WO2020034144A1 - 光学传感模组及其制作方法 - Google Patents

光学传感模组及其制作方法 Download PDF

Info

Publication number
WO2020034144A1
WO2020034144A1 PCT/CN2018/100819 CN2018100819W WO2020034144A1 WO 2020034144 A1 WO2020034144 A1 WO 2020034144A1 CN 2018100819 W CN2018100819 W CN 2018100819W WO 2020034144 A1 WO2020034144 A1 WO 2020034144A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
optical
pcb
optical sensing
sensing module
Prior art date
Application number
PCT/CN2018/100819
Other languages
English (en)
French (fr)
Inventor
陆斌
沈健
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/100819 priority Critical patent/WO2020034144A1/zh
Priority to CN201880001183.5A priority patent/CN109155292B/zh
Publication of WO2020034144A1 publication Critical patent/WO2020034144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device

Definitions

  • the present application relates to the field of optical sensors, and in particular, to an optical sensing module and a manufacturing method thereof.
  • optical sensors In recent years, various types of consumer electronics have integrated more and more optical sensors. With the help of optical sensors, smart terminals such as mobile phones and watches can implement a variety of functions such as ambient light intensity detection, distance detection, temperature detection, heart rhythm detection, face, fingerprint, and iris biometric identification.
  • the working principle of the optical sensor is to receive light of a specific wavelength emitted or reflected by an object through the receiving area of the chip, and use the photoelectric effect to convert the optical signal into an electrical signal.
  • a simple optical sensing module needs to include at least three parts: optical components (lenses, filters, etc.) for forming an optical path and filtering invalid optical signals, and optics for receiving valid optical signals to achieve photoelectric signal conversion Sensor chip and peripheral circuit for transmitting electrical signals.
  • the optical sensor chip When manufacturing an optical sensor module, the optical sensor chip is generally packaged independently. Because there cannot be any obstacles that hinder the transmission of optical signals directly above the chip receiving area, the packaging cost of optical sensor chips is usually higher. Both transparent and opaque materials are required. Among them, the light-transmitting material is located directly above the chip receiving area and is a window for transmitting optical signals; the opaque material encapsulates the rest of the chip to protect the chip and prevent light crosstalk. When assembling the optical sensor module, the packaged optical sensor chip is soldered to the circuit board, and then the optical components (filters, lenses, etc.) are placed above the optical signal window. The optical module thus obtained not only has a large overall thickness, but also has high processing costs.
  • the application provides an optical sensing module and a manufacturing method thereof, which can effectively reduce the thickness of the optical sensing module.
  • an optical sensing module including: a printed circuit board (PCB) (110), an optical sensing chip (120), and an optical component (130).
  • the PCB (110) ) Is provided with a first groove (112); the optical sensing chip (120) is located in the first groove (112) and is electrically connected to the PCB (110), and the optical sensing chip ( 120) has a thickness smaller than the depth of the first groove (112), the optical sensing chip (120) includes a light signal receiving area (121), and the optical component (130) is disposed on the PCB (110)
  • the optical component (130) is located above the optical sensor chip (120) and covers the optical signal receiving area (121).
  • the PCB (110) is further provided with a second groove (113, 115), and the depth of the second groove (113, 115) is smaller than the first groove
  • the depth of the groove (112), the second groove (113, 115) partially overlaps the first groove (112); the optical component (130) is located in the second groove (113, 115).
  • an electrode of the optical sensing chip (120) passes through a lead wire (122) and a pad (111) of the PCB (110). )connection.
  • the pad (111) of the PCB (110) is located on the PCB outside the first groove (112) ( 110).
  • a third groove (114) is provided on the PCB (110), and the third groove (114) The depth is less than or equal to the depth of the first groove (112), the third groove (114) partially overlaps the first groove (112), and the pad (111) of the PCB (110) A portion that is not overlapped with the first groove (112) in the third groove (114).
  • a light blocking wall is provided around the optical signal receiving area (121) on the optical sensor chip (120). 140).
  • the optical component (130) covers the optical sensing chip (120).
  • the optical sensor chip (120) is fixed to the first groove through a first adhesive layer (151) attached on a back surface. (112).
  • the optical component (130) is fixed on the PCB (110) through a second adhesive layer (152).
  • the optical sensing chip is set in a groove on the PCB, and then the optical component is covered above the optical signal receiving area of the optical sensing chip.
  • the component can also be set in the groove of the PCB, which can effectively reduce the thickness of the optical sensor module, simple assembly and low cost.
  • a method for manufacturing an optical sensing module includes: making a first groove on a PCB; setting an optical sensing chip in the first groove; The sensor chip is electrically connected to the PCB. The thickness of the optical sensor chip is less than the depth of the first groove.
  • the optical sensor chip includes a light signal receiving area.
  • An optical component is provided on the PCB. The optical component is located above the optical sensing chip and covers the optical signal receiving area.
  • the providing an optical component on the PCB includes: making a second groove on the PCB, and the depth of the second groove is less than that of the second groove.
  • the depth of the first groove, the second groove partially overlaps the first groove, and the optical component is disposed in the second groove.
  • the electrically connecting the optical sensor chip to the PCB includes: Electrodes and pads of the PCB.
  • the pads of the PCB are located on the upper surface of the PCB outside the first groove.
  • the method further includes: fabricating a third groove on the PCB, and the depth of the third groove is less than or equal to The depth of the first groove, the third groove partially overlaps with the first groove, and the pad of the PCB is located in the third groove without overlapping the first groove.
  • the method further includes: setting a light blocking wall around the optical signal receiving region on the optical sensor chip.
  • the optical component covers the optical sensor chip.
  • the manufacturing the first groove on the PCB includes: using a mechanical or laser processing method to manufacture the first groove on the PCB. First groove.
  • the disposing the optical sensor chip in the first groove includes: attaching a back surface with a first adhesive layer The optical sensor chip is disposed in the first groove.
  • the providing an optical component on the PCB includes: fixing the optical component to the PCB through a second adhesive layer on.
  • the optical sensing chip is disposed in a groove on the PCB, and then the optical component is covered above the optical signal receiving area of the optical sensing chip.
  • the optical component can also be arranged in the groove of the PCB, which can effectively reduce the thickness of the optical sensor module, is simple to assemble, and has a low cost.
  • FIG. 1 is a schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 3 is another schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 4 is another schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 6 is another schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of an optical sensing module according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for manufacturing an optical sensing module according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a process of manufacturing an optical sensing module according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an optical sensing module 100 according to an embodiment of the present application.
  • the first image in FIG. 1 is a top view of the optical sensing module 100, and the second image is as the first image.
  • a cross-sectional view of the A1-A2 cross section in the horizontal direction is shown, and the third view is a cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first drawing.
  • the optical sensing module 100 includes a PCB 110, an optical sensing chip 120 and an optical component 130.
  • the PCB 110 is provided with a first groove 112; the optical sensing chip 120 is located in the first groove 112 and is electrically connected to the PCB 110, and the thickness of the optical sensing chip 120 is smaller than the first groove 112
  • the optical sensor chip 120 includes a light signal receiving area 121.
  • the optical component 130 is disposed on the PCB 110. The optical component 130 is located above the optical sensor chip 120 and covers the light signal receiving area 121.
  • the optical component 130 in the optical sensing module 100 may be used to form an optical path, and may also be used to filter invalid optical signals.
  • the optical component 130 may include multiple devices.
  • the optical component 130 may include a lens.
  • a filter may also be included, and the embodiments of the present application are not limited thereto.
  • the optical sensing chip 120 in the optical sensing module 100 includes a light signal receiving area 121, and the optical component 130 in the optical sensing module 100 completely covers the light signal receiving area 121, and the light signal receiving area 121 It can be used to receive the optical signal passing through the optical component 130 and realize the conversion of the photoelectric signal.
  • the optical component 130 in the embodiment of the present application may have any shape, for example, a circle or a square; the optical signal receiving area 121 may also have any shape, for example, it may be the same as or different from the shape of the optical component 130.
  • the embodiments of the present application are not limited thereto.
  • the optical sensing chip 120 is located in the first groove 112, and the thickness of the optical sensing chip 120 is smaller than the depth of the first groove 112.
  • the optical sensor chip 120 may be fixed in the first groove 112 through the first adhesive layer 151 attached on the back surface.
  • the first adhesive layer 151 may be glue, and the embodiment of the present application is not limited thereto.
  • the optical component 130 is fixed on the PCB 110, and the optical component 130 is located above the optical sensor chip 120. Within the groove 112, the optical component 130 may be fixed outside the first groove 112 on the upper surface of the PCB 110.
  • the optical component 130 may be fixed on the PCB 110 through a second adhesive layer 152.
  • the second adhesive layer 152 may be Glue, the embodiments of the present application are not limited thereto.
  • the optical component 130 covers the optical signal receiving area 121 of the optical sensor chip 120, but may not completely cover the optical sensor chip 120.
  • a light blocking wall 140 can also be made around the optical signal receiving area 121 of the optical sensor chip 120.
  • the length of the optical sensor chip 120 in the horizontal direction is greater than the length of the optical component 130.
  • the light blocking wall 140 may be disposed on the optical sensor chip 120 on the left and right sides of the optical component 100, but the embodiment of the present application is not limited thereto.
  • FIG. 2 It shows another schematic diagram of the optical sensing module 100 according to the embodiment of the present application, wherein the first image in FIG. 2 is a top view of the optical sensing module 100 and the second image is as the first image A cross-sectional view of the A1-A2 cross section in the horizontal direction is shown, and the third view is a cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first drawing. As shown in FIG.
  • the PCB 110 in the optical sensing module 100 is provided with a second groove 113, the depth of the second groove 113 is smaller than the depth of the first groove 112, and the second groove 113 and The first groove 112 is partially overlapped, and the optical component 130 is disposed in the second groove 113.
  • the optical component 130 can also be fixed in the second groove 113 through a second adhesive layer 152.
  • the second adhesive layer 152 can be glue.
  • An appropriate amount of glue is used to fix the optical component 130, and the embodiment of the present application is not limited thereto.
  • the optical sensing chip 120 in the optical sensing module 100 of the embodiment of the present application is electrically connected to the PCB 110, and may include: electrodes of the optical sensing chip 120 are connected to the pads 111 of the PCB 110 through the leads 122.
  • a plurality of pads 111 may be provided on the upper surface of the PCB 110.
  • a plurality of 111 and optical sensor chips 120 may be provided on the periphery of the first groove 112 on the upper surface of the PCB 110.
  • the electrodes are connected to the pads 111 on the upper surface of the PCB 110 through the leads 122.
  • the PCB 110 may further be provided with a third groove, and the pad 111 of the PCB 110 is disposed in the third groove.
  • FIG. 3 shows FIG. 3 shows another schematic diagram of the optical sensor module 100 according to the embodiment of the present application.
  • the first image in FIG. 3 is a top view of the optical sensor module 100, and the second image is as shown in the first image.
  • the third view is a cross-sectional view of the cross-section B1-B2 in the vertical direction as shown in the first drawing.
  • a third groove 114 is provided on the PCB 110.
  • the depth of the third groove 114 is less than or equal to the depth of the first groove 112.
  • the third groove 114 and the first groove 112 partially overlaps, and the pad 111 of the PCB 110 is located in the third groove 114 and does not overlap with the first groove 112.
  • the electrodes of the optical sensor chip 120 are located at both ends, and the corresponding pads 111 of the PCB 110 can also be provided at both ends of the optical sensor chip 120. Therefore, as shown in the A1-A2 cross-sectional view of FIG. 3 as an example
  • the third groove 114 may be set to have a width equal to that of the first groove 112 and a length greater than that of the first groove 112, that is, the first groove 112 and the third groove 114 are stepped.
  • the pad 111 of the PCB 110 may be provided in a portion of the third groove 114 that does not overlap with the first groove 112, for example, the bottom surface of the third groove 114 as shown in FIG. 3, or
  • the sidewall disposed in the third groove 114 is connected to the electrode of the optical sensor chip 120 and the pad 111 of the PCB 110 through the lead 122.
  • the embodiment of the present application is not limited thereto.
  • FIG. 4 shows still another schematic diagram of the optical sensor module 100 according to the embodiment of the present application, wherein the first image in FIG. 4 is a top view of the optical sensor module 100 and the second image is A cross-sectional view of the A1-A2 cross section in the horizontal direction as shown in the first picture, and a third cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first picture.
  • the first image in FIG. 4 is a top view of the optical sensor module 100 and the second image is A cross-sectional view of the A1-A2 cross section in the horizontal direction as shown in the first picture, and a third cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first picture.
  • the PCB 110 in the optical sensing module 100 is provided with a second groove 113.
  • the depth of the second groove 113 is smaller than the depth of the first groove 112.
  • the first groove 112 is partially overlapped, and the optical component 130 is disposed in the second groove 113.
  • the depth of the second groove 113 may be greater than or equal to or less than the depth of the third groove 114, and the embodiment of the present application is not limited thereto.
  • the optical component 130 includes a plurality of devices, such as a lens and a filter
  • the plurality of devices may be located at different positions.
  • the optical component 130 includes a filter 131 and a lens 132 as an example for description.
  • FIG. 5 shows still another schematic diagram of the optical sensing module 100 according to the embodiment of the present application, wherein the first image in FIG. 5 is a top view of the optical sensing module 100 and the second image is as the first
  • the third figure is a cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first figure.
  • a third groove 114 is provided on the PCB 110.
  • the depth of the third groove 114 is less than or equal to the depth of the first groove 112.
  • the third groove 114 may be the same as the first groove.
  • the groove 112 partially overlaps, and the pad 111 of the PCB 110 is located in the third groove 114 and the non-overlapping portion of the first groove 112.
  • the pad 111 of the PCB 110 is located in the third groove 114 and the non-overlapping portion of the first groove 112.
  • the electrode of the optical sensor chip 120 and the pad 111 of the PCB 110 are connected by a lead 122.
  • the embodiment of the present application is not limited thereto.
  • a filter 131 in the optical component 130 may be disposed in the third groove 114, and a lens 132 in the optical component 130 is disposed on the upper surface of the PCB 110, that is, the PCB. 110 except for the third groove 114 and the first groove 112; or, a second groove 113 is further provided on the PCB 110, and the lens 132 in the optical component 130 is disposed in the second groove 113.
  • the embodiments of the present application are not limited thereto.
  • the optical component 130 in FIG. 5 includes two types of devices: a filter 131 and a lens 132, and the filter 131 is located in the third groove 114 and the lens 132 is located on the upper surface of the PCB 110, the figure
  • the other parts of the optical sensing module 100 shown in FIG. 5 are consistent with the respective parts of the optical sensing module 100 shown in FIG. 3. For brevity, details are not described herein again.
  • a third groove 114 is provided on the PCB 110, and the pad 111 of the PCB 110 is provided in the third groove 114, so that the leads can be reduced.
  • the optical component 130 can also be set to completely cover the optical sensor chip 120 in a full lamination manner, so that light leakage can be prevented without using the light blocking wall 140.
  • FIG. 6 shows still another schematic diagram of the optical sensing module 100 according to the embodiment of the present application, wherein the first diagram in FIG. 6 is a top view of the optical sensing module 100 and the second diagram is A cross-sectional view of the A1-A2 cross section in the horizontal direction as shown in the first picture, and a third cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first picture.
  • a third groove 114 is provided on the PCB 110. The depth of the third groove 114 is less than or equal to the depth of the first groove 112.
  • the third groove 114 and the first concave The groove 112 partially overlaps, and the pad 111 of the PCB 110 is located in the third groove 114 and does not overlap with the first groove 112. Then, the optical component 130 is covered on the entire optical sensor chip 120 by a full lamination method, and the pad 111 of the PCB 110 can be completely covered at the same time.
  • the optical component 130 can be fixed on the PCB 110 through the second adhesive layer 152 Top surface. Since the size of the optical component 130 of the optical sensing module 100 shown in FIG. 6 is slightly larger than the size of the optical component 130 shown in FIGS. 1 to 4, the structure cost is relatively high.
  • optical sensing module 100 covers the entire optical sensing chip 120 and does not need to use a light blocking wall
  • other parts of the optical sensing module 100 shown in FIG. 6 are the same as the optical transmission module shown in FIG. 3.
  • the parts of the sensor module 100 are kept the same. For the sake of brevity, they are not repeated here.
  • FIG. 7 shows still another schematic diagram of the optical sensing module 100 according to the embodiment of the present application, wherein the first image in FIG. 7 is a top view of the optical sensing module 100 and the second image is A cross-sectional view of the A1-A2 cross section in the horizontal direction as shown in the first picture, and a third cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first picture.
  • the first image in FIG. 7 is a top view of the optical sensing module 100 and the second image is A cross-sectional view of the A1-A2 cross section in the horizontal direction as shown in the first picture, and a third cross-sectional view of the B1-B2 cross section in the vertical direction as shown in the first picture.
  • the PCB 110 in the optical sensing module 100 is provided with a second groove 115.
  • the depth of the second groove 115 is smaller than the depth of the first groove 112.
  • the first groove 112 is partially overlapped, or the bottom area of the second groove 115 is larger than the first groove 112.
  • the depth of the second groove 115 is smaller than the depth of the third groove 114.
  • the optical component 130 is disposed in the second groove 115 to cover the entire optical sensor chip 120 located in the first groove 112, and at the same time, it can also completely cover the pad 111 in the third groove 114.
  • the component 130 may be fixed in the second groove 115 through the second adhesive layer 152.
  • an appropriate amount of glue may be applied to the bottom edge position in the second groove 115 as the first Two adhesive layers 152 are used to fix the optical component 130.
  • the embodiment of the present application is not limited thereto.
  • optical component 130 in FIG. 7 covers the entire optical sensing chip 120 and does not need to use a light blocking wall, other parts of the optical sensing module 100 shown in FIG. The parts of the sensor module 100 are kept the same. For the sake of brevity, they are not repeated here.
  • the optical sensing chip is set in a groove on the PCB, and then the optical component is covered above the optical signal receiving area of the optical sensing chip.
  • the component can also be set in the groove of the PCB, which can effectively reduce the thickness of the optical sensor module, simple assembly and low cost.
  • the optical sensor module 100 may use a packaged optical sensor chip 120, or the optical sensor chip 120 may be an unpackaged chip but a packaged optical transmission chip. Compared with the unpackaged sensor chip, the sensor chip has a larger thickness, and the cost of the corresponding optical sensor module is also higher.
  • the packaging cost of the optical sensor chip is usually higher, and it is necessary to use light transmission and opacity.
  • Two kinds of light materials of which the transparent material is located directly above the chip receiving area and is a window for transmitting optical signals; the opaque material encapsulates the rest of the chip to protect the chip and prevent light crosstalk. This process is costly and complicated.
  • the optical sensing module 100 includes a first groove 112.
  • the optical sensing chip 120 is disposed in the first groove 112, and the optical component 130 is covered above the first groove 112.
  • the wall 140 or by covering the entire optical sensing chip 120 with the optical component 130, prevents light leakage. In this way, the optical sensing chip 120 does not need to be separately packaged, reducing packaging complexity and cost.
  • FIG. 8 shows a schematic flowchart of a method 200 for manufacturing an optical sensing module according to an embodiment of the present application.
  • the optical sensing module may be the optical sensing module 100 in FIGS. 1 to 7.
  • the method 200 includes: S210, making a first groove on the PCB; S220, setting an optical sensing chip in the first groove, and electrically connecting the optical sensing chip and the PCB , The thickness of the optical sensing chip is smaller than the depth of the first groove, the optical sensing chip includes a light signal receiving area; S230, an optical component is arranged on the PCB, and the optical component is located above the optical sensing chip and covers The optical signal receiving area.
  • FIG. 9 shows a schematic diagram of a process of manufacturing an optical sensing module 100 according to an embodiment of the present application, wherein the diagram on the left side of FIG. 9 is a top view, and the diagram on the right side is as shown in the first diagram. A cross-sectional view showing a horizontal cross-section.
  • a first groove is made on the PCB.
  • the PCB 110 is fabricated before the first groove is fabricated.
  • the fabrication of the PCB 110 includes pre-designed circuits and pads 111.
  • the pad 111 is located on the upper surface of the PCB 110; if the optical sensing module 100 shown in FIG. 3 to FIG. 7 is manufactured, the pad is The position of 111 is located in the middle of PCB110.
  • the step S210 of making the first groove on the PCB further includes making the second groove 113 or 115.
  • a first groove 112 and a second groove 113 need to be made on the PCB 110.
  • the grooves can be made on the PCB 110 by a mechanical or laser processing method, or other processing methods, and the embodiment of the present application is not limited thereto.
  • the optical sensor chip 120 is set in the first groove 112, for example, the first adhesive layer 151 and the first The inner bottom surface of the groove 112 is fixed.
  • the thickness of the optical sensor chip 120 is smaller than the depth of the first groove 112.
  • the optical sensor chip 120 includes a light signal receiving area 121; as shown in FIG. 9 (4),
  • the optical sensor chip 120 is electrically connected to the PCB 110.
  • the electrodes of the optical sensor chip 120 are connected to the pads 111 of the PCB 110 through leads 122 by wire bonding.
  • an optical component 130 is disposed on the PCB 110.
  • the optical component 130 is located above the optical sensor chip 120 and covers the optical signal receiving area 121.
  • the optical component 130 is disposed in the second groove 113, so that the optical component 130 covers the optical signal receiving area 121, and the optical component 130 can pass through the second adhesive layer 152 is fixed in the second groove 113.
  • an appropriate amount of glue is applied to a corresponding position in the second groove 113 to fix the optical component 130.
  • a light blocking wall 140 is provided by using a black glue to prevent light leakage.
  • the second grooves 113 and 115 are not included, and the optical component 130 is directly attached to the upper surface of the PCB 110 and the frame of the first groove 112. . It should be noted that considering that the optical component 130 needs to be aligned with the optical signal receiving area 121 in a vertical direction, an additional alignment mark needs to be made on the PCB 110 to facilitate alignment with the optical signal receiving area 121 when the optical component 130 is attached. .
  • the optical sensing chip is disposed in a groove on the PCB, and then the optical component is covered above the optical signal receiving area of the optical sensing chip.
  • the optical component can also be arranged in the groove of the PCB, which can effectively reduce the thickness of the optical sensor module, is simple to assemble, and has a low cost.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B based on A alone, but also determining B based on A and / or other information.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种光学传感模组及其制作方法,该光学传感模组包括印制电路板PCB(110)、光学传感芯片(120)以及光学组件(130),该PCB上设置有第一凹槽(112),该光学传感芯片位于该第一凹槽内,且与该PCB电连接,该光学传感芯片的厚度小于该第一凹槽的深度,该光学传感芯片包括光信号接收区;该光学组件设置在该PCB上,位于该光学传感芯片上方且覆盖该光信号接收区。该光学传感模组的厚度得到有效降低。

Description

光学传感模组及其制作方法 技术领域
本申请涉及光学传感器领域,尤其涉及光学传感模组及其制作方法。
背景技术
近年来,各类消费电子集成了越来越多的光学传感器。借助于光学传感器,手机、手表等智能终端可以实现环境光强度检测、距离检测、温度检测、心律检测、人脸、指纹、虹膜等生物特征识别等多种功能。
光学传感器的工作原理是通过芯片的接收区接收物体发射或反射的特定波长的光线,利用光电效应将光信号转换成电信号。一个简单的光学传感模组需要至少包括三个部分:用于形成光路以及过滤无效光信号的光学组件(透镜、滤光片等)、用于接收有效的光信号以实现光电信号转换的光学传感芯片以及用于传输电信号的外围电路。
在制作光学传感模组时,一般先将光学传感芯片独立封装。由于芯片接收区正上方不能存在任何妨碍光信号传输的障碍物,光学传感芯片的封装成本通常较高。需要使用透光和不透光两种材料。其中,透光材料位于芯片接收区正上方,是传输光信号的窗口;不透光材料则将芯片其余部分塑封,保护芯片并防止光串扰。在组装光学传感模组时,先将封装好的光学传感芯片焊接到电路板上,再将光学组件(滤光片、透镜等)放置于光信号窗口的上方。由此得到的光学模组,不仅整体厚度较大,而且加工成本高。
发明内容
本申请提供了一种光学传感模组及其制作方法,能够有效降低光学传感模组的厚度。
第一方面,提供了一种光学传感模组,包括:印制电路板(Printed Circuit Board,PCB)(110)、光学传感芯片(120)以及光学组件(130),所述PCB(110)上设置有第一凹槽(112);所述光学传感芯片(120)位于所述第一凹槽(112)内且与所述PCB(110)电连接,所述光学传感芯片(120)的厚度小于所述第一凹槽(112)的深度,所述光学传感芯片(120)包括光信号接收区(121);所述光学组件(130)设置在所述PCB(110)上,所述光学组件(130)位于所述光学传感芯 片(120)上方且覆盖所述光信号接收区(121)。
结合第一方面,在第一方面的一种实现方式中,所述PCB(110)上还设置有第二凹槽(113,115),所述第二凹槽(113,115)的深度小于所述第一凹槽(112)的深度,所述第二凹槽(113,115)与所述第一凹槽(112)部分重叠;所述光学组件(130)位于所述第二凹槽(113,115)内。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述光学传感芯片(120)的电极通过引线(122)与所述PCB(110)的焊盘(111)连接。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述PCB(110)的焊盘(111)位于所述第一凹槽(112)外的所述PCB(110)的上表面。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述PCB(110)的上设置有第三凹槽(114),所述第三凹槽(114)的深度小于或者等于所述第一凹槽(112)的深度,所述第三凹槽(114)与所述第一凹槽(112)部分重叠,所述PCB(110)的焊盘(111)位于所述第三凹槽(114)内与所述第一凹槽(112)不重叠部分。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,在所述光学传感芯片(120)上的所述光信号接收区(121)周围设置有挡光墙(140)。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述光学组件(130)覆盖所述光学传感芯片(120)。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述光学传感芯片(120)通过背面粘贴的第一黏附层(151)固定在所述第一凹槽(112)内。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述光学组件(130)通过第二黏附层(152)固定在所述PCB(110)上。
因此,本申请实施例的光学传感模组,通过将光学传感芯片设置在PCB上的凹槽内,再将光学组件覆盖在光学传感芯片的光信号接收区的上方,其中,该光学组件也可以设置在该PCB的凹槽内,这样可以有效降低光学传感模组厚度,组装简单,成本较低。
第二方面,提供了一种制作光学传感模组的方法,该方法包括:在PCB 上制作第一凹槽;将光学传感芯片设置在所述第一凹槽内,并将所述光学传感芯片与所述PCB电连接,所述光学传感芯片的厚度小于所述第一凹槽的深度,所述光学传感芯片包括光信号接收区;在所述PCB上设置光学组件,所述光学组件位于所述光学传感芯片上方且覆盖所述光信号接收区。
结合第二方面,在第二方面的一种实现方式中,所述在所述PCB上设置光学组件,包括:在所述PCB上制作第二凹槽,所述第二凹槽的深度小于所述第一凹槽的深度,所述第二凹槽与所述第一凹槽部分重叠;将所述光学组件设置在所述第二凹槽内。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述将所述光学传感芯片与所述PCB电连接,包括:通过引线连接所述光学传感芯片的电极与所述PCB的焊盘。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述PCB的焊盘位于所述第一凹槽外的所述PCB的上表面。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述方法还包括:在所述PCB上制作第三凹槽,所述第三凹槽的深度小于或者等于所述第一凹槽的深度,所述第三凹槽与所述第一凹槽部分重叠,所述PCB的焊盘位于所述第三凹槽内与所述第一凹槽不重叠部分。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述方法还包括:在所述光学传感芯片上的所述光信号接收区周围设置挡光墙。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述光学组件覆盖所述光学传感芯片。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述在PCB上制作第一凹槽,包括:采用机械或激光加工方式,在所述PCB上制作所述第一凹槽。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述将光学传感芯片设置在所述第一凹槽内,包括:将背面粘贴有第一黏附层的所述光学传感芯片设置在所述第一凹槽内。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述在所述PCB上设置光学组件,包括:通过第二黏附层将所述光学组件固定在所述PCB上。
因此,本申请实施例的制作光学传感模组的方法,通过将光学传感芯片设置在PCB上的凹槽内,再将光学组件覆盖在光学传感芯片的光信号接收区的上方,其中,该光学组件也可以设置在该PCB的凹槽内,这样可以有效降低光学传感模组厚度,组装简单,成本较低。
附图说明
图1是根据本申请实施例的光学传感模组的示意图。
图2是根据本申请实施例的光学传感模组的另一示意图。
图3是根据本申请实施例的光学传感模组的再一示意图。
图4是根据本申请实施例的光学传感模组的再一示意图。
图5是根据本申请实施例的光学传感模组的再一示意图。
图6是根据本申请实施例的光学传感模组的再一示意图。
图7是根据本申请实施例的光学传感模组的再一示意图。
图8是根据本申请实施例的制作光学传感模组的方法的示意性流程图。
图9是根据本申请实施例的制作光学传感模组的过程的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例提出了一种光学传感模组100,下面以图1为例进行描述。图1示出了根据本申请实施例的光学传感模组100的示意图,其中图1中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图1所示,该光学传感模组100包括PCB110、光学传感芯片120以及光学组件130。具体地,该PCB110上设置有第一凹槽112;该光学传感芯片120位于该第一凹槽112内且与该PCB110电连接,该光学传感芯片120的厚度小于该第一凹槽112的深度,该光学传感芯片120包括光信号接收区121;该光学组件130设置在该PCB110上,该光学组件130位于该光学传感芯片120上方且覆盖该光信号接收区121。
应理解,该光学传感模组100中的光学组件130可以用于形成光路,也可以用于过滤无效的光信号,该光学组件130可以包括多个器件,例如,该光学组件130可以包括透镜,也可以包括滤光片,本申请实施例并不限于此。
该光学传感模组100中的光学传感芯片120包括光信号接收区121,并且,该光学传感模组100中的光学组件130完全覆盖该光信号接收区121,该光信号接收区121可以用于接收经过光学组件130的光信号,实现光电信号的转换。
另外,本申请实施例中的该光学组件130可以为任意形状,例如,圆形或方形;该光信号接收区121也可以为任意形状,例如可以与该光学组件130的形状相同,也可以不同,本申请实施例并不限于此。
应理解,如图1所示,例如图1中的A1-A2截面图,光学传感芯片120位于第一凹槽112中,光学传感芯片120的厚度小于第一凹槽112的深度,该光学传感芯片120可以通过背面粘贴的第一黏附层151固定在第一凹槽112内,例如,该第一黏附层151可以为胶水,本申请实施例并不限于此。
类似的,如图1所示,例如图1中的B1-B2截面图,光学组件130固定在PCB110上,该光学组件130位于光学传感芯片120的上方,由于光学传感芯片120位于第一凹槽112内,该光学组件130可以固定在PCB110上表面的第一凹槽112外,该光学组件130可以通过第二黏附层152固定在该PCB110上,例如,该第二黏附层152可以为胶水,本申请实施例并不限于此。
另外,如图1所示,该光学组件130覆盖了光学传感芯片120的光信号接收区121,但可能未完全覆盖光学传感芯片120,则对于光信号接收区121,可能存在漏光的现象,因此,还可以在光学传感芯片120的光信号接收区121的周围制作挡光墙140,例如,如图1所示,光学传感芯片120水平方向的长度大于光学组件130的长度,为了防止该方向上漏光,可以将该挡光墙140设置在光学传感芯片120上位于光学组件100的左右两边,但本申请实施例并不限于此。
在本申请实施例中,为了进一步降低该光学传感模组100的厚度,可以在该PCB110上设置第二凹槽,将该光学组件130设置在该第二凹槽中,具体地,图2示出了根据本申请实施例的光学传感模组100的另一示意图,其中图2中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图2所示,该光学传感模组100中的PCB110上设置有第二凹槽113,该第二凹槽113的深度小于第一凹槽112 的深度,并且该第二凹槽113与第一凹槽112存在部分重合,该光学组件130设置在该第二凹槽113中。
如图2所示,该光学组件130同样可以通过第二黏附层152固定在该第二凹槽113中,例如,该第二黏附层152可以为胶水,在该第二凹槽113内的涂布适量胶水,用于固定光学组件130,本申请实施例并不限于此。
应理解,除了图2中的PCB110上设置有第二凹槽113以外,该图2所示的光学传感模组100的其他部分与图1所示的光学传感模组100的各部分保持一致,为了简洁,在此不再赘述。
应理解,本申请实施例的该光学传感模组100中的光学传感芯片120与PCB110电连接,可以包括:该光学传感芯片120的电极通过引线122与PCB110的焊盘111连接。具体地,如图1所示,在该PCB110的上表面可以设置多个焊盘111,例如,可以在PCB110的上表面的第一凹槽112的外围,设置多个111,光学传感芯片120的电极通过引线122与PCB110上表面的焊盘111连接。
可选地,作为一个实施例,为了降低打线的弧度,该PCB110还可以设置有第三凹槽,将该PCB110的焊盘111设置在该第三凹槽内,具体地,图3示出了根据本申请实施例的光学传感模组100的再一示意图,其中图3中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图3所示,该PCB110的上设置有第三凹槽114,该第三凹槽114的深度小于或者等于该第一凹槽112的深度,该第三凹槽114与该第一凹槽112部分重叠,该PCB110的焊盘111位于该第三凹槽114内与该第一凹槽112不重叠部分。
例如,光学传感芯片120的电极位于两端,对应的可以将PCB110的焊盘111同样设置在光学传感芯片120的两端,因此,以如图3的A1-A2截面图所示为例,可以将该第三凹槽114设置为宽度与第一凹槽112相等,而长度大于第一凹槽112的长度,即第一凹槽112与第三凹槽114呈阶梯状。具体地,可以将PCB110的焊盘111设置在第三凹槽114内与第一凹槽112不重叠的部分,例如,如图3所示设置在第三凹槽114内的底面,或者也可以设置在第三凹槽114内的侧壁,再通过引线122连接该光学传感芯片120的电极与PCB110的焊盘111,本申请实施例并不限于此。
应理解,除了图3中的PCB110上设置有第三凹槽114以外,该图3所示的光学传感模组100的其他部分与图1所示的光学传感模组100的各部分保持一致,为了简洁,在此不再赘述。
与图2类似,对于如图3所示的光学传感模组100,为了进一步降低该光学传感模组100的厚度,可以在如图3所示的该PCB110上设置第二凹槽,将该光学组件130设置在该第二凹槽中。具体地,图4示出了根据本申请实施例的光学传感模组100的再一示意图,其中图4中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图4所示,该光学传感模组100中的PCB110上设置有第二凹槽113,该第二凹槽113的深度小于第一凹槽112的深度,并且该第二凹槽113与第一凹槽112存在部分重合,该光学组件130设置在该第二凹槽113中。并且,该第二凹槽113的深度可以大于或者等于或者小于第三凹槽114的深度,本申请实施例并不限于此。
应理解,除了图4中的PCB110上设置有第三凹槽114以外,该图4所示的光学传感模组100的其他部分与图2所示的光学传感模组100的各部分保持一致,为了简洁,在此不再赘述。
应理解,若该光学组件130包括多个器件,例如包括透镜和滤光片,则该多个器件可以位于不同位置。例如,该多个器件中可能存在至少一个器件可以与PCB上的焊盘位于同一凹槽内,即位于上述的第三凹槽113内;该多个器件中还可能存在至少一个器件可以位于第二凹槽内,即上述的用于设置光学组件130的第二凹槽113中;该多个器件中还可能存在至少一个器件可以位于PCB的上表面,没有设置在任何凹槽内,本申请实施例并不限于此。
可选地,作为一个实施例,以该光学组件130包括滤光片131和透镜132为例进行说明。图5示出了根据本申请实施例的光学传感模组100的再一示意图,其中图5中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图5所示,该PCB110的上设置有第三凹槽114,该第三凹槽114的深度小于或者等于该第一凹槽112的深度,该第三凹槽114可以与该第一凹槽112部分重叠,该PCB110的焊盘111 位于该第三凹槽114内与该第一凹槽112不重叠部分,例如,如图5所示设置在第三凹槽114内的底面,或者也可以设置在第三凹槽114内的侧壁,再通过引线122连接该光学传感芯片120的电极与PCB110的焊盘111,本申请实施例并不限于此。
另外,如图5所示,还可以将光学组件130中的滤光片131设置在该第三凹槽114内,而该光学组件130中的透镜132设置在PCB 110的上表面,也就是PCB 110上除了第三凹槽114和第一凹槽112的部分;或者,在该PCB110上进一步设置有第二凹槽113,将该光学组件130中的透镜132设置在第二凹槽113内,本申请实施例并不限于此。
应理解,除了图5中的光学组件130包括滤光片131和透镜132两种器件,且其中的滤光片131位于第三凹槽114内,透镜132位于PCB 110的上表面以外,该图5所示的光学传感模组100的其他部分与图3所示的光学传感模组100的各部分保持一致,为了简洁,在此不再赘述。
可选地,作为一个实施例,对于如图3或4所示,在PCB110上设置有第三凹槽114,将该PCB110的焊盘111设置在该第三凹槽114内,这样可以降低引线的高度,此时,还可以将光学组件130通过全贴合的方式,设置为完全覆盖光学传感芯片120,这样可以实现在不使用挡光墙140的情况下,防止漏光。
具体地,图6示出了根据本申请实施例的光学传感模组100的再一示意图,其中图6中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图6所示,在该PCB110的上设置有第三凹槽114,该第三凹槽114的深度小于或者等于该第一凹槽112的深度,该第三凹槽114与该第一凹槽112部分重叠,该PCB110的焊盘111位于该第三凹槽114内与该第一凹槽112不重叠部分。再将光学组件130通过全贴合的方式,覆盖在整个光学传感芯片120的上方,同时也可以完全覆盖该PCB110的焊盘111,例如,光学组件130可以通过第二黏附层152固定在PCB110的上表面。由于如图6所示的该光学传感模组100的光学组件130的尺寸比图1至图4所示的光学组件130的尺寸略大,所以该结构成本相对较高。
应理解,除了图6中的光学组件130覆盖了整个光学传感芯片120并且 无需使用挡光墙以外,该图6所示的光学传感模组100的其他部分与图3所示的光学传感模组100的各部分保持一致,为了简洁,在此不再赘述。
与图4类似,对于如图6所示的光学传感模组100,为了进一步降低该光学传感模组100的厚度,可以在如图6所示的该PCB110上设置第二凹槽,将该光学组件130设置在该第二凹槽中。具体地,图7示出了根据本申请实施例的光学传感模组100的再一示意图,其中图7中的第一幅图为该光学传感模组100的俯视图,第二幅图为如第一幅图所示的水平方向上A1-A2截面的截面图,第三幅图为如第一幅图所示的垂直方向上B1-B2截面的截面图。如图7所示,该光学传感模组100中的PCB110上设置有第二凹槽115,该第二凹槽115的深度小于第一凹槽112的深度,并且该第二凹槽115与第一凹槽112存在部分重合,或者说第二凹槽115的底部面积大于第一凹槽112,另外,该第二凹槽115的深度小于第三凹槽114的深度。
该光学组件130设置在该第二凹槽115中可以覆盖位于第一凹槽112内的整个光学传感芯片120,同时,也可以完全覆盖在第三凹槽114内的焊盘111,该光学组件130可以通过第二黏附层152固定在第二凹槽115内,例如,如图7中B1-B2截面图所示,可以在第二凹槽115内的底部边缘位置涂覆适量胶水作为第二黏附层152,以固定该光学组件130,本申请实施例并不限于此。
应理解,除了图7中的光学组件130覆盖了整个光学传感芯片120并且无需使用挡光墙以外,该图7所示的光学传感模组100的其他部分与图4所示的光学传感模组100的各部分保持一致,为了简洁,在此不再赘述。
因此,本申请实施例的光学传感模组,通过将光学传感芯片设置在PCB上的凹槽内,再将光学组件覆盖在光学传感芯片的光信号接收区的上方,其中,该光学组件也可以设置在该PCB的凹槽内,这样可以有效降低光学传感模组厚度,组装简单,成本较低。
可选地,在本申请实施例中,光学传感模组100可以使用经过封装的光学传感芯片120,或者,该光学传感芯片120可以为未经过封装的芯片,但经过封装的光学传感芯片相比于未封装的,厚度较大,对应的光学传感模组的成本也较高。
对于独立封装的光学传感芯片,由于光学传感芯片的光信号接收区正上方不能存在任何妨碍光信号传输的障碍物,光学传感芯片的封装成本通常较 高,需要使用透光和不透光两种材料,其中,透光材料位于芯片接收区正上方,是传输光信号的窗口;不透光材料则将芯片其余部分塑封,保护芯片并防止光串扰,该过程成本较高且工艺复杂。而本申请实施例中的光学传感模组100中包括第一凹槽112,将该光学传感芯片120设置在该第一凹槽112内,并在其上方覆盖光学组件130,通过挡光墙140,或者通过将光学组件130覆盖整个该光学传感芯片120的方式,防止漏光,这样,可以无需独立封装光学传感芯片120,降低封装复杂度,减少成本。
图8示出了根据本申请实施例的制作光学传感模组的方法200的示意性流程图,具体地,该光学传感模组可以为图1至图7中的光学传感模组100。如图8所示,该方法200包括:S210,在PCB上制作第一凹槽;S220,将光学传感芯片设置在该第一凹槽内,并将该光学传感芯片与该PCB电连接,该光学传感芯片的厚度小于该第一凹槽的深度,该光学传感芯片包括光信号接收区;S230,在该PCB上设置光学组件,该光学组件位于该光学传感芯片上方且覆盖该光信号接收区。
为了便于说明,下面结合图8和图9,以制作如图2所示的光学传感模组100为例进行说明。图9示出了根据本申请实施例的制作光学传感模组100的过程的示意图,其中,图9的左侧一列的图均为俯视图,而右侧一列的图为如第一幅图所示的水平方向的截面的截面图。
在S210中,在PCB上制作第一凹槽。具体地,如图9中图(1)所示,在制作第一凹槽之前,制作该PCB110,制作该PCB110包括预先设计好电路和焊盘111。可选地,对于如图1和图2所示的光学传感模组100,焊盘111位于PCB110的上表面;若对于制作图3至图7所示的光学传感模组100,焊盘111的位置则位于PCB110中间位置。
可选地,对于该PCB110上设置有第二凹槽113或115的光学传感模组100,该S210中在PCB上制作第一凹槽,还包括:制作第二凹槽113或115。例如,如图9中图(2)所示,制作图2所示的光学传感模组100,需要在PCB110上制作第一凹槽112和第二凹槽113。
具体地,可以通过机械或者激光的加工方式,或者其它加工方式,在PCB110上制作凹槽,本申请实施例并不限于此。
在S220中,如图9中图(3)所示,将光学传感芯片120设置在该第一凹槽112内,例如,通过光学传感芯片120背面粘贴的第一黏附层151与第 一凹槽112内底面固定,该光学传感芯片120的厚度小于该第一凹槽112的深度,该光学传感芯片120包括光信号接收区121;如图9中图(4)所示,将该光学传感芯片120与该PCB110电连接,例如,通过打线的方式,该光学传感芯片120的电极通过引线122与PCB110的焊盘111连接。
在S230中,在该PCB110上设置光学组件130,该光学组件130位于该光学传感芯片120上方且覆盖该光信号接收区121。具体地,如图9中图(5)所示,将光学组件130设置在第二凹槽113内,使得该光学组件130覆盖该光信号接收区121,该光学组件130可以通过第二黏附层152固定在第二凹槽113内,例如,在该第二凹槽113内的相应位置涂布适量胶水,固定该光学组件130。
可选地,如图9中图(6)所示,对于光学传感芯片120的表面未被光学组件130和PCB110包围的位置,通过点黑胶的方式,设置挡光墙140,防止漏光。
可选地,对于如图1、3和6所示的光学传感模组100,不包括第二凹槽113和115,光学组件130直接贴在PCB110上表面、第一凹槽112的边框上。需要注意的是,考虑到光学组件130需要和光信号接收区121在垂直方向上对准,因此需要在PCB110上制作额外的对准标记,便于贴合光学组件130时与光信号接收区121对准。
因此,本申请实施例的制作光学传感模组的方法,通过将光学传感芯片设置在PCB上的凹槽内,再将光学组件覆盖在光学传感芯片的光信号接收区的上方,其中,该光学组件也可以设置在该PCB的凹槽内,这样可以有效降低光学传感模组厚度,组装简单,成本较低。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应 对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节。在本申请的技术构思范围内,专业技术人员可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光学传感模组,其特征在于,包括:印制电路板PCB(110)、光学传感芯片(120)以及光学组件(130),
    所述PCB(110)上设置有第一凹槽(112);
    所述光学传感芯片(120)位于所述第一凹槽(112)内且与所述PCB(110)电连接,所述光学传感芯片(120)的厚度小于所述第一凹槽(112)的深度,所述光学传感芯片(120)包括光信号接收区(121);
    所述光学组件(130)设置在所述PCB(110)上,所述光学组件(130)位于所述光学传感芯片(120)上方且覆盖所述光信号接收区(121)。
  2. 根据权利要求1所述的光学传感模组,其特征在于,
    所述PCB(110)上还设置有第二凹槽(113,115),所述第二凹槽(113,115)的深度小于所述第一凹槽(112)的深度,所述第二凹槽(113,115)与所述第一凹槽(112)部分重叠;
    所述光学组件(130)位于所述第二凹槽(113,115)内。
  3. 根据权利要求1或2所述的光学传感模组,其特征在于,所述光学传感芯片(120)的电极通过引线(122)与所述PCB(110)的焊盘(111)连接。
  4. 根据权利要求3所述的光学传感模组,其特征在于,所述PCB(110)的焊盘(111)位于所述第一凹槽(112)外的所述PCB(110)的上表面。
  5. 根据权利要求3所述的光学传感模组,其特征在于,所述PCB(110)的上设置有第三凹槽(114),所述第三凹槽(114)的深度小于或者等于所述第一凹槽(112)的深度,所述第三凹槽(114)与所述第一凹槽(112)部分重叠,所述PCB(110)的焊盘(111)位于所述第三凹槽(114)内与所述第一凹槽(112)不重叠部分。
  6. 根据权利要求1至5中任一项所述的光学传感模组,其特征在于,在所述光学传感芯片(120)上的所述光信号接收区(121)周围设置有挡光墙(140)。
  7. 根据权利要求5所述的光学传感模组,其特征在于,所述光学组件(130)覆盖所述光学传感芯片(120)。
  8. 根据权利要求1至7中任一项所述的光学传感模组,其特征在于,所述光学传感芯片(120)通过背面粘贴的第一黏附层(151)固定在所述第一凹槽(112)内。
  9. 根据权利要求1至8中任一项所述的光学传感模组,其特征在于,所述光学组件(130)通过第二黏附层(152)固定在所述PCB(110)上。
  10. 一种制作光学传感模组的方法,其特征在于,包括:
    在印制电路板PCB上制作第一凹槽;
    将光学传感芯片设置在所述第一凹槽内,并将所述光学传感芯片与所述PCB电连接,所述光学传感芯片的厚度小于所述第一凹槽的深度,所述光学传感芯片包括光信号接收区;
    在所述PCB上设置光学组件,所述光学组件位于所述光学传感芯片上方且覆盖所述光信号接收区。
  11. 根据权利要求10所述的方法,其特征在于,所述在所述PCB上设置光学组件,包括:
    在所述PCB上制作第二凹槽,所述第二凹槽的深度小于所述第一凹槽的深度,所述第二凹槽与所述第一凹槽部分重叠;
    将所述光学组件设置在所述第二凹槽内。
  12. 根据权利要求10或11所述的方法,其特征在于,所述将所述光学传感芯片与所述PCB电连接,包括:
    通过引线连接所述光学传感芯片的电极与所述PCB的焊盘。
  13. 根据权利要求12所述的方法,其特征在于,所述PCB的焊盘位于所述第一凹槽外的所述PCB的上表面。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述PCB上制作第三凹槽,所述第三凹槽的深度小于或者等于所述第一凹槽的深度,所述第三凹槽与所述第一凹槽部分重叠,所述PCB的焊盘位于所述第三凹槽内与所述第一凹槽不重叠部分。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    在所述光学传感芯片上的所述光信号接收区周围设置挡光墙。
  16. 根据权利要求14所述的方法,其特征在于,所述光学组件覆盖所述光学传感芯片。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述在PCB上制作第一凹槽,包括:
    采用机械或激光加工方式,在所述PCB上制作所述第一凹槽。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述将光学传感芯片设置在所述第一凹槽内,包括:
    将背面粘贴有第一黏附层的所述光学传感芯片设置在所述第一凹槽内。
  19. 根据权利要求10至18中任一项所述的方法,其特征在于,所述在所述PCB上设置光学组件,包括:
    通过第二黏附层将所述光学组件固定在所述PCB上。
PCT/CN2018/100819 2018-08-16 2018-08-16 光学传感模组及其制作方法 WO2020034144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/100819 WO2020034144A1 (zh) 2018-08-16 2018-08-16 光学传感模组及其制作方法
CN201880001183.5A CN109155292B (zh) 2018-08-16 2018-08-16 光学传感模组及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100819 WO2020034144A1 (zh) 2018-08-16 2018-08-16 光学传感模组及其制作方法

Publications (1)

Publication Number Publication Date
WO2020034144A1 true WO2020034144A1 (zh) 2020-02-20

Family

ID=64806252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100819 WO2020034144A1 (zh) 2018-08-16 2018-08-16 光学传感模组及其制作方法

Country Status (2)

Country Link
CN (1) CN109155292B (zh)
WO (1) WO2020034144A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522102A (zh) * 2019-02-01 2020-08-11 青岛海信宽带多媒体技术有限公司 一种光模块
EP3780095A1 (en) * 2019-06-14 2021-02-17 Shenzhen Goodix Technology Co., Ltd. Chip encapsulation structure and electronic device
CN110781804B (zh) * 2019-10-23 2023-06-02 业泓科技(成都)有限公司 光学式影像辨识装置的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740973B1 (en) * 2003-01-09 2004-05-25 Kingpak Technology Inc. Stacked structure for an image sensor
CN201417760Y (zh) * 2009-05-05 2010-03-03 豪佳电子股份有限公司 一种晶片封装结构
CN101872749A (zh) * 2009-04-24 2010-10-27 南茂科技股份有限公司 凹穴芯片封装结构及使用其的层叠封装结构
CN103901557A (zh) * 2012-12-28 2014-07-02 鸿富锦精密工业(深圳)有限公司 光电转换模组
CN204669479U (zh) * 2013-03-27 2015-09-23 株式会社村田制作所 摄像头模块
CN106773180A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 视角切换结构和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742350B2 (en) * 2010-06-08 2014-06-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Proximity sensor
US9760754B2 (en) * 2015-07-06 2017-09-12 Sunasic Technologies Inc. Printed circuit board assembly forming enhanced fingerprint module
CN105870070B (zh) * 2016-05-17 2019-06-04 歌尔股份有限公司 一种光学传感器封装结构及其集成板
CN208589428U (zh) * 2018-08-16 2019-03-08 深圳市汇顶科技股份有限公司 光学传感模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740973B1 (en) * 2003-01-09 2004-05-25 Kingpak Technology Inc. Stacked structure for an image sensor
CN101872749A (zh) * 2009-04-24 2010-10-27 南茂科技股份有限公司 凹穴芯片封装结构及使用其的层叠封装结构
CN201417760Y (zh) * 2009-05-05 2010-03-03 豪佳电子股份有限公司 一种晶片封装结构
CN103901557A (zh) * 2012-12-28 2014-07-02 鸿富锦精密工业(深圳)有限公司 光电转换模组
CN204669479U (zh) * 2013-03-27 2015-09-23 株式会社村田制作所 摄像头模块
CN106773180A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 视角切换结构和显示装置

Also Published As

Publication number Publication date
CN109155292A (zh) 2019-01-04
CN109155292B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US11222190B2 (en) Fingerprint identification apparatus and electronic device
US10417473B2 (en) Optical imaging system with variable light field for biometrics application
TWI582706B (zh) 指紋辨識裝置
EP3267359A1 (en) Fingerprint sensor, fingerprint sensing system, and sensing system using light sources of display panel
TWI467777B (zh) 光學裝置之封裝結構
JP5198394B2 (ja) 近接照度センサおよびその製造方法
TWI606309B (zh) 專用於計算成像並具有進一步功能性的光學成像設備
WO2020034144A1 (zh) 光学传感模组及其制作方法
KR20180005588A (ko) 디스플레이 패널의 광원들을 이용한 지문 센서, 지문 센서 패키지 및 지문 센싱 시스템
EP1603166A1 (en) Image pickup device and camera module
CN110061017B (zh) 光学传感器封装及光学传感器总成
JP6062349B2 (ja) 光学モジュール、およびその製造方法
CN108012004B (zh) 电子装置
CN111436209A (zh) 一种光学传感装置和终端
CN107095644B (zh) 光感测器模组及具有该光感测器模组的穿戴装置
KR20210016217A (ko) 전자 패널 및 이를 포함하는 전자 장치
JP2002261260A (ja) 固体撮像装置
TW201640644A (zh) 光學感應裝置及光學裝置的製造方法
WO2020034171A1 (zh) 光学传感模组及其制作方法
CN208848878U (zh) 光学传感模组
TW202329436A (zh) 光學感測模組及其封裝方法
CN108063150B (zh) 电子装置
CN115458611A (zh) 下沉式封装结构
TWI629973B (zh) 光學式生醫感測器模組及其製作方法
CN210983441U (zh) 取像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930062

Country of ref document: EP

Kind code of ref document: A1