WO2020042234A1 - 一种高效铜钼蚀刻液及蚀刻方法 - Google Patents

一种高效铜钼蚀刻液及蚀刻方法 Download PDF

Info

Publication number
WO2020042234A1
WO2020042234A1 PCT/CN2018/105473 CN2018105473W WO2020042234A1 WO 2020042234 A1 WO2020042234 A1 WO 2020042234A1 CN 2018105473 W CN2018105473 W CN 2018105473W WO 2020042234 A1 WO2020042234 A1 WO 2020042234A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching solution
copper
etching
molybdenum
total mass
Prior art date
Application number
PCT/CN2018/105473
Other languages
English (en)
French (fr)
Inventor
赵芬利
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020042234A1 publication Critical patent/WO2020042234A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals

Definitions

  • the present application relates to the field of copper process etching, and in particular, to an efficient copper-molybdenum etchant and an etching method.
  • copper metal is usually used for the gate and data metal wiring. This is because compared with aluminum metal, copper has a low resistance value and excellent processing performance; copper wire width does not need to reach that of aluminum wire. The width can save the material cost of the sputtering target, improve the penetration of the liquid crystal display and the use efficiency of the backlight, and is more suitable for the production of high-resolution panels.
  • Molybdenum has high adhesion to substrates such as glass, has difficulty in diffusing into silicon semiconductor films, and also has barrier properties; therefore, a laminated film containing copper and a copper-molybdenum alloy containing copper as a main component is subjected to a sputtering method, etc.
  • the film formation process forms a film on a substrate such as glass, and then forms an electrode pattern through an etching step of etching using a resist or the like as a mask.
  • the existing copper-molybdenum etching solution and etching method contain fluoride, which results in low etching efficiency when etching the copper-molybdenum metal film layer, and further causes negative impact on the environment and devices.
  • the existing copper-molybdenum etchant and etching method contain fluoride, which causes low etching efficiency when etching the copper-molybdenum metal film layer, and further causes negative impact on the environment and devices.
  • the present application provides a high-efficiency copper-molybdenum etching solution and an etching method, which can adjust the etching rate of a copper-molybdenum alloy to solve the existing etching solution for a copper-molybdenum metal film layer. Since the copper-molybdenum metal film is etched, the copper-molybdenum metal film is etched. Layer, it results in low etching efficiency, and further causes technical problems that negatively affect the environment and devices.
  • the present application provides a high-efficiency copper-molybdenum etching solution, which includes: the main components of the etching solution include 7 to 15% hydrogen peroxide in the total mass of the etching solution, and 2% to the total mass of the etching solution. 7% of the modifier, stabilizer of 1 to 3% of the total mass of the etchant, organic acid of 3 to 10% of the total mass of the etchant, and 0.001 of the total mass of the etchant ⁇ 1% inhibitor and pH regulator with 1 ⁇ 10% of the total mass of the etching solution, and the balance is deionized water.
  • the regulator is an amine compound.
  • the amine compound is selected from at least N-methylethylamine, polyacrylamide, diisopropanolamine, isopropanolamine, and p-chloroaniline.
  • the amine compound is selected from at least N-methylethylamine, polyacrylamide, diisopropanolamine, isopropanolamine, and p-chloroaniline.
  • the stabilizer is N-phenylurea.
  • the organic acid is selected from glycolic acid, citric acid, 2,3-dihydroxysuccinic acid, 2-hydroxysuccinic acid, 2-hydroxypropionic acid, and At least one of phthalic acid.
  • the inhibitor is selected from the group consisting of 2-aminothiazole, 2-amino-5-nitrothiazole, 3-amino-1,2,4-triazole, and benzene. At least one of benzotriazole and sodium triazole nitrogen.
  • the pH adjusting agent is selected from at least one of diammonium hydrogen phosphate, sodium carbonate, sodium acetate, sodium phosphate, and sodium bicarbonate.
  • the application also provides a method for etching a copper-molybdenum metal film layer using the etching solution, including:
  • the S20 further includes:
  • An etching solution tank is provided.
  • a microwave generating device and a temperature sensing device are installed at the bottom end of the etching solution tank.
  • the temperature sensing device is connected to the microwave generating device through a smart switch, and the etching solution is filled in the etching solution tank. In the etching bath;
  • the specific temperature ranges from 25 to 35 ° C.
  • the beneficial effects of the present invention are: the high-efficiency copper-molybdenum etching solution and etching method provided by the present invention, the etching solution containing hydrogen peroxide is kept at a specific temperature by microwave radiation before etching, and the copper-molybdenum metal film layer is enhanced.
  • the oxidation ability further accelerates the etching reaction rate and further improves the etching quality.
  • FIG. 1 is a flowchart of an etching method for a copper-molybdenum metal film layer according to the present invention.
  • FIG. 2 is a schematic view of an etching apparatus for a copper-molybdenum metal film layer according to the present invention.
  • FIG. 3 is a schematic view of a scanning electron microscope after etching a copper-molybdenum metal film layer according to the present invention.
  • the present invention is directed to the existing etching solution and etching method for the copper-molybdenum metal film layer. Because it contains fluoride, the etching efficiency of the copper-molybdenum metal film layer is low, which further causes negative impact on the environment and devices. Technical problem, this embodiment can solve the defect.
  • the invention provides a high-efficiency copper-molybdenum etching solution, comprising: the main components of the etching solution include hydrogen peroxide in an amount of 7 to 15% of the total mass of the etching solution, and 2 ⁇ 7% of the modifier, stabilizer of 1 to 3% of the total mass of the etchant, organic acid of 3 to 10% of the total mass of the etchant, and 0.001 of the total mass of the etchant ⁇ 1% inhibitor and pH regulator with 1 ⁇ 10% of the total mass of the etching solution, and the balance is deionized water.
  • the main components of the etching solution include hydrogen peroxide in an amount of 7 to 15% of the total mass of the etching solution, and 2 ⁇ 7% of the modifier, stabilizer of 1 to 3% of the total mass of the etchant, organic acid of 3 to 10% of the total mass of the etchant, and 0.001 of the total mass of the etchant ⁇ 1% inhibitor and pH regulator with 1 ⁇ 10%
  • the hydrogen peroxide in the etching solution functions as an oxidant, and oxidizes copper and molybdenum.
  • the content of the hydrogen peroxide in the etching solution is preferably 10-15% of the total mass of the etching solution. Within this range, the oxidation ability is ensured, and the etching speed is not too fast, making it difficult to control the etching process.
  • the regulator is used to stabilize hydrogen peroxide, inhibit its decomposition, ensure the safety of operation, and extend the life of the etching solution.
  • the content of the regulator may preferably be 2 to 7% of the total mass of the etching solution and is an amine compound; the amine compound is selected from N-methylethylamine, polyacrylamide, diisopropanolamine, At least one of isopropanolamine and p-chloroaniline.
  • the role of the stabilizer is to stabilize hydrogen peroxide.
  • the content of the stabilizer may be preferably 1 to 3% of the total mass of the etching solution; the stabilizer is N-phenylurea.
  • the organic acid is used for etching copper-molybdenum alloy as long as the composition can adjust the etching speed.
  • the specific acid can also be used as a masking agent for metal ions after etching to suppress the decomposition rate of hydrogen peroxide; the organic acid
  • the content may preferably be 3 to 10% of the total mass of the etching solution. If it is less than 3% by weight, the etching rate will be slower, and etching cannot be achieved within a controlled engineering time.
  • the organic acid is selected from the group consisting of glycolic acid, citric acid, 2,3-dihydroxysuccinic acid, 2-hydroxysuccinic acid, 2-hydroxypropionic acid, and phthalic acid At least one of.
  • the inhibitor is for controlling the etching speed and the bevel.
  • the content of the inhibitor may preferably be 0.001 to 1% of the total mass of the etching solution; within this range, the angle of the oblique angle can be effectively controlled between 25-60 °, and the etching speed will not be slowed down.
  • the inhibitor is selected from at least one of 2-aminothiazole, 2-amino-5-nitrothiazole, 3-amino-1,2,4-triazole, benzotriazole, and sodium triazole nitrogen.
  • the pH adjusting agent is mainly used to adjust the pH value in the etching solution.
  • the pH value in the etching solution is too small, the etching ability is too strong, and it is easy to etch all the copper and nickel layers; if the pH value in the etching solution is too large, the stability of hydrogen peroxide will be reduced, and the life of the etching solution will be shortened;
  • the content of the pH adjusting agent may be preferably 1 to 10% of the total mass of the etching solution.
  • the pH adjusting agent is at least one selected from the group consisting of diammonium hydrogen phosphate, sodium carbonate, sodium acetate, sodium phosphate, and sodium bicarbonate. .
  • the method for preparing an etching solution for a copper-molybdenum metal film layer provided by the present invention is simple, and it only needs to mix the corresponding weight parts of the components uniformly at room temperature.
  • the present invention uses hydrogen peroxide as an oxidant, does not contain fluoride, has strong oxidizing properties, and is environmentally friendly. It can well oxidize copper and molybdenum, and when combined with the buffer solution, can better remove Copper and molybdenum residues help in etching.
  • the self-decomposition of hydrogen peroxide is caused, especially when the content of hydrogen peroxide is high and some metal ions are present.
  • the etching solution for the copper-molybdenum metal film layer of the present invention is preferably an etching solution A, which includes hydrogen peroxide which accounts for 9% of the total mass of the etching solution, N-methylethylamine which accounts for 4.5% of the total mass of the etching solution, Phenylurea accounted for 2.5% of total etching solution, citric acid accounted for 5% of total etching solution, benzoic acid accounted for 1.5% of total etching solution, and 0.1% of total etching solution 2-aminothiazole, diammonium hydrogen phosphate, which accounts for 3% of the total mass of the etching solution, and the balance is 74% of deionized water, which accounts for the total mass of the etching solution.
  • etching solution A which includes hydrogen peroxide which accounts for 9% of the total mass of the etching solution, N-methylethylamine which accounts for 4.5% of the total mass of the etching solution, Phenylurea
  • the present invention further provides a method flow for etching a copper-molybdenum metal film layer using the etching solution, the method includes:
  • the S10 further includes:
  • a substrate is provided, and a metal layer is formed by etching on the surface of the substrate using a physical weather deposition method;
  • the substrate is, for example, a glass substrate; in some embodiments, the substrate may also be a composite film layer, which may include passivation Layer, metal oxide semiconductor layer (such as indium gallium zinc oxide layer), amorphous phase silicon layer and / or silicon nitride layer, or other suitable materials, but is not limited thereto.
  • the metal layer includes a molybdenum layer and a copper layer. The molybdenum layer can be formed on the substrate first, and then the copper layer can be formed on the molybdenum layer to finally obtain a copper-molybdenum metal film layer.
  • the role of the molybdenum layer is to increase the adhesion between the copper layer and the substrate, and to prevent the copper layer from diffusing to the substrate.
  • the thickness of the molybdenum layer is preferably 100 to 400 Angstroms, and the thickness of the copper layer is preferably 2500 to 10,000 Angstroms.
  • the S20 further includes:
  • an etching device is provided.
  • the etching device is provided with an etching solution tank 201, and a microwave generating device 202 is installed at the bottom end of the etching solution tank 201; two side walls of the etching solution tank 201 A temperature sensing device 203 is respectively installed, and the temperature sensing device 203 is connected to the microwave generating device 202 through a smart switch; the left side of the bottom of the etching liquid tank 201 is connected to a waste liquid pipe 207, and the etching liquid
  • the right side of the bottom of the tank 201 is connected to a spray pipe 205; a water pump 204 is installed at one end of the spray pipe 205 near the etching solution tank 201, and the spray pipe 205 is far from the other of the etching solution tank 201.
  • a nozzle 206 is installed at one end.
  • the slot cover of the etching solution tank 201 is opened, the configured etching solution A is poured into the etching solution tank 201, and the slot cover of the etching solution tank 201 is closed.
  • the microwave generating device 202 is turned on, and the use frequency of the microwave generating device 202 is preferably 850 MHz, and the etching solution A is maintained at the specific temperature by the temperature sensing device 203.
  • the specific temperature ranges from 25 to 35 ° C, and preferably 35 ° C.
  • the smart switch When the temperature sensing device 203 detects that the temperature is higher than 35 ° C, the smart switch is turned off, and the microwave generating device 202 stops working; when the temperature sensing device 203 senses that the temperature is lower than 35 ° C, the microwave generating device 202 On; the above operating mechanism makes the temperature of the etching solution stable at 35 ° C.
  • Microwave heating is a heating method that relies on the absorption of microwave energy by an object to convert it into thermal energy, which makes the entire body heat up at the same time, which is completely different from other conventional heating methods.
  • the traditional heating method is based on the principles of heat conduction, convection and radiation to transfer heat from the outside to the material. The heat is always transferred from the surface to the inside to heat the material. There is inevitably a temperature gradient in the material, so the heated material is not uniform, causing the material to be heated.
  • the microwave heating technology is different from the traditional heating method. It uses high-frequency reciprocation of dipole molecules inside the heated body to generate "internal frictional heat", which increases the temperature of the heated material without any heat conduction process.
  • the material can be heated simultaneously and internally and externally at the same time, and the heating speed is fast and uniform.
  • the heating purpose can be achieved by using only a few or a few tenths of the energy consumption of the traditional heating method.
  • the non-thermal effect of the microwave in the step S20 of the present invention is that the microwave radiation also acts as a catalyst, which changes the kinetics of the reaction between the etchant and the copper-molybdenum metal layer, reduces the reaction activation energy, and increases the reaction rate.
  • the S30 further includes:
  • a photoresist layer is disposed on the surface of the metal layer, and then the photoresist layer is used as a mask, and the copper-molybdenum metal film layer is etched using the etching solution A subjected to microwave radiation, and unnecessary portions are removed.
  • the copper-molybdenum metal film layer forms a patterned copper-molybdenum metal film layer.
  • the etching cone angle of the copper-molybdenum metal film layer after etching is less than or equal to 60 °, and the edge dimension length of the copper-molybdenum metal film layer after etching ranges from 800 to 1200 nanometers.
  • the scanning copper microscope observed the copper-molybdenum metal film layer as shown in FIG. 3, where the etching cone angle is 57.4 °, and after the copper-molybdenum metal film layer is etched, the etching cone angle reaches the edge size of the copper-molybdenum metal film layer.
  • the length is 960 nm.
  • the copper-molybdenum metal film layer is less than or equal to 60 degrees, which indicates that the copper-molybdenum metal film layer has relatively smooth sides, which is conducive to subsequent formation of other film layers on the copper-molybdenum metal film layer, which is not easy to be subsequently formed. Fracture or rupture of the film.
  • a novel fluorine-free etching solution can be controlled by microwave radiation, which can better control the etching rate, reduce the use of inhibitors, reduce the cost of the etching solution, and increase the productivity; meanwhile, it can suppress the etching
  • the precipitation of complexed substances during the process reduces the influence of the precipitates on the quality of the etched products; at the same time, the molybdenum residues generated during the etching process are better removed and the etching quality is improved.
  • the high-efficiency copper-molybdenum etchant and etching method provided by the present invention keep the etching solution containing hydrogen peroxide under microwave radiation to maintain a specific temperature before etching, thereby enhancing the oxidation of the copper-molybdenum metal film layer. Capability, which further accelerates the etching reaction rate and further improves the etching quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Abstract

一种高效铜钼蚀刻液,包括占蚀刻液总质量百分比为7~15%的过氧化氢、占蚀刻液总质量百分比为2~7%的调节剂、占蚀刻液总质量百分比为1~3%的稳定剂、占蚀刻液总质量百分比为3~10%的有机酸、占蚀刻液总质量百分比为0.001~1%的抑制剂以及占蚀刻液总质量百分比为1~10%的pH调节剂,余量为去离子水;本申请还提供一种用于铜钼金属膜层的蚀刻方法。

Description

一种高效铜钼蚀刻液及蚀刻方法 技术领域
本申请涉及铜制程刻蚀领域,尤其涉及一种高效铜钼蚀刻液及蚀刻方法。
背景技术
目前随着显示器尺寸的增大,栅极及数据金属配线通常使用铜金属;这是因为相较于铝金属,铜的电阻值低,加工性能优异;铜导线线宽不需要达到铝导线的宽度,可以节省溅镀靶材的材料成本,提高液晶显示器的穿透度与背光源使用效率,更加适合高分辨率面板的制作。钼具有与玻璃等基板的密合性高、难以产生向硅半导体膜的扩散、且兼具阻挡性;因此,将包含铜、以铜为主成分的铜钼合金的层叠膜通过溅射法等成膜工艺在玻璃等基板上成膜,然后经过将抗蚀剂等作为掩膜进行蚀刻的蚀刻工序而成为电极图案。
现有的铜钼蚀刻液及蚀刻方法,为了提高蚀刻铜钼合金的速度,常常加入氟化物。添加氟化物的蚀刻液容易腐蚀玻璃,对器件有腐蚀;而且刻蚀效率低,稳定性差。随着越来越多的生产者开始使用铜钼合金膜,对加工精度的蚀刻液的需求大大增加,因此,亟需一种环境友好、生产安全、加工精度高,且易于控制的蚀刻液。
综上所述,现有的铜钼蚀刻液及蚀刻方法,由于含有氟化物,在刻蚀铜钼金属膜层时,导致刻蚀效率低,进一步导致对环境与器件产生负面影响。
技术问题
现有的铜钼蚀刻液及蚀刻方法,由于含有氟化物,在刻蚀铜钼金属膜层时,会导致刻蚀效率低,进一步导致对环境与器件产生负面影响。
技术解决方案
本申请提供一种高效铜钼蚀刻液及蚀刻方法,能够调控铜钼合金蚀刻速率,以解决现有的用于铜钼金属膜层的蚀刻液,由于含有氟化物,在刻蚀铜钼金属膜层时,导致刻蚀效率低,进一步导致对环境与器件产生负面影响的技术问题。
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种高效铜钼蚀刻液,包括:所述蚀刻液的主要成分包括占所述蚀刻液总质量百分比为7~15%的过氧化氢、占所述蚀刻液总质量百分比为2~7%的调节剂、占所述蚀刻液总质量百分比为1~3%的稳定剂、占所述蚀刻液总质量百分比为3~10%的有机酸、占所述蚀刻液总质量百分比为0.001~1%的抑制剂以及占所述蚀刻液总质量百分比为1~10%的pH调节剂,余量为去离子水。
在本申请实施例所提供的高效铜钼蚀刻液中,所述调节剂为胺类化合物。
在本申请实施例所提供的高效铜钼蚀刻液中,所述胺类化合物选自N-甲基乙胺、聚丙烯酰胺、二异丙醇胺、异丙醇胺以及对氯苯胺中的至少一种。
在本申请实施例所提供的高效铜钼蚀刻液中,所述稳定剂为N-苯基脲。
在本申请实施例所提供的高效铜钼蚀刻液中,所述有机酸选自乙醇酸、柠檬酸、2,3-二羟基丁二酸、2-羟基丁二酸、2-羟基丙酸以及邻苯二甲酸中的至少一种。
在本申请实施例所提供的高效铜钼蚀刻液中,所述抑制剂选自2-氨基噻唑、2-氨基-5-硝基噻唑、3-氨基-1,2,4-三唑、苯并三唑以及三唑氮钠中的至少一种。
在本申请实施例所提供的高效铜钼蚀刻液中,所述pH调节剂选自磷酸氢二铵、碳酸钠、乙酸钠、磷酸钠以及碳酸氢钠中的至少一种。
本申请还提供一种使用所述蚀刻液蚀刻铜钼金属膜层的方法,包括:
S10,提供一基板,形成一铜钼金属膜层于所述基板上;
S20,开启微波加热装置照射所述蚀刻液,使所述蚀刻液保持特定温度不变;
S30,使用所述蚀刻液对所述铜钼金属膜层进行一图案化制程。
在本申请实施例所提供的使用所述蚀刻液蚀刻铜钼金属膜层的方法中,所述S20还包括:
S201,提供一蚀刻液槽,所述蚀刻液槽的底端位置安装有微波发生装置以及温度感应装置,所述温度感应装置通过智能开关与所述微波发生装置相连,将所述蚀刻液填充于所述蚀刻液槽中;
S202,开启所述微波发生装置,使用特定频率照射所述蚀刻液,通过所述温度感应装置使所述蚀刻液保持所述特定温度不变。
在本申请实施例所提供的使用所述蚀刻液蚀刻铜钼金属膜层的方法中,所述特定温度的范围为25~35℃。
有益效果
本发明的有益效果为:本发明所提供的高效铜钼蚀刻液及蚀刻方法,将含有过氧化氢的蚀刻液在蚀刻前通过微波辐射保持特定温度不变,增强了对铜钼金属膜层的氧化能力,进一步加快了蚀刻反应速率,更进一步提升了蚀刻品质。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明用于铜钼金属膜层的蚀刻方法流程图。
图2为本发明用于铜钼金属膜层的蚀刻设备示意图。
图3为本发明铜钼金属膜层蚀刻后扫描电镜示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的用于铜钼金属膜层的蚀刻液及蚀刻方法,由于含有氟化物,在刻蚀铜钼金属膜层时,导致刻蚀效率低,进一步导致对环境与器件产生负面影响的技术问题,本实施例能够解决该缺陷。
本发明提供一种高效铜钼蚀刻液,包括:所述蚀刻液的主要成分包括占所述蚀刻液总质量百分比为7~15%的过氧化氢、占所述蚀刻液总质量百分比为2~7%的调节剂、占所述蚀刻液总质量百分比为1~3%的稳定剂、占所述蚀刻液总质量百分比为3~10%的有机酸、占所述蚀刻液总质量百分比为0.001~1%的抑制剂以及占所述蚀刻液总质量百分比为1~10%的pH调节剂,余量为去离子水。
其中,所述蚀刻液中的过氧化氢是作为氧化剂的功能,将铜和钼氧化,该蚀刻液中过氧化氢的含量优选为占蚀刻液总质量百分比为10~15%。在此范围内,既确保了氧化能力,又不至于腐蚀速度过快,难以控制蚀刻工艺。
所述调节剂是用以稳定过氧化氢,抑制其分解,保障操作安全性、延长所述蚀刻液寿命。所述调节剂的含量可优选为占蚀刻液总质量百分比为2~7%,为胺类化合物;所述胺类化合物选自N-甲基乙胺、聚丙烯酰胺、二异丙醇胺、异丙醇胺以及对氯苯胺中的至少一种。
所述稳定剂的作用是稳定过氧化氢。所述稳定剂的含量可优选为占蚀刻液总质量百分比为1~3%;所述稳定剂为N-苯基脲。
所述有机酸是用于蚀刻铜钼合金的只要成分,可调节蚀刻速度,另外,特定的酸在蚀刻完之后还可作为金属离子的掩蔽剂来抑制过氧化氢分解的速率;所述有机酸的含量可优选为占蚀刻液总质量百分比为3~10%,若其不足3%重量百分比时,蚀刻速度变慢,在可控制的工程时间内无法实现蚀刻,若其超出10%重量百分比时,蚀刻速度过快,难以控制工程进展;所述有机酸选自乙醇酸、柠檬酸、2,3-二羟基丁二酸、2-羟基丁二酸、2-羟基丙酸以及邻苯二甲酸中的至少一种。
所述抑制剂是为了控制蚀刻速度和斜角。所述抑制剂的含量可优选为占蚀刻液总质量百分比为0.001~1%;在此范围内,既能有效控制斜角的角度在25-60°之间,又不至于拖慢蚀刻速度。所述抑制剂选自2-氨基噻唑、2-氨基-5-硝基噻唑、3-氨基-1,2,4-三唑、苯并三唑以及三唑氮钠中的至少一种。
所述pH调节剂主要是为了调节所述蚀刻液中的pH值。所述蚀刻液中的pH值过小,蚀刻能力太强,容易将铜镍层都蚀刻干净;所述蚀刻液中的pH值过大,过氧化氢稳定性会降低,缩短蚀刻液寿命;所述pH调节剂的含量可优选为占蚀刻液总质量百分比为1~10%;所述pH调节剂选自磷酸氢二铵、碳酸钠、乙酸钠、磷酸钠以及碳酸氢钠中的至少一种。
本发明提供的用于铜钼金属膜层的蚀刻液制备方法简单,只需在室温下将相应重量份的组分混合均匀即可。
同时,本发明中采用过氧化氢做氧化剂,不含有氟化物,氧化性强,且又绿色环保,能很好的氧化铜跟钼,再配以所述缓冲溶液,能更好的去除源自铜跟钼的残渣,有助于蚀刻。但由于过氧化氢的低对称性以及过氧键的存在,造成了过氧化氢的自分解,特别是过氧化氢含量高及某些金属离子存在时,很容易发生“暴沸”现象,为了保障操作安全性及保障蚀刻效果,辅以所述抑制剂来抑制过氧化氢分解,控制蚀刻速度和斜角,减小侧蚀,避免底切,使蚀刻后的布线截面形状良好。
本发明用于铜钼金属膜层的蚀刻液优选为蚀刻液A,包括占蚀刻液总质量百分比为9%的过氧化氢、占蚀刻液总质量百分比为4.5%的N-甲基乙胺、占蚀刻液总质量百分比为2.5%的苯基脲、占蚀刻液总质量百分比为5%的柠檬酸、占蚀刻液总质量百分比为1.5%的苯甲酸、占蚀刻液总质量百分比为0.1%的2-氨基噻唑、占蚀刻液总质量百分比为3%的磷酸氢二铵,余量为占蚀刻液总质量百分比为74%去离子水。
如图1所示,本发明还提供使用所述蚀刻液蚀刻铜钼金属膜层的方法流程,所述方法包括:
S10,提供一基板,形成一铜钼金属膜层于所述基板上;
具体的,所述S10还包括:
首先,提供一基板,利用物理气象沉积法在所述基板表面刻蚀形成一金属层;所述基板例如是玻璃基板;一些实施例中,所述基板也可以是复合膜层,可包括钝化层、金属氧化物半导体层(例如氧化铟镓锌层)、非晶相硅层和/或氮化硅层、或其他适合的材质,但不限于此。所述金属层包括一钼层以及一铜层,可先形成所述钼层于所述基板上,然后再形成所述铜层于所述钼层上,最终得到铜钼金属膜层。所述钼层的作用为增加所述铜层与所述基板的贴附性,阻挡所述铜层向所述基板扩散。所述钼层的厚度优选为100~400埃米,所述铜层的厚度优选为2500~10000埃米。
S20,开启微波加热装置照射所述蚀刻液,使所述蚀刻液保持特定温度不变。
具体的,所述S20还包括:
首先提供一蚀刻设备如图2所示,所述蚀刻设备上设置有蚀刻液槽201,所述蚀刻液槽201的底端位置安装有微波发生装置202;所述蚀刻液槽201的两侧壁分别安装有温度感应装置203,所述温度感应装置203通过智能开关与所述微波发生装置202相连;所述蚀刻液槽201的底端左侧位置连通着废液管路207,所述蚀刻液槽201的底端右侧位置连通着喷流管205;所述喷流管205靠近所述蚀刻液槽201的一端安装有水泵204,所述喷流管205远离所述蚀刻液槽201的另一端安装有喷嘴206。
然后打开所述蚀刻液槽201的槽盖,将配置好的所述蚀刻液A倒入所述蚀刻液槽201中,并关上所述蚀刻液槽201的槽盖。之后,开启所述微波发生装置202,所述微波发生装置202的使用频率优选为为850MHz,通过所述温度感应装置203使所述蚀刻液A保持所述特定温度不变。其中,所述特定温度的范围为25~35℃,优选为35℃。当所述温度感应装置203感应到温度高于35℃时,智能开关关闭,所述微波发生装置202停止工作;当所述温度感应装置203感应到温度低于35℃,所述微波发生装置202开启;上述运行机制使得所述蚀刻液温度稳定于35℃。
微波致热是一种依靠物体吸收微波能将其转换成热能,使自身整体同时升温的加热方式而完全区别于其他常规加热方式。传统加热方式是根据热传导、对流和辐射原理使热量从外部传至物料热量,热量总是由表及里传递进行加热物料,物料中不可避免地存在温度梯度,故加热的物料不均匀,致使物料出现局部过热,微波加热技术与传统加热方式不同,它是通过被加热体内部偶极分子高频往复运动,产生“内摩擦热”而使被加热物料温度升高,不须任何热传导过程,就能使物料内外部同时加热、同时升温,加热速度快且均匀,仅需传统加热方式的能耗的几分之一或几十分之一就可达到加热目的。
本发明S20步骤中微波的非热效应表现在微波辐射还起到催化剂的作用,改变了蚀刻液与铜钼金属层反应的动力学,降低了反应活化能,提高了反应速率。
S30,使用所述蚀刻液对所述铜钼金属膜层进行一图案化制程。
具体的,所述S30还包括:
首先设置一光阻层于所述金属层的表面,之后以所述光阻层为掩膜,使用经过微波辐射的所述蚀刻液A蚀刻所述铜钼金属膜层,并去除不需要部分的铜钼金属膜层,形成图案化的所述铜钼金属膜层。
蚀刻制程后,所述铜钼金属膜层蚀刻后的蚀刻锥角小于或等于60°,所述铜钼金属膜层蚀刻后的边缘尺寸长度范围为800~1200纳米。
通过扫描电镜观测到所述铜钼金属膜层如图3所示,其中蚀刻锥角为57.4°,所述铜钼金属膜层蚀刻后,所述蚀刻锥角到铜钼金属膜层的边缘尺寸长度为960纳米。所述铜钼金属膜层小于或等于60度代表所述铜钼金属膜层具有相对平缓的侧边,有利于后续形成其他膜层于所述铜钼金属膜层上时,不易发生后续形成的膜层的断裂或破裂情形。
本发明用于铜钼金属膜层的蚀刻方法中,通过微波辐射新型无氟蚀刻液,可以更好的调控蚀刻速率,减少抑制剂的使用量,降低蚀刻液成本,提升产能;同时可以抑制蚀刻过程中络合物质的析出,降低了析出物对蚀刻产品品质的影响;同时更好的除去蚀刻过程中产生的钼残,提升了蚀刻品质。
本发明的有益效果:本发明所提供的高效铜钼蚀刻液及蚀刻方法,将含有过氧化氢的蚀刻液在蚀刻前通过微波辐射保持特定温度不变,增强了对铜钼金属膜层的氧化能力,进一步加快了蚀刻反应速率,更进一步提升了蚀刻品质。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种高效铜钼蚀刻液,其中,包括:所述蚀刻液的主要成分包括占所述蚀刻液总质量百分比为7~15%的过氧化氢、占所述蚀刻液总质量百分比为2~7%的调节剂、占所述蚀刻液总质量百分比为1~3%的稳定剂、占所述蚀刻液总质量百分比为3~10%的有机酸、占所述蚀刻液总质量百分比为0.001~1%的抑制剂以及占所述蚀刻液总质量百分比为1~10%的pH调节剂,余量为去离子水。
  2. 根据权利要求1所述的高效铜钼蚀刻液,其中,所述调节剂为胺类化合物。
  3. 根据权利要求2所述的高效铜钼蚀刻液,其中,所述胺类化合物选自N-甲基乙胺、聚丙烯酰胺、二异丙醇胺、异丙醇胺以及对氯苯胺中的至少一种。
  4. 根据权利要求1所述的高效铜钼蚀刻液,其中,所述稳定剂为N-苯基脲。
  5. 根据权利要求1所述的高效铜钼蚀刻液,其中,所述有机酸选自乙醇酸、柠檬酸、2,3-二羟基丁二酸、2-羟基丁二酸、2-羟基丙酸以及邻苯二甲酸中的至少一种。
  6. 根据权利要求1所述的高效铜钼蚀刻液,其中,所述抑制剂选自2-氨基噻唑、2-氨基-5-硝基噻唑、3-氨基-1,2,4-三唑、苯并三唑以及三唑氮钠中的至少一种。
  7. 根据权利要求1所述的高效铜钼蚀刻液,其中,所述pH调节剂选自磷酸氢二铵、碳酸钠、乙酸钠、磷酸钠以及碳酸氢钠中的至少一种。
  8. 一种使用如权利要求1所述的蚀刻液蚀刻铜钼金属膜层的方法,其中,包括:
    S10,提供一基板,形成一铜钼金属膜层于所述基板上;
    S20,开启微波加热装置照射所述蚀刻液,使所述蚀刻液保持特定温度不变;
    S30,使用所述蚀刻液对所述铜钼金属膜层进行一图案化制程。
  9. 根据权利要求8所述的蚀刻液蚀刻铜钼金属膜层的方法,其中,所述S20还包括:
    S201,提供一蚀刻液槽,所述蚀刻液槽的底端位置安装有微波发生装置以及温度感应装置,所述温度感应装置通过智能开关与所述微波发生装置相连,将所述蚀刻液填充于所述蚀刻液槽中;
    S202,开启所述微波发生装置,使用特定频率照射所述蚀刻液,通过所述温度感应装置使所述蚀刻液保持所述特定温度不变。
  10. 根据权利要求8所述的蚀刻液蚀刻铜钼金属膜层的方法,其中,所述特定温度的范围为25~35℃。
PCT/CN2018/105473 2018-08-31 2018-09-13 一种高效铜钼蚀刻液及蚀刻方法 WO2020042234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811013298.4A CN109136931A (zh) 2018-08-31 2018-08-31 一种高效铜钼蚀刻液及蚀刻方法
CN201811013298.4 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020042234A1 true WO2020042234A1 (zh) 2020-03-05

Family

ID=64826143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105473 WO2020042234A1 (zh) 2018-08-31 2018-09-13 一种高效铜钼蚀刻液及蚀刻方法

Country Status (2)

Country Link
CN (1) CN109136931A (zh)
WO (1) WO2020042234A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846663A (zh) * 2019-11-14 2020-02-28 Tcl华星光电技术有限公司 蚀刻液组成物及形成金属线路的方法
CN113106454A (zh) * 2021-03-24 2021-07-13 Tcl华星光电技术有限公司 蚀刻液和铜/钼金属线的蚀刻方法
CN114807941B (zh) * 2022-02-25 2023-08-15 浙江奥首材料科技有限公司 一剂型高效长寿命铜钼蚀刻液、其制备方法及应用
CN115799077B (zh) * 2023-02-08 2023-04-18 四川富乐华半导体科技有限公司 一种覆铜陶瓷基板台阶蚀刻方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083926A2 (en) * 2002-04-02 2003-10-09 Politechnika Wroclawska The microwave enhanced method of silicon etching and the system for microwave enhanced semiconductors etching
KR20050094719A (ko) * 2004-03-24 2005-09-28 (주)울텍 습식 식각 장치
CN102409342A (zh) * 2010-08-25 2012-04-11 普兰西公司 用于蚀刻导电多层膜的蚀刻剂组合物和使用其的蚀刻方法
CN202380091U (zh) * 2011-11-28 2012-08-15 广东成德电路股份有限公司 一种制备印制电路板的喷淋式蚀刻机
CN102762770A (zh) * 2010-02-15 2012-10-31 三菱瓦斯化学株式会社 包含铜层及钼层的多层薄膜用蚀刻液
KR20150050948A (ko) * 2013-11-01 2015-05-11 솔브레인 주식회사 구리/몰리브데늄 합금막의 식각액 조성물
CN105887089A (zh) * 2015-02-13 2016-08-24 关东鑫林科技股份有限公司 蚀刻液组合物及使用该蚀刻液组合物的蚀刻方法
CN107075693A (zh) * 2014-11-18 2017-08-18 关东化学株式会社 铜、钼金属层叠膜蚀刻液组合物、使用该组合物的蚀刻方法及延长该组合物的寿命的方法
CN107287594A (zh) * 2017-06-01 2017-10-24 东莞市达诚显示材料有限公司 一种铜镍多层薄膜用蚀刻液

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL330129A1 (en) * 1998-12-04 2000-06-05 Jan Dziuban Method of anisotropically etching monocrystalline semiconductors in selective manner using a wet etching process and apparatus therefor
TWI726995B (zh) * 2016-02-17 2021-05-11 易安愛富科技有限公司 蝕刻液組合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083926A2 (en) * 2002-04-02 2003-10-09 Politechnika Wroclawska The microwave enhanced method of silicon etching and the system for microwave enhanced semiconductors etching
KR20050094719A (ko) * 2004-03-24 2005-09-28 (주)울텍 습식 식각 장치
CN102762770A (zh) * 2010-02-15 2012-10-31 三菱瓦斯化学株式会社 包含铜层及钼层的多层薄膜用蚀刻液
CN102409342A (zh) * 2010-08-25 2012-04-11 普兰西公司 用于蚀刻导电多层膜的蚀刻剂组合物和使用其的蚀刻方法
CN202380091U (zh) * 2011-11-28 2012-08-15 广东成德电路股份有限公司 一种制备印制电路板的喷淋式蚀刻机
KR20150050948A (ko) * 2013-11-01 2015-05-11 솔브레인 주식회사 구리/몰리브데늄 합금막의 식각액 조성물
CN107075693A (zh) * 2014-11-18 2017-08-18 关东化学株式会社 铜、钼金属层叠膜蚀刻液组合物、使用该组合物的蚀刻方法及延长该组合物的寿命的方法
CN105887089A (zh) * 2015-02-13 2016-08-24 关东鑫林科技股份有限公司 蚀刻液组合物及使用该蚀刻液组合物的蚀刻方法
CN107287594A (zh) * 2017-06-01 2017-10-24 东莞市达诚显示材料有限公司 一种铜镍多层薄膜用蚀刻液

Also Published As

Publication number Publication date
CN109136931A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020042234A1 (zh) 一种高效铜钼蚀刻液及蚀刻方法
WO2020042206A1 (zh) 用于铜钼金属膜层的蚀刻液及蚀刻方法
WO2020042230A1 (zh) 一种高寿命铜钼蚀刻液及蚀刻方法
JP5041870B2 (ja) 薄膜トランジスタ液晶表示装置のエッチング組成物及び薄膜トランジスタ液晶表示装置の製造方法。
WO2021159577A1 (zh) 蚀刻液、添加剂及金属布线的制作方法
KR20130130515A (ko) 은함유 패턴의 식각액
KR20030079740A (ko) 알루미늄(또는 알루미늄 합금)층을 함유한 다층막 및단일막 식각액 조성물
WO2007135874A1 (ja) 透明電極付きガラス基板とその製造方法
JP6110492B2 (ja) 透明導電性薄膜形成用コア―シェルナノ粒子、及びこれを使用した透明導電性薄膜の製造方法
TW201534694A (zh) 包含亞磷酸的金屬膜用蝕刻液組合物
JP4864434B2 (ja) 薄膜トランジスタ液晶表示装置用エッチング組成物
CN113106454A (zh) 蚀刻液和铜/钼金属线的蚀刻方法
KR20090007668A (ko) 티탄, 알루미늄 금속 적층막 에칭액 조성물
KR102400343B1 (ko) 금속막 식각액 조성물 및 이를 사용한 표시장치용 어레이 기판의 제조방법
KR101302827B1 (ko) 은 또는 은합금의 배선 및 반사막 형성을 위한 식각용액
JP2007142409A (ja) 透明導電膜エッチング組成物
KR20060037742A (ko) 박막트랜지스터 액정표시장치의 에칭 조성물
TW201404936A (zh) 蝕刻液與形成圖案化多層金屬層的方法
US10109499B2 (en) Etching method and substrate
CN109594079B (zh) 一种钼铝共用蚀刻液及蚀刻方法
JPH11111702A (ja) 薄膜のドライエッチング方法および薄膜半導体装置の製造方法
CN114231289A (zh) 薄膜蚀刻液、蚀刻方法及其应用
CN113637972A (zh) 银薄膜蚀刻液组合物、使用该组合物的蚀刻方法及金属图案形成方法
KR100595910B1 (ko) 평판디스플레이용 투명도전막의 에칭액 조성물
KR20150108102A (ko) 구리계 금속막의 식각 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932252

Country of ref document: EP

Kind code of ref document: A1