WO2020034168A1 - Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application - Google Patents

Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application Download PDF

Info

Publication number
WO2020034168A1
WO2020034168A1 PCT/CN2018/100911 CN2018100911W WO2020034168A1 WO 2020034168 A1 WO2020034168 A1 WO 2020034168A1 CN 2018100911 W CN2018100911 W CN 2018100911W WO 2020034168 A1 WO2020034168 A1 WO 2020034168A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium ion
battery separator
porous
cross
Prior art date
Application number
PCT/CN2018/100911
Other languages
English (en)
Chinese (zh)
Inventor
张明祖
顾陆铭
何金林
倪沛红
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Priority to PCT/CN2018/100911 priority Critical patent/WO2020034168A1/fr
Publication of WO2020034168A1 publication Critical patent/WO2020034168A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Non-woven membranes are also called non-woven membranes. These membranes are distinguished by a three-dimensional pore structure and high porosity. At present, the most important manufacturing method of non-woven membranes is electrostatic spinning, which effectively solves the two biggest problems of non-woven membranes: excessively large pore size and uneven pore size distribution. However, due to its excessive manufacturing cost, it is not suitable for mass production.
  • Polymer / inorganic composite separators include inorganic nanoparticles, such as silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), and zinc oxide (ZnO).
  • inorganic nanoparticles such as silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), and zinc oxide (ZnO).
  • SiO 2 silicon dioxide
  • Al 2 O 3 aluminum oxide
  • TiO 2 titanium dioxide
  • ZnO zinc oxide
  • the introduction of inorganic nanoparticles can not only enhance the mechanical strength and dimensional stability of the separator, but also increase the porosity of the separator and reduce the crystalline properties of the polymer.
  • problems of poor dispersibility of pure inorganic nanoparticles poor binding with polymers, and easy elution.
  • the post-treatment includes swelling, dipping with dilute hydrochloric acid, washing with deionized water, and drying.
  • the swelling agent is a carbonate, preferably propylene carbonate.
  • the method for preparing the separator is: Vinylidene fluoride-hexafluoropropylene, methacrylate monomers, initiators, olefin crosslinkers, and porogens are added to the solvent to obtain a mixed solution; the mixed solution is scraped onto a flat plate, and polymerized to obtain porosity A precursor for a polymer film; the precursor for a porous polymer film is swelled with a swelling agent, soaked in dilute hydrochloric acid, washed with deionized water, and dried to obtain a separator; the polyvinylidene fluoride-hexafluoropropylene and acrylic acid
  • the mass ratio of the ester monomer is (2 ⁇ 4): 1; the amount of the olefin cross-linking agent is 10% to 15% of the mass of the acrylate monomer, and the amount of the initiator is the methacrylate monomer and the olefin. 10% to 15% of the total mass of the cross-linking
  • polyvinylidene fluoride-hexafluoropropylene, a methacrylate monomer, an initiator, an olefin crosslinking agent, and an inorganic porogen are added to a solvent and stirred to obtain a mixed solution;
  • the solution was scraped on a flat plate, and after the polymerization reaction was post-processed, a porous lithium battery separator crosslinked with a linear polymer was obtained.
  • the photoinitiator is preferably an ultraviolet photoinitiator, such as benzoin dimethyl ether (DMPA); the amount of the initiator added is 10% of the total mass of the methacrylate monomer and the olefin crosslinking agent. % To 15%.
  • DMPA benzoin dimethyl ether
  • the invention firstly immerses in propylene carbonate to make the membrane matrix fully swell, and then immerses it in dilute hydrochloric acid for a period of time, so that the dilute hydrochloric acid solution can reach the interior of the membrane matrix, thereby efficiently dissolving and eluting nano zinc oxide to form a regular structure and distribution Micropores with uniform, smooth pore walls and stable size; and there is no impurity interference pollution, which is beneficial for subsequent lithium ion transmission.
  • Vacuum drying at a lower temperature can effectively avoid pore shrinkage, and also maintain the diaphragm with certain mechanical properties and thermal stability. Through the combination of the vacuum drying time and temperature of the present invention, the solvent can be completely removed, and cross-linking and linearity-based Polymer porous lithium ion battery separator.
  • the thickness of the porous lithium ion battery separator based on the crosslinked and linear polymer disclosed in the present invention is 60 to 100 ⁇ m, and the porosity is 30% to 70%.
  • octavinyl polyhedral oligomeric silsesquioxane has good compatibility with organic materials, and olefins can form good affinity with the main raw materials polymethacrylates and polyvinylidene fluoride-hexafluoropropylene copolymers. Evenly dispersed in the polymer separator is beneficial to improve the thermal stability of the separator.
  • the present invention uses nano-zinc oxide as a porogen. After the elution of dilute hydrochloric acid, the pore-forming process is efficient, the porosity of the separator is increased, the electrolyte is absorbed by the separator, and the ionic conductivity is improved, without participating in the polymer. In the reaction, the addition of nano zinc oxide also improves the mechanical strength of the separator, and avoids the problem of sacrificing the mechanical strength of the separator in order to obtain porosity in the prior art.
  • the lithium ion battery separator disclosed in the present invention has an ionic conductivity of 1.4 ⁇ 10 -3 S / cm (25 ° C), a tensile strength of 16 MPa, and excellent dimensional stability, thereby improving battery safety; especially
  • the invention uses reasonable additives and preparation technology to obtain a separator with high porosity and good mechanical strength, and the ionic conductivity is greatly improved, and the high-rate charge-discharge performance is also significantly improved, and has good application potential.
  • Embodiment 2 Preparation of a porous lithium ion battery separator based on cross-linking and linear polymers with different amount of nano-ZnO as porogen
  • Battery separators are denoted as C6, C12, C18, C24, and C30, and the masses of nano-ZnO corresponding to the used 30-nm particle size are 0.12 g, 0.24 g, 0.36 g, 0.48 g, and 0.60 g, respectively.
  • FIG. 5 is a comparison chart of the ionic conductivity of the non-porous diaphragm of Comparative Example 1 and the C6, C12, C18, C24, and C30 diaphragms of Example 2 at different temperatures. It can be seen from the figure that as the temperature increases, the ionic conductivity The rate gradually increased, and C30 still maintained the highest ionic conductivity. In addition, as the temperature increased, the ion transport mechanism inside each gel film did not change.
  • FIG. 8 is a comparison chart of the thermal shrinkage of the non-porous diaphragm of Comparative Example 1 and the C18 diaphragm of Example 2 at different temperatures, and a commercial PE film is added for comparison. It can be seen from the figure that the thermal stability of the C18 separator is the best, and the thermal shrinkage at 160 ° C is less than 6%, which is far better than the commercial PE film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

L'invention concerne un film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application. Le procédé de préparation spécifique consiste à mélanger uniformément du fluorure de polyvinylidène-hexafluoropropylène, des monomères de (methyl)acrylate, un agent de réticulation de silsesquioxane oligomère polyédrique octavinyle et un nano-oxydant dans un solvant approprié ; et à former un film polymère de gel ayant une structure réticulée par polymérisation par radicaux. Après la formation de pores par le nano-oxyde de zinc, la conductivité ionique du film de polymère de gel à 25 °C atteint 1,4 × 10 -3 S/cm, la résistance à la traction de celui-ci atteint 16 MPa, et le film de polymère de gel a une excellente stabilité dimensionnelle. Le film séparateur de batterie au lithium-ion obtenu par l'invention peut considérablement améliorer la conductivité ionique, démontre une amélioration significative de la performance de charge/décharge à haut débit, et présente un bon potentiel d'application.
PCT/CN2018/100911 2018-08-16 2018-08-16 Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application WO2020034168A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100911 WO2020034168A1 (fr) 2018-08-16 2018-08-16 Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100911 WO2020034168A1 (fr) 2018-08-16 2018-08-16 Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application

Publications (1)

Publication Number Publication Date
WO2020034168A1 true WO2020034168A1 (fr) 2020-02-20

Family

ID=69524982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100911 WO2020034168A1 (fr) 2018-08-16 2018-08-16 Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application

Country Status (1)

Country Link
WO (1) WO2020034168A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244538A (zh) * 2020-03-18 2020-06-05 河南电池研究院有限公司 一种锂离子电池凝胶电解液及其使用方法
CN111900466A (zh) * 2020-07-02 2020-11-06 上海大学 原位制备的poss离子凝胶聚合物电解质及其制备方法
CN113991172A (zh) * 2021-09-30 2022-01-28 中国地质大学(武汉) 线性单离子导电聚合物电解质pecb及其制备方法和应用
CN114944537A (zh) * 2022-05-26 2022-08-26 福建师范大学 掺杂石墨烯-聚乙二醇基聚合物转化膜的制备方法
CN115084775A (zh) * 2022-05-17 2022-09-20 东华大学 一种锂离子电池用离子交换聚丙烯隔膜的制备方法
CN115275508A (zh) * 2022-08-18 2022-11-01 河北金力新能源科技股份有限公司 高挺度电池隔膜及其制备方法
CN116169352A (zh) * 2023-02-13 2023-05-26 北京纯锂新能源科技有限公司 一种氟化交联型聚合物膜、制备方法及全固态电池
WO2023226052A1 (fr) * 2022-05-27 2023-11-30 深圳市星源材质科技股份有限公司 Suspension de revêtement, séparateur, procédé de préparation de séparateur, et batterie
CN117525574A (zh) * 2024-01-03 2024-02-06 河北工程大学 一种有机-无机共改性peo固态电解质及其制备方法
CN117594951A (zh) * 2023-11-23 2024-02-23 哈尔滨工业大学 一种纤维隔膜、其制备方法以及其在原位聚合固态锂电池中的应用
CN117878398A (zh) * 2023-12-28 2024-04-12 贲安能源科技江苏有限公司 一种钠离子电池用凝胶态电解质膜及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932203A (zh) * 2016-06-15 2016-09-07 苏州大学 一种具有互穿网络结构的多孔性锂离子电池隔膜及其制备方法与应用
CN109119574A (zh) * 2018-08-15 2019-01-01 苏州大学 基于交联与线形聚合物的多孔性锂离子电池隔膜及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932203A (zh) * 2016-06-15 2016-09-07 苏州大学 一种具有互穿网络结构的多孔性锂离子电池隔膜及其制备方法与应用
CN109119574A (zh) * 2018-08-15 2019-01-01 苏州大学 基于交联与线形聚合物的多孔性锂离子电池隔膜及其制备方法与应用

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244538A (zh) * 2020-03-18 2020-06-05 河南电池研究院有限公司 一种锂离子电池凝胶电解液及其使用方法
CN111900466A (zh) * 2020-07-02 2020-11-06 上海大学 原位制备的poss离子凝胶聚合物电解质及其制备方法
CN113991172A (zh) * 2021-09-30 2022-01-28 中国地质大学(武汉) 线性单离子导电聚合物电解质pecb及其制备方法和应用
CN113991172B (zh) * 2021-09-30 2024-01-30 中国地质大学(武汉) 线性单离子导电聚合物电解质pecb及其制备方法和应用
CN115084775A (zh) * 2022-05-17 2022-09-20 东华大学 一种锂离子电池用离子交换聚丙烯隔膜的制备方法
CN114944537A (zh) * 2022-05-26 2022-08-26 福建师范大学 掺杂石墨烯-聚乙二醇基聚合物转化膜的制备方法
CN114944537B (zh) * 2022-05-26 2023-08-01 福建师范大学 掺杂石墨烯-聚乙二醇基聚合物转化膜的制备方法
WO2023226052A1 (fr) * 2022-05-27 2023-11-30 深圳市星源材质科技股份有限公司 Suspension de revêtement, séparateur, procédé de préparation de séparateur, et batterie
CN115275508A (zh) * 2022-08-18 2022-11-01 河北金力新能源科技股份有限公司 高挺度电池隔膜及其制备方法
CN116169352B (zh) * 2023-02-13 2023-09-29 北京纯锂新能源科技有限公司 一种氟化交联型聚合物膜、制备方法及全固态电池
CN116169352A (zh) * 2023-02-13 2023-05-26 北京纯锂新能源科技有限公司 一种氟化交联型聚合物膜、制备方法及全固态电池
CN117594951A (zh) * 2023-11-23 2024-02-23 哈尔滨工业大学 一种纤维隔膜、其制备方法以及其在原位聚合固态锂电池中的应用
CN117878398A (zh) * 2023-12-28 2024-04-12 贲安能源科技江苏有限公司 一种钠离子电池用凝胶态电解质膜及其制备方法与应用
CN117878398B (zh) * 2023-12-28 2024-09-20 贲安能源科技江苏有限公司 一种钠离子电池用凝胶态电解质膜及其制备方法与应用
CN117525574A (zh) * 2024-01-03 2024-02-06 河北工程大学 一种有机-无机共改性peo固态电解质及其制备方法
CN117525574B (zh) * 2024-01-03 2024-03-22 河北工程大学 一种有机-无机共改性peo固态电解质及其制备方法

Similar Documents

Publication Publication Date Title
WO2020034168A1 (fr) Film séparateur de batterie au lithium-ion poreux utilisant un polymère réticulé et un polymère linéaire, son procédé de préparation et son application
CN109509857B (zh) 一种具有互穿网络结构的多孔性锂离子电池隔膜及其应用
CN109119574B (zh) 基于交联与线形聚合物的多孔性锂离子电池隔膜及其制备方法与应用
CN109473609B (zh) 一种有机/无机交联复合锂离子电池隔膜及其制备方法与应用
CN108140839B (zh) 非水电解质二次电池电极用粘合剂及其制造方法、以及其用途
CN108878751B (zh) 导电陶瓷复合隔膜和固态电池
JP5457460B2 (ja) 水性ポリマーによって修飾された微孔性ポリマー膜、その製造及び使用
JP6506553B2 (ja) リチウムイオン二次電池
CN102888016B (zh) 具有交联结构复合层的锂离子二次电池隔膜的制备方法
CN110911612B (zh) 一种基于醋酸纤维素的交联复合型锂离子电池隔膜及其制备方法与应用
CN109735915B (zh) 超交联有机纳米粒子及其制备方法、改性聚合物膜及其制备方法以及凝胶聚合物电解质
US11177478B2 (en) Crosslinked polymer binder from crosslinkable monomer for nonaqueous electrolyte secondary battery and use thereof
JP2019525442A (ja) 電池セパレーターおよびリチウムイオン電池ならびにその製造方法
CN110137416A (zh) 一种聚烯烃锂电隔膜制备方法
CN109167036B (zh) 一种TiN与导电聚合物复合改性的锂离子层状三元正极材料及其制备方法
CN111263995A (zh) 二次电池电极用粘合剂及其用途
Cao et al. Composite electrospun membranes containing a monodispersed nano-sized TiO 2@ Li+ single ionic conductor for Li-ion batteries
CN108767173B (zh) 一种复合锂离子电池隔膜及其制备方法
TWI511352B (zh) Ion polymer film material and its preparation method and lithium secondary battery
CN107170944B (zh) 用于锂离子二次电池的自支撑聚合物膜材料及其制备方法
CN118184905A (zh) 一种pmma交联包覆的固态电解质材料及制备方法和应用
JP7327404B2 (ja) 二次電池電極合剤層用バインダー、二次電池電極合剤層用組成物及び二次電池電極
CN111916619A (zh) 一种含改性无机粒子的锂离子电池复合隔膜及其制备方法
JP7480703B2 (ja) 二次電池電極合剤層用組成物及び二次電池電極
CN113871795B (zh) 一种浸润性隔膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930214

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930214

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930214

Country of ref document: EP

Kind code of ref document: A1