WO2020036001A1 - 環状オレフィン開環共重合体およびその製造方法、ゴム組成物ならびにゴム架橋物 - Google Patents
環状オレフィン開環共重合体およびその製造方法、ゴム組成物ならびにゴム架橋物 Download PDFInfo
- Publication number
- WO2020036001A1 WO2020036001A1 PCT/JP2019/024915 JP2019024915W WO2020036001A1 WO 2020036001 A1 WO2020036001 A1 WO 2020036001A1 JP 2019024915 W JP2019024915 W JP 2019024915W WO 2020036001 A1 WO2020036001 A1 WO 2020036001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- cyclic olefin
- parts
- rubber
- norbornene
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F232/00—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
- C08F232/08—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F232/00—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
- C08F232/02—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
- C08F232/04—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/122—Copolymers statistical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/13—Morphological aspects
- C08G2261/135—Cross-linked structures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3321—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclopentene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3324—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3325—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/60—Glass transition temperature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/62—Mechanical aspects
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/70—Post-treatment
- C08G2261/76—Post-treatment crosslinking
Definitions
- the present invention relates to a cyclic olefin ring-opening copolymer and a method for producing the same, a rubber composition containing the cyclic olefin ring-opening copolymer, and a rubber cross-linked product, and more particularly to bending fatigue resistance, wear resistance, and wet grip properties.
- the present invention relates to a cyclic olefin ring-opening copolymer giving a rubber cross-linked product having excellent low heat build-up and a method for producing the same, and a rubber composition and a rubber cross-linked product obtained using the cyclic olefin ring-opening copolymer.
- Patent Document 1 describes that a vulcanized rubber composed of a copolymer composition of cyclopentene, which is a monocyclic olefin, and dicyclopentadiene, which is a norbornene compound, has excellent tensile strength.
- Patent Document 2 discloses that a vulcanized rubber composed of a copolymer composition of cyclopentene, which is a monocyclic cycloolefin, and various norbornene compounds is excellent in fuel efficiency and wet grip properties as a rubber for tires. Has been described.
- the vulcanized rubbers comprising the cyclic olefin ring-opening copolymers described in Patent Documents 1 and 2 cannot be said to have sufficient mechanical strength, low fuel consumption and wet grip properties, and are required to have further improved properties.
- the present invention has been made in view of such circumstances, and a cyclic olefin ring-opening copolymer that provides a rubber cross-linked product having excellent bending fatigue resistance, abrasion resistance, wet gripping properties, and low heat build-up, and the like.
- An object of the present invention is to provide a production method, and to provide a rubber composition and a rubber crosslinked product obtained by using such a cyclic olefin ring-opening copolymer.
- the present inventors first focused on the difference in polymerization reactivity between a monocyclic cyclic olefin and a norbornene compound.
- the resulting cyclic olefin ring-opened copolymer has a wide monomer composition distribution, a wide molecular weight distribution, and a difficulty in controlling the glass transition temperature. found.
- the difference ( ⁇ Tg) from the temperature (Teg) can be used instead. That is, ⁇ Tg increases as the composition distribution and molecular weight distribution of the monomer become wider.
- differential scanning calorimetry was performed on the cyclic olefin ring-opening copolymers produced in Patent Documents 1 and 2, it was hard to say that ⁇ Tg was sufficiently small.
- the present inventors have further studied and found that when the composition distribution and the molecular weight distribution of the monomer of the cyclic olefin ring-opening copolymer are wide, performances such as mechanical strength, low fuel consumption, and wet grip properties are sufficiently brought out. It was also found that it was not possible.
- the present inventors have determined the difference ( ⁇ Tg) between the extrapolated glass transition onset temperature (Tig) and the extrapolated glass transition end temperature (Teg) of the cyclic olefin ring-opening copolymer, and the weight average It has been found that by adjusting the molecular weight (Mw) to an extremely limited range, a rubber crosslinked product excellent in bending fatigue resistance, abrasion resistance, wet grip properties, and low heat generation can be obtained, and the present invention has been completed. It led to.
- a cyclic olefin ring-opening copolymer containing a monocyclic cyclic olefin-derived structural unit and a norbornene compound-derived structural unit, and has an extrapolated glass transition end temperature (according to JIS K7121) Cyclic olefin ring-opening copolymer having a difference ( ⁇ Tg) between Teg) and extrapolated glass transition onset temperature (Tig) of 30 ° C. or less and a weight average molecular weight (Mw) of 50,000 to 1,000,000.
- ⁇ Tg difference between Teg
- Tig extrapolated glass transition onset temperature
- Mw weight average molecular weight
- the content of the monocyclic cyclic olefin-derived structural unit is 20 to 90% by mass relative to all the repeating structural units in the cyclic olefin ring-opening copolymer.
- the content ratio of the structural unit derived from the norbornene compound is preferably 10 to 80% by mass.
- the glass transition temperature (Tmg) determined according to JIS K7121 is preferably -80 ° C to 10 ° C.
- the norbornene compound is preferably 2-norbornene.
- a rubber composition containing the above-mentioned cyclic olefin ring-opening copolymer and silica and / or carbon black.
- a method for producing the above-mentioned cyclic olefin ring-opening copolymer wherein one or both of the monocyclic cyclic olefin and the norbornene compound, and a ring-opening polymerization catalyst are continuously used.
- a production method comprising a step of copolymerizing the monocyclic olefin and the norbornene compound while adding to a polymerization reactor either intermittently or intermittently.
- a cyclic olefin ring-opening copolymer that gives a rubber crosslinked product having excellent bending fatigue resistance, abrasion resistance, wet grip properties, and low heat build-up, a method for producing the same, and such a cyclic olefin-opening copolymer It is possible to provide a rubber composition and a rubber crosslinked product containing a ring copolymer.
- FIG. 1 is a DSC curve of the cyclopentene / dicyclopentadiene ring-opened copolymer obtained in Example 1.
- the cyclic olefin ring-opening copolymer of the present invention contains a structural unit derived from a monocyclic cyclic olefin and a structural unit derived from a norbornene compound.
- the monocyclic olefin in the present invention is not particularly limited as long as it is an olefin having only one cyclic structure, and examples thereof include cyclopropene, cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, and cyclooctene.
- the monocyclic olefin one kind may be used alone, or two or more kinds may be used in combination.
- cyclopentene, cyclohexene, cycloheptene, cyclooctene and cyclooctadiene are preferable, and cyclopentene and cyclooctadiene are more preferable from the viewpoint that the effects of the present invention can be more easily obtained.
- the norbornene compound in the present invention is a compound having a norbornene ring structure, and is preferably a norbornene compound represented by the following general formula (1).
- R 1 to R 4 represent a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a substituent containing a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom, and R 2 and R 3 are bonded to each other May form a ring structure, and m is an integer of 0 to 2.
- 2-norbornene 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, 5-cyclohexyl-2- Norbornene, 5-cyclopentyl-2-norbornene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-propenyl-2-norbornene, 5-cyclohexenyl-2-norbornene, 5-cyclopentenyl-2- norbornene, 5-phenyl-2-norbornene, tetracyclo [9.2.1.0 2,10.
- pentadec-4,6,8,13-tetraene also referred to as 1,4-methano-1,4,4a, 9,9a, 10-hexahydroanthracene
- dicyclopentadiene methyldicyclopentadiene
- unsubstituted or hydrocarbon-substituted bicyclo [2.2.1] hept-2-ene such as dihydrodicyclopentadiene (tricyclo [5.2.1.0 2,6 ] dec-8-ene)kind
- dihydrodicyclopentadiene tricyclo [5.2.1.0 2,6 ] dec-8-ene
- Alkoxy such as methyl 5-norbornene-2-carboxylate, ethyl 5-norbornene-2-carboxylate, methyl 2-methyl-5-norbornene-2-carboxylate, ethyl 2-methyl-5-norbornene-2-carboxylate
- hept-2-enes having an alkoxycarbonyl group such as 3-methoxycarbonyl-5-norbornene-2-carboxylic acid and a hydroxycarbonyl group;
- Bicyclo having a carbonyloxy group such as 5-norbornen-2-yl acetate, 2-methyl-5-norbornen-2-yl acetate, 5-norbornen-2-yl acrylate, and 5-norbornen-2-yl methacrylate [2.2.1] hept-2-enes; 9-tetracycloacetic acid [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-tetracycloacrylate [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, and 9-tetracyclo [6.2.1.1 3,6 . Tetracyclo [6.2.1.1 3,6 ... Having a carbonyloxy group such as [0 2,7 ] dodec-4-enyl. 0 2,7 ] dodec-4-enes;
- the norbornene compound represented by the general formula (1) is preferably a compound represented by the general formula (1) wherein m is 0 or 1, and is represented by a general formula wherein m is 0. Are more preferred.
- R 1 to R 4 may be the same or different.
- R 1 to R 4 in the general formula (1) are a hydrogen atom, a chain hydrocarbon group having 1 to 20 carbon atoms, or a substituent containing a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom. It is preferred that In this case, R 1 ⁇ R 4 are not linked to each other may be any group which does not form a ring, not particularly limited, which may be the same or different and as R 1 ⁇ R 4 is A hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferred. Also in this case, a compound represented by a general formula in which m is 0 or 1 is preferable, and a compound represented by a general formula in which m is 0 is more preferable.
- a norbornene compound in which R 1 to R 4 in the general formula (1) are a hydrogen atom, a chain hydrocarbon group having 1 to 20 carbon atoms, or a substituent containing a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom;
- R 1 to R 4 in the general formula (1) are a hydrogen atom, a chain hydrocarbon group having 1 to 20 carbon atoms, or a substituent containing a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom;
- Include bicyclo [2.2.1] hept-2-enes having no substituent or a hydrocarbon substituent and tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enes are preferred, with 2-norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-ethylidene-2-norbornene and tetracyclo [6.2]
- dodec-4-ene is more preferred, and from the viewpoint that the effects of the present invention can be more easily obtained, 2-norbornene, 5-methyl-2-norbornene and tetracyclo [6.2.1.13 , 6 . 0 2,7 ] dodec-4-ene is more preferred, and 2-norbornene and tetracyclo [6.2.1.1 3,6 . [0 2,7 ] dodec-4-ene is particularly preferred.
- a specific example of the ring structure is a cyclopentane ring , A cyclopentene ring, a cyclohexane ring, a cyclohexene ring, a benzene ring, and the like, which may form a polycyclic structure, and may further have a substituent.
- a cyclopentane ring, a cyclopentene ring and a benzene ring are preferable, and a compound having a cyclopentene ring alone or a compound having a polycyclic structure of a cyclopentane ring and a benzene ring is particularly preferable.
- R 1 and R 4 other than R 2 and R 3 forming the ring structure may be the same or different, and are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. In this case, a compound represented by a general formula in which m is 0 is preferable.
- unsubstituted or hydrocarbon-substituted bicyclo [2.2.1] hept-2-enes are preferable, and among them, Dicyclopentadiene, methyldicyclopentadiene, dihydrodicyclopentadiene, 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorene, 1,4-methano-1,4,4a, 9,9a, 10-hexahydroanthracene is preferred, and dicyclopentadiene and 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorene are more preferred.
- the norbornene compound in the present invention may be used alone or in combination of two or more.
- the content of the structural unit derived from a monocyclic cyclic olefin in the cyclic olefin ring-opening copolymer of the present invention is preferably from 20 to 90% by mass, more preferably from 30 to 80% by mass, based on all the repeating structural units. %, More preferably 35 to 75% by mass, and particularly preferably 35 to 60% by mass.
- the content of the structural unit derived from the norbornene compound in the cyclic olefin ring-opening copolymer of the present invention is preferably from 10 to 80% by mass, more preferably from 20 to 70% by mass, based on all the repeating structural units. And more preferably 25 to 65% by mass, and particularly preferably 40 to 65% by mass.
- the cyclic olefin ring-opening copolymer of the present invention may be obtained by copolymerizing a monocyclic olefin and a norbornene compound with another monomer copolymerizable therewith.
- examples of such other monomers include polycyclic cycloolefins having an aromatic ring.
- examples of the polycyclic cycloolefin having an aromatic ring include phenylcyclooctene, 5-phenyl-1,5-cyclooctadiene, phenylcyclopentene and the like.
- the content of structural units derived from other monomers in the cyclic olefin ring-opening copolymer of the present invention is preferably 40% by mass or less, more preferably 30% by mass, based on all repeating structural units. In the following, it is particularly preferable that the cyclic olefin ring-opening copolymer of the present invention does not substantially contain a structural unit derived from another monomer.
- the weight average molecular weight (Mw) of the cyclic olefin ring-opening copolymer of the present invention is 50,000 to 1,000, as a value of polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography. 000, preferably 60,000 to 800,000, more preferably 70,000 to 700,000, and still more preferably 80,000 to 600,000.
- Mw polystyrene equivalent weight average molecular weight
- the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography of the cyclic olefin ring-opening copolymer of the present invention is: It is preferably from 1.0 to 5.0, more preferably from 1.5 to 2.9, even more preferably from 1.5 to 2.5, and particularly preferably from 1.5 to 2.3.
- the cis / trans ratio of the cyclic olefin ring-opening copolymer of the present invention is preferably 0/100 to 60/40, more preferably 5/95 to 55/45, and further preferably 10/90 to 50/50. / 50, particularly preferably 15/85 to 39/61.
- the cis / trans ratio is a content ratio (cis / trans ratio) of a cis structure and a trans structure of a double bond present in a repeating unit constituting the cyclic olefin ring-opening copolymer of the present invention. .
- the cyclic olefin ring-opening copolymer of the present invention is measured at a heating rate of 10 ° C./min at every 0.13 ° C. using differential scanning calorimetry (DSC) according to JIS K7121, and is determined from the obtained DSC curve.
- the difference ( ⁇ Tg) between the extrapolated glass transition end temperature (Teg) and the extrapolated glass transition start temperature (Tig) is 30 ° C. or lower, preferably 20 ° C. or lower, more preferably 15 ° C. or lower, More preferably, the temperature is 10 ° C or lower.
- the cyclic olefin ring-opening copolymer of the present invention has a glass transition temperature (Tmg) of preferably -80 to 10 ° C, more preferably -75 to 0 ° C, and still more preferably -70 to -10 ° C. .
- Tmg glass transition temperature
- the extrapolated glass transition onset temperature (Tig), extrapolated glass transition end temperature (Teg) and glass transition temperature (Tmg) are determined according to JIS K7121.
- the difference ( ⁇ Tg) between the extrapolated glass transition start temperature (Tig) and the extrapolated glass transition end temperature (Teg) is calculated by the following equation.
- ⁇ Tg Teg ⁇ Tig
- the extrapolated glass transition onset temperature (Tig), extrapolated glass transition end temperature (Teg) and glass transition temperature (Tmg) are determined, for example, by adding a monocyclic cycloolefin and a norbornene compound used for polymerization, The addition method and the like can be controlled by devising as described below.
- the cyclic olefin ring-opened copolymer of the present invention has a Mooney viscosity (ML1 + 4, 100 ° C) of preferably 20 to 150, more preferably 22 to 120, and further preferably 25 to 90.
- Mooney viscosity ML1 + 4, 100 ° C
- the cyclic olefin ring-opening copolymer of the present invention has a very small difference ( ⁇ Tg) between the extrapolated glass transition end temperature (Teg) and the extrapolated glass transition onset temperature (Tig). It is believed that the copolymer has a relatively narrow composition distribution and molecular weight distribution.
- the present inventors have conducted intensive studies and found that when a cyclic olefin ring-opening copolymer having such features is polymerized with a monocyclic cyclic olefin and a norbornene compound, the method of adding these monomers, the polymerization method, It has been found that it can be produced by devising a method of adding the ring-opening polymerization catalyst to be used and the like.
- the cyclic olefin ring-opening copolymer of the present invention is a monocyclic cyclic olefin and a norbornene compound, and one or both of a ring-opening polymerization catalyst, continuously or intermittently, while adding to a polymerization reactor. It can be preferably produced by a production method including a step of copolymerizing a monocyclic olefin and a norbornene compound.
- the time for continuously adding a monocyclic cyclic olefin and a norbornene compound to a polymerization reactor is usually 15 minutes or longer, and the upper limit is not particularly limited, It may be continuously added until the polymerization reaction is completed, for example, may be 15 minutes or more and 3 hours or less, or may be 30 minutes or more and 2 hours or less.
- the number of times the ring-opening polymerization catalyst is intermittently added to the polymerization reactor is usually 2 or more times, as long as the polymerization reaction is being performed.
- the number may be any number of times, but may be 2 or more and 5 or less.
- the method for adding the monocyclic olefin and the norbornene compound to the polymerization reactor is not particularly limited.
- the monocyclic olefin and the norbornene compound may be separately added to the polymerization reactor, A monomer mixture may be prepared by previously mixing them, and then added to the polymerization reactor. When they are separately added, a monocyclic olefin and a norbornene compound are mixed in a polymerization reactor to form a monomer mixture, and a copolymerization reaction proceeds.
- the above production method can include a step of preparing a monomer mixture containing a monocyclic olefin and a norbornene compound.
- a step of preparing a monomer mixture containing a monocyclic olefin and a norbornene compound By preparing the monomer mixture in advance, the copolymerization reaction can proceed smoothly, and a cyclic olefin ring-opened copolymer having a small difference ( ⁇ Tg) can be easily produced.
- the above-mentioned production method includes a step of preparing a solution containing a ring-opening polymerization catalyst.
- a solution containing a ring-opening polymerization catalyst By preparing a solution containing a ring-opening polymerization catalyst in advance, the copolymerization reaction can proceed smoothly and a cyclic olefin ring-opening copolymer having a small difference ( ⁇ Tg) can be easily produced.
- the above solution can be prepared, for example, by dissolving a ring-opening polymerization catalyst in a part of a solvent used for polymerization.
- the above production method usually includes a start step of starting a copolymerization reaction by adding a ring-opening polymerization catalyst after adding a monocyclic olefin and a norbornene compound to a polymerization reactor. After the initiation step, the copolymerization reaction between the monocyclic olefin and the norbornene compound continues in the presence of the ring-opening polymerization catalyst.
- the monocyclic olefin and the norbornene compound or the ring-opening polymerization catalyst are continuously or intermittently added to the polymerization reactor even after the initiation step.
- a monomer mixture prepared in advance may be used as the monocyclic olefin and the norbornene compound to be added after the starting step.
- a solution containing a ring-opening polymerization catalyst prepared in advance may be used as the ring-opening polymerization catalyst added after the initiation step.
- one of a single-ring cyclic olefin and a norbornene compound, and a ring-opening polymerization catalyst may be added, or both a single-ring cyclic olefin and a norbornene compound and a ring-opening polymerization catalyst may be added.
- both the monocyclic olefin and the norbornene compound and the ring-opening polymerization catalyst When both the monocyclic olefin and the norbornene compound and the ring-opening polymerization catalyst are added, they may be added simultaneously or at different times. When both the monocyclic cycloolefin and the norbornene compound and the ring-opening polymerization catalyst are added, it is possible to separate the two and add them from separate inlets so that the copolymerization reaction can proceed smoothly. It is preferable because it can produce a ring-opened cyclic olefin copolymer having a small difference ( ⁇ Tg) as well as easily.
- ⁇ Tg small difference
- a cyclic olefin ring-opening copolymer having a small difference ( ⁇ Tg) can be obtained. May be difficult.
- a desired time is obtained by adding a monocyclic olefin and a norbornene compound, or a ring-opening polymerization catalyst in a plurality of times after the initiation step, or by continuing the addition. It is necessary to add over time.
- the termination of the addition of the monocyclic olefin and norbornene compound or the ring-opening polymerization catalyst and the termination of the copolymerization reaction may be simultaneous, or the copolymerization reaction may be continued after the completion of the addition.
- the addition duration for the addition of the monocyclic olefin and norbornene compound and the ring-opening polymerization catalyst can be set based on, for example, the conversion rate of the monomer and the temperature of the polymerization reaction system.
- the ratio of the monocyclic olefin and the norbornene compound to be added after the starting step and the ring-opening polymerization catalyst to the total amount of addition can be set based on the conversion of the monomer.
- the molecular weight modifier is added continuously or intermittently to the polymerization reactor while the monocyclic cycloolefin is added.
- a norbornene compound may be copolymerized.
- the continuous or intermittent addition of the molecular weight modifier may make it easier to produce a cyclic olefin ring-opening copolymer having a small difference ( ⁇ Tg).
- the molecular weight modifier may be previously added to the above-mentioned monomer mixture.
- the ratio of the amount of the monocyclic olefin used is preferably 20 to 90% by mass based on the total amount of the monocyclic olefin and the norbornene compound used. %, More preferably 30 to 85% by mass, still more preferably 35 to 80% by mass, and particularly preferably 35 to 70% by mass.
- a cyclic olefin ring-opening copolymer which gives a rubber crosslinked product having better bending fatigue resistance, abrasion resistance, wet grip properties, and low heat build-up by setting the proportion of the monocyclic olefin in the above range. Can be manufactured more easily. Further, when the proportion of the amount of the monocyclic olefin used falls within the above range, a cyclic olefin ring-opened copolymer having a small difference ( ⁇ Tg) can be produced more easily.
- the ratio of the amount of the norbornene compound used is preferably 10 to 80% by mass based on the total amount of the monocyclic olefin and the norbornene compound used. , More preferably 15 to 70% by mass, still more preferably 20 to 65% by mass, and particularly preferably 30 to 65% by mass.
- the ratio of the amount of the norbornene compound used in the above range the cyclic olefin ring-opening copolymer that gives a rubber crosslinked product having more excellent bending fatigue resistance, abrasion resistance, wet grip properties, and low heat generation can be more easily obtained. Can be manufactured.
- a cyclic olefin ring-opening copolymer having a small difference ( ⁇ Tg) can be produced more easily.
- the ring-opening polymerization catalyst used for the ring-opening polymerization is not particularly limited, and is not particularly limited as long as it can ring-open and polymerize a monocyclic olefin and a norbornene compound. Is preferred.
- a compound containing such a metal halide compound for example, a transition metal compound of Group 6 of the periodic table containing a halogen atom, a ruthenium carbene complex containing a halogen atom, or the like can be preferably used.
- the transition metal of Group 6 of the periodic table that can be used in the present invention is a compound having a transition metal of Group 6 of the periodic table (the long-period type periodic table, hereinafter the same), specifically, a chromium atom, a molybdenum atom, Alternatively, a compound having a tungsten atom, a compound having a molybdenum atom, or a compound having a tungsten atom is preferable. In particular, a compound having a tungsten atom is more preferable from the viewpoint of high solubility in a monocyclic olefin.
- transition metal compound belonging to Group 6 of the periodic table containing a halogen atom examples include molybdenum pentachloride, molybdenum oxotetrachloride, and molybdenum.
- Molybdenum compounds such as (phenylimide) tetrachloride; tungsten hexachloride, tungsten oxotetrachloride, tungsten (phenylimide) tetrachloride, monocatecholate tungsten tetrachloride, bis (3,5-ditert-butyl) catecholate tungsten dichloride, Tungsten compounds such as bis (2-chloroetherate) tetrachloride; and the like.
- the amount of the transition metal compound of Group 6 of the periodic table is preferably the molar ratio of “the transition metal atom of Group 6 in the ring-opening polymerization catalyst: the monomer used for ring-opening polymerization”, and preferably from 1: 100 to 1: 200. , More preferably from 1: 200 to 1: 150,000, even more preferably from 1: 500 to 1: 100,000. If the amount of the transition metal of Group 6 of the periodic table is too small, the polymerization reaction may not proceed sufficiently. On the other hand, if the amount is too large, it is difficult to remove the catalyst residue from the obtained cyclic olefin ring-opening copolymer, and the various properties of the obtained rubber crosslinked product will be inferior.
- the transition metal of Group 6 of the periodic table is used in combination with an organoaluminum compound represented by the following general formula (2).
- the organoaluminum compound acts as a ring-opening polymerization catalyst together with the transition metal compound of Group 6 of the periodic table.
- R 5 and R 6 are a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 1 to 10 carbon atoms.
- X is 0 ⁇ x ⁇ 3.
- R 5 and R 6 include methyl, ethyl, isopropyl, n-propyl, isobutyl, n-butyl, t-butyl, n-hexyl, cyclohexyl, and n-octyl groups And an aryl group such as a phenyl group, a 4-methylphenyl group, a 2,6-dimethylphenyl group, a 2,6-diisopropylphenyl group, and a naphthyl group.
- x is 0 ⁇ x ⁇ 3. That is, in the general formula (2), the composition ratio between R 5 and OR 6 can take any value in the ranges of 0 ⁇ 3-x ⁇ 3 and 0 ⁇ x ⁇ 3, respectively. From the viewpoint that the polymerization activity can be increased, x is preferably 0.5 ⁇ x ⁇ 1.5.
- the organoaluminum compound represented by the general formula (2) can be synthesized, for example, by reacting a trialkylaluminum with an alcohol as shown in the following general formula (3).
- X in the general formula (2) can be arbitrarily controlled by defining the reaction ratio of the corresponding trialkylaluminum and alcohol as shown in the general formula (3).
- the amount of the organoaluminum compound used depends on the type of the organoaluminum compound used, but is preferably 0.1 to 100 times the transition metal atom of the sixth group of the periodic table constituting the transition metal of the sixth group of the periodic table.
- the molar ratio is preferably 0.2 to 50 times, more preferably 0.5 to 20 times. If the amount of the organoaluminum compound is too small, the polymerization activity may be insufficient. If the amount is too large, a side reaction tends to occur during ring-opening polymerization.
- ruthenium carbene complex examples include bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (triphenyl) Phosphine) -3,3-diphenylpropenylideneruthenium dichloride, bis (tricyclohexylphosphine) t-butylvinylideneruthenium dichloride, dichloro- (3-phenyl-1H-indene-1-ylidene) bis (tricyclohexylphosphine) ruthenium, Bis (1,3-diisopropylimidazoline-2-ylidene) benzylidene ruthenium dichloride, bis (1,3-dicyclohexylimidazoline-2-ylidene) benzylidene ruthenium dichloride, 1,
- the amount of the ruthenium carbene complex used is usually from 1: 500 to 1: 2,000,000, preferably from 1: 700 to 1: 1, in terms of the molar ratio of (ruthenium carbene complex: monomer used for ring-opening polymerization). It is in the range of 500,000, more preferably 1: 1,000 to 1: 1,000,000.
- the ring-opening polymerization catalyst such as a transition metal of Group 6 of the periodic table and a ruthenium carbene complex may be used alone or in a combination of two or more.
- an olefin compound or a diolefin compound may be added to the polymerization reaction system.
- the olefin compound is not particularly limited as long as it is an organic compound having an ethylenically unsaturated bond.
- ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene
- styrene vinyltoluene Styrenes such as styrene
- halogen-containing vinyl compounds such as allyl chloride
- vinyl ethers such as ethyl vinyl ether and i-butyl vinyl ether
- silicon-containing vinyl compounds such as allyltrimethoxysilane, allyltriethoxysilane, allyltrichlorosilane, and styryltrimethoxysilane Disubstituted olefins such as 2-butene and 3-hexene; and the like.
- diolefin compound examples include 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,6-heptadiene, 2-methyl-1,4-pentadiene, and 2,5-dimethyl-1,5-diene.
- Non-conjugated diolefins such as hexadiene are included.
- the amount of the olefin compound and the diolefin compound used as the molecular weight modifier may be appropriately selected according to the molecular weight of the cyclic olefin ring-opening copolymer to be produced, but is preferably based on the monomer containing the cyclic olefin used for the polymerization.
- the molar ratio is usually in the range of 1/100 to 1 / 100,000, preferably 1/200 to 1 / 50,000, more preferably 1/500 to 1 / 10,000.
- the polymerization reaction may be carried out without a solvent or in a solution, but is preferably carried out in a solution.
- the solvent used is inert in the polymerization reaction, and is not particularly limited as long as it is a solvent that can dissolve a monocyclic olefin or a norbornene compound used for the copolymerization, a ring-opening polymerization catalyst, and the like. It is preferable to use a hydrocarbon solvent or a halogen solvent.
- hydrocarbon solvent examples include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as hexane, n-heptane, and n-octane; alicycles such as cyclohexane, cyclopentane, and methylcyclohexane. Group hydrocarbons; and the like.
- halogen-based solvent examples include haloalkanes such as dichloromethane and chloroform; and aromatic halogens such as chlorobenzene and dichlorobenzene. These solvents may be used alone or as a mixture of two or more.
- the lower limit of the polymerization reaction temperature is not particularly limited, but is preferably -100 ° C or higher, more preferably -50 ° C or higher, further preferably 0 ° C or higher, and particularly preferably 20 ° C or higher.
- the upper limit of the polymerization reaction temperature is not particularly limited, but is preferably lower than 120 ° C, more preferably lower than 100 ° C, further preferably lower than 90 ° C, and particularly preferably lower than 80 ° C.
- the polymerization reaction time is also not particularly limited, but is preferably 1 minute to 72 hours, more preferably 10 minutes to 20 hours.
- the resulting polymerization solution may be recovered after the completion of the polymerization reaction, or one or both of a monocyclic cyclic olefin and a norbornene compound, and a ring-opening polymerization catalyst may be added continuously or intermittently, while the The amount of the polymerization solution may be recovered by continuously withdrawing it (continuous polymerization method).
- An antioxidant such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the cyclic olefin ring-opening copolymer obtained by the polymerization reaction, if desired.
- the amount of the antioxidant to be added may be appropriately determined depending on the type and the like.
- an extender oil may be blended.
- a cyclic olefin ring-opening copolymer is obtained as a polymerization solution
- a known recovery method may be employed, for example, by steam stripping or the like. After the solvent is separated, a method in which a solid is filtered off and further dried to obtain a solid cyclic olefin ring-opening copolymer can be adopted.
- the rubber composition of the present invention contains the above-described cyclic olefin ring-opening copolymer of the present invention, and silica and / or carbon black.
- silica in the present invention examples include dry-process white carbon, wet-process white carbon, colloidal silica, and precipitated silica disclosed in JP-A-62-62838.
- wet-process white carbon containing hydrated silicic acid as a main component is preferable.
- a carbon-silica dual phase filler having silica supported on the surface of carbon black may be used. These silicas can be used alone or in combination of two or more.
- the nitrogen adsorption specific surface area of the silica (measured by the BET method according to ASTM D3037-81) is preferably from 50 to 400 m 2 / g, more preferably from 100 to 220 m 2 / g.
- the pH of the silica is preferably lower than pH 7, more preferably pH 5 to 6.9. Within these ranges, the affinity between the ring-opening copolymer and silica becomes particularly good.
- silane coupling agent is further added to the rubber composition of the present invention for the purpose of further improving the affinity between the cyclic olefin ring-opening copolymer and silica.
- silane coupling agent include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, bis (3- (Triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulfide, and ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide described in JP-A-6-248116.
- silane coupling agents such as ⁇ -trimethoxysilylpropylbenzothiazyltetrasulfide. Among them, tetrasulfides are preferred.
- These silane coupling agents can be used alone or in combination of two or more.
- the amount of the silane coupling agent is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass, based on 100 parts by mass of silica.
- the amount of silica is preferably 1 to 150 parts by mass, more preferably 10 to 120 parts by mass, and still more preferably 15 to 100 parts by mass, per 100 parts by mass of the rubber component in the rubber composition. Parts, particularly preferably 20 to 80 parts by mass.
- the amount of silica is in the above range, a rubber composition which is a rubber cross-linked product having more excellent bending fatigue resistance, abrasion resistance, wet grip properties, and low heat generation can be obtained.
- furnace black examples include furnace black, acetylene black, thermal black, channel black, and graphite.
- furnace black is preferable, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, and FEF.
- SAF SAF
- ISAF ISAF-HS
- ISAF-LS ISAF-LS
- IISAF-HS IISAF-HS
- HAF HAF-HS
- HAF-LS HAF-LS
- FEF FEF
- the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably from 5 to 200 m 2 / g, more preferably from 70 to 120 m 2 / g, and the adsorption amount of dibutyl phthalate (DBP) is preferably from 5 to 200 m 2 / g. It is 300 ml / 100 g, more preferably 80-160 ml / 100 g.
- the amount of carbon black is preferably from 1 to 150 parts by mass, more preferably from 2 to 120 parts by mass, and still more preferably from 15 to 150 parts by mass, per 100 parts by mass of the rubber component in the rubber composition.
- the amount is 100 parts by mass, particularly preferably 15 to 80 parts by mass.
- the total amount of silica and carbon black is preferably 100 parts by mass of the rubber component in the rubber composition.
- the amount is 25 to 200 parts by mass, and more preferably 30 to 150 parts by mass.
- the rubber composition of the present invention may contain a rubber other than the above-mentioned cyclic olefin ring-opening copolymer as a rubber component.
- a rubber other than the above-mentioned cyclic olefin ring-opening copolymer include natural rubber (NR), polyisoprene rubber (IR), emulsion-polymerized SBR (styrene-butadiene copolymer rubber), and solution-polymerized random SBR (bonded styrene 5).
- NR, BR, IR, EPDM, and SBR are preferable, and SBR is particularly preferably used.
- SBR is particularly preferably used.
- These rubbers can be used alone or in combination of two or more. Further, the rubber other than the cyclic olefin ring-opening copolymer may have a modifying group at the polymer terminal.
- the content of the cyclic olefin ring-opening copolymer in the rubber composition of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total amount of the rubber component.
- the content is particularly preferably at least 100% by mass, and may be at most 100% by mass, or at most 90% by mass. If this ratio is too low, the effects of improving bending fatigue resistance, wear resistance, wet grip properties, and low heat generation properties may not be obtained.
- a crosslinking agent in addition to the above components, a crosslinking agent, a crosslinking accelerator, a crosslinking activator, a filler other than an inorganic material, an antioxidant, an activator, a process oil, and a plasticizer are used in a conventional manner. , And a necessary amount of compounding agents such as lubricants.
- crosslinking agent examples include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halides such as sulfur monochloride and sulfur dichloride; dicumyl peroxide, ditertiary butyl peroxide and the like.
- crosslinking agents are used alone or in combination of two or more.
- the amount of the crosslinking agent is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the rubber component in the rubber composition.
- crosslinking accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide, N- (tert-butyl) -2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolylsulfen Sulfenamide-based crosslinking accelerators such as amide, N-oxyethylene-2-benzothiazolylsulfenamide, N, N'-diisopropyl-2-benzothiazolylsulfenamide; 1,3-diphenylguanidine; Guanidine-based cross-linking accelerators such as 3-dioltotolylguanidine and 1-ortho-tolylbiguanidine; Thiourea-based cross-linking accelerators such as diethylthiourea; 2-mercaptobenzothiazole, dibenzothiazyl disulfide, zinc salt of 2-mercaptobenzothiazole and the like A thiazole crosslinking accelerator; Thiuram
- crosslinking accelerators are used alone or in combination of two or more.
- the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the rubber component in the rubber composition.
- the cross-linking activator for example, higher fatty acids such as stearic acid and zinc oxide can be used.
- the compounding amount of the crosslinking activator is appropriately selected, but the compounding amount of the higher fatty acid is preferably 0.05 to 15 parts by mass, more preferably 0.1 to 15 parts by mass, based on 100 parts by mass of the rubber component in the rubber composition.
- the amount of zinc oxide is preferably 0.05 to 10 parts by mass, more preferably 0.5 to 3 parts by mass, based on 100 parts by mass of the rubber component in the rubber composition. is there.
- Mineral oil or synthetic oil may be used as the process oil.
- mineral oil aroma oil, naphthenic oil, paraffin oil and the like are usually used.
- Other compounding agents include activators such as diethylene glycol, polyethylene glycol and silicone oil; fillers other than inorganic materials such as calcium carbonate, talc and clay; tackifiers such as petroleum resins and cumarone resins; waxes and the like. .
- the rubber composition of the present invention can be obtained by kneading each component according to a conventional method. For example, after kneading a compounding agent excluding a crosslinking agent and a crosslinking accelerator and a rubber component such as a cyclic olefin ring-opening copolymer, mixing the kneaded product with a crosslinking agent and a crosslinking accelerator to obtain a rubber composition Can be.
- the kneading temperature of the compounding agent excluding the crosslinking agent and the crosslinking accelerator and the rubber component such as the cyclic olefin ring-opening copolymer is preferably 20 to 200 ° C, more preferably 30 to 180 ° C. Preferably it is 30 seconds to 30 minutes.
- Mixing of the crosslinking agent and the crosslinking accelerator is usually performed at 100 ° C. or lower, preferably at 80 ° C. or lower.
- the cross-linked rubber of the present invention is obtained by cross-linking the above-described rubber composition of the present invention.
- the rubber crosslinked product of the present invention is obtained by using the rubber composition of the present invention, for example, molding by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and the like, and heating.
- a cross-linking reaction to fix the shape as a cross-linked product.
- crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
- the molding temperature is usually from 10 to 200 ° C, preferably from 25 to 120 ° C.
- the crosslinking temperature is usually from 100 to 200 ° C., preferably from 130 to 190 ° C.
- the crosslinking time is usually from 1 minute to 24 hours, preferably from 2 minutes to 12 hours, particularly preferably from 3 minutes to 6 hours. .
- the surface may be cross-linked but not sufficiently cross-linked in some cases. Therefore, secondary cross-linking may be performed by further heating.
- a general method used for rubber crosslinking such as press heating, steam heating, oven heating, and hot air heating, may be appropriately selected.
- the rubber crosslinked product of the present invention thus obtained is excellent in tensile strength, elongation characteristics, and heat aging resistance.
- the rubber cross-linked product of the present invention makes use of such characteristics, for example, in a tire, materials for each part of the tire such as a cap tread, a base tread, a carcass, a sidewall, a bead portion; a hose, a belt, a mat, and a tire.
- the rubber crosslinked product of the present invention can be suitably used in various tires such as an all-season tire, a high-performance tire, and a studless tire, for each part of the tire such as a tread, a carcass, a sidewall, and a bead portion.
- a gel permeation chromatography (GPC) system "HLC-8220" (manufactured by Tosoh Corporation) is used by connecting two H-type columns “HZ-M” (manufactured by Tosoh Corporation) in series, and using tetrahydrofuran as a solvent. At a column temperature of 40 ° C.
- a differential refractometer “RI-8320” (manufactured by Tosoh Corporation) was used.
- the weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyclic olefin ring-opening copolymer were measured as polystyrene equivalents.
- Tmg ⁇ Glass transition temperature
- Tig extrapolated glass transition start temperature
- Teg extrapolated glass transition end temperature
- ⁇ Bending fatigue resistance> The rubber composition 1 prepared in Examples and Comparative Examples was press-crosslinked at 150 ° C. for 25 minutes to produce a crosslinked rubber sheet.
- the bending fatigue resistance of the crosslinked sheet was evaluated by a bending crack initiation test defined by JIS K6260.
- the bending crack initiation test was performed in a room temperature atmosphere.
- the number of times of bending required to reach crack class 3 defined by JIS K6260 was measured and summarized in a table. The larger the value of the number of times of bending, the better the bending fatigue resistance.
- ⁇ DIN wear test> The rubber composition 1 prepared in Examples and Comparative Examples was press-crosslinked at 150 ° C. for 25 minutes to produce a crosslinked rubber sheet. Using the crosslinked product sheet, a DIN abrasion test specified in JIS K 6264-2: 2005 was performed to determine a specific abrasion volume. The smaller the specific wear volume, the more excellent the wear resistance.
- a test piece was prepared by press-crosslinking the rubber compositions 2 prepared in Examples and Comparative Examples at 160 ° C. for 20 minutes, and the obtained test piece was subjected to dynamic strain 0 using ARES manufactured by Rheometrics. The tan ⁇ at 0 ° C. was measured under the conditions of 0.5% and 10 Hz.
- Comparative Example 1 (Production of cyclic olefin ring-opening copolymer) Under a nitrogen atmosphere, into a glass reaction vessel equipped with a stirrer, 300 parts of cyclopentene (CPE) as a monocyclic olefin, 100 parts of dicyclopentadiene (DCPD) as a norbornene compound, 740 parts of toluene and 0.28 part of 1-hexene. added.
- CPE cyclopentene
- DCPD dicyclopentadiene
- BHT 2,6-di-t-butyl-p-cresol
- the obtained CPE / DCPD ring-opened copolymer had a weight average molecular weight (Mw) of 404,000, a molecular weight distribution (Mw / Mn) of 2.96, and a CPE / DCPD composition ratio of 68/32.
- Glass transition temperature (Tmg) was ⁇ 40 ° C. and ⁇ Tg was 35 ° C.
- the obtained kneaded material was combined with 1.75 parts of sulfur and N- (tert-butyl) -2-benzothia as a crosslinking accelerator using an open roll at 23 ° C.
- a sheet-shaped rubber composition 1 was obtained. Then, the obtained rubber composition 1 was subjected to bending fatigue resistance evaluation and DIN abrasion test according to the above method. Table 1 shows the results.
- silica trade name “Zeosil 1165MP”, manufactured by Solvay
- 3 parts of zinc oxide Zinc Hua No. 1
- stearic acid trade name “SA-300”, Asahi Denka Kogyo
- an antioxidant N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylenediamine, trade name "Nocrack 6C", manufactured by Ouchi Shinko Chemical Co., Ltd.
- the temperature of the rubber composition at the end of kneading was 150 ° C. Then, the obtained kneaded material was cooled to room temperature, kneaded again in a Banbury mixer for 3 minutes, and then the kneaded material was discharged from the Banbury mixer.
- Example 1 (Production of cyclic olefin ring-opening copolymer)
- CPE cyclopentene
- DCPD dicyclopentadiene
- toluene 740 parts
- 1-hexene 0.28 part
- 5 parts of a polymerization catalyst solution obtained by dissolving 0.022 part of (1,3-dimesitylimidazolidine-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride in 20 parts of toluene was added within 10 seconds. The polymerization was started.
- Example 2 >> (Production of cyclic olefin ring-opening copolymer)
- CPE cyclopentene
- DCPD dicyclopentadiene
- 740 parts of toluene 740 parts of toluene
- 0.28 part of 1-hexene were added to a glass reaction vessel equipped with a stirrer.
- a polymerization catalyst solution obtained by dissolving 0.022 part of (1,3-dimesitylimidazolidine-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride in 20 parts of toluene was added within 10 seconds, and polymerization was started. .
- Example 3 (Production of cyclic olefin ring-opening copolymer)
- CPE cyclopentene
- DCPD dicyclopentadiene
- toluene 0.28 part of 1-hexene
- a polymerization catalyst solution obtained by dissolving 0.022 part of (1,3-dimesitylimidazolidine-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride in 20 parts of toluene was added 5 times every 15 minutes, 4 times.
- the obtained CPE / DCPD ring-opened copolymer had a weight average molecular weight (Mw) of 411,000, a molecular weight distribution (Mw / Mn) of 2.63, and a CPE / DCPD composition ratio of 71/29.
- Glass transition temperature (Tmg) was ⁇ 49 ° C. and ⁇ Tg was 11 ° C.
- Example 4 (Production of cyclic olefin ring-opening copolymer)
- CPE cyclopentene
- DCPD dicyclopentadiene
- a polymerization catalyst solution obtained by dissolving 0.022 part of (1,3-dimesitylimidazolidine-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride in 20 parts of toluene was added within 10 seconds.
- the polymerization was started. Fifteen minutes after the start of the polymerization, 240 parts of CPE and 100 parts of a 80% by weight DCPD / toluene solution were separately added to the glass reaction vessel over 45 minutes without previously mixing them, and the remaining polymerization catalyst solution was added. Was added in 3 portions of 5 parts every 15 minutes, and the polymerization reaction was continued at 25 ° C.
- the obtained CPE / DCPD ring-opened copolymer had a weight average molecular weight (Mw) of 408,000, a molecular weight distribution (Mw / Mn) of 2.53, and a CPE / DCPD composition ratio of 72/28.
- Glass transition temperature (Tmg) was ⁇ 50 ° C. and ⁇ Tg was 9 ° C.
- Comparative Example 2 >> (Production of cyclic olefin ring-opening copolymer) Under a nitrogen atmosphere, 200 parts of cyclopentene (CPE) as a monocyclic olefin, 200 parts of 2-norbornene (NB) as a norbornene compound, 380 parts of toluene and 0.48 part of 1-hexene are placed in a glass reaction vessel equipped with a stirrer. added.
- CPE cyclopentene
- NB 2-norbornene
- the polymerization solution was poured into a large excess of methanol containing 2,6-di-t-butyl-p-cresol (BHT), and the precipitated polymer was collected, washed with methanol, and dried in vacuo at 50 ° C. for 3 days.
- BHT 2,6-di-t-butyl-p-cresol
- 248 parts of a CPE / NB ring-opened copolymer was obtained.
- the obtained CPE / NB ring-opened copolymer had a weight average molecular weight (Mw) of 271,000, a molecular weight distribution (Mw / Mn) of 2.35, and a CPE / NB composition ratio of 38/62.
- Glass transition temperature (Tmg) was ⁇ 25 ° C. and ⁇ Tg was 36 ° C.
- Rubber compositions 1 and 2 were prepared in the same manner as in Comparative Example 1, and the bending fatigue resistance, the DIN wear test, the low heat build-up, and the wet gripping property were evaluated. Table 2 shows the results. The values of the low heat build-up property and the wet grip property are shown by using the test piece of Comparative Example 2 as a reference sample (index 100) and Examples 5 and 6 as the index of Comparative Example 2.
- Example 5 (Production of cyclic olefin ring-opening copolymer)
- CPE cyclopentene
- NB 2-norbornene
- toluene 380 parts
- 1-hexene 0.48 part
- Rubber compositions 1 and 2 were prepared in the same manner as in Comparative Example 2, and the bending fatigue resistance, the DIN wear test, the low heat build-up, and the wet gripping property were evaluated. Table 2 shows the results. The values of the low heat build-up property and the wet grip property are indicated by indexes using the test piece of Comparative Example 2 as a reference sample (index 100).
- Example 6 (Production of cyclic olefin ring-opening copolymer)
- CPE cyclopentene
- NB 2-norbornene
- toluene 380 parts
- dichloro- (3-phenyl-1H-indene-1-ylidene) bis (tricyclohexylphosphine) ruthenium dissolved in 20 parts of toluene was added within 10 seconds to initiate polymerization.
- Rubber compositions 1 and 2 were prepared in the same manner as in Comparative Example 2, and the bending fatigue resistance, the DIN wear test, the low heat build-up, and the wet gripping property were evaluated. Table 2 shows the results. The values of the low heat build-up property and the wet grip property are indicated by indexes using the test piece of Comparative Example 2 as a reference sample (index 100).
- Comparative Example 3 (Production of cyclic olefin ring-opening copolymer) Under a nitrogen atmosphere, a glass reactor equipped with a stirrer is charged with 17.4 parts of a 1.0 wt% WCl 6 / toluene solution and 8.6 wt% of a 2.5 wt% diisobutylaluminum mono (n-hexoxide) / toluene solution. Then, the mixture was stirred for 15 minutes to obtain a catalyst solution. Then, under a nitrogen atmosphere, 300 parts of cyclopentene (CPE) as a monocyclic olefin and tetracyclo [6.2.1.1 3,6 .
- CPE cyclopentene
- the obtained CPE / TCD ring-opening copolymer had a weight average molecular weight (Mw) of 262,000, a molecular weight distribution (Mw / Mn) of 2.34, and a CPE / TCD composition ratio of 72/28.
- Glass transition temperature (Tmg) was ⁇ 22 ° C. and ⁇ Tg was 32 ° C.
- Rubber compositions 1 and 2 were prepared in the same manner as in Comparative Example 1, and the bending fatigue resistance, the DIN wear test, the low heat build-up, and the wet gripping property were evaluated. Table 3 shows the results. The values of low heat build-up and wet grip properties are shown by using the test piece of Comparative Example 3 as a reference sample (index 100) and Examples 7 and 8 as indexes of Comparative Example 3.
- Example 7 (Production of cyclic olefin ring-opening copolymer) Under a nitrogen atmosphere, in a glass reaction vessel equipped with a stirrer, 382 parts of toluene, 90 parts of cyclopentene (CPE), and tetracyclo [6.2.1.1 3,6 . [0 2,7 ] dodec-4-ene (TCD) 30 parts, 1-hexene 0.42 parts and 2.5% by weight of diisobutylaluminum mono (n-hexoxide) / toluene solution 8.6 parts were added. Polymerization was initiated by adding 4.4 parts of a 1.0 wt% WCl 6 / toluene solution.
- CPE cyclopentene
- TCD dodec-4-ene
- Rubber compositions 1 and 2 were prepared in the same manner as in Comparative Example 3, and the bending fatigue resistance, the DIN wear test, the low heat build-up, and the wet gripping property were evaluated. Table 3 shows the results. The values of the low heat build-up property and the wet grip property are indicated by an index using the test piece of Comparative Example 3 as a reference sample (index 100).
- Embodiment 8 >> (Production of cyclic olefin ring-opening copolymer) Under a nitrogen atmosphere, in a glass reaction vessel equipped with a stirrer, 382 parts of toluene, 90 parts of cyclopentene (CPE), and tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene (TCD) and 8.6 parts of a 2.5% by weight diisobutylaluminum mono (n-hexoxide) / toluene solution were added, followed by 1.0% by weight of WCl 6 / toluene solution (4.4 parts) was added to initiate polymerization.
- CPE cyclopentene
- TCD dodec-4-ene
- the obtained CPE / TCD ring-opening copolymer had a weight average molecular weight (Mw) of 276,000, a molecular weight distribution (Mw / Mn) of 2.02, and a CPE / TCD composition ratio of 74/26.
- Glass transition temperature (Tmg) was ⁇ 31 ° C. and ⁇ Tg was 11 ° C.
- Rubber compositions 1 and 2 were prepared in the same manner as in Comparative Example 3, and the bending fatigue resistance, the DIN wear test, the low heat build-up, and the wet gripping property were evaluated. Table 3 shows the results. The values of the low heat build-up property and the wet grip property are indicated by an index using the test piece of Comparative Example 3 as a reference sample (index 100).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
単環の環状オレフィン由来の構造単位およびノルボルネン化合物由来の構造単位を含む環状オレフィン開環共重合体であって、JIS K7121にしたがって求められる補外ガラス転移終了温度(Teg)と補外ガラス転移開始温度(Tig)との差(ΔTg)が30℃以下であり、重量平均分子量(Mw)が50,000~1,000,000である環状オレフィン開環共重合体を提供する。
Description
本発明は、環状オレフィン開環共重合体およびその製造方法、環状オレフィン開環共重合体を含むゴム組成物ならびにゴム架橋物に関し、さらに詳しくは、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性に優れるゴム架橋物を与える環状オレフィン開環共重合体およびその製造方法、ならびに、環状オレフィン開環共重合体を用いて得られるゴム組成物およびゴム架橋物に関する。
単環の環状オレフィンとノルボルネン化合物からなる環状オレフィン開環共重合体は、機械強度に優れたゴムに用いられることが知られている。例えば、特許文献1には、単環の環状オレフィンであるシクロペンテンとノルボルネン化合物であるジシクロペンタジエンの共重合体組成物からなる加硫ゴムが引張強度に優れていることが記載されている。また、特許文献2には、単環の環状オレフィンであるシクロペンテンと種々のノルボルネン化合物との共重合体組成物からなる加硫ゴムが、タイヤ用ゴムとして低燃費性とウェットグリップ性に優れることが記載されている。
しかしながら、特許文献1および2に記載された環状オレフィン開環共重合体からなる加硫ゴムは、機械強度や低燃費性、ウェットグリップ性が十分とはいえず、さらなる特性の向上が求められる。
本発明は、このような実状に鑑みてなされたものであり、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性に優れるゴム架橋物を与える環状オレフィン開環共重合体およびその製造方法を提供すること、ならびに、このような環状オレフィン開環共重合体を用いて得られるゴム組成物およびゴム架橋物を提供することを目的とする。
本発明者らは、上記目的を達成するための検討において、まず、単環の環状オレフィンとノルボルネン化合物との重合反応性の相違に着目した。そうしたところ、両者の重合反応性の相違に起因して、得られる環状オレフィン開環共重合体は、モノマーの組成分布が広く、分子量分布も広いこと、および、ガラス転移温度が制御し難いことが判明した。モノマーの組成分布は、直接同定することは困難であるが、示差走査熱量計(DSC)でガラス転移温度(Tmg)を測定した時の補外ガラス転移開始温度(Tig)と補外ガラス転移終了温度(Teg)との差(ΔTg)で代用することができる。すなわち、モノマーの組成分布および分子量分布が広いほど、ΔTgは大きくなる。実際、特許文献1,2で製造される環状オレフィン開環共重合体について、示差走査熱量測定をしたところ、ΔTgが十分に小さいとは言い難いものであった。
本発明者らは、さらに検討を続けたところ、環状オレフィン開環共重合体のモノマーの組成分布および分子量分布が広いと、機械強度や低燃費性、ウェットグリップ性などの性能が十分に引き出されているとは言えないことも、あわせて見出された。
本発明者らは、以上の知見に基づき、環状オレフィン開環共重合体の補外ガラス転移開始温度(Tig)と補外ガラス転移終了温度(Teg)との差(ΔTg)、および、重量平均分子量(Mw)を極めて限定された範囲に調整することによって、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性に優れたゴム架橋物が得られることを見出し、本発明を完成させるに至った。
すなわち、本発明によれば、単環の環状オレフィン由来の構造単位およびノルボルネン化合物由来の構造単位を含む環状オレフィン開環共重合体であって、JIS K7121にしたがって求められる補外ガラス転移終了温度(Teg)と補外ガラス転移開始温度(Tig)との差(ΔTg)が30℃以下であり、重量平均分子量(Mw)が50,000~1,000,000である環状オレフィン開環共重合体が提供される。
本発明の環状オレフィン開環共重合体において、前記環状オレフィン開環共重合体中の全繰返し構造単位に対して、前記単環の環状オレフィン由来の構造単位の含有割合が20~90質量%であり、前記ノルボルネン化合物由来の構造単位の含有割合が10~80質量%であることが好ましい。
本発明の環状オレフィン開環共重合体において、JIS K7121にしたがって求められるガラス転移温度(Tmg)が、-80℃~10℃であることが好ましい。
本発明の環状オレフィン開環共重合体において、前記ノルボルネン化合物が、2-ノルボルネンであることが好ましい。
本発明の環状オレフィン開環共重合体において、JIS K7121にしたがって求められるガラス転移温度(Tmg)が、-80℃~10℃であることが好ましい。
本発明の環状オレフィン開環共重合体において、前記ノルボルネン化合物が、2-ノルボルネンであることが好ましい。
また、本発明によれば、上記の環状オレフィン開環共重合体、ならびにシリカおよび/またはカーボンブラックを含むゴム組成物が提供される。
また、本発明によれば、上記のゴム組成物を架橋してなるゴム架橋物が提供される。
また、本発明によれば、上記の環状オレフィン開環共重合体を製造する製造方法であって、前記単環の環状オレフィンおよび前記ノルボルネン化合物、ならびに、開環重合触媒の一方または両方を、連続的または断続的に、重合反応器に添加しながら、前記単環の環状オレフィンおよび前記ノルボルネン化合物を共重合させる工程を含む製造方法が提供される。
本発明によれば、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性に優れるゴム架橋物を与える環状オレフィン開環共重合体およびその製造方法、ならびに、このような環状オレフィン開環共重合体を含むゴム組成物およびゴム架橋物を提供することができる。
<環状オレフィン開環共重合体>
本発明の環状オレフィン開環共重合体は、単環の環状オレフィン由来の構造単位およびノルボルネン化合物由来の構造単位を含むものである。
本発明の環状オレフィン開環共重合体は、単環の環状オレフィン由来の構造単位およびノルボルネン化合物由来の構造単位を含むものである。
本発明における単環の環状オレフィンとしては、環状構造を1個のみ有するオレフィンであれば特に限定されないが、たとえば、シクロプロペン、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテンなどの環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエンなどの環状ジオレフィン;などを挙げることができる。
単環の環状オレフィンは、1種類を単独で使用しても2種類以上を組み合わせて用いてもよい。単環の環状オレフィンとしては、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテンおよびシクロオクタジエンが好ましく、本発明の効果がより得られやすいという観点より、シクロペンテンおよびシクロオクタジエンがより好ましい。
式中、R1~R4は水素原子、炭素数1~20の炭化水素基、または、ハロゲン原子、ケイ素原子、酸素原子もしくは窒素原子を含む置換基を示し、R2とR3は互いに結合して環構造を形成していてもよく、mは0~2の整数である。
上記一般式(1)で表されるノルボルネン化合物の具体例としては、たとえば、以下の化合物が挙げられる。
2-ノルボルネン、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネン、5-シクロヘキシル-2-ノルボルネン、5-シクロペンチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-プロペニル-2-ノルボルネン、5-シクロヘキセニル-2-ノルボルネン、5-シクロペンテニル-2-ノルボルネン、5-フェニル-2-ノルボルネン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)、ジシクロペンタジエン、メチルジシクロペンタジエン、およびジヒドロジシクロペンタジエン(トリシクロ[5.2.1.02,6]デカ-8-エン)などの無置換または炭化水素置換基を有するビシクロ[2.2.1]ヘプト-2-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロヘキシルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロペンチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチレンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロヘキセニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロペンテニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、および9-フェニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどの無置換または炭化水素置換基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-ノルボルネン-2-カルボン酸メチル、5-ノルボルネン-2-カルボン酸エチル、2-メチル-5-ノルボルネン-2-カルボン酸メチル、2-メチル-5-ノルボルネン-2-カルボン酸エチルなどのアルコキシカルボニル基を有するビシクロ[2.2.1]ヘプト-2-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸メチル、および4-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸メチルなどのアルコキシカルボニル基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸メチル、および4-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸メチルなどのアルコキシカルボニル基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-ノルボルネン-2-カルボン酸、5-ノルボルネン-2,3-ジカルボン酸、および5-ノルボルネン-2,3-ジカルボン酸無水物などのヒドロキシカルボニル基または酸無水物基を有するビシクロ[2.2.1]ヘプト-2-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸、およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物などのヒドロキシカルボニル基または酸無水物基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸、およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物などのヒドロキシカルボニル基または酸無水物基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-ヒドロキシ-2-ノルボルネン、5-ヒドロキシメチル-2-ノルボルネン、5,6-ジ(ヒドロキシメチル)-2-ノルボルネン、5,5-ジ(ヒドロキシメチル)-2-ノルボルネン、5-(2-ヒドロキシエトキシカルボニル)-2-ノルボルネン、および5-メチル-5-(2-ヒドロキシエトキシカルボニル)-2-ノルボルネンなどのヒドロキシル基を有するビシクロ[2.2.1]ヘプト-2-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-メタノール、およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-オールなどのヒドロキシル基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-メタノール、およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-オールなどのヒドロキシル基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-ノルボルネン-2-カルバルデヒドなどのヒドロカルボニル基を有するビシクロ[2.2.1]ヘプト-2-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルバルデヒドなどのヒドロカルボニル基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルバルデヒドなどのヒドロカルボニル基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
3-メトキシカルボニル-5-ノルボルネン-2-カルボン酸などのアルコキシカルボニル基とヒドロキシカルボニル基とを有するビシクロ[2.2.1]ヘプト-2-エン類;
酢酸5-ノルボルネン-2-イル、酢酸2-メチル-5-ノルボルネン-2-イル、アクリル酸5-ノルボルネン-2-イル、およびメタクリル酸5-ノルボルネン-2-イルなどのカルボニルオキシ基を有するビシクロ[2.2.1]ヘプト-2-エン類;
酢酸9-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、アクリル酸9-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、およびメタクリル酸9-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニルなどのカルボニルオキシ基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
酢酸9-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、アクリル酸9-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、およびメタクリル酸9-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニルなどのカルボニルオキシ基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-ノルボルネン-2-カルボニトリル、および5-ノルボルネン-2-カルボキサミド、5-ノルボルネン-2、3-ジカルボン酸イミドなどの窒素原子を含む官能基を有するビシクロ[2.2.1]ヘプト-2-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボニトリル、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボキサミド、およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸イミドなどの窒素原子を含む官能基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボニトリル、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボキサミド、およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸イミドなどの窒素原子を含む官能基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-クロロ-2-ノルボルネンなどのハロゲン原子を有するビシクロ[2.2.1]ヘプト-2-エン類;
9-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのハロゲン原子を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
9-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのハロゲン原子を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
5-トリメトキシシリル-2-ノルボルネン、5-トリエトキシシリル-2-ノルボルネンなどのケイ素原子を含む官能基を有するビシクロ[2.2.1]ヘプト-2-エン類;
4-トリメトキシシリルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-トリエトキシシリルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エンなどのケイ素原子を含む官能基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
4-トリメトキシシリルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-トリエトキシシリルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エンなどのケイ素原子を含む官能基を有するテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類;
上記一般式(1)で表されるノルボルネン化合物としては、上記一般式(1)において、mが0または1である一般式で表されるものが好ましく、mが0である一般式で表されるものがより好ましい。また、上記一般式(1)において、R1~R4は、同一であっても異なっていてもよい。
また、上記一般式(1)で表されるノルボルネン化合物のなかでも、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができるという観点より、上記一般式(1)におけるR1~R4が、水素原子、炭素数1~20の鎖状炭化水素基、または、ハロゲン原子、ケイ素原子、酸素原子もしくは窒素原子を含む置換基であることが好ましい。この場合において、R1~R4は、互いに結合せず、環を形成しない基であればよく、特に限定されず、同一であっても異なっていてもよく、R1~R4としては、水素原子または炭素数1~3のアルキル基が好ましい。また、この場合においても、mが0または1である一般式で表されるものが好ましく、mが0である一般式で表されるものがより好ましい。
上記一般式(1)におけるR1~R4が、水素原子、炭素数1~20の鎖状炭化水素基、または、ハロゲン原子、ケイ素原子、酸素原子もしくは窒素原子を含む置換基であるノルボルネン化合物としては、無置換または炭化水素置換基を有するビシクロ[2.2.1]ヘプト-2-エン類およびテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン類が好ましく、なかでも、2-ノルボルネン、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-エチリデン-2-ノルボルネンおよびテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンがより好ましく、本発明の効果がより得られやすいという観点より、2-ノルボルネン、5-メチル-2-ノルボルネンおよびテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンがさらに好ましく、2-ノルボルネンおよびテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンが特に好ましい。
また、上記一般式(1)で表されるノルボルネン化合物として、R2とR3とが互いに結合して環を形成している化合物を用いる場合における、環構造の具体例としては、シクロペンタン環、シクロペンテン環、シクロヘキサン環、シクロへキセン環、ベンゼン環などが好適に挙げられ、これらは多環構造を形成していてもよく、さらには、置換基を有するものであってもよい。これらのなかでも、シクロペンタン環、シクロペンテン環、ベンゼン環が好ましく、特に、シクロペンテン環を単独で有する化合物、またはシクロペンタン環とベンゼン環との多環構造を有する化合物が好ましい。なお、環構造を形成するR2、R3以外のR1、R4は、同一であっても異なっていてもよく、水素原子または炭素数1~3のアルキル基が好ましい。また、この場合においては、mが0である一般式で表されるものが好ましい。
R2とR3とが互いに結合して環を形成している化合物としては、無置換または炭化水素置換基を有するビシクロ[2.2.1]ヘプト-2-エン類が好ましく、なかでも、ジシクロペンタジエン、メチルジシクロペンタジエン、ジヒドロジシクロペンタジエン、1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレン、1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンが好ましく、ジシクロペンタジエン、1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンがより好ましい。
本発明におけるノルボルネン化合物は、1種類を単独で使用しても2種類以上を組み合わせて用いてもよい。
本発明の環状オレフィン開環共重合体における、単環の環状オレフィン由来の構造単位の含有割合は、全繰返し構造単位に対して、好ましくは20~90質量%であり、より好ましくは30~80質量%であり、さらに好ましくは35~75質量%であり、特に好ましくは35~60質量%である。単環の環状オレフィン由来の構造単位の含有割合を上記範囲とすることにより、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができる。
本発明の環状オレフィン開環共重合体における、ノルボルネン化合物由来の構造単位の含有割合は、全繰返し構造単位に対して、好ましくは10~80質量%であり、より好ましくは20~70質量%であり、さらに好ましくは25~65質量%であり、特に好ましくは40~65質量%である。ノルボルネン化合物由来の構造単位の含有割合を上記範囲とすることにより、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができる。
また、本発明の環状オレフィン開環共重合体は、単環の環状オレフィンおよびノルボルネン化合物に加えて、これらと共重合可能な他の単量体を共重合したものであってもよい。このような他の単量体としては、芳香環を有する多環のシクロオレフィンなどが例示される。芳香環を有する多環のシクロオレフィンとしては、フェニルシクロオクテン、5-フェニル-1,5-シクロオクタジエン、フェニルシクロペンテンなどが挙げられる。本発明の環状オレフィン開環共重合体中における、他の単量体由来の構造単位の含有割合は、全繰り返し構造単位に対して、好ましくは40質量%以下であり、より好ましくは30質量%以下であり、本発明の環状オレフィン開環共重合体としては、他の単量体由来の構造単位が実質的に含まれていないものであることが特に好ましい。
本発明の環状オレフィン開環共重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィーで測定される、ポリスチレン換算の重量平均分子量(Mw)の値として、50,000~1,000,000であり、好ましくは60,000~800,000であり、より好ましくは70,000~700,000、さらに好ましくは80,000~600,000である。重量平均分子量(Mw)を上記範囲とすることにより、製造および取扱いを良好なものとしながら、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができる。また、本発明の環状オレフィン開環共重合体のゲルパーミエーションクロマトグラフィーで測定される、ポリスチレン換算の、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.0~5.0、より好ましくは1.5~2.9、さらに好ましくは1.5~2.5であり、特に好ましくは1.5~2.3である。
本発明の環状オレフィン開環共重合体のシス/トランス比は、好ましくは0/100~60/40であり、より好ましくは5/95~55/45であり、さらに好ましくは10/90~50/50であり、特に好ましくは15/85~39/61である。上記のシス/トランス比とは、本発明の環状オレフィン開環共重合体を構成する繰返し単位中に存在する二重結合のシス構造とトランス構造との含有割合(シス/トランスの比率)である。シス/トランス比を上記範囲とすることにより、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができる。
本発明の環状オレフィン開環共重合体は、JIS K7121にしたがって示差走査熱量測定(DSC)を用いて昇温速度10℃/分、0.13℃ごとに測定し、得られたDSC曲線から求めた補外ガラス転移終了温度(Teg)と補外ガラス転移開始温度(Tig)との差(ΔTg)が30℃以下であり、好ましくは20℃以下であり、より好ましくは15℃以下であり、さらに好ましくは10℃以下である。ΔTgを上記範囲とすることにより、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができる。
本発明の環状オレフィン開環共重合体は、ガラス転移温度(Tmg)が、好ましくは-80~10℃であり、より好ましくは-75~0℃、さらに好ましくは-70~-10℃である。ガラス転移温度(Tmg)を上記範囲とすることにより、得られるゴム架橋物を、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるものとすることができる。
補外ガラス転移開始温度(Tig)、補外ガラス転移終了温度(Teg)およびガラス転移温度(Tmg)は、JIS K7121に従って求める。補外ガラス転移開始温度(Tig)と補外ガラス転移終了温度(Teg)との差(ΔTg)は、以下の式で算出する。
ΔTg=Teg-Tig
ΔTg=Teg-Tig
補外ガラス転移開始温度(Tig)、補外ガラス転移終了温度(Teg)およびガラス転移温度(Tmg)は、たとえば、重合に用いる単環の環状オレフィンおよびノルボルネン化合物の添加方法、開環重合触媒の添加方法などを、後述するように工夫することによって、制御することができる。
本発明の環状オレフィン開環共重合体のムーニー粘度(ML1+4,100℃)は、好ましくは20~150、より好ましくは22~120、さらに好ましくは25~90である。ムーニー粘度を上記範囲とすることにより、常温および高温での混練を容易なものとすることができ、これにより加工性を良好なものとすることができる。
<環状オレフィン開環共重合体の製造方法>
上記したように、本発明の環状オレフィン開環共重合体は、補外ガラス転移終了温度(Teg)と補外ガラス転移開始温度(Tig)との差(ΔTg)が非常に小さく、したがって、モノマー組成分布および分子量分布が比較的狭い共重合体であると考えられる。
上記したように、本発明の環状オレフィン開環共重合体は、補外ガラス転移終了温度(Teg)と補外ガラス転移開始温度(Tig)との差(ΔTg)が非常に小さく、したがって、モノマー組成分布および分子量分布が比較的狭い共重合体であると考えられる。
本発明者らが鋭意検討したところ、このような特徴を備える環状オレフィン開環共重合体が、単環の環状オレフィンとノルボルネン化合物とを重合させる際に、これら単量体の添加方法、重合に用いる開環重合触媒の添加方法などを工夫することによって、製造できることが見出された。
すなわち、本発明の環状オレフィン開環共重合体は、単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の一方または両方を、連続的または断続的に、重合反応器に添加しながら、単環の環状オレフィンおよびノルボルネン化合物を共重合させる工程を含む製造方法により、好適に製造することができる。
本発明の環状オレフィン開環共重合体の製造方法において、単環の環状オレフィンおよびノルボルネン化合物を連続的に重合反応器に添加する時間は、通常15分間以上であり、上限は特に限定されず、重合反応が完了するまで連続的に添加してよく、たとえば、15分間以上3時間以下であってよく、30分間以上2時間以下であってよい。
本発明の環状オレフィン開環共重合体の製造方法において、開環重合触媒を断続的に重合反応器に添加する回数は、通常2回以上であり、重合反応を行っている間であれば、何回であっても構わないが、2回以上5回以下であってよい。
単環の環状オレフィンおよびノルボルネン化合物の重合反応器への添加方法は、特に限定されず、たとえば、単環の環状オレフィンおよびノルボルネン化合物を、それぞれ別個に、重合反応器に添加してもよいし、予め両者を混合することにより単量体混合物を調製してから、重合反応器に添加してもよい。それぞれ別個に添加する場合は、単環の環状オレフィンおよびノルボルネン化合物が重合反応器内で混合して単量体混合物が形成され、共重合反応が進行する。
上記の製造方法は、単環の環状オレフィンとノルボルネン化合物とを含有する単量体混合物を調製する工程を含むことができる。予め単量体混合物を調製しておくことによって、共重合反応を円滑に進めることができるとともに、差(ΔTg)の小さい環状オレフィン開環共重合体を容易に製造することができる。
また、上記の製造方法は、開環重合触媒を含む溶液を調製する工程を含むことが好ましい。予め開環重合触媒を含む溶液を調製しておくことによって、共重合反応を円滑に進めることができるとともに、差(ΔTg)の小さい環状オレフィン開環共重合体を容易に製造することができる。上記溶液は、たとえば、開環重合触媒を、重合に用いる溶媒の一部に溶解させることにより調製できる。
上記の製造方法は、通常、単環の環状オレフィンとノルボルネン化合物とを重合反応器に添加した後、開環重合触媒を添加することによって、共重合反応を開始する開始工程を含む。開始工程の後、開環重合触媒の存在下で単環の環状オレフィンとノルボルネン化合物との共重合反応が継続する。
上記の製造方法は、開始工程の後においても、単環の環状オレフィンおよびノルボルネン化合物または開環重合触媒を、連続的または断続的に、重合反応器に添加するところに、特徴の一つがある。開始工程の後に添加する単環の環状オレフィンおよびノルボルネン化合物として、予め調製した単量体混合物を用いてもよい。開始工程の後に添加する開環重合触媒として、予め調製した開環重合触媒を含む溶液を用いてもよい。また、単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒のいずれか一方を添加してもよいし、単環の環状オレフィンおよびノルボルネン化合物および開環重合触媒の両方を添加してもよい。
単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の両方を添加する場合には、両者を同時に添加してもよいし、異なるタイミングで添加してもよい。また、単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の両方を添加する場合には、両者を分けて、別個の投入口から添加することが、共重合反応を円滑に進めることができるとともに、差(ΔTg)の小さい環状オレフィン開環共重合体を容易に製造することができることから好ましい。重合反応器に添加する前に、予め単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の両方を混合してしまうと、差(ΔTg)の小さい環状オレフィン開環共重合体を得ることが困難になるおそれがある。
上記の製造方法では、単環の環状オレフィンおよびノルボルネン化合物、または開環重合触媒を、開始工程の後に、複数回に分けて添加することによって、あるいは、添加を継続することによって、所望の時間をかけて添加する必要がある。単環の環状オレフィンおよびノルボルネン化合物、または開環重合触媒の添加の終了と、共重合反応の停止とは、同時であってもよいし、添加終了後も共重合反応を継続してもよい。単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の添加にかける添加継続時間は、たとえば、単量体の転化率や重合反応系の温度を基準に設定することができる。また、開始工程の後に添加する単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の、全添加量に対する割合は、単量体の転化率を基準に設定することができる。
また、単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒のいずれか一方または両方とともに、分子量調整剤を、連続的または断続的に、重合反応器に添加しながら、単環の環状オレフィンおよびノルボルネン化合物を共重合させてもよい。分子量調整剤の連続的または断続的な添加によって、差(ΔTg)が小さい環状オレフィン開環共重合体の製造がより容易になることがある。分子量調整剤は、上記した単量体混合物に予め添加しておいてもよい。
本発明の環状オレフィン開環共重合体の製造方法における、単環の環状オレフィンの使用量の割合は、単環の環状オレフィンおよびノルボルネン化合物の使用量の合計に対して、好ましくは20~90質量%であり、より好ましくは30~85質量%であり、さらに好ましくは35~80質量%であり、特に好ましくは35~70質量%である。単環の環状オレフィンの使用量の割合を上記範囲内とすることにより、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるゴム架橋物を与える環状オレフィン開環共重合体を一層容易に製造することができる。また、単環の環状オレフィンの使用量の割合を上記範囲とすることにより、差(ΔTg)の小さい環状オレフィン開環共重合体を一層容易に製造することができる。
本発明の環状オレフィン開環共重合体の製造方法における、ノルボルネン化合物の使用量の割合は、単環の環状オレフィンおよびノルボルネン化合物の使用量の合計に対して、好ましくは10~80質量%であり、より好ましくは15~70質量%であり、さらに好ましくは20~65質量%であり、特に好ましくは30~65質量%である。ノルボルネン化合物の使用量の割合を上記範囲内とすることにより、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性により優れるゴム架橋物を与える環状オレフィン開環共重合体を一層容易に製造することができる。また、ノルボルネン化合物の使用量の割合を上記範囲とすることにより、差(ΔTg)の小さい環状オレフィン開環共重合体を一層容易に製造することができる。
開環重合に用いる開環重合触媒としては、特に限定されず、単環の環状オレフィンおよびノルボルネン化合物を開環重合できるものである限りにおいて特に限定されないが、ハロゲン化金属化合物を含むものを用いることが好ましい。このようなハロゲン化金属化合物を含むものとしては、たとえば、ハロゲン原子を含有する周期表第6族遷移金属化合物や、ハロゲン原子を含有するルテニウムカルベン錯体などを好適に用いることができる。
本発明で用いることができる周期表第6族遷移金属化合物は、周期表(長周期型周期表、以下同じ)第6族遷移金属原子を有する化合物、具体的には、クロム原子、モリブデン原子、またはタングステン原子を有する化合物であり、モリブデン原子を有する化合物、またはタングステン原子を有する化合物が好ましく、特に、単環の環状オレフィンに対する溶解性が高いという観点より、タングステン原子を有する化合物がより好ましい。
このようなハロゲン原子を含有する周期表第6族遷移金属化合物(以下、適宜、「周期表第6族遷移金属化合物」という。)の具体例としては、モリブデンペンタクロリド、モリブデンオキソテトラクロリド、モリブデン(フェニルイミド)テトラクロリドなどのモリブデン化合物;タングステンヘキサクロリド、タングステンオキソテトラクロリド、タングステン(フェニルイミド)テトラクロリド、モノカテコラートタングステンテトラクロリド、ビス(3,5-ジターシャリブチル)カテコラートタングステンジクロリド、ビス(2-クロロエテレート)テトラクロリドなどのタングステン化合物;などが挙げられる。
周期表第6族遷移金属化合物の使用量は、「開環重合触媒中の第6族遷移金属原子:開環重合に用いる単量体」のモル比で、好ましくは1:100~1:200,000、より好ましくは1:200~1:150,000、さらに好ましくは1:500~1:100,000の範囲である。周期表第6族遷移金属化合物の使用量が少なすぎると、重合反応が十分に進行しない場合がある。一方、多すぎると、得られる環状オレフィン開環共重合体からの触媒残渣の除去が困難となり、得られるゴム架橋物の各種特性が劣るものとなってしまう。
また、開環重合触媒として、周期表第6族遷移金属化合物を使用する場合には、周期表第6族遷移金属化合物は、下記一般式(2)で示される有機アルミニウム化合物と組み合わせて用いることが好ましい。有機アルミニウム化合物は、上述した周期表第6族遷移金属化合物とともに開環重合触媒として作用する。
(R5)3-xAl(OR6)x (2)
上記一般式(2)中、R5およびR6は、炭素数1~20の炭化水素基であり、好ましくは、炭素数1~10の炭化水素基である。また、xは、0<x<3である。
(R5)3-xAl(OR6)x (2)
上記一般式(2)中、R5およびR6は、炭素数1~20の炭化水素基であり、好ましくは、炭素数1~10の炭化水素基である。また、xは、0<x<3である。
R5およびR6の具体例としては、メチル基、エチル基、イソプロピル基、n-プロピル基、イソブチル基、n-ブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基などのアルキル基;フェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,6-ジイソプロピルフェニル基、ナフチル基などのアリール基;などが挙げられる。
また、上記一般式(2)において、xは、0<x<3である。すなわち、一般式(2)においては、R5とOR6との組成比は、それぞれ0<3-x<3、および0<x<3の各範囲において、任意の値をとることができるが、重合活性を高くできるという点より、xは、0.5<x<1.5であることが好ましい。
上記一般式(2)で表される有機アルミニウム化合物は、たとえば、下記一般式(3)に示すように、トリアルキルアルミニウムと、アルコールとの反応によって合成することができる。
(R5)3Al + xR6OH → (R5)3-xAl(OR6)x + (R6)xH (3)
(R5)3Al + xR6OH → (R5)3-xAl(OR6)x + (R6)xH (3)
なお、上記一般式(2)中のxは、上記一般式(3)に示すように、対応するトリアルキルアルミニウムとアルコールの反応比を規定することによって、任意に制御することが可能である。
有機アルミニウム化合物の使用量は、用いる有機アルミニウム化合物の種類によっても異なるが、周期表第6族遷移金属化合物を構成する周期表第6族遷移金属原子に対して、好ましくは0.1~100倍モル、より好ましくは0.2~50倍モル、さらに好ましくは0.5~20倍モルの割合である。有機アルミニウム化合物の使用量が少なすぎると、重合活性が不十分となる場合があり、多すぎると、開環重合時において、副反応が起こりやすくなる傾向にある。
また、本発明で用いることができるハロゲン原子を含有するルテニウムカルベン錯体(以下、適宜、「ルテニウムカルベン錯体」という。)の具体例としては、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリフェニルホスフィン)-3,3-ジフェニルプロペニリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)t-ブチルビニリデンルテニウムジクロリド、ジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム、ビス(1,3-ジイソプロピルイミダゾリン-2-イリデン)ベンジリデンルテニウムジクロリド、ビス(1,3-ジシクロヘキシルイミダゾリン-2-イリデン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリドが挙げられる。
ルテニウムカルベン錯体の使用量は、(ルテニウムカルベン錯体:開環重合に用いる単量体)のモル比で、通常1:500~1:2,000,000、好ましくは1:700~1:1,500,000、より好ましくは1:1,000~1:1,000,000の範囲である。
周期表第6族遷移金属化合物や、ルテニウムカルベン錯体などの開環重合触媒は、1種を単独で用いてもよいし、2種類以上混合して用いてもよい。
また、単環の環状オレフィンおよびノルボルネン化合物を含む単量体を開環重合させる際には、必要に応じて、得られる環状オレフィン開環共重合体の分子量を調整するために、分子量調整剤として、オレフィン化合物またはジオレフィン化合物を重合反応系に添加してもよい。
オレフィン化合物としては、エチレン性不飽和結合を有する有機化合物であれば特に限定されないが、たとえば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン類;スチレン、ビニルトルエンなどのスチレン類;アリルクロライドなどのハロゲン含有ビニル化合物;エチルビニルエーテル、i-ブチルビニルエーテルなどのビニルエーテル類;アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリクロロシラン、スチリルトリメトキシシランなどのケイ素含有ビニル化合物;2-ブテン、3-ヘキセンなどの二置換オレフィン;などが挙げられる。
ジオレフィン化合物としては、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエンなどの非共役ジオレフィンが挙げられる。
分子量調整剤としてのオレフィン化合物およびジオレフィン化合物の使用量は、製造する環状オレフィン開環共重合体の分子量に応じて適宜選択すればよいが、重合に用いる環状オレフィンを含む単量体に対して、モル比で、通常1/100~1/100,000、好ましくは1/200~1/50,000、より好ましくは1/500~1/10,000の範囲である。
重合反応は、無溶媒中で行ってもよく、溶液中で行ってもよいが、溶液中で行うことが好ましい。溶液中で共重合する場合、用いられる溶媒は重合反応において不活性であり、共重合に用いる単環の環状オレフィンやノルボルネン化合物、開環重合触媒などを溶解させ得る溶媒であれば特に限定されないが、炭化水素系溶媒またはハロゲン系溶媒を用いることが好ましい。炭化水素系溶媒としては、たとえば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素;ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;などを挙げることができる。また、ハロゲン系溶媒としては、たとえば、ジクロロメタン、クロロホルムなどのハロアルカン;クロロベンゼン、ジクロロベンゼンなどの芳香族ハロゲン;などを挙げることができる。これらの溶媒は、一種を単独で用いてもよいし、2種類以上混合して用いてもよい。
重合反応温度の下限は、特に限定されないが、好ましくは-100℃以上であり、より好ましくは-50℃以上、さらに好ましくは0℃以上、特に好ましくは20℃以上である。また、重合反応温度の上限は特に限定されないが、好ましくは120℃未満であり、より好ましくは100℃未満、さらに好ましくは90℃未満、特に好ましくは80℃未満である。重合反応時間も、特に限定されないが、好ましくは1分間~72時間、より好ましくは10分間~20時間である。重合反応により、環状オレフィン開環共重合体を含有する重合溶液が得られる。得られる重合溶液は、重合反応完了後に回収してもよいし、単環の環状オレフィンおよびノルボルネン化合物、ならびに、開環重合触媒の一方または両方を、連続的または断続的に添加する一方で、一定量の重合溶液を連続的に抜き出すことにより回収してもよい(連続重合方式)。
重合反応により得られる環状オレフィン開環共重合体には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合してもよい。重合溶液として環状オレフィン開環共重合体を得た場合において、重合溶液から環状オレフィン開環共重合体を回収するためには、公知の回収方法を採用すればよく、たとえば、スチームストリッピングなどで溶媒を分離した後、固体をろ別し、さらにそれを乾燥して固形状の環状オレフィン開環共重合体を取得する方法などが採用できる。
<ゴム組成物>
本発明のゴム組成物は、上述した本発明の環状オレフィン開環共重合体、ならびに、シリカおよび/またはカーボンブラックを含む。
本発明のゴム組成物は、上述した本発明の環状オレフィン開環共重合体、ならびに、シリカおよび/またはカーボンブラックを含む。
本発明におけるシリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、特開昭62-62838号公報に開示されている沈降シリカが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
シリカの窒素吸着比表面積(ASTM D3037-81に準じBET法で測定される。)は、好ましくは50~400m2/gであり、より好ましくは100~220m2/gである。また、シリカのpHは、pH7未満であることが好ましく、pH5~6.9であることがより好ましい。これらの範囲であると、開環共重合体とシリカとの親和性が特に良好となる。
シリカを用いる場合は、環状オレフィン開環共重合体とシリカとの親和性をより向上させる目的で、本発明のゴム組成物に、シランカップリング剤をさらに配合することが好ましい。シランカップリング剤としては、たとえば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビス(3-(トリエトキシシリル)プロピル)ジスルフィドなどや、特開平6-248116号公報に記載されているγ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどのテトラスルフィド類を挙げることができる。なかでも、テトラスルフィド類が好ましい。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。シランカップリング剤の配合量は、シリカ100質量部に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部である。
シリカを用いる場合における、シリカの配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは1~150質量部、より好ましくは10~120質量部、さらに好ましくは15~100質量部、特に好ましくは20~80質量部である。シリカの配合量を上記範囲とすることにより、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性に一層優れるゴム架橋物となるゴム組成物を得ることができる。
本発明におけるカーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられる。これらの中でも、ファーネスブラックが好ましく、その具体例としては、SAF、ISAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF、HAF-HS、HAF-LS、FEFなどが挙げられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
カーボンブラックの窒素吸着比表面積(N2SA)は、好ましくは5~200m2/gであり、より好ましくは70~120m2/gであり、ジブチルフタレート(DBP)吸着量は、好ましくは5~300ml/100gであり、より好ましくは80~160ml/100gである。
カーボンブラックを用いる場合における、カーボンブラックの配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは1~150質量部、より好ましくは2~120質量部、さらに好ましくは15~100質量部、特に好ましくは15~80質量部である。カーボンブラックの配合量を上記範囲とすることにより、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性に一層優れるゴム架橋物となるゴム組成物を得ることができる。
また、本発明におけるゴム組成物が、シリカとカーボンブラックとの両方を含有する場合には、シリカとカーボンブラックとの合計量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは25~200質量部であり、より好ましくは30~150質量部である。
本発明のゴム組成物は、ゴム成分として、上述した環状オレフィン開環共重合体以外のゴムを含んでいてもよい。上述した環状オレフィン開環共重合体以外のゴムとしては、たとえば、天然ゴム(NR)、ポリイソプレンゴム(IR)、乳化重合SBR(スチレン-ブタジエン共重合ゴム)、溶液重合ランダムSBR(結合スチレン5~50質量%、ブタジエン部分の1,2-結合含有量10~80%)、高トランスSBR(ブタジエン部のトランス結合含有量70~95%)、低シスBR(ポリブタジエンゴム)、高シスBR、高トランスBR(ブタジエン部のトランス結合含有量70~95%)、エチレン-プロピレン-ジエンゴム(EPDM)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、乳化重合スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、高ビニルSBR-低ビニルSBRブロック共重合ゴム、ポリイソプレン-SBRブロック共重合ゴム、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体、アクリルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコンゴム、エチレン-プロピレンゴム、ウレタンゴムなどが挙げられる。なかでも、NR、BR、IR、EPDM、SBRが好ましく、SBRが特に好ましく用いられる。これらのゴムは、それぞれ単独で、または2種以上を組み合わせて使用することができる。また、環状オレフィン開環共重合体以外のゴムは、重合体末端に変性基を有するものであってもよい。
本発明のゴム組成物中の環状オレフィン開環共重合体の含有割合は、ゴム成分の全量に対して、10質量%以上とすることが好ましく、20質量%以上とすることがより好ましく、30質量%以上とすることが特に好ましく、100質量%以下であってよく、90質量%以下であってもよい。この割合が低すぎると、耐屈曲疲労性、耐摩耗性、ウェットグリップ性、および低発熱性の向上効果が得られなくなるおそれがある。
本発明のゴム組成物には、上記成分の他に、常法に従って、架橋剤、架橋促進剤、架橋活性化剤、無機材料以外の充填剤、老化防止剤、活性剤、プロセス油、可塑剤、滑剤などの配合剤をそれぞれ必要量配合できる。
架橋剤としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄などのハロゲン化硫黄;ジクミルパーオキシド、ジターシャリブチルパーオキシドなどの有機過酸化物;p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシムなどのキノンジオキシム;トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、4,4’-メチレンビス-o-クロロアニリンなどの有機多価アミン化合物;メチロール基をもったアルキルフェノール樹脂;などが挙げられる。これらの中でも、硫黄が好ましく、粉末硫黄がより好ましい。これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~5質量部である。
架橋促進剤としては、たとえば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-(tert-ブチル)-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾリルスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾリルスルフェンアミドなどのスルフェンアミド系架橋促進剤;1,3-ジフェニルグアニジン、1,3-ジオルトトリルグアニジン、1-オルトトリルビグアニジンなどのグアニジン系架橋促進剤;ジエチルチオウレアなどのチオウレア系架橋促進剤;2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2-メルカプトベンゾチアゾール亜鉛塩などのチアゾール系架橋促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系架橋促進剤;ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸亜鉛などのジチオカルバミン酸系架橋促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛などのキサントゲン酸系架橋促進剤;などが挙げられる。なかでも、スルフェンアミド系架橋促進剤を含むものが好ましく、N-(tert-ブチル)-2-ベンゾチアゾリルスルフェンアミドを含むものが特に好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~5質量部である。
架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸や酸化亜鉛などを用いることができる。架橋活性化剤の配合量は適宜選択されるが、高級脂肪酸の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.05~15質量部、より好ましくは0.5~5質量部であり、酸化亜鉛の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.5~3質量部である。
プロセス油としては、鉱物油や合成油を用いてよい。鉱物油は、アロマオイル、ナフテンオイル、パラフィンオイルなどが通常用いられる。その他の配合剤としては、ジエチレングリコール、ポリエチレングリコール、シリコーンオイルなどの活性剤;炭酸カルシウム、タルク、クレーなどの無機材料以外の充填剤;石油樹脂、クマロン樹脂などの粘着付与剤;ワックスなどが挙げられる。
本発明のゴム組成物は、常法に従って各成分を混練することにより得ることができる。たとえば、架橋剤および架橋促進剤を除く配合剤と環状オレフィン開環共重合体などのゴム成分とを混練後、その混練物に架橋剤と架橋促進剤とを混合してゴム組成物を得ることができる。架橋剤および架橋促進剤を除く配合剤と環状オレフィン開環共重合体などのゴム成分との混練温度は、好ましくは20~200℃、より好ましくは30~180℃であり、その混練時間は、好ましくは30秒間~30分間である。架橋剤と架橋促進剤との混合は、通常100℃以下、好ましくは80℃以下で行われる。
<ゴム架橋物>
本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
本発明のゴム架橋物は、本発明のゴム組成物を用い、例えば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
本発明のゴム架橋物は、本発明のゴム組成物を用い、例えば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
このようにして得られる本発明のゴム架橋物は、引張強度、伸び特性、および耐熱老化性に優れるものである。そして、本発明のゴム架橋物は、このような特性を活かし、たとえば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。また、本発明のゴム架橋物は、オールシーズンタイヤ、高性能タイヤ、およびスタッドレスタイヤなどの各種タイヤにおいて、トレッド、カーカス、サイドウォール、およびビード部などのタイヤ各部位に好適に用いることができる。
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り質量基準である。また、試験、評価は下記によった。
<分子量>
ゲル・パーミエーション・クロマトグラフィー(GPC)システム「HLC-8220」(東ソー社製)により、Hタイプカラム「HZ-M」(東ソー社製)二本を直列に連結して用い、テトラヒドロフランを溶媒として、カラム温度40℃で測定した。検出器は示差屈折計「RI-8320」(東ソー社製)を用いた。環状オレフィン開環共重合体の重量平均分子量(Mw)、数平均分子量(Mn)は、ポリスチレン換算値として測定した。
ゲル・パーミエーション・クロマトグラフィー(GPC)システム「HLC-8220」(東ソー社製)により、Hタイプカラム「HZ-M」(東ソー社製)二本を直列に連結して用い、テトラヒドロフランを溶媒として、カラム温度40℃で測定した。検出器は示差屈折計「RI-8320」(東ソー社製)を用いた。環状オレフィン開環共重合体の重量平均分子量(Mw)、数平均分子量(Mn)は、ポリスチレン換算値として測定した。
<単環の環状オレフィン由来の構造単位およびノルボルネン化合物由来の構造単位の割合>
環状オレフィン開環共重合体中の単量体組成比を、1H-NMRスペクトル測定から求めた。
環状オレフィン開環共重合体中の単量体組成比を、1H-NMRスペクトル測定から求めた。
<ガラス転移温度(Tmg)、補外ガラス転移開始温度(Tig)、補外ガラス転移終了温度(Teg)>
JIS K7121にしたがって、示差走査熱量計(DSC)を用いて、昇温速度10℃/分、0.13℃ごとに測定し、得られたDSC曲線から求めた。
JIS K7121にしたがって、示差走査熱量計(DSC)を用いて、昇温速度10℃/分、0.13℃ごとに測定し、得られたDSC曲線から求めた。
<耐屈曲疲労性>
実施例および比較例で調製したゴム組成物1を、150℃で25分間プレス架橋することでゴム架橋物シートを作製した。架橋物シートの耐屈曲疲労性を、JIS K6260で規定される屈曲き裂発生試験で評価した。屈曲き裂発生試験は、室温雰囲気下でおこなった。JIS K6260で規定されるき裂3級に達するのに必要な屈曲回数を測定し、表にまとめた。この屈曲回数の値が大きいほど耐屈曲疲労性が良好であることを示している。
実施例および比較例で調製したゴム組成物1を、150℃で25分間プレス架橋することでゴム架橋物シートを作製した。架橋物シートの耐屈曲疲労性を、JIS K6260で規定される屈曲き裂発生試験で評価した。屈曲き裂発生試験は、室温雰囲気下でおこなった。JIS K6260で規定されるき裂3級に達するのに必要な屈曲回数を測定し、表にまとめた。この屈曲回数の値が大きいほど耐屈曲疲労性が良好であることを示している。
<DIN摩耗試験>
実施例および比較例で調製したゴム組成物1を、150℃で25分間プレス架橋することでゴム架橋物シートを作製した。架橋物シートを用いて、JIS K 6264-2:2005で規定されるDIN摩耗試験を行い、比摩耗体積を求めた。比摩耗体積が小さいほど、耐摩耗性に優れていることを示す。
実施例および比較例で調製したゴム組成物1を、150℃で25分間プレス架橋することでゴム架橋物シートを作製した。架橋物シートを用いて、JIS K 6264-2:2005で規定されるDIN摩耗試験を行い、比摩耗体積を求めた。比摩耗体積が小さいほど、耐摩耗性に優れていることを示す。
<低発熱性評価>
実施例および比較例で調製したゴム組成物2を、160℃で20分間プレス架橋することにより、架橋された試験片を作製し、この試験片について、粘弾性測定装置(商品名「ARES-G2」、TAインスツルメント社製)を用い、せん断歪み2.5%、周波数10Hzの条件で60℃におけるtanδを測定した。
実施例および比較例で調製したゴム組成物2を、160℃で20分間プレス架橋することにより、架橋された試験片を作製し、この試験片について、粘弾性測定装置(商品名「ARES-G2」、TAインスツルメント社製)を用い、せん断歪み2.5%、周波数10Hzの条件で60℃におけるtanδを測定した。
<ウェットグリップ性>
実施例および比較例で調製したゴム組成物2を、160℃で20分間プレス架橋することにより、試験片を作製し、得られた試験片について、レオメトリックス社製ARESを用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。
実施例および比較例で調製したゴム組成物2を、160℃で20分間プレス架橋することにより、試験片を作製し、得られた試験片について、レオメトリックス社製ARESを用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。
《比較例1》
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、単環の環状オレフィンとしてシクロペンテン(CPE)300部、ノルボルネン化合物としてジシクロペンタジエン(DCPD)100部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液を10秒間以内加えて、25℃で4時間重合反応を継続した。4時間の重合反応後、耐圧ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のメタノールに注いだ。次いで、沈殿したポリマーを回収し、メタノールで洗浄後、40℃で3日間、真空乾燥することにより、270部CPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は404,000、分子量分布(Mw/Mn)は2.96、CPE/DCPD組成比は68/32であった。ガラス転移温度(Tmg)は-40℃であり、ΔTgは35℃であった。
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、単環の環状オレフィンとしてシクロペンテン(CPE)300部、ノルボルネン化合物としてジシクロペンタジエン(DCPD)100部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液を10秒間以内加えて、25℃で4時間重合反応を継続した。4時間の重合反応後、耐圧ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のメタノールに注いだ。次いで、沈殿したポリマーを回収し、メタノールで洗浄後、40℃で3日間、真空乾燥することにより、270部CPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は404,000、分子量分布(Mw/Mn)は2.96、CPE/DCPD組成比は68/32であった。ガラス転移温度(Tmg)は-40℃であり、ΔTgは35℃であった。
(ゴム組成物1の調製)
上記にて得られたCPE/DCPD開環共重合体100部を容積250mlのバンバリーミキサーで30秒素練りし、次いで、ステアリン酸1部、酸化亜鉛3部、およびカーボンブラック(商品名「IRB#7」、CONTINENTAL CARBON社製)50部を添加して、110℃にて、180秒混練した後、ラムの上部に残った配合剤をクリーニングした後、さらに150秒混練し、ミキサーから混練物を排出させた。次いで、混練物を、室温まで冷却した後、23℃のオープンロールで、得られた混練物と、硫黄1.75部、および架橋促進剤としてのN-(tert-ブチル)-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名「ノクセラーNS-P」)1部とを混練した後、シート状のゴム組成物1を得た。そして、得られたゴム組成物1について、上記方法に従い、耐屈曲疲労性評価とDIN摩耗試験を行なった。結果を表1に示す。
上記にて得られたCPE/DCPD開環共重合体100部を容積250mlのバンバリーミキサーで30秒素練りし、次いで、ステアリン酸1部、酸化亜鉛3部、およびカーボンブラック(商品名「IRB#7」、CONTINENTAL CARBON社製)50部を添加して、110℃にて、180秒混練した後、ラムの上部に残った配合剤をクリーニングした後、さらに150秒混練し、ミキサーから混練物を排出させた。次いで、混練物を、室温まで冷却した後、23℃のオープンロールで、得られた混練物と、硫黄1.75部、および架橋促進剤としてのN-(tert-ブチル)-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名「ノクセラーNS-P」)1部とを混練した後、シート状のゴム組成物1を得た。そして、得られたゴム組成物1について、上記方法に従い、耐屈曲疲労性評価とDIN摩耗試験を行なった。結果を表1に示す。
(ゴム組成物2の調製)
上記にて得られたCPE/DCPD開環共重合体100部を容積250mlのバンバリーミキサーで素練りし、次いで、シリカ(商品名「Zeosil 1165MP」、ソルベイ社製)40部、プロセスオイル(商品名「アロマックス T-DAE」、新日本石油社製)10部、およびシランカップリング剤(ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、商品名「Si69」、デグッサ社製)4.8部を添加して、110℃を開始温度として1.5分間混練した。次いで、得られた混練物に、シリカ(商品名「Zeosil 1165MP」、ソルベイ社製)20部、酸化亜鉛(亜鉛華1号)3部、ステアリン酸(商品名「SA-300」、旭電化工業社製)2部、および老化防止剤(N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、商品名「ノクラック6C」、大内新興化学工業社製)2部を添加し、3分間混練して、バンバリーミキサーから混練物を排出させた。混練終了時のゴム組成物の温度は150℃であった。そして、得られた混練物を、室温まで冷却した後、再度バンバリーミキサー中で、3分間混練した後、バンバリーミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.6部、および架橋促進剤(シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名「ノクセラーCZ-G」)1.4部と、1,3-ジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.4部との混合物)2.8部とを混練した後、シート状のゴム組成物2を取り出した。そして、得られたゴム組成物2について、上記方法に従い、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。なお、低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とし、実施例1~4を比較例1の指数として示す。
上記にて得られたCPE/DCPD開環共重合体100部を容積250mlのバンバリーミキサーで素練りし、次いで、シリカ(商品名「Zeosil 1165MP」、ソルベイ社製)40部、プロセスオイル(商品名「アロマックス T-DAE」、新日本石油社製)10部、およびシランカップリング剤(ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、商品名「Si69」、デグッサ社製)4.8部を添加して、110℃を開始温度として1.5分間混練した。次いで、得られた混練物に、シリカ(商品名「Zeosil 1165MP」、ソルベイ社製)20部、酸化亜鉛(亜鉛華1号)3部、ステアリン酸(商品名「SA-300」、旭電化工業社製)2部、および老化防止剤(N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、商品名「ノクラック6C」、大内新興化学工業社製)2部を添加し、3分間混練して、バンバリーミキサーから混練物を排出させた。混練終了時のゴム組成物の温度は150℃であった。そして、得られた混練物を、室温まで冷却した後、再度バンバリーミキサー中で、3分間混練した後、バンバリーミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.6部、および架橋促進剤(シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名「ノクセラーCZ-G」)1.4部と、1,3-ジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.4部との混合物)2.8部とを混練した後、シート状のゴム組成物2を取り出した。そして、得られたゴム組成物2について、上記方法に従い、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。なお、低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とし、実施例1~4を比較例1の指数として示す。
《実施例1》
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)60部、ジシクロペンタジエン(DCPD)20部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液のうち、5部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE240部とDCPD80部の混合液を45分間掛けて添加するとともに、残りの重合触媒溶液を15分毎に5部ずつ3回に分けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、312部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は402,000、分子量分布(Mw/Mn)は2.55、CPE/DCPD組成比は72/28であった。ガラス転移温度(Tmg)は-48℃であり、ΔTgは7℃であった。ガラス転移温度(Tmg)およびΔTgを特定するために用いたDSC曲線を図1に示す。
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)60部、ジシクロペンタジエン(DCPD)20部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液のうち、5部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE240部とDCPD80部の混合液を45分間掛けて添加するとともに、残りの重合触媒溶液を15分毎に5部ずつ3回に分けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、312部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は402,000、分子量分布(Mw/Mn)は2.55、CPE/DCPD組成比は72/28であった。ガラス転移温度(Tmg)は-48℃であり、ΔTgは7℃であった。ガラス転移温度(Tmg)およびΔTgを特定するために用いたDSC曲線を図1に示す。
(ゴム組成物1、2の調製)
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
《実施例2》
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)60部、ジシクロペンタジエン(DCPD)20部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE240部とDCPD80部の混合液を1時間掛けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、304部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は424,000、分子量分布(Mw/Mn)は2.60、CPE/DCPD組成比は70/30であった。ガラス転移温度(Tmg)は-44℃であり、ΔTgは8℃であった。
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)60部、ジシクロペンタジエン(DCPD)20部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE240部とDCPD80部の混合液を1時間掛けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、304部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は424,000、分子量分布(Mw/Mn)は2.60、CPE/DCPD組成比は70/30であった。ガラス転移温度(Tmg)は-44℃であり、ΔTgは8℃であった。
(ゴム組成物1、2の調製)
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
《実施例3》
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)300部、ジシクロペンタジエン(DCPD)100部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液を、15分毎に5部ずつ4回に分けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、315部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は411,000、分子量分布(Mw/Mn)は2.63、CPE/DCPD組成比は71/29であった。ガラス転移温度(Tmg)は-49℃であり、ΔTgは11℃であった。
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)300部、ジシクロペンタジエン(DCPD)100部、トルエン740部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液を、15分毎に5部ずつ4回に分けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、315部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は411,000、分子量分布(Mw/Mn)は2.63、CPE/DCPD組成比は71/29であった。ガラス転移温度(Tmg)は-49℃であり、ΔTgは11℃であった。
(ゴム組成物1、2の調製)
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
《実施例4》
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)60部、80重量%ジシクロペンタジエン(DCPD)/トルエン溶液25部、トルエン715部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液のうち、5部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE240部と80重量%DCPD/トルエン溶液100部とを、両者を予め混合することなく、それぞれ別個にガラス反応容器に45分間かけて添加するとともに、残りの重合触媒溶液を15分毎に5部ずつ3回に分けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、324部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は408,000、分子量分布(Mw/Mn)は2.53、CPE/DCPD組成比は72/28であった。ガラス転移温度(Tmg)は-50℃であり、ΔTgは9℃であった。
(環状オレフィン開環共重合体の製造)
比較例1と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)60部、80重量%ジシクロペンタジエン(DCPD)/トルエン溶液25部、トルエン715部および1-ヘキセン0.28部を加えた。ここに(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.022部をトルエン20部に溶解した重合触媒溶液のうち、5部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE240部と80重量%DCPD/トルエン溶液100部とを、両者を予め混合することなく、それぞれ別個にガラス反応容器に45分間かけて添加するとともに、残りの重合触媒溶液を15分毎に5部ずつ3回に分けて添加した後、25℃で3時間重合反応を継続し、比較例1と同様にして、324部のCPE/DCPD開環共重合体を得た。得られたCPE/DCPD開環共重合体の重量平均分子量(Mw)は408,000、分子量分布(Mw/Mn)は2.53、CPE/DCPD組成比は72/28であった。ガラス転移温度(Tmg)は-50℃であり、ΔTgは9℃であった。
(ゴム組成物1、2の調製)
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表1に示す。低発熱性およびウェットグリップ性の値は、比較例1の試験片を基準サンプル(指数100)とする指数で示し、低発熱性の値が小さいほど、低発熱性に優れることを示し、ウェットグリップ性の値が大きいほど、ウェットグリップ性に優れることを示す。
《比較例2》
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、単環の環状オレフィンとしてシクロペンテン(CPE)200部、ノルボルネン化合物として2-ノルボルネン(NB)200部、トルエン380部および1-ヘキセン0.48部を加えた。次に、トルエン20部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム0.024部を10秒間以内に加え、室温で4時間重合反応を継続した。重合反応後、過剰のビニルエチルエーテルを加えることにより重合を停止した。
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、単環の環状オレフィンとしてシクロペンテン(CPE)200部、ノルボルネン化合物として2-ノルボルネン(NB)200部、トルエン380部および1-ヘキセン0.48部を加えた。次に、トルエン20部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム0.024部を10秒間以内に加え、室温で4時間重合反応を継続した。重合反応後、過剰のビニルエチルエーテルを加えることにより重合を停止した。
重合溶液を2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のメタノールに注ぎ、沈殿した重合体を回収し、メタノールで洗浄した後、50℃で3日間、真空乾燥して、CPE/NB開環共重合体248部を得た。得られたCPE/NB開環共重合体の重量平均分子量(Mw)は271,000、分子量分布(Mw/Mn)は2.35、CPE/NB組成比は38/62であった。ガラス転移温度(Tmg)は-25℃であり、ΔTgは36℃であった。
(ゴム組成物1、2の調製)
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表2に示す。低発熱性およびウェットグリップ性の値は、比較例2の試験片を基準サンプル(指数100)とし、実施例5および6を比較例2の指数として示す。
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表2に示す。低発熱性およびウェットグリップ性の値は、比較例2の試験片を基準サンプル(指数100)とし、実施例5および6を比較例2の指数として示す。
《実施例5》
(環状オレフィン開環共重合体の製造)
比較例2と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)40部、2-ノルボルネン(NB)40部、トルエン380部および1-ヘキセン0.48部を加えた。次に、トルエン20部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム0.024部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE160部とNB160部の混合液を1時間掛けて添加して重合を行った。その後、室温で2時間重合反応を継続した後、比較例2と同様にして、292部のCPE/NB開環共重合体を得た。得られたCPE/NB開環共重合体の重量平均分子量(Mw)は259,000、分子量分布(Mw/Mn)は1.94、CPE/NB組成比は39/61であった。ガラス転移温度(Tmg)は-23℃であり、ΔTgは15℃であった。
(環状オレフィン開環共重合体の製造)
比較例2と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)40部、2-ノルボルネン(NB)40部、トルエン380部および1-ヘキセン0.48部を加えた。次に、トルエン20部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム0.024部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE160部とNB160部の混合液を1時間掛けて添加して重合を行った。その後、室温で2時間重合反応を継続した後、比較例2と同様にして、292部のCPE/NB開環共重合体を得た。得られたCPE/NB開環共重合体の重量平均分子量(Mw)は259,000、分子量分布(Mw/Mn)は1.94、CPE/NB組成比は39/61であった。ガラス転移温度(Tmg)は-23℃であり、ΔTgは15℃であった。
(ゴム組成物1、2の調製)
比較例2と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表2に示す。低発熱性およびウェットグリップ性の値は、比較例2の試験片を基準サンプル(指数100)とする指数で示す。
比較例2と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表2に示す。低発熱性およびウェットグリップ性の値は、比較例2の試験片を基準サンプル(指数100)とする指数で示す。
《実施例6》
(環状オレフィン開環共重合体の製造)
比較例2と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)40部、2-ノルボルネン(NB)40部、トルエン380部を加えた。次に、トルエン20部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム0.024部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE160部、NB160部および1-ヘキセン0.48部の混合液を1時間掛けて添加して重合を行った。その後、室温で2時間重合反応を継続した後、比較例2と同様にして、288部のCPE/NB開環共重合体を得た。得られたCPE/NB開環共重合体の重量平均分子量(Mw)は264,000、分子量分布(Mw/Mn)は1.90、CPE/NB組成比は40/60であった。ガラス転移温度(Tmg)は-29℃であり、ΔTgは8℃であった。
(環状オレフィン開環共重合体の製造)
比較例2と同様にして、攪拌機を備えたガラス反応容器に、シクロペンテン(CPE)40部、2-ノルボルネン(NB)40部、トルエン380部を加えた。次に、トルエン20部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム0.024部を10秒間以内に加え、重合を開始した。重合開始から15分後に、CPE160部、NB160部および1-ヘキセン0.48部の混合液を1時間掛けて添加して重合を行った。その後、室温で2時間重合反応を継続した後、比較例2と同様にして、288部のCPE/NB開環共重合体を得た。得られたCPE/NB開環共重合体の重量平均分子量(Mw)は264,000、分子量分布(Mw/Mn)は1.90、CPE/NB組成比は40/60であった。ガラス転移温度(Tmg)は-29℃であり、ΔTgは8℃であった。
(ゴム組成物1、2の調製)
比較例2と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表2に示す。低発熱性およびウェットグリップ性の値は、比較例2の試験片を基準サンプル(指数100)とする指数で示す。
比較例2と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表2に示す。低発熱性およびウェットグリップ性の値は、比較例2の試験片を基準サンプル(指数100)とする指数で示す。
《比較例3》
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、1.0重量%のWCl6/トルエン溶液17.4部、および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液8.6部を加え、15分間攪拌することにより、触媒溶液を得た。そして、窒素雰囲気下、攪拌機付き耐圧ガラス反応容器に、単環の環状オレフィンとしてシクロペンテン(CPE)300部、ノルボルネン化合物としてテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(TCD)100部、トルエン380部および1-ヘキセン0.42部を加え、ここに、上記にて調製した触媒溶液26部を30秒間以内で加えて、25℃で6時間重合反応を継続した。6時間の重合反応後、ガラス反応容器に、過剰のメタノールを加えて重合を停止した後、ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のメタノールに注いだ。次いで、沈殿したポリマーを回収し、メタノールで洗浄後、40℃で3日間、真空乾燥することにより、296部のCPE/TCD開環共重合体を得た。得られたCPE/TCD開環共重合体の重量平均分子量(Mw)は262,000、分子量分布(Mw/Mn)は2.34、CPE/TCD組成比は72/28であった。ガラス転移温度(Tmg)は-22℃であり、ΔTgは32℃であった。
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、1.0重量%のWCl6/トルエン溶液17.4部、および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液8.6部を加え、15分間攪拌することにより、触媒溶液を得た。そして、窒素雰囲気下、攪拌機付き耐圧ガラス反応容器に、単環の環状オレフィンとしてシクロペンテン(CPE)300部、ノルボルネン化合物としてテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(TCD)100部、トルエン380部および1-ヘキセン0.42部を加え、ここに、上記にて調製した触媒溶液26部を30秒間以内で加えて、25℃で6時間重合反応を継続した。6時間の重合反応後、ガラス反応容器に、過剰のメタノールを加えて重合を停止した後、ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のメタノールに注いだ。次いで、沈殿したポリマーを回収し、メタノールで洗浄後、40℃で3日間、真空乾燥することにより、296部のCPE/TCD開環共重合体を得た。得られたCPE/TCD開環共重合体の重量平均分子量(Mw)は262,000、分子量分布(Mw/Mn)は2.34、CPE/TCD組成比は72/28であった。ガラス転移温度(Tmg)は-22℃であり、ΔTgは32℃であった。
(ゴム組成物1、2の調製)
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表3に示す。なお、低発熱性およびウェットグリップ性の値は、比較例3の試験片を基準サンプル(指数100)とし、実施例7および8を比較例3の指数として示す。
比較例1と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表3に示す。なお、低発熱性およびウェットグリップ性の値は、比較例3の試験片を基準サンプル(指数100)とし、実施例7および8を比較例3の指数として示す。
《実施例7》
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、トルエン382部、シクロペンテン(CPE)90部、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(TCD)30部、1-ヘキセン0.42部および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液8.6部を加えた後、1.0重量%のWCl6/トルエン溶液4.4部を添加して重合を開始した。その後、CPE210部とTCD70部の混合液を1時間掛けて加えるとともに、1.0重量%のWCl6/トルエン溶液4.4部を20分毎に3回添加した。その後、25℃で4時間の重合反応を継続した後、比較例3と同様にして、320部のCPE/TCD開環共重合体を得た。得られたCPE/TCD開環共重合体の重量平均分子量(Mw)は244,000、分子量分布(Mw/Mn)は2.13、CPE/TCD組成比は73/27であった。ガラス転移温度(Tmg)は-26℃であり、ΔTgは14℃であった。
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、トルエン382部、シクロペンテン(CPE)90部、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(TCD)30部、1-ヘキセン0.42部および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液8.6部を加えた後、1.0重量%のWCl6/トルエン溶液4.4部を添加して重合を開始した。その後、CPE210部とTCD70部の混合液を1時間掛けて加えるとともに、1.0重量%のWCl6/トルエン溶液4.4部を20分毎に3回添加した。その後、25℃で4時間の重合反応を継続した後、比較例3と同様にして、320部のCPE/TCD開環共重合体を得た。得られたCPE/TCD開環共重合体の重量平均分子量(Mw)は244,000、分子量分布(Mw/Mn)は2.13、CPE/TCD組成比は73/27であった。ガラス転移温度(Tmg)は-26℃であり、ΔTgは14℃であった。
(ゴム組成物1、2の調製)
比較例3と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表3に示す。低発熱性およびウェットグリップ性の値は、比較例3の試験片を基準サンプル(指数100)とする指数で示す。
比較例3と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表3に示す。低発熱性およびウェットグリップ性の値は、比較例3の試験片を基準サンプル(指数100)とする指数で示す。
《実施例8》
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、トルエン382部、シクロペンテン(CPE)90部、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(TCD)30部、および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液8.6部を加えた後、1.0重量%のWCl6/トルエン溶液4.4部を添加して重合を開始した。その後、CPE210部、TCD70部および1-ヘキセン0.42部の混合液を1時間掛けて加えるとともに、1.0重量%のWCl6/トルエン溶液4.4部を20分毎に3回添加した。その後、25℃で4時間の重合反応を継続した後、比較例3と同様にして、328部のCPE/TCD開環共重合体を得た。得られたCPE/TCD開環共重合体の重量平均分子量(Mw)は276,000、分子量分布(Mw/Mn)は2.02、CPE/TCD組成比は74/26であった。ガラス転移温度(Tmg)は-31℃であり、ΔTgは11℃であった。
(環状オレフィン開環共重合体の製造)
窒素雰囲気下、攪拌機を備えたガラス反応容器に、トルエン382部、シクロペンテン(CPE)90部、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(TCD)30部、および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液8.6部を加えた後、1.0重量%のWCl6/トルエン溶液4.4部を添加して重合を開始した。その後、CPE210部、TCD70部および1-ヘキセン0.42部の混合液を1時間掛けて加えるとともに、1.0重量%のWCl6/トルエン溶液4.4部を20分毎に3回添加した。その後、25℃で4時間の重合反応を継続した後、比較例3と同様にして、328部のCPE/TCD開環共重合体を得た。得られたCPE/TCD開環共重合体の重量平均分子量(Mw)は276,000、分子量分布(Mw/Mn)は2.02、CPE/TCD組成比は74/26であった。ガラス転移温度(Tmg)は-31℃であり、ΔTgは11℃であった。
(ゴム組成物1、2の調製)
比較例3と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表3に示す。低発熱性およびウェットグリップ性の値は、比較例3の試験片を基準サンプル(指数100)とする指数で示す。
比較例3と同様にして、ゴム組成物1,2を作製し、耐屈曲疲労性、DIN摩耗試験、低発熱性およびウェットグリップ性を評価した。結果を表3に示す。低発熱性およびウェットグリップ性の値は、比較例3の試験片を基準サンプル(指数100)とする指数で示す。
Claims (7)
- 単環の環状オレフィン由来の構造単位およびノルボルネン化合物由来の構造単位を含む環状オレフィン開環共重合体であって、
JIS K7121にしたがって求められる補外ガラス転移終了温度(Teg)と補外ガラス転移開始温度(Tig)との差(ΔTg)が30℃以下であり、
重量平均分子量(Mw)が50,000~1,000,000である環状オレフィン開環共重合体。 - 前記環状オレフィン開環共重合体中の全繰返し構造単位に対して、前記単環の環状オレフィン由来の構造単位の含有割合が20~90質量%であり、前記ノルボルネン化合物由来の構造単位の含有割合が10~80質量%である請求項1に記載の環状オレフィン開環共重合体。
- JIS K7121にしたがって求められるガラス転移温度(Tmg)が、-80℃~10℃である請求項1または2に記載の環状オレフィン開環共重合体。
- 前記ノルボルネン化合物が、2-ノルボルネンである請求項1~3のいずれか一項に記載の環状オレフィン開環共重合体。
- 請求項1~4のいずれか一項に記載の環状オレフィン開環共重合体、ならびに、シリカおよび/またはカーボンブラックを含むゴム組成物。
- 請求項5に記載のゴム組成物を架橋してなるゴム架橋物。
- 請求項1~4のいずれか一項に記載の環状オレフィン開環共重合体を製造する製造方法であって、
前記単環の環状オレフィンおよび前記ノルボルネン化合物、ならびに、開環重合触媒の一方または両方を、連続的または断続的に、重合反応器に添加しながら、前記単環の環状オレフィンおよび前記ノルボルネン化合物を共重合させる工程を含む製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980052387.6A CN112543780B (zh) | 2018-08-17 | 2019-06-24 | 环状烯烃开环共聚物及其制造方法、橡胶组合物以及橡胶交联物 |
US17/268,361 US20210301053A1 (en) | 2018-08-17 | 2019-06-24 | Copolymer formed by ring-opening copolymerization of cycloolefin, production method therefor, rubber composition, and crosslinked rubber object |
EP19850574.5A EP3838966A4 (en) | 2018-08-17 | 2019-06-24 | COPOLYMER PRODUCED BY RING-OPENING COPOLYMERIZATION OF CYCLOOLEFIN, PROCESS FOR ITS PRODUCTION, RUBBER COMPOSITION AND CROSSLINKED RUBBER OBJECT |
KR1020217003603A KR20210044776A (ko) | 2018-08-17 | 2019-06-24 | 고리형 올레핀 개환 공중합체 및 그 제조 방법, 고무 조성물 그리고 고무 가교물 |
JP2020537374A JP7310821B2 (ja) | 2018-08-17 | 2019-06-24 | 環状オレフィン開環共重合体およびその製造方法、ゴム組成物ならびにゴム架橋物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153377 | 2018-08-17 | ||
JP2018-153377 | 2018-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020036001A1 true WO2020036001A1 (ja) | 2020-02-20 |
Family
ID=69524746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/024915 WO2020036001A1 (ja) | 2018-08-17 | 2019-06-24 | 環状オレフィン開環共重合体およびその製造方法、ゴム組成物ならびにゴム架橋物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210301053A1 (ja) |
EP (1) | EP3838966A4 (ja) |
JP (1) | JP7310821B2 (ja) |
KR (1) | KR20210044776A (ja) |
CN (1) | CN112543780B (ja) |
WO (1) | WO2020036001A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021113503A1 (en) * | 2019-12-04 | 2021-06-10 | Exxonmobil Chemical Patents Inc. | Polymers prepared by ring opening metathesis polymerization |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122187A (en) | 1975-04-03 | 1976-10-26 | Goodrich Co B F | Cyclopenteneedicyclopentadiene copolymers and process for producing same |
JPS5450599A (en) * | 1977-09-07 | 1979-04-20 | Goodyear Tire & Rubber | Copolymer and preparation thereof |
JPS6262838A (ja) | 1985-09-13 | 1987-03-19 | ロ−ヌ−プ−ラン・シミ・ド・バ−ズ | エラストマー用のシリカを基材とした補強充填材 |
JPH0673168A (ja) * | 1992-08-27 | 1994-03-15 | Japan Synthetic Rubber Co Ltd | 開環重合体の製造法 |
JPH06248116A (ja) | 1993-02-23 | 1994-09-06 | Bridgestone Corp | タイヤ用ゴム組成物 |
JP2001114940A (ja) * | 1999-10-15 | 2001-04-24 | Nippon Zeon Co Ltd | ゴム、架橋性ゴム組成物および架橋物 |
WO2014133028A1 (ja) | 2013-02-26 | 2014-09-04 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
WO2016060262A1 (ja) * | 2014-10-17 | 2016-04-21 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
JP2017179278A (ja) * | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | 重荷重タイヤ用ゴム組成物 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4239874A (en) * | 1979-02-21 | 1980-12-16 | The Goodyear Tire & Rubber Company | Cyclopentene copolymerization process |
JP2002012702A (ja) * | 2000-06-30 | 2002-01-15 | Nippon Zeon Co Ltd | ゴム組成物 |
JP2006259623A (ja) * | 2005-03-18 | 2006-09-28 | Sekisui Chem Co Ltd | 光学フィルム、位相差フィルム、偏光子保護フィルム及び偏光板 |
JP2009258571A (ja) * | 2008-03-18 | 2009-11-05 | Daicel Chem Ind Ltd | 位相差フィルム |
JP2010195953A (ja) * | 2009-02-26 | 2010-09-09 | Nippon Zeon Co Ltd | ノルボルネン系樹脂組成物および成形体 |
JP2016079330A (ja) * | 2014-10-20 | 2016-05-16 | 日本ゼオン株式会社 | サイドウォール用ゴム組成物 |
EP3279256A4 (en) * | 2015-03-31 | 2018-12-19 | Mitsui Chemicals, Inc. | Resin composition and use of same |
WO2017051819A1 (ja) * | 2015-09-24 | 2017-03-30 | 日本ゼオン株式会社 | シクロペンテン開環共重合体 |
-
2019
- 2019-06-24 US US17/268,361 patent/US20210301053A1/en active Pending
- 2019-06-24 WO PCT/JP2019/024915 patent/WO2020036001A1/ja unknown
- 2019-06-24 CN CN201980052387.6A patent/CN112543780B/zh active Active
- 2019-06-24 JP JP2020537374A patent/JP7310821B2/ja active Active
- 2019-06-24 EP EP19850574.5A patent/EP3838966A4/en active Pending
- 2019-06-24 KR KR1020217003603A patent/KR20210044776A/ko not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122187A (en) | 1975-04-03 | 1976-10-26 | Goodrich Co B F | Cyclopenteneedicyclopentadiene copolymers and process for producing same |
JPS5450599A (en) * | 1977-09-07 | 1979-04-20 | Goodyear Tire & Rubber | Copolymer and preparation thereof |
JPS6262838A (ja) | 1985-09-13 | 1987-03-19 | ロ−ヌ−プ−ラン・シミ・ド・バ−ズ | エラストマー用のシリカを基材とした補強充填材 |
JPH0673168A (ja) * | 1992-08-27 | 1994-03-15 | Japan Synthetic Rubber Co Ltd | 開環重合体の製造法 |
JPH06248116A (ja) | 1993-02-23 | 1994-09-06 | Bridgestone Corp | タイヤ用ゴム組成物 |
JP2001114940A (ja) * | 1999-10-15 | 2001-04-24 | Nippon Zeon Co Ltd | ゴム、架橋性ゴム組成物および架橋物 |
WO2014133028A1 (ja) | 2013-02-26 | 2014-09-04 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
WO2016060262A1 (ja) * | 2014-10-17 | 2016-04-21 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
JP2017179278A (ja) * | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | 重荷重タイヤ用ゴム組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3838966A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021113503A1 (en) * | 2019-12-04 | 2021-06-10 | Exxonmobil Chemical Patents Inc. | Polymers prepared by ring opening metathesis polymerization |
Also Published As
Publication number | Publication date |
---|---|
EP3838966A1 (en) | 2021-06-23 |
JP7310821B2 (ja) | 2023-07-19 |
KR20210044776A (ko) | 2021-04-23 |
EP3838966A4 (en) | 2022-06-01 |
US20210301053A1 (en) | 2021-09-30 |
CN112543780A (zh) | 2021-03-23 |
JPWO2020036001A1 (ja) | 2021-08-10 |
CN112543780B (zh) | 2024-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5640994B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
JP2018168389A (ja) | シクロペンテン開環共重合体、その製造方法およびゴム組成物 | |
US20180244837A1 (en) | Cyclopentene ring-opening copolymer | |
WO2020036001A1 (ja) | 環状オレフィン開環共重合体およびその製造方法、ゴム組成物ならびにゴム架橋物 | |
JP7206672B2 (ja) | 耐破壊特性材料用組成物、耐破壊特性材料用架橋物および耐破壊特性材料 | |
US11718709B2 (en) | Ring-opening copolymer composition | |
WO2016158677A1 (ja) | シクロオレフィン開環共重合体およびその製造方法 | |
US11981773B2 (en) | Ring-opened copolymer | |
JP7556361B2 (ja) | 開環共重合体 | |
US20200255588A1 (en) | Liquid cyclopentene ring-opened polymer, rubber composition, and rubber crosslinked product | |
WO2023189495A1 (ja) | ゴム組成物、およびゴム架橋物 | |
JP7081369B2 (ja) | 高反発材料用組成物、高反発材料用架橋物および高反発材料 | |
WO2024135347A1 (ja) | 開環共重合体、ゴム組成物、ゴム架橋物、およびタイヤ | |
JP2020015834A (ja) | 耐屈曲疲労性材料用組成物、耐屈曲疲労性材料用架橋物および耐屈曲疲労性材料 | |
WO2023189496A1 (ja) | ゴム組成物およびゴム架橋物 | |
WO2023189497A1 (ja) | 共重合体、ゴム組成物およびゴム架橋物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19850574 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020537374 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019850574 Country of ref document: EP Effective date: 20210317 |