WO2020034243A1 - 一种fmcw雷达距离分辨率和测距范围动态调节的方法 - Google Patents

一种fmcw雷达距离分辨率和测距范围动态调节的方法 Download PDF

Info

Publication number
WO2020034243A1
WO2020034243A1 PCT/CN2018/101736 CN2018101736W WO2020034243A1 WO 2020034243 A1 WO2020034243 A1 WO 2020034243A1 CN 2018101736 W CN2018101736 W CN 2018101736W WO 2020034243 A1 WO2020034243 A1 WO 2020034243A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
range
filter
distance
radar system
Prior art date
Application number
PCT/CN2018/101736
Other languages
English (en)
French (fr)
Inventor
闻家毅
孙靖虎
Original Assignee
惠州市德赛西威汽车电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市德赛西威汽车电子股份有限公司 filed Critical 惠州市德赛西威汽车电子股份有限公司
Publication of WO2020034243A1 publication Critical patent/WO2020034243A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/282Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave

Definitions

  • the invention relates to the technical field of radar signal processing, in particular to a method for dynamically adjusting range resolution and ranging range of an FMCW radar.
  • millimeter-wave radar plays an important role in the sensors of driver assistance systems. For advanced advanced assisted driving and even autonomous driving, millimeter-wave radar will become standard.
  • the millimeter-wave radar system can achieve ranging, velocity and angle measurement of target objects.
  • FMCW Frequency Modulation Continuous Waves
  • the larger the frequency modulation bandwidth the higher the range resolution, and the more accurate the identification of objects at the same angle and different distances.
  • the RF FM bandwidth B we want the RF FM bandwidth B to be as large as possible. But when the RF FM bandwidth B increases, the difference frequency (frequency difference between the transmitted signal and the echo signal) needs to be larger for the same distance target; Similarly, if the target at the same distance is measured, the RF FM bandwidth B is reduced by half The difference frequency ⁇ f needs to be reduced by half.
  • the upper cutoff frequency of the intermediate frequency filter needs to be increased, thereby increasing the broadband noise, which will increase the BIF (intermediate frequency filter bandwidth), thereby deteriorating the sensitivity.
  • the increase of the difference frequency will cause the signal strength to be attenuated by the intermediate frequency filter, thereby reducing the strength of the received useful signal. Under the condition that the noise is unchanged, the SNR (signal-to-noise ratio) will decrease, thereby deteriorating the sensitivity.
  • the present invention provides a method for dynamically adjusting the range resolution and ranging range of an FMCW radar.
  • a method for dynamically adjusting range resolution and ranging range of an FMCW radar including the steps:
  • step S30 Continue to identify the actual distance of the target, and determine whether the target distance change rate is greater than the second threshold. If yes, return to step S20, otherwise, continue to maintain the current IF filter bandwidth and the current RF FM bandwidth, and calculate the ranging of the radar system range.
  • step S20 specifically includes:
  • the first threshold value range is not less than 10m; the second threshold value range is -5m / s to 5m / s.
  • the bandwidth of the IF filter includes a narrowband mode and a wideband mode of the IF filter.
  • the narrow-band mode of the IF filter is configured as f Lmax ⁇ B IF ⁇ f Hmin ;
  • the wide-band mode of the IF filter is configured as f Lmin ⁇ B IF ⁇ f Hmax ;
  • the radar system sends the FM signal in a narrowband mode and in a wideband mode in a time-division manner by sending an FM signal in each frame of data.
  • the maximum power range of the radar system is calculated according to the following formula through an intermediate frequency filter bandwidth:
  • Rr represents the maximum power distance calculated by the radar system
  • Pt represents the transmit power of the radar system
  • Gt represents the gain of the transmitting antenna
  • Gr represents the gain of the receiving antenna
  • represents the radar cross section of the system
  • represents the center frequency wavelength of the transmitted signal
  • Pr represents The receiving sensitivity of the radar system
  • K is the Bolmans constant
  • BIF is the IF filter bandwidth
  • NF is the noise figure
  • SNR is the noise ratio.
  • the RF FM bandwidth of the radar system is calculated by the following formula:
  • Rc represents the actual distance of the target
  • ⁇ f represents the difference frequency between the transmitted signal and the echo signal, that is, the bandwidth value of the intermediate frequency filter.
  • the distance resolution is calculated by the following formula:
  • ⁇ R means the distance resolution
  • c means the speed of light in a vacuum
  • Tc means a period of chirp
  • B means the frequency bandwidth of the radio frequency in MHz
  • fs means the sampling frequency
  • Nc means the number of sampling points of a chirp.
  • the initial value of the radio frequency modulation bandwidth is configured as a value when a difference frequency signal of a radar system is located at a position where the attenuation of the intermediate frequency filter is the smallest.
  • An FMCW radar system includes a processing module, an FMCW radar communicatively connected to the processing module, and an intermediate frequency filter.
  • the processing module adopts the method for dynamically adjusting the range resolution and the ranging range to resolve the range of the radar. Rate and ranging range are dynamically adjusted.
  • the invention dynamically adjusts the bandwidth of the intermediate frequency filter to achieve the dynamic adjustment of the parameters of different distance targets, thereby obtaining the optimal range resolution and ranging range of the radar system, so as to achieve better range resolution when measuring close range targets, When measuring a long-distance target, a longer measurement distance can be obtained, and the dynamic adjustment of the present invention can make the radar system performance better according to the actual distance of the target.
  • FIG. 1 is a flowchart of a dynamic adjustment method of the present invention.
  • FIG. 2 is a specific flowchart of step S20 of the dynamic adjustment method of the present invention.
  • a method for dynamically adjusting the range resolution and ranging range of an FMCW radar includes the steps:
  • the IF filter bandwidth B IF includes the narrow-band mode and the wide-band mode of the IF filter; the narrow-band mode of the IF filter is configured as f Lmax ⁇ B IF ⁇ f Hmin ; the wide-band mode of the IF filter is configured as f Lmin ⁇ B IF ⁇ f Hmax ; Among them: 0.1MHz ⁇ f L ⁇ 1.6MHz, 7.5MHz ⁇ f H ⁇ 15MHz, f L represents the lower cut-off frequency of the IF filter, and f H represents the upper cut-off frequency of the IF filter.
  • the narrowband mode is configured as 1.6MHz ⁇ B IF ⁇ 7.5MHz; the wideband mode of the IF filter is configured as 0.1MHz ⁇ B IF ⁇ 15MHz; and the narrowest bandwidth of the IF filter is 5.9MHz and the widest bandwidth is 14.9MHz .
  • the radar system Before executing step S10 again, the radar system sends the FM signal in the narrowband mode and the wideband mode of the IF filter in a time-sharing manner by sending an FM signal in each frame of data.
  • This step is specifically: after configuring various parameters of the radar system, the radar system sends a frequency-modulated signal in each frame of data to time-send the narrow-band mode of the intermediate frequency filter and the frequency-modulated system signal in the wideband mode.
  • the narrowest bandwidth in the narrowband mode and the widest bandwidth in the wideband mode of the IF filter of the radar system confirm the actual distance Rc of the target.
  • the configuration of each parameter of the radar system includes the configuration of the initial value of the radio frequency modulation bandwidth B.
  • the initial value of the radio frequency modulation bandwidth B is configured when the difference frequency signal of the radar system is located at the position where the IF filter has the least attenuation.
  • the initial value of the radio frequency FM bandwidth B of the radar system is configured as 200 MHz
  • the maximum value of the radio frequency FM bandwidth B of the radar system is configured as 1000 MHz.
  • the actual distance of the target is calculated by the following formula:
  • Rc represents the actual distance of the target
  • c represents the speed of light in a vacuum
  • Tc represents a period of chirp
  • B represents the RF frequency modulation bandwidth in MHz
  • ⁇ f represents the difference frequency between the transmitted signal and the echo signal
  • the difference frequency value ⁇ f is the IF filter bandwidth BIF.
  • This step includes:
  • the IF filter bandwidth B IF adjusted, and calculates the bandwidth of the IF filter B IF radar systems under maximum power of distance Rr.
  • the maximum power range Rr of the radar system is calculated by the following formula:
  • Rr represents the maximum power distance calculated by the radar system
  • Pt represents the transmit power of the radar system
  • Gt represents the gain of the transmitting antenna
  • Gr represents the gain of the receiving antenna
  • represents the radar cross section of the system
  • represents the center frequency wavelength of the transmitted signal
  • Pr represents The receiving sensitivity of the radar system
  • K is the Bolmans constant
  • BIF is the IF filter bandwidth
  • NF is the noise figure
  • SNR is the noise ratio.
  • the first threshold range is not less than 10m, that is, the maximum power distance Rr of the radar system calculated by step S201 is greater than the actual distance Rc of the target, and the difference between the two is not less than 10m.
  • the RF FM bandwidth B is calculated by the following formula:
  • Rc represents the actual distance of the target
  • c represents the speed of light in a vacuum
  • Tc represents a period of chirp
  • B represents the RF frequency modulation bandwidth in MHz
  • ⁇ f represents the difference frequency between the transmitted signal and the echo signal
  • the difference frequency value ⁇ f is the IF filter bandwidth BIF.
  • the distance resolution is calculated by the following formula:
  • ⁇ R means the distance resolution
  • c means the speed of light in a vacuum
  • Tc means a period of chirp
  • B means the frequency bandwidth of the radio frequency in MHz
  • fs means the sampling frequency
  • Nc means the number of sampling points of a chirp.
  • step S20 when the actual distance Rc of the target is determined, and the IF filter bandwidth BIF is increased, the difference frequency value is larger, which causes the RF FM bandwidth B to increase and the bandwidth noise to increase, which makes the signal strength of the radar system It is attenuated by the IF filter, thereby deteriorating the sensitivity Pr of the radar system, resulting in a decrease in the maximum power distance Rr of the radar system.
  • the IF filter bandwidth BIF decreases, the difference frequency value becomes smaller, resulting in RF FM bandwidth B Decreasing the bandwidth noise also reduces the signal strength of the radar system, which increases the sensitivity Pr of the radar system, which results in the maximum power range Rr of the radar system being increased.
  • the intermediate frequency filter bandwidth BIF the most narrowband mode is used.
  • the bandwidth value is narrow
  • the RF frequency modulation bandwidth B of the radar system is the smallest
  • the maximum power range Rr of the radar system obtained is larger, that is, the maximum power range of the radar system can be calculated by the narrowest bandwidth value of the narrowband mode of the IF filter Rr;
  • the IF filter bandwidth BIF of the radar system takes the widest bandwidth value of the wideband mode, the radio frequency of the radar system
  • step S30 Continue to identify the actual distance Rc of the target, and determine whether the rate of change of the target distance is greater than the second threshold. If yes, return to step S20, otherwise, continue to maintain the current IF filter bandwidth BIF and the current RF FM bandwidth B, and calculate the radar system Ranging range.
  • the distance change rate represents a ratio of a time interval between an actual distance change between two adjacently measured targets and an actual distance between two adjacently measured targets
  • a second threshold range is -5m / s to 5m / s.
  • the measurement range of the radar system includes the farthest measurement distance and the shortest measurement distance, and the farthest measurement distance is the maximum power distance Rr calculated by the narrowest bandwidth value of the narrowband mode of the IF filter bandwidth BIF, and the closest measurement distance It is the minimum value calculated by the actual distance formula of the target, that is, the difference frequency value ⁇ f is the minimum value, and the RF frequency modulation bandwidth B is the maximum value, that is, the IF filter bandwidth BIF is the narrowest bandwidth value in the wideband mode. .
  • the invention dynamically adjusts the bandwidth of the intermediate frequency filter to achieve the dynamic adjustment of the parameters of different distance targets, thereby obtaining the optimal range resolution and ranging range of the radar system, so as to achieve better range resolution when measuring close range targets, When measuring a long-distance target, a longer measurement distance can be obtained, and the dynamic adjustment of the present invention can make the radar system performance better according to the actual distance of the target.
  • Example 2
  • An FMCW radar system includes a processing module, an FMCW radar communicatively connected to the processing module, and an intermediate frequency filter.
  • the processing module adopts the method for dynamically adjusting the range resolution and ranging range described in Embodiment 1 to the range of the radar. Resolution and ranging range are dynamically adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种FMCW雷达距离分辨率和测距范围动态调节的方法,包括:通过调节雷达系统的中频滤波器带宽确认目标的实际距离(S10);根据目标的实际距离,对中频滤波器带宽进行调整,从而获得当前距离下雷达系统最优的射频调频带宽及最优的距离分辨率(S20);持续识别目标的实际距离,并判断目标距离变化率是否大于第二阈值(S20),若是则返回上一步骤,否则继续保持当前中频滤波器带宽和当前射频调频带宽,并计算雷达系统的测距范围(S30),通过动态调整中频滤波器带宽以实现不同距离目标参数的动态调节,以实现测量近距离目标时可以得到较好的距离分辨率,测量远距离目标时可以得到较远的测量距离,且动态调节可以根据目标的实际距离使雷达系统性能效果更佳。

Description

一种FMCW雷达距离分辨率和测距范围动态调节的方法 技术领域
本发明涉及雷达信号处理技术领域,特别是涉及一种FMCW雷达距离分辨率和测距范围动态调节的方法。
背景技术
随着汽车产业的快速发展,汽车普及率显著提高,汽车安全驾驶已经成为现阶段的主要热门关注点。而毫米波雷达在辅助驾驶系统传感器中有着重要的地位。对于以后的高级辅助驾驶,甚至自动驾驶来说,毫米波雷达将会成为标配。
毫米波雷达系统可以实现对目标物体的测距,测速和测角。对于FMCW(Frequency Modulation Continuous Waves——调频连续波)雷达来说,调频带宽越大,距离分辨率就越高,对于同一角度不同距离的物体的辨识就更准确。对于近距离的目标分辨,我们希望距离分辨率越小越好,这样,我们就希望射频调频带宽B尽量大。但当射频调频带宽B增大,对于同样距离的目标,差频(发射信号和回波信号的频率差)就需要越大;同样的,测量同样距离的目标,射频调频带宽B减小一半的话,差频△f需要减小一半。
而,差频信号增大会引起下面两个问题:
a.差频增大后需调高中频滤波器的上限截止频率,从而增加宽带噪声,会使BIF(中频滤波器带宽)增大,从而使灵敏度恶化。
b.差频增大后会导致信号强度被中频滤波器衰减,从而使接收有用信号强度下降,在噪声不变的情况下,SNR(信噪比)会下降,从而使灵敏度恶化。
然而,雷达的威力范围和灵敏度是呈负相关的。所以上面两种情况导致的灵敏度恶化都会导致雷达的威力范围变小。
因此,距离分辨率和雷达测距威力范围存在矛盾,两者不可兼得。
发明内容
本发明为克服上述现有技术所述的不足,提供一种FMCW雷达距离分辨率和测距范围动态调节的方法。
为解决上述技术问题,本发明的技术方案如下:
一种FMCW雷达距离分辨率和测距范围动态调节的方法,包括步骤:
S10.通过调节雷达系统的中频滤波器带宽确认目标的实际距离;
S20.根据目标的实际距离,对中频滤波器带宽进行调整,从而获得当前距离下雷达系统最 优的射频调频带宽,并根据当前射频调频带宽计算雷达系统当前最优的距离分辨率;
S30.持续识别目标的实际距离,并判断目标距离变化率是否大于第二阈值,若是,则返回步骤S20,否则,继续保持当前中频滤波器带宽和当前射频调频带宽,并计算雷达系统的测距范围。
进一步的,作为优选技术方案,步骤S20具体包括:
S201.根据目标的实际距离,对中频滤波器带宽进行调整,并计算在该中频滤波器带宽下雷达系统的最大威力距离;
S202.使雷达系统的最大威力距离大于目标的实际距离,且两者之差处于第一阈值范围内;
S203.根据当前目标的实际距离和中频滤波器带宽,计算雷达系统当前最优的射频调频带宽;
S204.根据当前射频调频带宽计算雷达系统当前最优的距离分辨率。
进一步的,作为优选技术方案,所述第一阈值范围为不小于10m;所述第二阈值范围为-5m/s~5m/s。
进一步的,作为优选技术方案,步骤S10中,所述中频滤波器带宽包括中频滤波器的窄带模式和宽带模式。
进一步的,作为优选技术方案,所述中频滤波器的窄带模式配置为f Lmax≤B IF≤f Hmin;中频滤波器的宽带模式配置为f Lmin≤B IF≤f Hmax
其中:0.1MHz≤f L≤1.6MHz,7.5MHz≤f H≤15MHz,f L表示中频滤波器的下限截至频率,f H表示中频滤波器的上限截至频率。
进一步的,作为优选技术方案,再执行步骤S10之前,雷达系统以每一帧数据发送一种调频制式信号的方式分时发送中频滤波器带宽的窄带模式和宽带模式下的调频制式信号。
进一步的,作为优选技术方案,所述雷达系统的最大威力距离是通过中频滤波器带宽根据以下公式计算:
Figure PCTCN2018101736-appb-000001
P r=10·1g(K·B IF·T)+N F+SNR;
其中:Rr表示雷达系统计算的最大威力距离;Pt表示雷达系统的发射功率;Gt表示发射天线增益;Gr表示接收天线增益;σ表示系统雷达散射截面积;λ表示发射信号中心频率波 长;Pr表示雷达系统的接收灵敏度;K表示玻尔曼兹常数;BIF表示中频滤波器带宽;NF表示噪声系数;SNR表示噪声比。
进一步的,作为优选技术方案,所述雷达系统的射频调频带宽通过以下公式计算:
Figure PCTCN2018101736-appb-000002
其中:Rc表示目标的实际距离;△f表示发射信号和回波信号的差频,即中频滤波器带宽值。
进一步的,作为优选技术方案,所述距离分辨率通过以下公式计算:
Figure PCTCN2018101736-appb-000003
其中:△R表示距离分辨率;c表示真空中光速;Tc表示一个chirp的周期;B表示射频调频带宽,单位为MHz;fs表示采样频率;Nc表示一个chirp的采样点数。
进一步的,作为优选技术方案,所述射频调频带宽的初始值配置为雷达系统的差频信号位于中频滤波器衰减最小的位置时的值。
一种FMCW雷达系统,包括处理模块、与所述处理模块通信连接的FMCW雷达以及中频滤波器,所述处理模块采用了所述的距离分辨率和测距范围动态调节的方法对雷达的距离分辨率和测距范围进行动态调节。
与现有技术相比,本发明技术方案的有益效果是:
本发明通过动态调整中频滤波器带宽以实现不同距离目标参数的动态调节,从而获得雷达系统的最优距离分辨率和测距范围,以实现测量近距离目标时可以得到较好的距离分辨率,测量远距离目标时可以得到较远的测量距离,且本发明的动态调节可以根据目标的实际距离使雷达系统性能效果更佳。
附图说明
图1为本发明的动态调节方法流程图。
图2为本发明的动态调节方法步骤S20具体流程图。
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的;相同或相似的标号对应相同或相似的部件;附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征更易被本领域技术人员理解,从而对本发明的保护范围作出更为清楚的界定。
实施例1
一种FMCW雷达距离分辨率和测距范围动态调节的方法,如图1所示:包括步骤:
S10.通过调节雷达系统的中频滤波器带宽B IF确认目标的实际距离Rc。
在本步骤中,中频滤波器带宽B IF包括中频滤波器的窄带模式和宽带模式;中频滤波器的窄带模式配置为f Lmax≤B IF≤f Hmin;中频滤波器的宽带模式配置为f Lmin≤B IF≤f Hmax;其中:0.1MHz≤f L≤1.6MHz,7.5MHz≤f H≤15MHz,f L表示中频滤波器的下限截至频率,f H表示中频滤波器的上限截至频率。
因此,窄带模式配置为1.6MHz≤B IF≤7.5MHz;中频滤波器的宽带模式配置为0.1MHz≤B IF≤15MHz;而,中频滤波器的最窄带宽为5.9MHz,最宽带宽为14.9MHz。
而在再执行步骤S10之前,雷达系统以每一帧数据发送一种调频制式信号的方式分时发送中频滤波器的窄带模式和宽带模式下的调频制式信号。
本步骤具体为:配置雷达系统的各项参数后,雷达系统以每一帧数据发送一种调频制式信号的方式分时发送中频滤波器的窄带模式和宽带模式下的调频制式信号,并通过调节雷达系统的中频滤波器的窄带模式下的最窄带宽和宽带模式下的最宽带宽确认目标的实际距离Rc。
在本步骤中,雷达系统的各项参数的配置包括射频调频带宽B的初始值的配置,该射频调频带宽B的初始值配置为雷达系统的差频信号位于中频滤波器衰减最小的位置时的值,中频滤波器的窄带模式下,雷达系统的射频调频带宽B的初始值配置为200MHz,而,中频滤波器的宽带模式下,雷达系统的射频调频带宽B的最大值配置为1000MHz。
而目标的实际距离通过以下公式计算:
Figure PCTCN2018101736-appb-000004
其中:Rc表示目标的实际距离;c表示真空中光速;Tc表示一个chirp的周期;B表示射频调频带宽,单位为MHz;△f表示发射信号和回波信号的差频,所述差频值△f即为中频滤波器带宽BIF。
S20.根据目标的实际距离Rc,对中频滤波器带宽BIF进行调整,从而获得当前距离下雷达系统最优的射频调频带宽B,并根据当前射频调频带宽B计算雷达系统当前最优的距 离分辨率△R。
本步骤具体包括:
S201.根据目标的实际距离,对中频滤波器带宽B IF进行调整,并计算在该中频滤波器带宽B IF下雷达系统的最大威力距离Rr。
雷达系统的最大威力距离Rr是通过以下公式计算:
Figure PCTCN2018101736-appb-000005
P r=10·1g(K·B IF·T)+N F+SNR;
其中:Rr表示雷达系统计算的最大威力距离;Pt表示雷达系统的发射功率;Gt表示发射天线增益;Gr表示接收天线增益;σ表示系统雷达散射截面积;λ表示发射信号中心频率波长;Pr表示雷达系统的接收灵敏度;K表示玻尔曼兹常数;BIF表示中频滤波器带宽;NF表示噪声系数;SNR表示噪声比。
S202.使雷达系统的最大威力距离Rr大于目标的实际距离Rc,且两者之差处于第一阈值范围内。
在本步骤中,第一阈值范围为不小于10m,即,使通过步骤S201计算的雷达系统的最大威力距离Rr大于目标的实际距离Rc,且两者之差不小于10m。
S203.根据当前目标的实际距离Rc和中频滤波器带宽B IF,计算雷达系统当前最优的射频调频带宽B。
在本步骤中,射频调频带宽B通过以下公式计算:
Figure PCTCN2018101736-appb-000006
其中:Rc表示目标的实际距离;c表示真空中光速;Tc表示一个chirp的周期;B表示射频调频带宽,单位为MHz;△f表示发射信号和回波信号的差频,所述差频值△f即为中频滤波器带宽BIF。
S204.根据当前射频调频带宽B计算雷达系统当前最优的距离分辨率△R。
在本步骤中,距离分辨率通过以下公式计算:
Figure PCTCN2018101736-appb-000007
其中:△R表示距离分辨率;c表示真空中光速;Tc表示一个chirp的周期;B表示射频调频带宽,单位为MHz;fs表示采样频率;Nc表示一个chirp的采样点数。
在步骤S20中,当目标的实际距离Rc确定,中频滤波器带宽BIF增大时,差频值就越大,从而导致射频调频带宽B增大,带宽噪声也增大,使得雷达系统的信号强度被中频滤波器衰减,从而使雷达系统的灵敏度Pr恶化,导致雷达系统的最大威力距离Rr变小,反之,当中频滤波器带宽BIF减小时,差频值就越小,从而导致射频调频带宽B减小,带宽噪声也减小,使得雷达系统的信号强度增强,从而使雷达系统的灵敏度Pr增强,导致雷达系统的最大威力距离Rr变大,因此,在中频滤波器带宽BIF取窄带模式的最窄带宽值时,雷达系统的射频调频带宽B最小,所得到的雷达系统的最大威力距离Rr越大,即,通过中频滤波器的窄带模式的最窄带宽值可计算得到雷达系统的最大威力距离Rr;同样的,在雷达系统的中频滤波器带宽BIF取宽带模式的最宽带宽值时,雷达系统的射频调频带宽B最大,所得到的雷达系统的距离分辨率△R值最小,从而使雷达系统的距离分辨率最高。
S30.持续识别目标的实际距离Rc,并判断目标距离变化率是否大于第二阈值,若是,则返回步骤S20,否则,继续保持当前中频滤波器带宽BIF和当前射频调频带宽B,并计算雷达系统的测距范围。
其中,距离变化率表示相邻两次测量的目标的实际距离变化与相邻两次测量的目标的实际距离的时间间隔的比值,第二阈值范围为-5m/s~5m/s。
所述雷达系统的测量范围包括最远测量距离和最近测量距离,而最远测量距离即为通过中频滤波器带宽BIF的窄带模式的最窄带宽值计算得到的最大威力距离Rr,而最近测量距离则为通过目标的实际距离公式计算得到的最小值,即,差频值△f取最小值,而射频调频带宽B取最大值,即,中频滤波器带宽BIF取宽带模式下的最窄带宽值。
本发明通过动态调整中频滤波器带宽以实现不同距离目标参数的动态调节,从而获得雷达系统的最优距离分辨率和测距范围,以实现测量近距离目标时可以得到较好的距离分辨率,测量远距离目标时可以得到较远的测量距离,且本发明的动态调节可以根据目标的实际距离使雷达系统性能效果更佳。实施例2
一种FMCW雷达系统,包括处理模块、与处理模块通信连接的FMCW雷达以及中频滤波器,所述处理模块采用了实施例1所述的距离分辨率和测距范围动态调节的方法对雷达的距离分辨率和测距范围进行动态调节。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做 出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (11)

  1. 一种FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,包括步骤:
    S10.通过调节雷达系统的中频滤波器带宽确认目标的实际距离;
    S20.根据目标的实际距离,对中频滤波器带宽进行调整,从而获得当前距离下雷达系统最优的射频调频带宽,并根据当前射频调频带宽计算雷达系统当前最优的距离分辨率;
    S30.持续识别目标的实际距离,并判断目标距离变化率是否大于第二阈值,若是,则返回步骤S20,否则,继续保持当前中频滤波器带宽和当前射频调频带宽,并计算雷达系统的测距范围。
  2. 根据权利要求1所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,步骤S20具体包括:
    S201.根据目标的实际距离,对中频滤波器带宽进行调整,并计算在该中频滤波器带宽下雷达系统的最大威力距离;
    S202.使雷达系统的最大威力距离大于目标的实际距离,且两者之差处于第一阈值范围内;
    S203.根据当前目标的实际距离和中频滤波器带宽,计算雷达系统当前最优的射频调频带宽;
    S204.根据当前射频调频带宽计算雷达系统当前最优的距离分辨率。
  3. 根据权利要求2所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,所述第一阈值范围为不小于10m;所述第二阈值范围为-5m/s~5m/s。
  4. 根据权利要求1所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,步骤S10中,所述中频滤波器带宽包括中频滤波器的窄带模式和宽带模式。
  5. 根据权利要求4所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,所述中频滤波器的窄带模式配置为f Lmax≤B IF≤f Hmin;中频滤波器的宽带模式配置为f Lmin≤B IF≤f Hmax
    其中:0.1MHz≤f L≤1.6MHz,7.5MHz≤f H≤15MHz,f L表示中频滤波器的下限截至频率,f H表示中频滤波器的上限截至频率。
  6. 根据权利要求5所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,再执行步骤S10之前,雷达系统以每一帧数据发送一种调频制式信号的方式分时发送中频滤波器带宽的窄带模式和宽带模式下的调频制式信号。
  7. 根据权利要求2所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,所述雷达系统的最大威力距离是通过中频滤波器带宽根据以下公式计算:
    Figure PCTCN2018101736-appb-100001
    P r=10·lg(K·B IF·T)+N F+SNR;
    其中:Rr表示雷达系统计算的最大威力距离;Pt表示雷达系统的发射功率;Gt表示发射天线增益;Gr表示接收天线增益;σ表示系统雷达散射截面积;λ表示发射信号中心频率波长;Pr表示雷达系统的接收灵敏度;K表示玻尔曼兹常数;BIF表示中频滤波器带宽;NF表示噪声系数;SNR表示噪声比。
  8. 根据权利要求2所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,所述雷达系统的射频调频带宽通过以下公式计算:
    Figure PCTCN2018101736-appb-100002
    其中:Rc表示目标的实际距离;△f表示发射信号和回波信号的差频,即中频滤波器带宽值。
  9. 根据权利要求8所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,所述距离分辨率通过以下公式计算:
    Figure PCTCN2018101736-appb-100003
    其中:△R表示距离分辨率;c表示真空中光速;Tc表示一个chirp的周期;B表示射频调频带宽,单位为MHz;fs表示采样频率;Nc表示一个chirp的采样点数。
  10. 根据权利要求1所述的FMCW雷达距离分辨率和测距范围动态调节的方法,其特征在于,所述射频调频带宽的初始值配置为雷达系统的差频信号位于中频滤波器衰减最小的位置时的值。
  11. 一种FMCW雷达系统,其特征在于,包括处理模块、与所述处理模块通信连接的FMCW雷达以及中频滤波器,所述处理模块采用了如权利要求1~10中任一项所述的距离分辨率和测距范围动态调节的方法对雷达的距离分辨率和测距范围进行动态调节。
PCT/CN2018/101736 2018-08-13 2018-08-22 一种fmcw雷达距离分辨率和测距范围动态调节的方法 WO2020034243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810918493.5 2018-08-13
CN201810918493.5A CN109283517B (zh) 2018-08-13 2018-08-13 一种fmcw雷达距离分辨率和测距范围动态调节的方法

Publications (1)

Publication Number Publication Date
WO2020034243A1 true WO2020034243A1 (zh) 2020-02-20

Family

ID=65183428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101736 WO2020034243A1 (zh) 2018-08-13 2018-08-22 一种fmcw雷达距离分辨率和测距范围动态调节的方法

Country Status (2)

Country Link
CN (1) CN109283517B (zh)
WO (1) WO2020034243A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047472A (zh) * 2023-01-10 2023-05-02 信扬科技(佛山)有限公司 自动变焦控制方法、装置、电子设备及可读存储介质
CN116299202A (zh) * 2023-05-24 2023-06-23 南京隼眼电子科技有限公司 雷达波形的控制方法、装置、雷达设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133615A (zh) * 2019-04-17 2019-08-16 深圳市速腾聚创科技有限公司 一种激光雷达系统
CN109932727B (zh) * 2019-04-19 2021-11-19 洛阳顶扬光电技术有限公司 一种提高激光测距系统中远距离测距精度的方法
CN113504508B (zh) * 2021-04-13 2023-11-17 惠州市德赛西威智能交通技术研究院有限公司 一种改善雷达低频包络及rcta镜像目标检测的方法
CN117008115A (zh) * 2022-04-27 2023-11-07 华为技术有限公司 雷达控制方法和装置
CN114690138B (zh) * 2022-05-30 2022-08-02 南京隼眼电子科技有限公司 雷达性能监测方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867117A (en) * 1996-12-13 1999-02-02 The University Of Kansas, Center For Research, Incorporated Swept-step radar system and detection method using same
CN101089655A (zh) * 2006-06-14 2007-12-19 中国科学院电子学研究所 一种使用混沌信号的合成孔径雷达系统
CN101950015A (zh) * 2010-10-12 2011-01-19 西安天伟电子系统工程有限公司 线性调频连续波雷达灵敏度频率控制方法
CN102590794A (zh) * 2012-02-28 2012-07-18 北京航空航天大学 一种宽带相参雷达目标模拟器
CN102866398A (zh) * 2012-09-21 2013-01-09 中国航天空气动力技术研究院 一种利用调频连续波雷达进行动目标识别的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760732A (en) * 1996-05-01 1998-06-02 Multispec Corporation Method and apparatus for enhanced resolution of range estimates in echo location for detection and imaging systems
US8970425B2 (en) * 2011-06-09 2015-03-03 Sony Corporation Radar apparatus and method
CN105738890B (zh) * 2016-02-25 2017-12-08 深圳承泰科技有限公司 一种提升雷达的测量范围和测量精度的方法以及雷达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867117A (en) * 1996-12-13 1999-02-02 The University Of Kansas, Center For Research, Incorporated Swept-step radar system and detection method using same
CN101089655A (zh) * 2006-06-14 2007-12-19 中国科学院电子学研究所 一种使用混沌信号的合成孔径雷达系统
CN101950015A (zh) * 2010-10-12 2011-01-19 西安天伟电子系统工程有限公司 线性调频连续波雷达灵敏度频率控制方法
CN102590794A (zh) * 2012-02-28 2012-07-18 北京航空航天大学 一种宽带相参雷达目标模拟器
CN102866398A (zh) * 2012-09-21 2013-01-09 中国航天空气动力技术研究院 一种利用调频连续波雷达进行动目标识别的方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047472A (zh) * 2023-01-10 2023-05-02 信扬科技(佛山)有限公司 自动变焦控制方法、装置、电子设备及可读存储介质
CN116047472B (zh) * 2023-01-10 2023-12-08 信扬科技(佛山)有限公司 自动变焦控制方法、装置、电子设备及可读存储介质
CN116299202A (zh) * 2023-05-24 2023-06-23 南京隼眼电子科技有限公司 雷达波形的控制方法、装置、雷达设备及存储介质

Also Published As

Publication number Publication date
CN109283517A (zh) 2019-01-29
CN109283517B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2020034243A1 (zh) 一种fmcw雷达距离分辨率和测距范围动态调节的方法
US6894641B2 (en) Radar system mounted on vehicle
US9128174B2 (en) Radar apparatus
KR20190041949A (ko) 간섭이 억제된 레이더 감지
JP4368852B2 (ja) レーダ装置
CN111077514A (zh) 具有干扰信号抑制的fmcw雷达
US7425917B2 (en) Radar for detecting the velocity of a target
EP1528406A1 (en) Radar system with RCS correction
US6819285B1 (en) Monopulse radar system for determining the height of a target
US11226409B2 (en) In-vehicle radar device
CN110651197A (zh) 具有监控同类发射信号序列频率位置的功能的雷达系统
JP2010060459A (ja) モノパルスレーダ装置
WO2016031919A1 (ja) 軸ずれ診断装置
JP4314262B2 (ja) 車載用レーダ装置
CN110651198A (zh) 具有监控同类发射信号序列频率调制的功能的雷达系统
JP3577237B2 (ja) 車両用レーダ装置
CN111065934B (zh) 利用天线装置测量仰角和/或方位角的方法
JP2765251B2 (ja) 車両用レーダ装置
JP7452310B2 (ja) レーダ装置とその制御方法
US11802960B2 (en) Phase correcting apparatus and method of transmission signal of vehicle radar, and vehicle radar apparatus with the same
KR20200120685A (ko) 대형 안테나 어레이를 갖는 자동차용 레이더 센서의 각도 추정 및 모호정수 결정
US11709261B2 (en) Radar device for vehicle, controlling method of radar device and radar system for vehicle
JP3614400B2 (ja) レーダ信号処理装置及びレーダ信号処理方法
CN111781587A (zh) 一种双波束微波测速测距敏感器高精度测距方法和系统
RU2669357C1 (ru) Моноимпульсный приёмник запросчика радиоимпульсных сигналов с частотно-временным кодированием

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930037

Country of ref document: EP

Kind code of ref document: A1