CN114690138B - 雷达性能监测方法、装置及存储介质 - Google Patents

雷达性能监测方法、装置及存储介质 Download PDF

Info

Publication number
CN114690138B
CN114690138B CN202210595738.1A CN202210595738A CN114690138B CN 114690138 B CN114690138 B CN 114690138B CN 202210595738 A CN202210595738 A CN 202210595738A CN 114690138 B CN114690138 B CN 114690138B
Authority
CN
China
Prior art keywords
distance
radar
current frame
inferred
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210595738.1A
Other languages
English (en)
Other versions
CN114690138A (zh
Inventor
李�瑞
顾彦阳
郭坤鹏
张燎
冯友怀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hawkeye Electronic Technology Co Ltd
Original Assignee
Nanjing Hawkeye Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hawkeye Electronic Technology Co Ltd filed Critical Nanjing Hawkeye Electronic Technology Co Ltd
Priority to CN202210595738.1A priority Critical patent/CN114690138B/zh
Publication of CN114690138A publication Critical patent/CN114690138A/zh
Application granted granted Critical
Publication of CN114690138B publication Critical patent/CN114690138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Abstract

本发明提供了一种雷达性能监测方法、装置及存储介质,其中,所述方法包括:根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。采用本发明实施例提供的技术方案能够实现雷达遮挡性能实时自检测并确定所述雷达的当前工作状态,且该方法鲁棒性强,能够对恶劣天气或环境因素造成的雷达性能退化做出反应,有效保证了车载雷达对环境的感知能力。

Description

雷达性能监测方法、装置及存储介质
技术领域
本发明涉及车载雷达技术领域,特别涉及一种雷达性能监测方法、装置及存储介质。
背景技术
汽车雷达对提高汽车的行驶安全性能十分重要。其中,汽车雷达中的毫米波雷达具有距离分辨率较高、辐射功率小、体积小等优点,故被广泛应用于高级驾驶辅助系统和自动驾驶等领域。毫米波雷达基本工作原理是通过连续周期性地调制发射信号频率,并分析发射时刻和接收时刻的信号频率,从而得出被测目标的相对距离和速度。
现有的雷达性能监测方法主要指遮挡检测,即通过各种检测方式判断当前雷达是否存在物理遮挡,一旦影响雷达功能的正常使用则发出报警或提示。但这种遮挡检测的检测方式较为单一,而且受限于场景的随机变化,容易产生误检,鲁棒性不够强;不能对恶劣天气或环境因素造成的雷达性能退化做出反应,使得雷达在相关使用条件下性能受到严重影响,导致产生目标漏检、中断或发现距离不足等问题,进而威胁到驾驶安全;并且只能发出报警或提示,没有自适应的调整系统。
因此,为了解决上述技术问题,亟需提供一种新的雷达性能监测方法、装置及存储介质。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种雷达性能监测方法、装置及存储介质,以解决现在技术中存在的问题。
本发明的目的采用以下技术方案实现:
根据本发明的一方面,提供一种雷达性能监测方法,其中,所述方法包括:根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离包括:根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离还包括:统计当前帧的动态目标点的总个数以及静态目标点的总个数,并基于与全部动态目标点对应的实测距离值相关联的置信度和存在概率确定第一平均置信度和第一平均存在概率,以及基于与全部静态目标点对应的实测距离值相关联的置信度和存在概率确定第二平均置信度和第二平均存在概率。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离还包括:基于所述当前帧的动态目标点的总个数以及静态目标点的总个数确定动态权重和静态权重。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离还包括:基于所述第一推断距离、所述第二推断距离、所述动态权重、所述静态权重、所述第一平均置信度、所述第一平均存在概率,所述第二平均置信度、所述第二平均存在概率估计所述当前帧对应的融合推断距离。
进一步地,所述根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离包括:针对每个动态目标点,根据该动态目标点对应的实测距离值、信噪比以及所述雷达能够探测出目标的理论最小信噪比来估计该动态目标点对应的单点推断距离;计算全部动态目标点对应的单点推断距离的平均值,并将所述平均值作为所述第一推断距离;以及针对每个静态目标点,根据该静态目标点对应的实测距离值、信噪比以及所述雷达能够探测出目标的理论最小信噪比来估计该静态目标点对应的单点推断距离;计算全部静态目标点对应的单点推断距离的平均值,并将所述平均值作为所述第二推断距离。
进一步地,按照下式分别计算所述动态权重和所述静态权重:
Figure DEST_PATH_IMAGE001
其中,
Figure DEST_PATH_IMAGE002
表示所述动态权重,
Figure DEST_PATH_IMAGE003
表示所述静态权重,
Figure DEST_PATH_IMAGE004
表示动态目标点的总个数,
Figure DEST_PATH_IMAGE005
表示静态目标点的总个数。
进一步地,按照下式计算所述当前帧对应的融合推断距离:
Figure DEST_PATH_IMAGE006
其中,
Figure DEST_PATH_IMAGE007
表示所述当前帧对应的融合推断距离,
Figure DEST_PATH_IMAGE008
表示所述第一推断距离,
Figure 442704DEST_PATH_IMAGE002
表示所述动态权重,
Figure DEST_PATH_IMAGE009
表示所述第一平均置信度,
Figure DEST_PATH_IMAGE010
表示所述第一平均存在概率,
Figure DEST_PATH_IMAGE011
表示所述第二推断距离,
Figure 795450DEST_PATH_IMAGE003
表示所述静态权重,
Figure DEST_PATH_IMAGE012
表示所述第二平均置信度,
Figure DEST_PATH_IMAGE013
表示所述第二平均存在概率,
Figure DEST_PATH_IMAGE014
表示预设的扩大系数。
进一步地,所述对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值,包括:获取前一帧对应的决策判决值;根据所述前一帧对应的决策判决值以及预设的滤波系数对所述当前帧对应的融合推断距离进行滤波处理以得到所述当前帧对应的决策判决值。
进一步地,按照下式对所述当前帧对应的融合推断距离进行滤波处理:
Figure DEST_PATH_IMAGE015
其中,
Figure DEST_PATH_IMAGE016
表示所述当前帧对应的决策判决值,
Figure DEST_PATH_IMAGE017
表示所述前一帧对应的决策判决值,
Figure DEST_PATH_IMAGE018
表示所述当前帧对应的融合推断距离,
Figure DEST_PATH_IMAGE019
表示所述滤波系数。
进一步地,所述预设的至少一个阈值包括第一阈值和第二阈值,并且所述第一阈值大于所述第二阈值。
进一步地,所述将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态包括:
在所述当前帧对应的决策判决值大于所述第一阈值的情况下,判定所述雷达的当前工作状态为“性能正常”;
在所述当前帧对应的决策判决值在所述第一阈值和所述第二阈值之间的情况下,判定所述雷达的当前工作状态为“性能衰退,但能够自行恢复”;
在所述当前帧对应的决策判决值小于所述第二阈值的情况下,判定所述雷达的当前工作状态为“性能出现问题,需人工干预和处理”。
进一步地,所述方法还包括:
在判定所述雷达的当前工作状态为“性能正常”的情况下,不触发动作;
在判定所述雷达的当前工作状态为“性能衰退,但能够自行恢复”的情况下,基于预设的规则调整所述雷达的相关工作参数和数据处理策略;
在判定所述雷达的当前工作状态为“性能出现问题,需人工干预和处理”的情况下,发出故障告警以提示相关人员进行人工干预和处理。
根据本发明另一方面还提供一种雷达性能监测装置,所述装置包括:
推断距离确定单元,用于根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;
滤波单元,用于对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;
工作状态判定单元,用于将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。
根据本发明另一方面还提供一种计算机可读存储介质,包括上述雷达性能监测方法。
相比现有技术,本发明实施例提供的雷达性能监测方法、装置及存储介质,能够实现雷达遮挡性能实时自检测并确定所述雷达的当前工作状态,且该方法鲁棒性强,能够对恶劣天气或环境因素造成的雷达性能退化做出反应,有效保证了车载雷达对环境的感知能力。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1本发明实施例提供的一种雷达性能监测方法的流程示意图。
图2示出了本发明实施例中的雷达的决策判决值随时间推移的变化曲线图。
图3是本发明实施例提供的一种雷达性能监测装置的结构框图。
具体实施方式
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
图1是本发明实施例提供的一种雷达性能监测方法的流程示意图。
参考图1所示,本发明提供一种雷达性能监测方法包括以下步骤:
步骤S10,根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;
步骤S20,对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;
步骤S30,将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。
以下将具体描述步骤S10至S30。
在步骤S10中,一般地,受限于当前车载雷达前方的交通环境,例如,前方遇到一堵墙或者遇到红路灯停车等待或者交通拥堵等场景,导致该车载雷达的发现目标发现距离相对较小,并不能真实反映该车载雷达的最大可探测距离是多少,也即,无法确定该车载雷达的真实工作状态如何。
为此,在本发明实施例中,根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;例如,根据该雷达当前帧返回的目标探测回波信号数据实时计算所述目标相对于所述雷达的实测距离值(也即发现距离)、所述目标相对于所述雷达的径向速度以及与所述目标对应的探测回波信号的信噪比(SNR)。示例性地,基于雷达方程的公式,所述雷达的最大探测距离Rmax,受雷达的最小可检测信号Smin制约,也即通过当前帧的每个目标对应的实测距离值以及信噪比,可以估计或者推断出当信噪比衰减到一定程度之后的所述雷达的平均最大探测距离。
在步骤S20中,从真实场景来看,每帧的对应的融合推断距离的值会随着时间的推移变化幅度较大,为此,对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;示例性地,对所述当前帧对应的融合推断距离进行平滑滤波处理,以输出滤波处理后的当前帧对应的决策判决值。
在步骤S30中,将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。示例性地,本发明实施例中,预设的至少一个阈值可以基于所述雷达在不同性能退化情况下的统计数据及表现进行估计确定,将所述当前帧对应的决策判决值与预设的至少一个阈值相比较,即可以确定所述雷达的当前工作状态。
采用本发明实施例所提供的技术方案,能够实现雷达遮挡性能实时自检测并确定所述雷达的当前工作状态,且该方法鲁棒性强,能够对恶劣天气或环境因素造成的雷达性能退化做出反应,有效保证了车载雷达对环境的感知能力。
具体地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离包括:根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离。需要说明的是,所述第一推断距离为对应全部动态目标点的平均推断距离,所述第二推断距离为对应全部静态目标点的平均推断距离。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离还包括:统计当前帧的动态目标点的总个数以及静态目标点的总个数,并基于与全部动态目标点对应的实测距离值相关联的置信度和存在概率确定第一平均置信度和第一平均存在概率,以及基于与全部静态目标点对应的实测距离值相关联的置信度和存在概率确定第二平均置信度和第二平均存在概率。
基于在统计学中,可根据一个概率样本的置信区间(Confidence interval)来对这个样本的总体参数的区间进行估计。示例性地,在本实施例中,例如,动态目标点在置信水平95%上对应的实测距离值的置信区间是(40m,60m),静态目标点在置信水平95%上对应的实测距离值的置信区间是(20m,40m)。基于与全部动态目标点对应的实测距离值落在置信区间(40m,60m)的情况,可以确定与全部动态目标点对应的实测距离值相关联的置信度,即第一平均置信度;基于与全部静态目标点对应的实测距离值落在置信区间(20m,40m)的情况,可以确定与全部静态目标点对应的实测距离值相关联的置信度,即第二平均置信度。
应理解,在本实施例中,与全部动态目标点对应的实测距离值相关联的置信度展现的是这个“实测距离值”参数的真实值有一定概率落在测量结果的周围的程度。与全部静态目标点对应的实测距离值相关联的置信度展现的是这个“实测距离值”参数的真实值有一定概率落在测量结果的周围的程度。一般而言,当随机抽样足够多时,可靠性更高。
动态目标点的平均存在概率表示将全部动态目标点对应的真假存在的概率进行求平均,以用于评价动态目标点的质量高低、可靠程度,减少虚景点。静态目标点的平均存在概率表示将全部静态目标点对应的真假存在的概率进行求平均,以用于评价静态目标点的质量高低、可靠程度,减少虚景点。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离还包括:基于所述当前帧的动态目标点的总个数以及静态目标点的总个数确定动态权重和静态权重。
具体地,按照下式分别计算所述动态权重和所述静态权重:
Figure DEST_PATH_IMAGE020
其中,
Figure 504256DEST_PATH_IMAGE002
表示所述动态权重,
Figure 277040DEST_PATH_IMAGE003
表示所述静态权重,
Figure 817742DEST_PATH_IMAGE004
表示动态目标点的总个数,
Figure 257951DEST_PATH_IMAGE005
表示静态目标点的总个数。
进一步地,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离还包括:基于所述第一推断距离、所述第二推断距离、所述动态权重、所述静态权重、所述第一平均置信度、所述第一平均存在概率,所述第二平均置信度、所述第二平均存在概率估计所述当前帧对应的融合推断距离。
进一步地,所述根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离包括:针对每个动态目标点,根据该动态目标点对应的实测距离值、信噪比以及所述雷达能够探测出目标的理论最小信噪比来估计该动态目标点对应的单点推断距离;计算全部动态目标点对应的单点推断距离的平均值,并将所述平均值作为所述第一推断距离;以及针对每个静态目标点,根据该静态目标点对应的实测距离值、信噪比以及所述雷达能够探测出目标的理论最小信噪比来估计该静态目标点对应的单点推断距离;计算全部静态目标点对应的单点推断距离的平均值,并将所述平均值作为所述第二推断距离。
具体地,所述基于所述第一推断距离、所述第二推断距离、所述动态权重、所述静态权重、所述第一平均置信度、所述第一平均存在概率,所述第二平均置信度、所述第二平均存在概率估计所述当前帧对应的融合推断距离,包括:
按照下式计算所述当前帧对应的融合推断距离:
Figure DEST_PATH_IMAGE021
其中,
Figure DEST_PATH_IMAGE022
表示所述当前帧对应的融合推断距离,
Figure DEST_PATH_IMAGE023
表示所述第一推断距离,
Figure 688058DEST_PATH_IMAGE002
表示所述动态权重,
Figure 213717DEST_PATH_IMAGE009
表示所述第一平均置信度,
Figure 558110DEST_PATH_IMAGE010
表示所述第一平均存在概率,
Figure DEST_PATH_IMAGE024
表示所述第二推断距离,
Figure 852826DEST_PATH_IMAGE003
表示所述静态权重,
Figure 155631DEST_PATH_IMAGE012
表示所述第二平均置信度,
Figure 637428DEST_PATH_IMAGE013
表示所述第二平均存在概率,
Figure 51092DEST_PATH_IMAGE014
表示预设的扩大系数。
示例性地,对于角雷达(一般探测距离100m),经过统计发现,得到对应各种随机场景的分布的一正态分布,然后再求平均值,得到动态目标点的最佳探测距离为40m~60m,静态目标点的最佳探测距离为20m~40m。需要说明的是,在估计所述当前帧对应的融合推断距离时,乘以所述预设的扩大系数
Figure 167690DEST_PATH_IMAGE014
,是为了能够将当前帧的融合推断距离回归到当前角雷达的实际最佳探测距离(接近100m的探测距离)的基准上进行直观评价,并且,所述预设的扩大系数
Figure 641397DEST_PATH_IMAGE014
可以根据不同的雷达产品性能进行调节。在此不再赘述。
具体地,所述对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值,包括:获取前一帧对应的决策判决值;根据所述前一帧对应的决策判决值以及预设的滤波系数对所述当前帧对应的融合推断距离进行滤波处理以得到所述当前帧对应的决策判决值。
示例性地,按照下式对所述当前帧对应的融合推断距离进行滤波处理:
Figure DEST_PATH_IMAGE025
其中,
Figure DEST_PATH_IMAGE026
表示所述当前帧对应的决策判决值,
Figure DEST_PATH_IMAGE027
表示所述前一帧对应的决策判决值,
Figure 938386DEST_PATH_IMAGE007
表示所述当前帧对应的融合推断距离,
Figure 890161DEST_PATH_IMAGE019
表示所述滤波系数。
通过将每一帧对应的决策判决值都融合上一帧对应的决策判决值从而在时间上累积了历史多种不同随机场景跨度的决策判决值,使得对雷达性能的监测能够避免场景随机变化带来的影响,从而避免误检,鲁棒性强;且能够监测到恶劣天气条件下对雷达造成的性能退化问题。
需要说明的是,所述滤波系数
Figure 893889DEST_PATH_IMAGE019
的值越大,相应的抖动更大,通过调整所述滤波系数
Figure 538497DEST_PATH_IMAGE019
的值,以用于调整对于雷达遮挡状态监测的敏感程度。
图2示出了本发明实施例中的雷达的决策判决值随时间推移的变化曲线图。
示例性地,如图2所示,基于雷达在不同性能退化情况下的统计数据及表现,将所述预设的至少一个阈值包括第一阈值T1和第二阈值T2,并且所述第一阈值T1大于所述第二阈值T2。其中,所述第一阈值T1和所述第二阈值T2为基于大量数据的统计估计值。将所述当前帧对应的决策判决值与预设的所述第一阈值T1和所述第二阈值T2相比较以确定所述雷达的当前工作状态。例如,在所述当前帧对应的决策判决值大于所述第一阈值T1的情况下,例如,处于A区间,则判定所述雷达的当前工作状态为“性能正常”。在所述当前帧对应的决策判决值在所述第一阈值T1和所述第二阈值T2之间的情况下,例如,处于B区间,则判定所述雷达的当前工作状态为“性能衰退,但能够自行恢复”;例如,是因为雨雪或沙尘天气造成雷达的性能衰退。在所述当前帧对应的决策判决值小于所述第二阈值T2的情况下,例如,处于C区间,则判定所述雷达的当前工作状态为“性能出现问题,需人工干预和处理”。示例性地,存在物理遮挡,需要人工进行清除处理。
进一步地,在判定所述雷达的当前工作状态为“性能正常”的情况下,不触发动作。
进一步地,在判定所述雷达的当前工作状态为“性能衰退,但能够自行恢复”的情况下,基于预设的规则调整所述雷达的相关工作参数和数据处理策略。调整相关参数和策略,降低Cfar(Constant False Alarm Rate,恒虚警)检测门限,放宽目标跟踪关联门限,延长目标外推时间等。
进一步地,在判定所述雷达的当前工作状态为“性能出现问题,需人工干预和处理”的情况下,发出故障告警以提示相关人员进行人工干预和处理。
采用本发明实施例所提供的技术方案,基于统计参数持续对雷达性能进行监测,有效避免了因为随机场景变化造成的遮挡误报,同时能够监测因为恶劣环境引起的性能退化,并作出相应参数和策略的调整保证雷达基本功能正常运行。
图3是本发明实施例提供的一种雷达性能监测装置的结构框图。
如图3所示,根据本发明的另一方面,本发明实施例还提供一种雷达性能监测装置300,所述装置300包括:推断距离确定单元310,用于根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;滤波单元320,用于对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;工作状态判定单元330,用于将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。
应当理解,雷达性能监测装置中各个单元(模块)的执行原理、其他方面以及效果可参见前述实施例的内容,此处不再赘述。
本发明实施例还提供了一种计算机可读介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现以上描述的任一实施例的用于车载雷达的目标状态估计方法。
对上述步骤的具体限定和实现方式可以参看用于车载雷达的目标状态估计方法的实施例的步骤以及方法,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上对本发明实施例所提供的雷达性能监测方法、装置及存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (11)

1.一种雷达性能监测方法,其特征在于,所述方法包括:
根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;
对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;
将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态;
其中,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离包括:
根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离;
统计当前帧的动态目标点的总个数以及静态目标点的总个数,并基于与全部动态目标点对应的实测距离值相关联的置信度和存在概率确定第一平均置信度和第一平均存在概率,以及基于与全部静态目标点对应的实测距离值相关联的置信度和存在概率确定第二平均置信度和第二平均存在概率;
基于所述当前帧的动态目标点的总个数以及静态目标点的总个数确定动态权重和静态权重;
基于所述第一推断距离、所述第二推断距离、所述动态权重、所述静态权重、所述第一平均置信度、所述第一平均存在概率,所述第二平均置信度、所述第二平均存在概率估计所述当前帧对应的融合推断距离。
2.如权利要求1所述的雷达性能监测方法,其特征在于,所述根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离包括:
针对每个动态目标点,根据该动态目标点对应的实测距离值、信噪比以及所述雷达能够探测出目标的理论最小信噪比来估计该动态目标点对应的单点推断距离;
计算全部动态目标点对应的单点推断距离的平均值,并将所述平均值作为所述第一推断距离;以及
针对每个静态目标点,根据该静态目标点对应的实测距离值、信噪比以及所述雷达能够探测出目标的理论最小信噪比来估计该静态目标点对应的单点推断距离;
计算全部静态目标点对应的单点推断距离的平均值,并将所述平均值作为所述第二推断距离。
3.如权利要求2所述的雷达性能监测方法,其特征在于,所述基于所述当前帧的动态目标点的总个数以及静态目标点的总个数确定动态权重和静态权重包括:
按照下式分别计算所述动态权重和所述静态权重:
Figure 964398DEST_PATH_IMAGE001
其中,
Figure 475013DEST_PATH_IMAGE002
表示所述动态权重,
Figure 723592DEST_PATH_IMAGE003
表示所述静态权重,
Figure 712277DEST_PATH_IMAGE004
表示动态目标点的总个数,
Figure 356010DEST_PATH_IMAGE005
表示静态目标点的总个数。
4.如权利要求3所述的雷达性能监测方法,其特征在于,所述基于所述第一推断距离、所述第二推断距离、所述动态权重、所述静态权重、所述第一平均置信度、所述第一平均存在概率,所述第二平均置信度、所述第二平均存在概率估计所述当前帧对应的融合推断距离,包括:
按照下式计算所述当前帧对应的融合推断距离:
Figure 912893DEST_PATH_IMAGE006
其中,
Figure 648768DEST_PATH_IMAGE007
表示所述当前帧对应的融合推断距离,
Figure 706723DEST_PATH_IMAGE008
表示所述第一推断距离,
Figure 578864DEST_PATH_IMAGE002
表示所述动态权重,
Figure 165703DEST_PATH_IMAGE009
表示所述第一平均置信度,
Figure 654453DEST_PATH_IMAGE010
表示所述第一平均存在概率,
Figure 984940DEST_PATH_IMAGE011
表示所述第二推断距离,
Figure 977167DEST_PATH_IMAGE012
表示所述静态权重,
Figure 233443DEST_PATH_IMAGE013
表示所述第二平均置信度,
Figure 943910DEST_PATH_IMAGE014
表示所述第二平均存在概率,
Figure 78088DEST_PATH_IMAGE015
表示预设的扩大系数。
5.如权利要求4所述的雷达性能监测方法,其特征在于,所述对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值,包括:
获取前一帧对应的决策判决值;
根据所述前一帧对应的决策判决值以及预设的滤波系数对所述当前帧对应的融合推断距离进行滤波处理以得到所述当前帧对应的决策判决值。
6.如权利要求5所述的雷达性能监测方法,其特征在于,所述根据所述前一帧对应的决策判决值以及预设的滤波系数对所述当前帧对应的融合推断距离进行滤波处理以得到所述当前帧对应的决策判决值包括:
按照下式对所述当前帧对应的融合推断距离进行滤波处理:
Figure 190400DEST_PATH_IMAGE016
其中,
Figure 119042DEST_PATH_IMAGE017
表示所述当前帧对应的决策判决值,
Figure 316805DEST_PATH_IMAGE018
表示所述前一帧对应的决策判决值,
Figure 130040DEST_PATH_IMAGE019
表示所述当前帧对应的融合推断距离,
Figure 221493DEST_PATH_IMAGE020
表示所述滤波系数。
7.如权利要求6所述的雷达性能监测方法,其特征在于,所述预设的至少一个阈值包括第一阈值和第二阈值,并且所述第一阈值大于所述第二阈值。
8.如权利要求7所述的雷达性能监测方法,其特征在于,所述将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态包括:
在所述当前帧对应的决策判决值大于所述第一阈值的情况下,判定所述雷达的当前工作状态为“性能正常”;
在所述当前帧对应的决策判决值在所述第一阈值和所述第二阈值之间的情况下,判定所述雷达的当前工作状态为“性能衰退,但能够自行恢复”;
在所述当前帧对应的决策判决值小于所述第二阈值的情况下,判定所述雷达的当前工作状态为“性能出现问题,需人工干预和处理”。
9.如权利要求8所述的雷达性能监测方法,其特征在于,所述方法还包括:
在判定所述雷达的当前工作状态为“性能正常”的情况下,不触发动作;
在判定所述雷达的当前工作状态为“性能衰退,但能够自行恢复”的情况下,基于预设的规则调整所述雷达的相关工作参数和数据处理策略;
在判定所述雷达的当前工作状态为“性能出现问题,需人工干预和处理”的情况下,发出故障告警以提示相关人员进行人工干预和处理。
10.一种雷达性能监测装置,其特征在于,所述装置包括:
推断距离确定单元,用于根据当前帧的回波信号确定每个目标点对应的实测距离值和信噪比,并基于全部实测距离值和信噪比估计当前帧对应的融合推断距离,其中,所述融合推断距离指示估计出的所述雷达的最大探测距离;其中,所述基于全部实测距离值和信噪比估计当前帧对应的融合推断距离包括:根据全部动态目标点对应的实测距离值和信噪比估计第一推断距离,以及根据全部静态目标点对应的实测距离值和信噪比估计第二推断距离,其中,所述第一推断距离和所述第二推断距离均指示估计出的所述雷达的最大探测距离;统计当前帧的动态目标点的总个数以及静态目标点的总个数,并基于与全部动态目标点对应的实测距离值相关联的置信度和存在概率确定第一平均置信度和第一平均存在概率,以及基于与全部静态目标点对应的实测距离值相关联的置信度和存在概率确定第二平均置信度和第二平均存在概率;基于所述当前帧的动态目标点的总个数以及静态目标点的总个数确定动态权重和静态权重;基于所述第一推断距离、所述第二推断距离、所述动态权重、所述静态权重、所述第一平均置信度、所述第一平均存在概率,所述第二平均置信度、所述第二平均存在概率估计所述当前帧对应的融合推断距离;
滤波单元,用于对所述当前帧对应的融合推断距离进行滤波处理以得到当前帧对应的决策判决值;
工作状态判定单元,用于将所述当前帧对应的决策判决值与预设的至少一个阈值相比较以确定所述雷达的当前工作状态。
11.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的雷达性能监测方法。
CN202210595738.1A 2022-05-30 2022-05-30 雷达性能监测方法、装置及存储介质 Active CN114690138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210595738.1A CN114690138B (zh) 2022-05-30 2022-05-30 雷达性能监测方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210595738.1A CN114690138B (zh) 2022-05-30 2022-05-30 雷达性能监测方法、装置及存储介质

Publications (2)

Publication Number Publication Date
CN114690138A CN114690138A (zh) 2022-07-01
CN114690138B true CN114690138B (zh) 2022-08-02

Family

ID=82144669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210595738.1A Active CN114690138B (zh) 2022-05-30 2022-05-30 雷达性能监测方法、装置及存储介质

Country Status (1)

Country Link
CN (1) CN114690138B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614722A (zh) * 2015-01-20 2015-05-13 南京大学 一种基于信噪比识别雷达遮挡的方法
CN105044691A (zh) * 2015-06-03 2015-11-11 西安电子科技大学 一种海杂波背景下的快速雷达性能评估方法
CN106610488A (zh) * 2015-10-23 2017-05-03 中国飞行试验研究院 一种雷达探测威力的测量方法
CN108828544A (zh) * 2018-08-17 2018-11-16 哈尔滨工业大学 基于等效噪声系数的地波超视距雷达威力范围评估方法
CN109283517A (zh) * 2018-08-13 2019-01-29 惠州市德赛西威汽车电子股份有限公司 一种fmcw雷达距离分辨率和测距范围动态调节的方法
CN109521412A (zh) * 2018-12-26 2019-03-26 西安电子科技大学 基于局部统计量融合的雷达组网空域目标检测方法
CN109991595A (zh) * 2019-05-21 2019-07-09 广东工业大学 一种基于毫米波雷达的距离测量方法及相关装置
CN110626355A (zh) * 2019-09-17 2019-12-31 浙江吉利汽车研究院有限公司 一种雷达遮挡诊断方法、装置及终端
CN110850391A (zh) * 2019-10-28 2020-02-28 中国人民解放军63963部队 一种激光雷达性能测试装置及测试方法
CN110927684A (zh) * 2018-09-20 2020-03-27 北京行易道科技有限公司 一种检测汽车雷达遮挡状态的方法及装置
CN111566508A (zh) * 2019-07-04 2020-08-21 深圳市大疆创新科技有限公司 基于侧向毫米波雷达的侧向静止物体和移动速度检测方法
CN111624560A (zh) * 2020-04-16 2020-09-04 惠州市德赛西威智能交通技术研究院有限公司 一种基于目标识别的车载毫米波雷达遮挡状态的检测方法
CN111751794A (zh) * 2020-06-10 2020-10-09 中国人民解放军海军航空大学青岛校区 一种雷达威力监控方法
CN111812602A (zh) * 2020-07-07 2020-10-23 南京隼眼电子科技有限公司 驾驶辅助系统性能的评估方法及存储介质
CN111812601A (zh) * 2020-07-06 2020-10-23 南京隼眼电子科技有限公司 雷达性能的评估方法及存储介质
CN112763994A (zh) * 2020-12-23 2021-05-07 惠州市德赛西威汽车电子股份有限公司 一种车载雷达遮挡检测方法、存储介质及车载设备
CN113325410A (zh) * 2021-05-28 2021-08-31 浙江大华技术股份有限公司 一种雷达天线信号处理方法、装置、控制设备及存储介质
CN114325682A (zh) * 2021-04-29 2022-04-12 北京易航远智科技有限公司 基于车载4d毫米波雷达的车辆速度状态估计方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614722A (zh) * 2015-01-20 2015-05-13 南京大学 一种基于信噪比识别雷达遮挡的方法
CN105044691A (zh) * 2015-06-03 2015-11-11 西安电子科技大学 一种海杂波背景下的快速雷达性能评估方法
CN106610488A (zh) * 2015-10-23 2017-05-03 中国飞行试验研究院 一种雷达探测威力的测量方法
CN109283517A (zh) * 2018-08-13 2019-01-29 惠州市德赛西威汽车电子股份有限公司 一种fmcw雷达距离分辨率和测距范围动态调节的方法
CN108828544A (zh) * 2018-08-17 2018-11-16 哈尔滨工业大学 基于等效噪声系数的地波超视距雷达威力范围评估方法
CN110927684A (zh) * 2018-09-20 2020-03-27 北京行易道科技有限公司 一种检测汽车雷达遮挡状态的方法及装置
CN109521412A (zh) * 2018-12-26 2019-03-26 西安电子科技大学 基于局部统计量融合的雷达组网空域目标检测方法
CN109991595A (zh) * 2019-05-21 2019-07-09 广东工业大学 一种基于毫米波雷达的距离测量方法及相关装置
CN111566508A (zh) * 2019-07-04 2020-08-21 深圳市大疆创新科技有限公司 基于侧向毫米波雷达的侧向静止物体和移动速度检测方法
CN110626355A (zh) * 2019-09-17 2019-12-31 浙江吉利汽车研究院有限公司 一种雷达遮挡诊断方法、装置及终端
CN110850391A (zh) * 2019-10-28 2020-02-28 中国人民解放军63963部队 一种激光雷达性能测试装置及测试方法
CN111624560A (zh) * 2020-04-16 2020-09-04 惠州市德赛西威智能交通技术研究院有限公司 一种基于目标识别的车载毫米波雷达遮挡状态的检测方法
CN111751794A (zh) * 2020-06-10 2020-10-09 中国人民解放军海军航空大学青岛校区 一种雷达威力监控方法
CN111812601A (zh) * 2020-07-06 2020-10-23 南京隼眼电子科技有限公司 雷达性能的评估方法及存储介质
CN111812602A (zh) * 2020-07-07 2020-10-23 南京隼眼电子科技有限公司 驾驶辅助系统性能的评估方法及存储介质
CN112763994A (zh) * 2020-12-23 2021-05-07 惠州市德赛西威汽车电子股份有限公司 一种车载雷达遮挡检测方法、存储介质及车载设备
CN114325682A (zh) * 2021-04-29 2022-04-12 北京易航远智科技有限公司 基于车载4d毫米波雷达的车辆速度状态估计方法
CN113325410A (zh) * 2021-05-28 2021-08-31 浙江大华技术股份有限公司 一种雷达天线信号处理方法、装置、控制设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
舰载雷达抗干扰性能的分析与评估方法;黄小毛;《舰船电子对抗》;20020228(第01期);全文 *
评定雷达自跟踪性能和估算最大作用距离的方法;朱学钧;《导弹试验技术》;19971231;全文 *
高频地波雷达传播特性及其探测距离分析;闫国玉;《舰船科学技术》;20051231;全文 *

Also Published As

Publication number Publication date
CN114690138A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN109814080B (zh) 一种毫米波雷达目标跟踪与置信度算法及其装置
CN111366919B (zh) 基于毫米波雷达的目标检测方法和装置、电子设备、存储介质
EP1278075A2 (en) Vehicle control apparatus with obstruction detection unit
CN110749871B (zh) 双偏振天气雷达的参量估算方法
US10551492B2 (en) Detecting rain intensity with traffice radar
CN112166336A (zh) 毫米波雷达俯仰安装角度的校准方法、装置、车辆控制系统及车辆
CN114578344A (zh) 一种适用于雨天环境下的目标感知方法、装置及系统
CN114690138B (zh) 雷达性能监测方法、装置及存储介质
CN115331413A (zh) 一种道闸杆预警方法、装置、电子设备及存储介质
US7804395B2 (en) Mobile radio communication system
CN112485770A (zh) 毫米波雷达全fov受限场景识别方法、存储介质及车载设备
CN115047443A (zh) 毫米波雷达的目标检测方法、装置和手持终端
CN115294771B (zh) 路侧设备的监控方法和装置、电子设备和存储介质
JP2893544B2 (ja) 異常交通流の検出装置
CN112946623A (zh) 基于车辆上安装77g毫米波雷达的测速方法和装置
US11914019B2 (en) Method for determining the detection threshold of a radar suited to a given environment
WO2019179648A1 (en) A method for increasing specificity of jamming detection in a home alarm system
CN114910877B (zh) 雷达性能评估方法、装置及存储介质
JP7203210B2 (ja) 車載用物体検知システム
CN111582635A (zh) 一种基于v2x的多目标处理方法
CN112835046A (zh) 基于bp环境感知的风廓线雷达自适应探测方法及系统
US20230230383A1 (en) Method for checking a static monitoring system
CN115046608A (zh) 基于毫米波雷达的城市水位监测系统以及水位监测方法
US20230333280A1 (en) Scaling and statistical adjustments of precipitation rates for apparatuses having precipitation sensitive sensors
CN117198032A (zh) 一种基于雷达传感器的隧道积水预警方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant