE102022104035A1 (de) 2022-02-21 2023-08-24 K.Tex Knein Technische Textilien Gmbh Akkumulator mit zumindest einer Akkumulatorzelle und Verfahren zum Herstellen eines Akkumulators

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169234A (ja) * 1988-12-22 1990-06-29 Ig Tech Res Inc 防火、断熱パネル
JPH08131571A (ja) * 1994-11-04 1996-05-28 Furukawa Techno Material:Kk 可燃性ケーブル用防火シート
JP2005317455A (ja) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
JP2008192570A (ja) 2007-02-07 2008-08-21 Sanyo Electric Co Ltd 電池パック
JP2008218210A (ja) 2007-03-05 2008-09-18 Lenovo Singapore Pte Ltd 電池パックおよび携帯式電子機器
JP2009004362A (ja) 2007-05-24 2009-01-08 Sanyo Electric Co Ltd 組電池および二次電池
JP2009021223A (ja) * 2007-06-11 2009-01-29 Panasonic Corp 電池パックおよび電池搭載機器
WO2010026731A1 (ja) * 2008-09-05 2010-03-11 パナソニック株式会社 電池パック
JP2010062093A (ja) * 2008-09-05 2010-03-18 Panasonic Corp 電池パック

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711332A (en) * 1971-09-09 1973-01-16 S Bastacky Lead gel storage battery
GB2046502B (en) * 1979-04-03 1982-11-10 Chloride Silent Power Ltd Sodium sulphur cells
US6450540B1 (en) * 2000-11-15 2002-09-17 Technology Tree Co., Ltd Printed matter displaying various colors according to view angle
CN1745438A (zh) * 2003-01-04 2006-03-08 3M创新有限公司 交通工具用电池组隔热体
CN2702452Y (zh) 2003-11-27 2005-05-25 王文宏 平板式聚合物锂离子动力电池
US20050244689A1 (en) * 2004-04-28 2005-11-03 Munehisa Horiguchi Separator and fuel cell system using that separator
US20080292950A1 (en) 2007-05-24 2008-11-27 Sanyo Electric Co., Ltd. Battery module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169234A (ja) * 1988-12-22 1990-06-29 Ig Tech Res Inc 防火、断熱パネル
JPH08131571A (ja) * 1994-11-04 1996-05-28 Furukawa Techno Material:Kk 可燃性ケーブル用防火シート
JP2005317455A (ja) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
JP2008192570A (ja) 2007-02-07 2008-08-21 Sanyo Electric Co Ltd 電池パック
JP2008218210A (ja) 2007-03-05 2008-09-18 Lenovo Singapore Pte Ltd 電池パックおよび携帯式電子機器
JP2009004362A (ja) 2007-05-24 2009-01-08 Sanyo Electric Co Ltd 組電池および二次電池
JP2009021223A (ja) * 2007-06-11 2009-01-29 Panasonic Corp 電池パックおよび電池搭載機器
WO2010026731A1 (ja) * 2008-09-05 2010-03-11 パナソニック株式会社 電池パック
JP2010062093A (ja) * 2008-09-05 2010-03-18 Panasonic Corp 電池パック

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161559A (ja) * 2012-02-02 2013-08-19 Nissan Motor Co Ltd 電気デバイスモジュール
JP2014022372A (ja) * 2012-07-17 2014-02-03 Robert Bosch Gmbh 遮熱装置によって電池に関連した熱の伝搬を減衰する方法および電池のための遮熱装置
WO2014103770A1 (ja) * 2012-12-26 2014-07-03 日産自動車株式会社 電池モジュール
JP2016505205A (ja) * 2013-04-29 2016-02-18 エルジー・ケム・リミテッド 自動車用バッテリーパックに含まれるバッテリーモジュール
US10651521B2 (en) 2014-05-21 2020-05-12 Cadenza Innovation, Inc. Lithium ion battery with thermal runaway protection
US10396416B2 (en) 2014-05-21 2019-08-27 Thermal Ceramics, Inc. Passive insulation materials
JP2017523584A (ja) * 2014-05-21 2017-08-17 サーマル・セラミック・インコーポレイテッドThermal Ceramics, Inc. 受動的断熱材
JP2020170707A (ja) * 2015-12-15 2020-10-15 アップル インコーポレイテッドApple Inc. 微多孔質絶縁体
JP7146848B2 (ja) 2015-12-15 2022-10-04 アップル インコーポレイテッド 微多孔質絶縁体
US11398661B1 (en) 2017-08-15 2022-07-26 Apple Inc. Polypropylene carbonate and catalysts
WO2019088195A1 (ja) * 2017-10-31 2019-05-09 イビデン株式会社 組電池用断熱シートおよび組電池
JP2019083150A (ja) * 2017-10-31 2019-05-30 イビデン株式会社 組電池用断熱シートおよび組電池
JP7074455B2 (ja) 2017-10-31 2022-05-24 イビデン株式会社 組電池用断熱シートおよび組電池
JP2020119841A (ja) * 2019-01-25 2020-08-06 イビデン株式会社 熱伝達抑制部材及びその使用方法
JP2022551802A (ja) * 2020-09-10 2022-12-14 エルジー エナジー ソリューション リミテッド バッテリーモジュール間の熱拡散防止構造を適用したバッテリーパック
JP7274664B2 (ja) 2020-09-10 2023-05-16 エルジー エナジー ソリューション リミテッド バッテリーモジュール間の熱拡散防止構造を適用したバッテリーパック

Also Published As

Publication number Publication date
US20120028107A1 (en) 2012-02-02
CN102356483B (zh) 2015-01-14
EP2555276A1 (en) 2013-02-06
JP5379238B2 (ja) 2013-12-25
US8592076B2 (en) 2013-11-26
KR20110126714A (ko) 2011-11-23
CN102356483A (zh) 2012-02-15
JPWO2011121901A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5379238B2 (ja) 電池パック
JP5269200B2 (ja) 電池パック
JP7176134B2 (ja) 複合断熱材
KR20230132800A (ko) 단열 다층 시트, 이의 제조방법, 및 이를 이용한 물품
WO2010026731A1 (ja) 電池パック
CN114891416A (zh) 一种用于锂离子电池包外壳的隔热阻燃防火涂层材料
JP2024509596A (ja) 複合熱管理シート、製作の方法、及びそれを使用する物品
WO2023120340A1 (ja) 熱伝達抑制シート及び組電池
WO2023182384A1 (ja) 防炎構造体及びその製造方法、並びに電池モジュール
JP7436582B1 (ja) 熱伝達抑制シート及び組電池
JP7495468B2 (ja) 熱伝達抑制シート及び組電池
JP7364722B2 (ja) 熱伝達抑制シートの製造方法、熱伝達抑制シート及び組電池
JP7364742B1 (ja) 熱伝達抑制シート及び組電池
JP7414888B2 (ja) 熱伝達抑制シート及び組電池
WO2023229047A1 (ja) 熱伝達抑制シート及び組電池
WO2023229042A1 (ja) 熱伝達抑制シート及び組電池
JP2023170065A (ja) 防炎シート及びその製造方法、並びに電池モジュール
JP2023056746A (ja) 熱伝達抑制シート及び組電池
CN115832509A (zh) 用于减轻电池组中的热失控的热障组件
JP2023056745A (ja) 熱伝達抑制シート及び組電池
JP2023056747A (ja) 熱伝達抑制部材、熱伝達抑制シート及び組電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001439.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011538189

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257500

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117022045

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011755231

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE