WO2020031777A1 - アンテナ素子、アンテナモジュールおよび通信装置 - Google Patents

アンテナ素子、アンテナモジュールおよび通信装置 Download PDF

Info

Publication number
WO2020031777A1
WO2020031777A1 PCT/JP2019/029676 JP2019029676W WO2020031777A1 WO 2020031777 A1 WO2020031777 A1 WO 2020031777A1 JP 2019029676 W JP2019029676 W JP 2019029676W WO 2020031777 A1 WO2020031777 A1 WO 2020031777A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
radiation
electrode
antenna element
antenna
Prior art date
Application number
PCT/JP2019/029676
Other languages
English (en)
French (fr)
Inventor
薫 須藤
弘嗣 森
尾仲 健吾
直志 菅原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020031777A1 publication Critical patent/WO2020031777A1/ja
Priority to US17/155,300 priority Critical patent/US11527816B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to an antenna element in which a radiation electrode and a ground electrode are arranged to face each other, an antenna module including the antenna element, and a communication device including the antenna module.
  • Patent Document 1 discloses a wireless communication module in which an antenna pattern and a ground layer are arranged on a dielectric substrate so as to face each other. According to the wireless communication module, unnecessary radiation from the high-frequency element can be shielded by the ground layer and the ground conductor pillar in the dielectric substrate.
  • the radiation characteristic of the antenna element is improved by increasing the area of the ground electrode capacitively coupled to the radiation electrode.
  • the shape and arrangement of the ground electrode facing the radiation electrode may be limited, and the area of the ground electrode capacitively coupled to the radiation electrode may not be expanded. In such a case, it may be difficult to improve the radiation characteristics of the antenna element by expanding the ground electrode facing the radiation electrode.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to improve radiation characteristics of an antenna element in which a radiation electrode and a ground electrode are arranged to face each other.
  • the antenna element includes a dielectric substrate, a radiation electrode, a first ground electrode, a second ground electrode, and a via conductor.
  • the dielectric substrate has a first portion and a second portion. The first portion is flat. The second part is thinner than the first part.
  • the radiation electrode and the first ground electrode are arranged on the first portion so as to face each other in the thickness direction of the first portion.
  • the second ground electrode is separated from the radiation electrode.
  • the second ground electrode is arranged in the second portion so as not to face the radiation electrode in the thickness direction of the second portion.
  • the via conductor connects the first ground electrode and the second ground electrode.
  • the radiation electrode is capacitively coupled to the second ground electrode and the via conductor.
  • the radiation characteristics can be improved by the capacitive coupling between the radiation electrode facing the first ground electrode and the second ground electrode and the via conductor.
  • FIG. 4 is a plan view of an antenna module including the antenna element according to the reference example of Embodiment 1 viewed from the X-axis direction.
  • FIG. 3 is a diagram illustrating a simulation result of a reflection characteristic of an antenna element when a width of a ground electrode illustrated in FIG. 2 in a Y-axis direction is changed.
  • FIG. 2 is a plan view of an antenna module including the antenna element according to the first embodiment when viewed from the X-axis direction.
  • FIG. 5 is a diagram illustrating a simulation result of the reflection characteristics of the antenna element when the distance between the radiation electrode and the ground electrode illustrated in FIG. 4 in the Y-axis direction is changed.
  • FIG. 5 is a plan view of an antenna module including an antenna element according to a first modification of the first embodiment as viewed in the X-axis direction.
  • FIG. 9 is a plan view of an antenna module including an antenna element according to a second modification of the first embodiment as viewed in the X-axis direction.
  • FIG. 13 is a plan view of an antenna module including an antenna element according to a third modification of the first embodiment as viewed in the X-axis direction.
  • FIG. 9 is a plan view of an antenna module including an antenna element according to Modification Example 4 of Embodiment 1 viewed from the X-axis direction.
  • FIG. 14 is an external perspective view of an antenna module including the antenna element according to the second embodiment.
  • FIG. 11 is a plan view of the antenna module of FIG.
  • FIG. 15 is a plan view of an antenna module including an antenna element according to a modification of the second embodiment, viewed from the X-axis direction.
  • FIG. 13 is a plan view of a communication device according to Embodiment 3 when viewed from the X-axis direction.
  • FIG. 13 is a plan view of a communication device according to a modification of the third embodiment as viewed from the X-axis direction.
  • FIG. 1 is a block diagram of a communication device 3000 including the antenna element 10.
  • Examples of the communication device 3000 include a mobile terminal such as a mobile phone, a smartphone, and a tablet, and a personal computer having a communication function.
  • the communication device 3000 includes an antenna module 1100 and a BBIC (Baseband Integrated Circuit) 2000 that forms a baseband signal processing circuit.
  • the antenna module 1100 includes an RFIC (Radio Frequency Integrated Circuit) 140, which is an example of a high-frequency element, and the antenna element 10.
  • RFIC Radio Frequency Integrated Circuit
  • the communication device 3000 up-converts the baseband signal transmitted from the BBIC 2000 to the antenna module 1100 to a high-frequency signal and radiates it from the antenna element 10.
  • Communication device 3000 down-converts the high-frequency signal received by antenna element 10 to a baseband signal and performs signal processing by BBIC 2000.
  • the antenna element 10 is an antenna array in which a plurality of flat antenna elements (radiation conductors) are regularly arranged.
  • FIG. 1 shows a configuration of RFIC 140 corresponding to four radiation electrodes 110 surrounded by a dotted line among a plurality of radiation electrodes 110 included in antenna element 10.
  • the RFIC 140 includes switches 31A to 31D, 33A to 33D, and 37, power amplifiers 32AT to 32DT, low-noise amplifiers 32AR to 32DR, attenuators 34A to 34D, phase shifters 35A to 35D, and a signal combiner / demultiplexer. 36, a mixer 38, and an amplifier circuit 39.
  • RFIC 140 is formed as a one-chip integrated circuit component including circuit elements (switch, power amplifier, low noise amplifier, attenuator, and phase shifter) corresponding to a plurality of radiation electrodes 110 included in antenna element 10, for example.
  • the circuit element may be formed as a one-chip integrated circuit component for each radiation electrode 110 separately from the RFIC 140.
  • the switches 31A to 31D and 33A to 33D are switched to the low noise amplifiers 32AR to 32DR, and the switch 37 is connected to the receiving amplifier of the amplifier circuit 39.
  • the high-frequency signal received by the radiation electrode 110 passes through each signal path from the switches 31A to 31D to the phase shifters 35A to 35D, is multiplexed by the signal combiner / demultiplexer 36, and is converted into a baseband signal by the mixer 38.
  • the signal is down-converted, amplified by the amplifier circuit 39, and transmitted to the BBIC 2000.
  • the switches 31A to 31D and 33A to 33D are switched to the power amplifiers 32AT to 32DT, and the switch 37 is connected to the transmitting amplifier of the amplifier circuit 39.
  • the baseband signal transmitted from the BBIC 2000 is amplified by the amplifier circuit 39 and up-converted by the mixer 38.
  • the up-converted high-frequency signal is divided into four by the signal combining / demultiplexer 36, and is supplied to the radiation electrode 110 through each signal path from the phase shifters 35A to 35D to the switches 31A to 31D.
  • the directivity of the antenna element 10 can be adjusted by individually adjusting the phase shift degrees of the phase shifters 35A to 35D arranged in each signal path.
  • the radiation characteristics of the antenna element 10 are affected by the area of the ground electrode that is capacitively coupled to the radiation electrode 110.
  • the relationship between the area of the ground electrode capacitively coupled to the radiation electrode 110 and the radiation characteristics of the antenna array will be described using the antenna element according to the reference example of the first embodiment.
  • FIG. 2 is a plan view of the antenna module 1900 including the antenna element 900 according to the reference example of the first embodiment viewed from the X-axis direction.
  • the X axis, the Y axis, and the Z axis are orthogonal to each other. The same applies to FIGS. 4 and 6 to 14.
  • the antenna module 1900 includes the antenna element 900 and the RFIC 140.
  • the antenna element 900 includes a radiation electrode 110, a ground electrode 131 (first ground electrode), a via conductor 151, and a dielectric substrate 920.
  • the normal direction of the radiation electrode 110 is the Z-axis direction.
  • the radiation electrode 110 and the ground electrode 131 are arranged on the dielectric substrate 920 so as to face each other in the thickness direction (Z-axis direction) of the dielectric substrate 920.
  • the radiation electrode 110 is capacitively coupled to the ground electrode 131.
  • the via conductor 151 penetrates the ground electrode 131, and connects the radiation electrode 110 and the RFIC 140.
  • the via conductor 151 is insulated from the ground electrode 131.
  • the RFIC 140 supplies a high-frequency signal to the radiation electrode 110 via the via conductor 151.
  • RFIC 140 receives a high-frequency signal from radiation electrode 110 via via conductor 151.
  • the width of the radiation electrode 110 in the Y-axis direction is 2.5 mm.
  • Each interval between the radiation electrode 110 and the dielectric substrate 920 on both sides in the Y-axis direction is 0.25 mm.
  • Each interval between the radiation electrode 110 and the ground electrode 131 on both sides in the Y-axis direction is W1.
  • the width of the ground electrode 131 in the Y-axis direction is 2 ⁇ W1 + 2.5 (mm).
  • FIG. 3 shows a simulation result of the reflection characteristics (relation between frequency and return loss (RL: Return : Loss)) of the antenna element 900 when the width of the ground electrode 131 shown in FIG. 2 in the Y-axis direction is changed.
  • FIG. FIG. 3 shows the reflection characteristics in each case where the interval W1 is 0.25 mm, 0.50 mm, and 0.75 mm.
  • the width of the bandwidth in which the reflection loss equal to or greater than the threshold is realized is one of the evaluation indexes of the radiation characteristics of the antenna element 900. That is, it can be said that the wider the bandwidth is, the better the radiation characteristics of the antenna element 900 are. Therefore, in FIG. 3, the radiation characteristics of the antenna element 900 are compared, paying attention to the wide bandwidth in which the reflection loss is 6 dB or more. The same applies to FIG.
  • the wider the interval W1 is, the wider the area of the ground electrode 131 that is capacitively coupled to the radiation electrode 110 is. That is, as the area of the ground electrode 131 capacitively coupled to the radiation electrode 110 increases, the radiation characteristics of the antenna element 900 improve.
  • the shape and arrangement of the ground electrode 131 facing the radiation electrode 110 are limited, and the area of the ground electrode 131 capacitively coupled to the radiation electrode 110 may not be expanded.
  • the antenna element according to the first embodiment can improve radiation characteristics even when arranged in such a space.
  • the antenna element according to the first embodiment will be described in detail.
  • FIG. 4 is a plan view of the antenna module 1100 including the antenna element 100 according to the first embodiment as viewed from the X-axis direction.
  • the configuration of the antenna module 1100 is such that the antenna element 900 of the antenna module 1900 in FIG.
  • the configuration of the antenna element 100 in FIG. 4 is such that the dielectric substrate 920 of the antenna element 900 in FIG. 2 is replaced with 120, and a ground electrode 132 (second ground electrode) and a via conductor 152 are added. . Configurations other than these are the same, and thus description will not be repeated.
  • the dielectric substrate 120 has a flat plate-shaped portion 101 (first portion) and a portion 102 (second portion). In the Z-axis direction, the portion 102 is thinner than the portion 101.
  • the dielectric substrate 120 is formed from an integral dielectric. That is, the dielectric substrate 120 is a substrate integrally formed of a dielectric material having a certain dielectric constant.
  • the radiation electrode 110 and the ground electrode 132 are arranged at an interval on the specific surface 103 of the dielectric substrate 120.
  • the via conductor 152 extends in the Z-axis direction and connects the ground electrodes 131 and 132.
  • the radiation electrode 110 is capacitively coupled to the ground electrode 132 and the via conductor 152.
  • the space W2 is the space between the radiation electrode 110 and the ground electrode 132 in the Y-axis direction. Note that the radiation electrode 110 and the ground electrode 132 may be arranged inside the dielectric substrate 120.
  • a space Spc is formed on the side of the portion 102 where the ground electrode 132 is not disposed.
  • Other circuit elements are arranged in the space Spc. Therefore, the width of the ground electrode 131 in the Y-axis direction cannot be increased to the space Spc.
  • the radiation characteristics of the antenna element 100 cannot be improved by extending the ground electrode 131 to the space Spc.
  • the ground electrode 132 is arranged on the portion 102, and the ground electrodes 131 and 132 are connected by the via conductor 152. Since the radiation electrode 110 is capacitively coupled to the ground electrode 132 and the via conductor 152 in addition to the ground electrode 131, the radiation characteristics of the antenna element 100 can be improved.
  • FIG. 5 is a diagram showing a simulation result of the reflection characteristics of the antenna element 100 when the distance W2 between the radiation electrode 110 and the ground electrode 132 in the Y-axis direction shown in FIG. 4 is changed.
  • FIG. 5 shows the reflection characteristics in each case where the interval W2 is 0.2 mm, 0.4 mm, and 0.6 mm.
  • the bandwidth in which the reflection loss is 6 dB or more is wider in the order of 0.2 mm, 0.4 mm, 0.6 mm, 1.0 mm, and 1.4 mm in the interval W2.
  • FIG. 6 is a plan view of the antenna module 1100A including the antenna element 100A according to the first modification of the first embodiment viewed from the X-axis direction.
  • the configuration of the antenna module 1100A is a configuration in which the antenna element 100 in FIG. 4 is replaced with 100A.
  • the configuration of the antenna element 100A in FIG. 6 is a configuration in which the dielectric substrate 120 in FIG. 4 is replaced with 120A.
  • the configuration of the dielectric substrate 120A in FIG. 6 is a configuration in which the portion 102 in FIG. 4 is replaced with 102A.
  • the configuration other than these is the same, and thus the description will not be repeated.
  • the portions 101 and 102A are arranged so as to be shifted from each other in the Z-axis direction to form a step.
  • the ground electrode 132 is separated from the radiation electrode 110 in the Z-axis direction. Therefore, the ground electrode 132 does not need to be separated from the radiation electrode 110 in the Y-axis direction.
  • the dielectric substrate may be formed from a plurality of dielectric layers.
  • FIG. 7 is a plan view of the antenna module 1100B including the antenna element 100B according to the second modification of the first embodiment as viewed from the X-axis direction.
  • the configuration of the antenna module 1100B is a configuration in which the antenna element 100 in FIG. 4 is replaced with 100B.
  • the configuration of the antenna element 100B in FIG. 7 is a configuration in which the dielectric substrate 120 in FIG. 4 is replaced with 120B. The configuration other than these is the same, and thus the description will not be repeated.
  • dielectric substrate 120B includes dielectric layer 121 (first dielectric layer) and dielectric layer 122 (second dielectric layer).
  • the dielectric layer 121 is a first substrate formed of a dielectric material having a first dielectric constant.
  • the dielectric layer 122 is a second substrate formed of a dielectric material having a second dielectric constant.
  • the dielectric substrate 120 is a substrate in which the dielectric layers 121 and 122 are integrated by heat welding or bonding with a connection member (for example, a solder bump).
  • the first permittivity and the second permittivity may be different.
  • the dielectric layer 121 is formed over the portions 101 and 102.
  • the dielectric layer 121 includes the specific surface 103.
  • the dielectric layer 122 is formed in the portion 101.
  • the ground electrode 131 is disposed on the dielectric layer 122.
  • the radiation electrode 110 and the ground electrode 132 may be disposed inside the dielectric layer 121.
  • FIG. 8 is a plan view of the antenna module 1100C including the antenna element 100C according to the third modification of the first embodiment viewed from the X-axis direction.
  • the configuration of the antenna module 1100C is a configuration in which the antenna element 100 in FIG. 4 is replaced with 100C.
  • the configuration of the antenna element 100C in FIG. 8 is a configuration in which the radiation electrode 110 in FIG. 4 is replaced with 110C. The configuration other than these is the same, and thus the description will not be repeated.
  • the radiation electrode 110C includes a feed element 111 and a parasitic element 112.
  • Feed element 111 is arranged on specific surface 103.
  • Feed element 111 may be arranged inside dielectric substrate 120.
  • Feed element 111 is capacitively coupled to ground electrode 132 and via conductor 152.
  • the parasitic element 112 is arranged between the ground electrode 131 and the feed element 111 in the direction in which the via conductor 152 extends (the Z-axis direction).
  • the via conductor 151 penetrates the parasitic element 112 and connects the feed element 111 and the RFIC 140.
  • the radiation characteristics can be improved by the antenna element 100C. Also, the radiation characteristics of the parasitic element 112 can be improved by the same effect as that of the parasitic element 111.
  • FIG. 9 is a plan view of the antenna module 1100D including the antenna element 100D according to the fourth modification of the first embodiment as viewed from the X-axis direction.
  • the configuration of the antenna module 1100D is a configuration in which the antenna element 100 in FIG. 4 is replaced with 100D.
  • the configuration of the antenna element 100D of FIG. 9 is such that the radiation electrode 110 and the dielectric substrate 120 of FIG. 4 are replaced with a radiation electrode 110D and a dielectric substrate 120D.
  • the configuration of the dielectric substrate 120D in FIG. 10 is a configuration in which the portion 102 in FIG. 4 is replaced with 102D.
  • the configuration other than these is the same, and thus the description will not be repeated.
  • the radiation electrode 110D includes a feed element 111D and a parasitic element 112D.
  • Feed element 111D is arranged between ground electrode 131 and parasitic element 112D in the Z-axis direction.
  • Via conductor 151 connects feed element 111D and RFIC 140.
  • Distance H1 is the distance in the Z-axis direction between feed element 111D and ground electrode 131.
  • the distance H2 is a distance between the ground electrodes 132 and 131 in the Z-axis direction.
  • the distance H3 is the distance between the parasitic element 112D and the ground electrode 131 in the Z-axis direction.
  • the distance H2 is longer than the distance H1 and shorter than the distance H3.
  • FIG. 10 is an external perspective view of an antenna module 1200 including the antenna element 200 according to the second embodiment.
  • FIG. 11 is a plan view of the antenna module 1200 of FIG. 10 viewed from the X-axis direction. Note that FIG. 10 does not show the ground electrodes 281 to 284 shown in FIG. 11 and a plurality of via conductors connected to the ground electrodes 281 to 284 shown in FIG.
  • the antenna module 1200 includes the antenna element 200 and the RFIC 240.
  • Antenna element 200 includes radiation electrodes 211 to 218, dielectric substrate 220, ground electrode 231 (first ground electrode), ground electrodes 232 to 235 (second ground electrode), ground electrode 236, and via conductor 251. 266, line conductor patterns 271 to 274, and ground electrodes 281 to 284.
  • the dielectric substrate 220 has a flat portion 201 (first portion), a portion 202 (second portion), and a flat portion 203. Portion 202 is thinner than portions 201 and 203.
  • the dielectric substrate 220 is bent at the portion 202.
  • the dielectric substrate 220 may further include a bent portion in addition to the portion 202, and may be formed so as to wind an end of the RFIC 240.
  • the dielectric substrate 220 includes a dielectric layer 221 (first dielectric layer), a dielectric layer 222 (second dielectric layer), and a dielectric layer 223.
  • the dielectric layer 221 is formed over the portions 201 to 203.
  • the dielectric layer 221 includes the specific surface 204.
  • the dielectric layer 221 is formed from a flexible material (flexible material).
  • the dielectric layer 222 is formed in the portion 201.
  • the dielectric layer 223 is formed in the portion 203. Note that the dielectric substrate 220 may be formed from an integral dielectric.
  • the radiation electrodes 211, 213, 215 and 217 are arranged along the X axis on the specific surface 204 of the portion 201.
  • the normal direction of the radiation electrodes 211, 213, 215, 217 is the Z-axis direction.
  • the ground electrode 231 is disposed on the dielectric layer 222 so as to face each of the radiation electrodes 211, 213, 215, and 217 in the Z-axis direction.
  • the ground electrode 231 is capacitively coupled to each of the radiation electrodes 211, 213, 215, and 217 in the Z-axis direction.
  • the via conductors 251, 255, 259, 263 penetrate the ground electrode 231, and connect the radiation electrodes 211, 213, 215, 217 and the RFIC 240, respectively.
  • the via conductors 251, 255, 259, 263 are insulated from the ground electrode 231.
  • the RFIC 240 supplies a high-frequency signal to the radiation electrodes 211, 213, 215, 217 via the via conductors 251, 255, 259, 263, respectively.
  • the RFIC 240 receives high-frequency signals from the radiation electrodes 211, 213, 215, 217 via the via conductors 251, 255, 259, 263, respectively.
  • the ground electrodes 232 to 235 are arranged along the X axis on the specific surface 204 of the portion 202.
  • the ground electrodes 232 to 235 are separated from the radiation electrodes 211 to 218.
  • the ground electrodes 232 to 235 are capacitively coupled to the radiation electrodes 211 to 218.
  • Via conductors 252, 256, 260, and 264 connect ground electrode 231 and 232 to 235, respectively.
  • the radiation electrodes 211, 213, 215, and 217 are capacitively coupled to the via conductors 252, 256, 260, and 264.
  • the via conductors 252, 256, 260, and 264 need not be formed along the thickness direction (Z-axis direction) of the dielectric substrate 220, and may be formed obliquely with respect to the thickness direction. .
  • the radiation electrodes 212, 214, 216, and 218 are arranged along the X axis on the specific surface 204 of the portion 203.
  • the normal direction of the radiation electrodes 212, 214, 216, and 218 is the Y-axis direction.
  • the ground electrode 236 is formed on the dielectric layer 221 over the portions 201 to 203.
  • the ground electrode 236 faces the radiation electrodes 212, 214, 216, and 218 in the Y-axis direction.
  • the ground electrode 236 is capacitively coupled to the radiation electrodes 212, 214, 216, 218.
  • the ground electrode 236 is connected to the ground electrode 231.
  • the radiation electrodes 212, 214, 216, and 218 are capacitively coupled to the ground electrodes 232 to 235, respectively, and similarly to the radiation electrodes 211, 213, 215, and 217 in the portion 201. It may be capacitively coupled to a via conductor connecting 235 and 236.
  • the ground electrodes 281 to 284 are formed over the portions 201 to 203, and are arranged on the dielectric layer 221 along the X axis.
  • the ground electrodes 281 to 284 are connected to the ground electrode 236 by a plurality of via conductors.
  • the ground electrodes 281 to 284 are connected to the ground electrodes 232 to 235, respectively.
  • the line conductor patterns 271 to 274 are formed on the dielectric layer 221 over the portions 201 to 203.
  • the line conductor pattern 271 is formed between the ground electrodes 236 and 281.
  • the line conductor pattern 272 is formed between the ground electrodes 236 and 282.
  • the line conductor pattern 273 is formed between the ground electrodes 236 and 283.
  • the line conductor pattern 274 is formed between the ground electrodes 236 and 284.
  • the via conductors 253, 257, 261, 265 penetrate the ground electrode 231 and connect the line conductor patterns 271 to 274 and the RFIC 240, respectively.
  • the via conductors 253, 257, 261, 265 are insulated from the ground electrode 231.
  • the via conductor 254 connects the line conductor pattern 271 and the radiation electrode 212.
  • the via conductor 258 connects the line conductor pattern 272 and the radiation electrode 214.
  • the via conductor 262 connects the line conductor pattern 273 and the radiation electrode 216.
  • the via conductor 266 connects the line conductor pattern 274 and the radiation electrode 218.
  • the RFIC 240 supplies high-frequency signals to the radiation electrodes 212, 214, 216, and 218 via the line conductor patterns 271 to 274, respectively.
  • the RFIC 240 receives high-frequency signals from the radiation electrodes 212, 214, 216, and 218 via the line conductor patterns 271 to 274, respectively.
  • the normal direction (Z-axis direction) of the radiation electrodes 211, 213, 215, 217 and the radiation electrodes 212, 214, 216, 218 The normal direction (Z-axis direction) is different.
  • transmission and reception of high-frequency signals having polarized waves having different excitation directions are easier than in the case where the normals of the plurality of radiation electrodes are parallel.
  • the dielectric layer 221 is formed from a flexible material, the stress generated in the bent portion 202 can be reduced. Therefore, in the portions 201 and 203, the flatness of the specific surface 204 can be maintained. The deviation of the normal direction of the radiation electrodes 211 to 218 from the desired direction can be suppressed. As a result, it is possible to suppress a decrease in the characteristics of the antenna element 200 due to the bending of the dielectric substrate 220.
  • the dielectric substrate of the antenna element has one bent portion.
  • the dielectric substrate may have a plurality of bent portions.
  • a case where the dielectric substrate has two bent portions will be described.
  • FIG. 12 is a plan view of an antenna module 1200A according to a modification of the second embodiment as viewed from the X-axis direction.
  • the configuration of the antenna module 1200A is a configuration in which the antenna element 200 of the antenna module 1200 in FIG. 11 is replaced with 200A.
  • the configuration of the antenna element 200A is such that the dielectric substrate 220 is replaced with 220A, the radiation electrodes 212A, 214A, 216A, 218A, the ground electrodes 232A to 236A, 281A to 284A, the via conductors 252A, 256A, 260A, 264A, In this configuration, via conductors 253A, 257A, 261A, 265A, via conductors 254A, 258A, 262A, 266A, and line conductor patterns 271A to 274A are added.
  • the configuration of the dielectric substrate 220A is such that the dielectric layer 221 of the dielectric substrate 220 is replaced with 221A, and the dielectric substrate 220 is provided with portions 202A and 203A and a dielectric layer 223A. Other than these, the description is the same, and therefore, the description will not be repeated.
  • portion 203A is flat.
  • Portion 202A is thinner than portions 201 and 203A.
  • portion 202A connects portion 201 extending in the Y-axis direction and portion 203A extending in the Z-axis direction.
  • the dielectric layer 221A is formed of a flexible material (flexible material).
  • the dielectric layer 221A includes the specific surface 204A.
  • the dielectric substrate 220A is bent not only at the portion 202 but also at a portion 202A (second portion).
  • the dielectric layer 223A is formed on the portion 203A. Note that the dielectric substrate 220A may be formed from an integral dielectric.
  • the ground electrodes 232A to 235A are arranged along the X axis on the specific surface 204A of the portion 202A.
  • the ground electrodes 232A to 235A are separated from the radiation electrodes 211, 213, 215, 217, 212A, 214A, 216A, and 218A.
  • the ground electrodes 232A to 235A are capacitively coupled to the radiation electrodes 211, 213, 215, 217, 212A, 214A, 216A, and 218A.
  • the via conductors 252A, 256A, 260A, and 264A connect the ground electrode 231 and 232A to 235A, respectively.
  • the radiation electrodes 211, 213, 215, and 217 are capacitively coupled to the via conductors 252A, 256A, 260A, and 264A.
  • the via conductors 252A, 256A, 260A, and 264A do not need to be formed along the thickness direction (Z-axis direction) of the dielectric substrate 220A, and may be formed obliquely with respect to the thickness direction. .
  • the radiation electrodes 212A, 214A, 216A, and 218A are arranged along the X axis on the specific surface 204A of the portion 203A.
  • the normal direction of the radiation electrodes 212A, 214A, 216A, 218A is the Y-axis direction.
  • the ground electrode 236A is formed on the dielectric layer 221A over the portions 201, 202A, and 203A.
  • the ground electrode 236A faces the radiation electrodes 212A, 214A, 216A, 218A in the Y-axis direction.
  • the ground electrode 236A is capacitively coupled to the radiation electrodes 212A, 214A, 216A, 218A.
  • the ground electrode 236A is connected to the ground electrode 231.
  • the radiation electrodes 212A, 214A, 216A, and 218A are capacitively coupled to the ground electrodes 232A to 235A, respectively, as in the radiation electrodes 211, 213, 215, and 217 in the portion 201. You may capacitively couple with the via conductor which connects 235A and 236A.
  • the ground electrodes 281A to 284A are formed over the portions 201, 202A, and 203A, and are arranged on the dielectric layer 221A along the X axis.
  • the ground electrodes 281A to 284A are connected to the ground electrode 236A by a plurality of via conductors.
  • the ground electrodes 281A to 284A are connected to the ground electrodes 232A to 235A, respectively.
  • the line conductor patterns 271A to 274A are formed on the dielectric layer 221A over the portions 201, 202A, and 203A.
  • the line conductor pattern 271A is formed between the ground electrodes 236A and 281A.
  • the line conductor pattern 272A is formed between the ground electrodes 236A and 282A.
  • the line conductor pattern 273A is formed between the ground electrodes 236A and 283A.
  • the line conductor pattern 274A is formed between the ground electrodes 236A and 284A.
  • the via conductors 253A, 257A, 261A, and 265A penetrate the ground electrode 231 and connect the line conductor patterns 271A to 274A and the RFIC 240, respectively.
  • the via conductors 253A, 257A, 261A, 265A are insulated from the ground electrode 231.
  • the via conductor 254A connects the line conductor pattern 271A and the radiation electrode 212A.
  • the via conductor 258A connects the line conductor pattern 272A and the radiation electrode 214A.
  • the via conductor 262A connects the line conductor pattern 273A and the radiation electrode 216A.
  • the via conductor 266A connects the line conductor pattern 274A and the radiation electrode 218A.
  • the RFIC 240 supplies high-frequency signals to the radiation electrodes 212A, 214A, 216A, and 218A via the line conductor patterns 271A to 274A, respectively.
  • the RFIC 240 receives high-frequency signals from the radiation electrodes 212A, 214A, 216A, and 218A via the line conductor patterns 271A to 274A, respectively.
  • the normal direction (Z-axis direction) of the radiation electrodes 211, 213, 215 and 217 and the radiation electrodes 212, 214, 216 and 218, 212A, 214A, 216A, and 218A have different normal directions (Z-axis directions).
  • transmission and reception of high-frequency signals having polarizations having different excitation directions are easier than in the case where the normals of the plurality of radiation electrodes are parallel.
  • the dielectric layer 221A is formed of a flexible material, the stress generated in the bent portions 202, 202A can be reduced. Therefore, in the portions 201, 203, and 203A, the flatness of the specific surface 204A can be maintained. The deviation of the normal direction of the radiation electrodes 211 to 218, 212A, 214A, 216A, 218A from the desired direction can be suppressed. As a result, it is possible to suppress a decrease in the characteristics of the antenna element 200A due to the bending of the dielectric substrate 220A.
  • the radiation characteristics can be improved.
  • FIG. 13 is a plan view of the communication device 3000 according to Embodiment 3 when viewed from the X-axis direction.
  • the communication device 3000 includes a BBIC 2000, an antenna module 1300, and a mounting board 320.
  • the configuration of the antenna module 1300 is such that a connector 321 is added to the antenna module 1200 shown in FIG. Other than that, the description is the same, and thus the description will not be repeated.
  • the connector 321 is disposed on the dielectric layer 222 of the portion 201.
  • the connector 321 is connected to the RFIC 240 by a power supply wiring formed inside the dielectric layer 222.
  • the connector 322 is arranged on the mounting board 320. The connector 322 is detachably connected to the connector 321.
  • the BBIC 2000 is disposed on the surface of the mounting substrate 320 by a connection member such as a solder bump.
  • the BBIC 2000 is connected to the connector 322 by a power supply wiring formed inside the mounting board 320.
  • the BBIC 2000 transmits a baseband signal to the RFIC 240 and receives a baseband signal from the RFIC 240 via the power supply wiring and the connector 322.
  • the BBIC 2000 and the RFIC 240 can be connected from a greater distance by running FPCs (Flexible Printed Circuits).
  • FIG. 14 is a plan view of a communication device 3000A according to a modification of the third embodiment as viewed from the X-axis direction.
  • the communication device 3000A includes a BBIC 2000, an antenna module 1300A, and a mounting substrate 320A.
  • the configuration of the antenna module 1300A is a configuration in which the antenna element 200 of the antenna module 1200 in FIG.
  • the antenna element 300 of FIG. 14 is obtained by removing the radiation electrodes 212, 214, 216, 218 and the via conductors 254, 258, 262, 266 from the antenna element 200 of FIG. 11, replacing the dielectric substrate 220 with 310, and 331 is an added configuration.
  • the configuration of the dielectric substrate 310 is a configuration in which the dielectric layer 223 is removed from the dielectric substrate 220. Other than these, the description is the same, and the description will not be repeated.
  • the connector 331 is disposed on the dielectric layer 221 of the portion 203.
  • the connector 331 is connected to the line conductor patterns 271 to 274.
  • the BBIC 2000 is arranged on the surface of the mounting substrate 320A by a connection member such as a solder bump.
  • the connector 332 is arranged on the mounting board 320A. The connector 332 is detachably connected to the connector 331.
  • the BBIC 2000 is connected to the connector 332 by a power supply wiring formed inside the mounting board 320A.
  • the BBIC 2000 transmits a baseband signal to the RFIC 240 and receives a baseband signal from the RFIC 240 via the power supply wiring, the connectors 332, 331, the line conductor patterns 271 to 274, and the via conductors 253, 257, 261, 265. .
  • the radiation characteristics of the antenna element can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)

Abstract

アンテナ素子(100)は、誘電体基板(120)と、放射電極(110)と、第1接地電極(131)と、第2接地電極(132)と、第1接地電極(131)および第2接地電極(132)を接続するビア導体(152)とを備える。誘電体基板(120)は、平板状の第1部分(101)、第1部分(101)より薄い第2部分(102)を有する。放射電極(110)および第1接地電極(131)は、第1部分(101)の厚み方向において対向するように第1部分(101)に配置されている。第2接地電極(132)は、放射電極(110)から離間している。第2接地電極(132)は、第2部分(102)の厚み方向において放射電極(110)と対向しないように第2部分(102)に配置されている。放射電極(110)は、第2接地電極(132)およびビア導体(152)と容量結合する。

Description

アンテナ素子、アンテナモジュールおよび通信装置
 本発明は、放射電極および接地電極が対向するように配置されたアンテナ素子、当該アンテナ素子を備えるアンテナモジュール、および当該アンテナモジュールを備える通信装置に関する。
 従来、放射電極および接地電極が対向するように配置されたアンテナ素子が知られている。たとえば、国際公開第2016/063759号(特許文献1)には、アンテナパターンおよび接地層が対向するように誘電体基板に配置された無線通信モジュールが開示されている。当該無線通信モジュールによれば、高周波素子からの不要輻射を、誘電体基板内の接地層、および接地導体柱によってシールドすることができる。
国際公開第2016/063759号
 放射電極と容量結合する接地電極の領域を広げることにより、アンテナ素子の放射特性が改善されることが知られている。しかし、アンテナ素子が配置されるスペースによっては、放射電極と対向する接地電極の形状および配置が制限され、放射電極と容量結合する接地電極の領域を広げられない場合がある。そのような場合、放射電極と対向する接地電極を広げることによっては、アンテナ素子の放射特性の改善が困難になり得る。
 本発明は上記のような課題を解決するためになされたものであり、その目的は、放射電極および接地電極が対向するように配置されたアンテナ素子において、放射特性を改善することである。
 本発明の一実施の形態に係るアンテナ素子は、誘電体基板と、放射電極と、第1接地電極と、第2接地電極と、ビア導体とを備える。誘電体基板は、第1部分および第2部分を有する。第1部分は、平板状である。第2部分は、第1部分よりも薄い。放射電極および第1接地電極は、第1部分の厚み方向において対向するように第1部分に配置されている。第2接地電極は、放射電極から離間している。第2接地電極は、第2部分の厚み方向において放射電極と対向しないように第2部分に配置されている。ビア導体は、第1接地電極と第2接地電極とを接続する。放射電極は、第2接地電極およびビア導体と容量結合する。
 本発明の一実施の形態に係るアンテナ素子によれば、第1接地電極と対向する放射電極が第2接地電極およびビア導体とも容量結合することにより、放射特性を改善することができる。
アンテナ素子を備える通信装置のブロック図である。 実施の形態1の参考例に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 図2に示される接地電極のY軸方向の幅を変化させた場合の、アンテナ素子の反射特性のシミュレーション結果を示す図である。 実施の形態1に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 図4に示される放射電極と接地電極とのY軸方向の間隔を変化させた場合の、アンテナ素子の反射特性のシミュレーション結果を示す図である。 実施の形態1の変形例1に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 実施の形態1の変形例2に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 実施の形態1の変形例3に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 実施の形態1の変形例4に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 実施の形態2に係るアンテナ素子を備えるアンテナモジュールの外観斜視図である。 図10のアンテナモジュールをX軸方向から平面視した図である。 実施の形態2の変形例に係るアンテナ素子を備えるアンテナモジュールをX軸方向から平面視した図である。 実施の形態3に係る通信装置をX軸方向から平面視した図である。 実施の形態3の変形例に係る通信装置をX軸方向から平面視した図である。
 以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 図1は、アンテナ素子10を備える通信装置3000のブロック図である。通信装置3000としては、携帯電話,スマートフォン,タブレットなどの携帯端末、あるいは通信機能を有するパーソナルコンピュータなどを挙げることができる。
 図1に示されるように、通信装置3000は、アンテナモジュール1100と、ベースバンド信号処理回路を構成するBBIC(Baseband Integrated Circuit)2000とを備える。アンテナモジュール1100は、高周波素子の一例であるRFIC(Radio Frequency Integrated Circuit)140と、アンテナ素子10とを備える。
 通信装置3000は、BBIC2000からアンテナモジュール1100へ伝達されたベースバンド信号を高周波信号にアップコンバートしてアンテナ素子10から放射する。通信装置3000は、アンテナ素子10で受信した高周波信号をベースバンド信号にダウンコンバートしてBBIC2000にて信号処理する。
 アンテナ素子10は、複数の平板状のアンテナ素子(放射導体)が、規則的に配置されたアンテナアレイである。図1においては、アンテナ素子10に含まれる複数の放射電極110のうち、点線で囲まれた4つの放射電極110に対応するRFIC140の構成が示されている。
 RFIC140は、スイッチ31A~31D,33A~33D,37と、パワーアンプ32AT~32DTと、ローノイズアンプ32AR~32DRと、減衰器34A~34Dと、移相器35A~35Dと、信号合成/分波器36と、ミキサ38と、増幅回路39とを備える。
 RFIC140は、たとえば、アンテナ素子10に含まれる複数の放射電極110に対応する回路要素(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、および移相器)を含む1チップの集積回路部品として形成される。あるいは、当該回路要素については、RFIC140とは別に、放射電極110毎に1チップの集積回路部品として形成されてもよい。
 高周波信号を受信する場合、スイッチ31A~31D,33A~33Dがローノイズアンプ32AR~32DR側へ切換えられるとともに、スイッチ37が増幅回路39の受信側アンプに接続される。
 放射電極110で受信された高周波信号は、スイッチ31A~31Dから移相器35A~35Dまでの各信号経路を経由し、信号合成/分波器36で合波され、ミキサ38でベースバンド信号にダウンコンバートされ、増幅回路39で増幅されてBBIC2000へ伝達される。
 高周波信号をアンテナ素子10から送信する場合には、スイッチ31A~31D,33A~33Dがパワーアンプ32AT~32DT側へ切換えられるとともに、スイッチ37が増幅回路39の送信側アンプに接続される。
 BBIC2000から伝達されたベースバンド信号は、増幅回路39で増幅され、ミキサ38でアップコンバートされる。アップコンバートされた高周波信号は、信号合成/分波器36で4分波され、移相器35A~35Dからスイッチ31A~31Dまでの各信号経路を通過して放射電極110に給電される。各信号経路に配置された移相器35A~35Dの移相度が個別に調整されることにより、アンテナ素子10の指向性を調整することが可能となる。
 アンテナ素子10の放射特性は、放射電極110と容量結合する接地電極の領域の広さに影響を受ける。以下では、実施の形態1の参考例に係るアンテナ素子を用いて、放射電極110と容量結合する接地電極の領域の広さとアンテナアレイの放射特性との関係について説明する。
 図2は、実施の形態1の参考例に係るアンテナ素子900を備えるアンテナモジュール1900をX軸方向から平面視した図である。図2において、X軸、Y軸、およびZ軸は互いに直交している。図4、図6~図14においても同様である。
 図2に示されるように、アンテナモジュール1900は、アンテナ素子900と、RFIC140とを備える。アンテナ素子900は、放射電極110と、接地電極131(第1接地電極)と、ビア導体151と、誘電体基板920とを備える。放射電極110の法線方向は、Z軸方向である。放射電極110および接地電極131は、誘電体基板920の厚み方向(Z軸方向)において対向するように誘電体基板920に配置されている。放射電極110は、接地電極131と容量結合する。
 ビア導体151は、接地電極131を貫通し、放射電極110とRFIC140とを接続している。ビア導体151は、接地電極131から絶縁されている。
 RFIC140は、ビア導体151を介して放射電極110に高周波信号を供給する。RFIC140は、ビア導体151を介して放射電極110から高周波信号を受ける。
 放射電極110のY軸方向の幅は、2.5mmである。放射電極110のY軸方向の両側における誘電体基板920との各間隔は、0.25mmである。放射電極110のY軸方向の両側における接地電極131との各間隔は、W1である。接地電極131のY軸方向の幅は、2・W1+2.5(mm)である。
 図3は、図2に示される接地電極131のY軸方向の幅を変化させた場合の、アンテナ素子900の反射特性(周波数と反射損失(RL:Return Loss)との関係)のシミュレーション結果を示す図である。図3においては、間隔W1が、0.25mm,0.50mm,0.75mmである各場合の反射特性が示されている。
 反射損失が大きい程、RFIC140から放射電極110に供給された高周波信号のうち、放射電極110から外部に放射された信号の割合が大きいことを意味する。そのため、しきい値以上の反射損失が実現される帯域幅の広さは、アンテナ素子900の放射特性の評価指標の1つになる。すなわち、当該帯域幅が広いほど、アンテナ素子900の放射特性は良好といえる。そこで、図3においては、反射損失が6dB以上となる帯域幅の広さに着目して、アンテナ素子900の放射特性の比較を行なう。図5においても同様である。
 図3に示されるように、間隔W1が広いほど、放射電極110と容量結合する接地電極131の領域が広いため、反射損失が6dB以上となる帯域幅は広い。すなわち、放射電極110と容量結合する接地電極131の領域が広いほど、アンテナ素子900の放射特性は改善される。
 しかし、アンテナ素子900が配置されるスペースによっては、放射電極110と対向する接地電極131の形状および配置が制限され、放射電極110と容量結合する接地電極131の領域を広げられない場合がある。実施の形態1に係るアンテナ素子は、そのようなスペースに配置される場合でも放射特性を改善することができる。以下では、実施の形態1に係るアンテナ素子について詳細に説明する。
 [実施の形態1]
 図4は、実施の形態1に係るアンテナ素子100を備えるアンテナモジュール1100をX軸方向から平面視した図である。アンテナモジュール1100の構成は、図2のアンテナモジュール1900のアンテナ素子900が100に置き換えられた構成である。図4のアンテナ素子100の構成は、図2のアンテナ素子900の誘電体基板920が120に置き換えられているとともに、接地電極132(第2接地電極)およびビア導体152が追加された構成である。これら以外の構成は同様であるため、説明を繰り返さない。
 図4に示されるように、誘電体基板120は、平板状の部分101(第1部分)と、部分102(第2部分)とを有する。Z軸方向において、部分102は、部分101より薄い。誘電体基板120は、一体の誘電体から形成されている。すなわち、誘電体基板120は、或る誘電率を有する誘電体材料によって一体成型された基板である。
 放射電極110および接地電極132は、誘電体基板120の特定表面103において間隔を空けて配置されている。ビア導体152は、Z軸方向に延在し、接地電極131と132とを接続している。放射電極110は、接地電極132およびビア導体152と容量結合する。間隔W2は、放射電極110と接地電極132とのY軸方向の間隔である。なお、放射電極110および接地電極132は、誘電体基板120の内部に配置されてもよい。
 部分102において接地電極132が配置されていない側には、スペースSpcが形成されている。スペースSpcには、他の回路素子が配置される。そのため、接地電極131のY軸方向の幅をスペースSpcに広げることができない。アンテナ素子100においては、接地電極131をスペースSpcに広げることによっては、アンテナ素子100の放射特性を改善することができない。
 そこで、実施の形態1においては、接地電極132を部分102に配置して、接地電極131と132とをビア導体152によって接続する。放射電極110が接地電極131に加えて接地電極132およびビア導体152とも容量結合することにより、アンテナ素子100の放射特性を改善することができる。
 図5は、図4に示される放射電極110と接地電極132とのY軸方向の間隔W2を変化させた場合の、アンテナ素子100の反射特性のシミュレーション結果を示す図である。図5においては、間隔W2が、0.2mm,0.4mm,0.6mmである各場合の反射特性が示されている。
 図5に示されるように、反射損失が6dB以上となる帯域幅は、間隔W2が0.2mm,0.4mm,0.6mm,1.0mm,1.4mmの順に広い。放射電極110と接地電極132との間隔W2を適切な距離に調節することにより、アンテナ素子100の放射特性をさらに改善することができる。
 [実施の形態1の変形例1]
 実施の形態1においては、放射電極と第2接地電極とが誘電体基板の特定表面上に配置されている場合について説明した。放射電極と第2接地電極とは異なる表面上に配置されていてもよい。
 図6は、実施の形態1の変形例1に係るアンテナ素子100Aを備えるアンテナモジュール1100AをX軸方向から平面視した図である。アンテナモジュール1100Aの構成は、図4のアンテナ素子100が100Aに置き換えられた構成である。図6のアンテナ素子100Aの構成は、図4の誘電体基板120が120Aに置き換えられた構成である。図6の誘電体基板120Aの構成は、図4の部分102が102Aに置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。
 図6に示されるように、部分101と102Aとは、Z軸方向に互いにずらされて配置され、段差を形成している。接地電極132は、Z軸方向において放射電極110から離間している。そのため、接地電極132は、Y軸方向において放射電極110から離間していなくてもよい。
 [実施の形態1の変形例2]
 実施の形態1および変形例1においては、誘電体基板が一体の誘電体から形成されている場合について説明した。誘電体基板は、複数の誘電体層から形成されてもよい。
 図7は、実施の形態1の変形例2に係るアンテナ素子100Bを備えるアンテナモジュール1100BをX軸方向から平面視した図である。アンテナモジュール1100Bの構成は、図4のアンテナ素子100が100Bに置き換えられた構成である。図7のアンテナ素子100Bの構成は、図4の誘電体基板120が120Bに置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。
 図7に示されるように、誘電体基板120Bは、誘電体層121(第1誘電体層)と誘電体層122(第2誘電体層)とを含む。誘電体層121は、第1誘電率を有する誘電体材料によって成型された第1基板である。誘電体層122は、第2誘電率を有する誘電体材料によって成型された第2基板である。誘電体基板120は、誘電体層121と122とが熱による溶着あるいは接続部材(たとえばはんだバンプ)による接着等により一体化された基板である。第1誘電率と第2誘電率とは異なっていてもよい。
 誘電体層121は、部分101および102に亘って形成されている。誘電体層121は、特定表面103を含む。誘電体層122は、部分101に形成されている。接地電極131は、誘電体層122に配置されている。放射電極110および接地電極132は、誘電体層121の内部に配置されてもよい。
 [実施の形態1の変形例3,4]
 実施の形態1および変形例1,2においては、アンテナ素子の放射電極が1枚の電極から形成されている場合について説明した。実施の形態1の変形例3,4においては、アンテナ素子の放射電極が、給電素子および無給電素子によって形成されたスタック構造を有する場合について説明する。
 図8は、実施の形態1の変形例3に係るアンテナ素子100Cを備えるアンテナモジュール1100CをX軸方向から平面視した図である。アンテナモジュール1100Cの構成は、図4のアンテナ素子100が100Cに置き換えられた構成である。図8のアンテナ素子100Cの構成は、図4の放射電極110が110Cに置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。
 図8に示されるように、放射電極110Cは、給電素子111と無給電素子112とを含む。給電素子111は、特定表面103に配置されている。給電素子111は、誘電体基板120の内部に配置されてもよい。給電素子111は、接地電極132およびビア導体152と容量結合する。
 無給電素子112は、ビア導体152の延在方向(Z軸方向)において、接地電極131と給電素子111との間に配置されている。ビア導体151は、無給電素子112を貫通し、給電素子111とRFIC140とを接続する。
 給電素子111が接地電極131に加えて接地電極132およびビア導体152とも容量結合することにより、アンテナ素子100Cによっても放射特性を改善することができる。また、無給電素子112についても、給電素子111と同様の効果により、放射特性を改善することができる。
 図9は、実施の形態1の変形例4に係るアンテナ素子100Dを備えるアンテナモジュール1100DをX軸方向から平面視した図である。アンテナモジュール1100Dの構成は、図4のアンテナ素子100が100Dに置き換えられた構成である。図9のアンテナ素子100Dの構成は、図4の放射電極110および誘電体基板120が、放射電極110Dおよび誘電体基板120Dに置き換えられた構成である。図10の誘電体基板120Dの構成は、図4の部分102が102Dに置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。
 図9に示されるように、放射電極110Dは、給電素子111Dと、無給電素子112Dとを含む。給電素子111Dは、Z軸方向において、接地電極131と無給電素子112Dとの間に配置されている。ビア導体151は、給電素子111DとRFIC140とを接続する。
 距離H1は、給電素子111Dと接地電極131とのZ軸方向の距離である。距離H2は、接地電極132と131とのZ軸方向の距離である。距離H3は、無給電素子112Dと接地電極131とのZ軸方向の距離である。距離H2は、距離H1よりも長く、かつ、距離H3よりも短い。距離H1~H3の大小関係をこのように設定することにより、給電素子111Dおよび無給電素子112Dの指向性を調整することができる。
 以上、実施の形態1および変形例1~4に係るアンテナ素子によれば、放射特性を改善することができる。
 [実施の形態2]
 実施の形態2においては、アンテナ素子の誘電体基板が屈曲している場合について説明する。
 図10は、実施の形態2に係るアンテナ素子200を備えるアンテナモジュール1200の外観斜視図である。図11は、図10のアンテナモジュール1200をX軸方向から平面視した図である。なお、図10においては、各構成要素の接続関係を見易くするため、図11に示される接地電極281~284、および接地電極281~284に接続される複数のビア導体が示されていない。
 図10および図11に示されるように、アンテナモジュール1200は、アンテナ素子200と、RFIC240とを備える。アンテナ素子200は、放射電極211~218と、誘電体基板220と、接地電極231(第1接地電極)と、接地電極232~235(第2接地電極)と、接地電極236と、ビア導体251~266と、線路導体パターン271~274と、接地電極281~284とを備える。
 誘電体基板220は、平板上の部分201(第1部分)と、部分202(第2部分)と、平板状の部分203とを有する。部分202は、部分201および203よりも薄い。誘電体基板220は、部分202において屈曲している。なお、誘電体基板220は、部分202に加えて屈曲する部分をさらに有し、RFIC240の端部を巻回するように形成されてもよい。
 誘電体基板220は、誘電体層221(第1誘電体層)と、誘電体層222(第2誘電体層)と、誘電体層223とを含む。誘電体層221は、部分201~203に亘って形成されている。誘電体層221は、特定表面204を含む。誘電体層221は、柔軟性のある素材(フレキシブル素材)から形成されている。誘電体層221は、部分202において屈曲している。誘電体層222は、部分201に形成されている。誘電体層223は、部分203に形成されている。なお、誘電体基板220は、一体の誘電体から形成されていてもよい。
 放射電極211,213,215,217は、部分201の特定表面204においてX軸に沿うように配置されている。放射電極211,213,215,217の法線方向は、Z軸方向である。
 接地電極231は、Z軸方向において放射電極211,213,215,217の各々と対向するように誘電体層222に配置されている。接地電極231は、Z軸方向において放射電極211,213,215,217の各々と容量結合する。
 ビア導体251,255,259,263は、接地電極231を貫通し、放射電極211,213,215,217とRFIC240とをそれぞれ接続している。ビア導体251,255,259,263は、接地電極231から絶縁されている。
 RFIC240は、ビア導体251,255,259,263を介して、放射電極211,213,215,217に高周波信号をそれぞれ供給する。RFIC240は、ビア導体251,255,259,263を介して、放射電極211,213,215,217から高周波信号をそれぞれ受ける。
 接地電極232~235は、部分202の特定表面204においてX軸に沿うように配置されている。接地電極232~235は、放射電極211~218から離間している。接地電極232~235は、放射電極211~218と容量結合する。ビア導体252,256,260,264は、接地電極231と232~235とをそれぞれ接続している。放射電極211,213,215,217は、ビア導体252,256,260,264と容量結合する。なお、ビア導体252,256,260,264は、誘電体基板220の厚み方向(Z軸方向)に沿うように形成されている必要はなく、当該厚み方向に対して斜めに形成されてもよい。
 放射電極212,214,216,218は、部分203の特定表面204においてX軸に沿うように配置されている。放射電極212,214,216,218の法線方向は、Y軸方向である。
 接地電極236は、部分201~203に亘って誘電体層221に形成されている。接地電極236は、Y軸方向において放射電極212,214,216,218と対向している。接地電極236は、放射電極212,214,216,218と容量結合する。接地電極236は、接地電極231に接続されている。なお、部分203においても、部分201における放射電極211,213,215,217と同様に、放射電極212,214,216,218は、接地電極232~235とそれぞれ容量結合するとともに、接地電極232~235と236とを接続するビア導体と容量結合してもよい。
 接地電極281~284は、部分201~203に亘って形成され、X軸に沿うように誘電体層221に配置されている。接地電極281~284は、複数のビア導体によって接地電極236に接続されている。接地電極281~284は、接地電極232~235にそれぞれ接続されている。
 線路導体パターン271~274は、部分201~203に亘って誘電体層221に形成されている。線路導体パターン271は、接地電極236と281との間に形成されている。線路導体パターン272は、接地電極236と282との間に形成されている。線路導体パターン273は、接地電極236と283との間に形成されている。線路導体パターン274は、接地電極236と284との間に形成されている。
 ビア導体253,257,261,265は、接地電極231を貫通し、線路導体パターン271~274とRFIC240とをそれぞれ接続している。ビア導体253,257,261,265は、接地電極231から絶縁されている。
 ビア導体254は、線路導体パターン271と放射電極212とを接続している。ビア導体258は、線路導体パターン272と放射電極214とを接続している。ビア導体262は、線路導体パターン273と放射電極216とを接続している。ビア導体266は、線路導体パターン274と放射電極218とを接続している。
 RFIC240は、線路導体パターン271~274を介して、放射電極212,214,216,218に高周波信号をそれぞれ供給する。RFIC240は、線路導体パターン271~274を介して、放射電極212,214,216,218から高周波信号をそれぞれ受ける。
 アンテナ素子200においては、誘電体基板220が部分202において屈曲しているため、放射電極211,213,215,217の法線方向(Z軸方向)と、放射電極212,214,216,218の法線方向(Z軸方向)とが異なる。アンテナモジュール1200においては、複数の放射電極の法線が平行である場合に比べて、励振方向が異なる偏波を有する高周波信号の送信および受信が容易になる。
 また、アンテナ素子200においては、誘電体層221がフレキシブル素材から形成されているため、屈曲している部分202において発生する応力を低減することができる。そのため、部分201および203において、特定表面204の平面性を維持することができる。放射電極211~218の法線方向が所望の方向からずれることを抑制することができる。その結果、誘電体基板220を屈曲することによるアンテナ素子200の特性の低下を抑制することができる。
 [実施の形態2の変形例]
 実施の形態2においては、アンテナ素子の誘電体基板が屈曲している部分を1つ有する場合について説明した。当該誘電体基板は、屈曲している部分を複数有していてもよい。実施の形態2の変形例においては、当該誘電体基板が屈曲している部分を2つ有している場合について説明する。
 図12は、実施の形態2に係る変形例に係るアンテナモジュール1200AをX軸方向から平面視した図である。アンテナモジュール1200Aの構成は、図11のアンテナモジュール1200のアンテナ素子200が200Aに置き換えられた構成である。アンテナ素子200Aの構成は、誘電体基板220が220Aに置き換えられているとともに、放射電極212A,214A,216A,218A,接地電極232A~236A,281A~284A,ビア導体252A,256A,260A,264A,ビア導体253A,257A,261A,265A,ビア導体254A,258A,262A,266A,線路導体パターン271A~274Aが追加された構成である。誘電体基板220Aの構成は、誘電体基板220の誘電体層221が221Aに置き換えられているとともに、誘電体基板220に部分202A,203A,および誘電体層223Aが追加された構成である。これら以外は同様であるため、説明を繰り返さない。
 図12に示されるように、部分203Aは、平板状である。部分202Aは、部分201および203Aよりも薄い。誘電体基板220Aにおいて、部分202Aは、Y軸方向に延在する部分201とZ軸方向に延在する部分203Aとを接続している。
 誘電体層221Aは、柔軟性のある素材(フレキシブル素材)から形成されている。誘電体層221Aは、特定表面204Aを含む。誘電体基板220Aは、部分202に加えて部分202A(第2部分)においても屈曲している。誘電体層223Aは、部分203Aに形成されている。なお、誘電体基板220Aは、一体の誘電体から形成されていてもよい。
 接地電極232A~235Aは、部分202Aの特定表面204AにおいてX軸に沿うように配置されている。接地電極232A~235Aは、放射電極211,213,215,217,212A,214A,216A,218Aから離間している。接地電極232A~235Aは、放射電極211,213,215,217,212A,214A,216A,218Aと容量結合する。
 ビア導体252A,256A,260A,264Aは、接地電極231と232A~235Aとをそれぞれ接続している。放射電極211,213,215,217は、ビア導体252A,256A,260A,264Aと容量結合する。なお、ビア導体252A,256A,260A,264Aは、誘電体基板220Aの厚み方向(Z軸方向)に沿うように形成されている必要はなく、当該厚み方向に対して斜めに形成されてもよい。
 放射電極212A,214A,216A,218Aは、部分203Aの特定表面204AにおいてX軸に沿うように配置されている。放射電極212A,214A,216A,218Aの法線方向は、Y軸方向である。
 接地電極236Aは、部分201,202A,203Aに亘って誘電体層221Aに形成されている。接地電極236Aは、Y軸方向において放射電極212A,214A,216A,218Aと対向している。接地電極236Aは、放射電極212A,214A,216A,218Aと容量結合する。接地電極236Aは、接地電極231に接続されている。なお、部分203Aにおいても、部分201における放射電極211,213,215,217と同様に、放射電極212A,214A,216A,218Aは、接地電極232A~235Aとそれぞれ容量結合するとともに、接地電極232A~235Aと236Aとを接続するビア導体と容量結合してもよい。
 接地電極281A~284Aは、部分201,202A,203Aに亘って形成され、X軸に沿うように誘電体層221Aに配置されている。接地電極281A~284Aは、複数のビア導体によって接地電極236Aに接続されている。接地電極281A~284Aは、接地電極232A~235Aにそれぞれ接続されている。
 線路導体パターン271A~274Aは、部分201,202A,203Aに亘って誘電体層221Aに形成されている。線路導体パターン271Aは、接地電極236Aと281Aとの間に形成されている。線路導体パターン272Aは、接地電極236Aと282Aとの間に形成されている。線路導体パターン273Aは、接地電極236Aと283Aとの間に形成されている。線路導体パターン274Aは、接地電極236Aと284Aとの間に形成されている。
 ビア導体253A,257A,261A,265Aは、接地電極231を貫通し、線路導体パターン271A~274AとRFIC240とをそれぞれ接続している。ビア導体253A,257A,261A,265Aは、接地電極231から絶縁されている。
 ビア導体254Aは、線路導体パターン271Aと放射電極212Aとを接続している。ビア導体258Aは、線路導体パターン272Aと放射電極214Aとを接続している。ビア導体262Aは、線路導体パターン273Aと放射電極216Aとを接続している。ビア導体266Aは、線路導体パターン274Aと放射電極218Aとを接続している。
 RFIC240は、線路導体パターン271A~274Aを介して、放射電極212A,214A,216A,218Aに高周波信号をそれぞれ供給する。RFIC240は、線路導体パターン271A~274Aを介して、放射電極212A,214A,216A,218Aから高周波信号をそれぞれ受ける。
 アンテナ素子200Aにおいては、誘電体基板220Aが部分202,202Aにおいて屈曲しているため、放射電極211,213,215,217の法線方向(Z軸方向)と、放射電極212,214,216,218,212A,214A,216A,218Aの法線方向(Z軸方向)とが異なる。アンテナモジュール1200Aにおいては、複数の放射電極の法線が平行である場合に比べて、励振方向が異なる偏波を有する高周波信号の送信および受信が容易になる。
 また、アンテナ素子200Aにおいては、誘電体層221Aがフレキシブル素材から形成されているため、屈曲している部分202,202Aにおいて発生する応力を低減することができる。そのため、部分201,203,203Aにおいて、特定表面204Aの平面性を維持することができる。放射電極211~218,212A,214A,216A,218Aの法線方向が所望の方向からずれることを抑制することができる。その結果、誘電体基板220Aを屈曲することによるアンテナ素子200Aの特性の低下を抑制することができる。
 以上、実施の形態2および変形例に係るアンテナ素子によれば、放射特性を改善することができる。
 [実施の形態3]
 実施の形態3においては、実施の形態2に係るアンテナ素子を備える通信装置について説明する。
 図13は、実施の形態3に係る通信装置3000をX軸方向から平面視した図である。図13に示されるように、通信装置3000は、BBIC2000と、アンテナモジュール1300と、実装基板320とを備える。アンテナモジュール1300の構成は、図11に示されるアンテナモジュール1200にコネクタ321が追加された構成である。これ以外は同様であるため、説明を繰り返さない。
 図13に示されるように、コネクタ321は、部分201の誘電体層222に配置されている。コネクタ321は、誘電体層222の内部に形成された給電配線によってRFIC240に接続されている。実装基板320には、コネクタ322が配置されている。コネクタ322は、コネクタ321に着脱可能に接続されている。
 BBIC2000は、はんだバンプなどの接続部材によって、実装基板320の表面に配置されている。BBIC2000は、実装基板320の内部に形成された給電配線によってコネクタ322に接続されている。BBIC2000は、当該給電配線およびコネクタ322を介して、RFIC240にベースバンド信号を送信するとともにRFIC240からベースバンド信号を受信する。なお、BBIC2000とRFIC240とは、FPC(Flexible Printed Circuits)を引き回すことにより、より遠くから接続され得る。
 図14は、実施の形態3の変形例に係る通信装置3000AをX軸方向から平面視した図である。図14に示されるように、通信装置3000Aは、BBIC2000と、アンテナモジュール1300Aと、実装基板320Aとを備える。アンテナモジュール1300Aの構成は、図11のアンテナモジュール1200のアンテナ素子200が300に置き換えられた構成である。図14のアンテナ素子300は、図11のアンテナ素子200から放射電極212,214,216,218、ビア導体254,258,262,266が除かれ、誘電体基板220が310に置き換えられ、およびコネクタ331が追加された構成である。誘電体基板310の構成は、誘電体基板220から誘電体層223が除かれた構成である。これら以外は同様であるため、説明を繰り返さない。
 図14に示されるように、コネクタ331は、部分203の誘電体層221に配置されている。コネクタ331は、線路導体パターン271~274に接続されている。BBIC2000は、はんだバンプなどの接続部材によって、実装基板320Aの表面に配置されている。実装基板320Aには、コネクタ332が配置されている。コネクタ332は、コネクタ331に着脱可能に接続されている。
 BBIC2000は、実装基板320Aの内部に形成された給電配線によってコネクタ332に接続されている。BBIC2000は、当該給電配線、コネクタ332,331、線路導体パターン271~274、およびビア導体253,257,261,265を介して、RFIC240にベースバンド信号を送信するとともにRFIC240からベースバンド信号を受信する。
 以上、実施の形態3および変形例に係る通信装置によれば、アンテナ素子の放射特性を改善することができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,100,100A~100D,200,200A,300,900 アンテナ素子、31A~31D,33A~33D,37 スイッチ、32AR~32DR ローノイズアンプ、32AT~32DT パワーアンプ、34A~34D 減衰器、35A~35D 移相器、36 信号合成/分波器、38 ミキサ、39 増幅回路、101,102,201~203,202A,203A 部分、103,204 特定表面、110,211~218,212A,214A,216A,218A 放射電極、120,120A,120B,120D,220,220A,310,920 誘電体基板、121,122,221~223,221A,223A 誘電体層、131,132,231~236,232A~236A,281~284,281A~284A 接地電極、140,240 RFIC、151,152,251~266,252A~254A,256A~258A,260A~262A,264A~266A ビア導体、271~274,271A~274A 線路導体パターン、320,320A 実装基板、321,322,331,332 コネクタ、1100,1100A~1100D,1200,1200A,1300,1300A,1900 アンテナモジュール、3000,3000A 通信装置。

Claims (11)

  1.  平板状の第1部分、および前記第1部分よりも薄い第2部分を有する誘電体基板と、
     前記第1部分の厚み方向において対向するように前記第1部分に配置された放射電極および第1接地電極と、
     前記放射電極から離間し、前記第2部分の厚み方向において前記放射電極と対向しないように前記第2部分に配置された第2接地電極と、
     前記第1接地電極と前記第2接地電極とを接続するビア導体とを備え、
     前記放射電極は、前記第2接地電極および前記ビア導体と容量結合する、アンテナ素子。
  2.  前記放射電極と前記第1接地電極との前記ビア導体の延在方向の距離は、前記放射電極と前記第2接地電極との前記延在方向の距離以上である、請求項1に記載のアンテナ素子。
  3.  前記放射電極および前記第2接地電極は、前記誘電体基板の特定表面に配置されている、請求項1または2に記載のアンテナ素子。
  4.  前記誘電体基板は、一体の誘電体から形成されている、請求項3に記載のアンテナ素子。
  5.  前記誘電体基板は、
     前記第1部分および前記第2部分に亘って形成され、前記特定表面を有する第1誘電体層と、
     前記第1部分に形成された第2誘電体層とを含み、
     前記第1接地電極は、前記第2誘電体層に配置されている、請求項3に記載のアンテナ素子。
  6.  前記誘電体基板は、前記第2部分において屈曲している、請求項4または5に記載のアンテナ素子。
  7.  前記第2部分は、柔軟性を有する素材から形成されている、請求項6に記載のアンテナ素子。
  8.  前記放射電極は、給電素子と無給電素子とを含み、
     前記無給電素子は、前記ビア導体の延在方向において前記第1接地電極と前記給電素子との間に配置され、
     前記給電素子と前記第1接地電極との前記延在方向の距離は、前記第2接地電極と前記第1接地電極との前記延在方向の距離と等しい、請求項1に記載のアンテナ素子。
  9.  前記放射電極は、給電素子と無給電素子とを含み、
     前記給電素子は、前記ビア導体の延在方向において前記第1接地電極と前記無給電素子との間に配置され、
     前記第2接地電極と前記第1接地電極との前記延在方向の距離は、前記給電素子と前記第1接地電極との前記延在方向の距離よりも長く、かつ、前記無給電素子と前記第1接地電極との前記延在方向の距離よりも短い、請求項1に記載のアンテナ素子。
  10.  請求項1~9のいずれか1項に記載のアンテナ素子と、
     前記アンテナ素子に高周波信号を供給する高周波素子とを備える、アンテナモジュール。
  11.  請求項10に記載のアンテナモジュールを備える、通信装置。
PCT/JP2019/029676 2018-08-09 2019-07-29 アンテナ素子、アンテナモジュールおよび通信装置 WO2020031777A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/155,300 US11527816B2 (en) 2018-08-09 2021-01-22 Antenna element, antenna module, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018150511 2018-08-09
JP2018-150511 2018-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/155,300 Continuation US11527816B2 (en) 2018-08-09 2021-01-22 Antenna element, antenna module, and communication device

Publications (1)

Publication Number Publication Date
WO2020031777A1 true WO2020031777A1 (ja) 2020-02-13

Family

ID=69414706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029676 WO2020031777A1 (ja) 2018-08-09 2019-07-29 アンテナ素子、アンテナモジュールおよび通信装置

Country Status (2)

Country Link
US (1) US11527816B2 (ja)
WO (1) WO2020031777A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659332A (zh) * 2021-08-06 2021-11-16 超讯通信股份有限公司 有源功放集成天线及通信设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230050442A (ko) * 2020-08-21 2023-04-14 가부시키가이샤 무라타 세이사쿠쇼 안테나 모듈 및 그것을 탑재한 통신 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013327A (ja) * 2005-06-28 2007-01-18 Tdk Corp アンテナ装置
US20070273588A1 (en) * 2006-05-24 2007-11-29 Samsung Electronics Co., Ltd. Patch antenna for local area communications
JP2008061030A (ja) * 2006-08-31 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
WO2017051526A1 (ja) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 アンテナ装置
WO2017051649A1 (ja) * 2015-09-25 2017-03-30 株式会社村田製作所 アンテナモジュールおよび電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044891A1 (fr) * 2001-11-20 2003-05-30 Ube Industries, Ltd. Module d'antenne dielectrique
JP2003332830A (ja) 2002-05-09 2003-11-21 Matsushita Electric Ind Co Ltd 平面アンテナ、無線端末装置および無線基地局
WO2011004656A1 (ja) * 2009-07-09 2011-01-13 株式会社村田製作所 アンテナ
JP6339319B2 (ja) 2013-04-16 2018-06-06 日本ピラー工業株式会社 マイクロストリップアンテナ及び携帯型端末
CN107078405B (zh) 2014-10-20 2021-03-05 株式会社村田制作所 无线通信模块
US11088468B2 (en) * 2017-12-28 2021-08-10 Samsung Electro-Mechanics Co., Ltd. Antenna module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013327A (ja) * 2005-06-28 2007-01-18 Tdk Corp アンテナ装置
US20070273588A1 (en) * 2006-05-24 2007-11-29 Samsung Electronics Co., Ltd. Patch antenna for local area communications
JP2008061030A (ja) * 2006-08-31 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
WO2017051526A1 (ja) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 アンテナ装置
WO2017051649A1 (ja) * 2015-09-25 2017-03-30 株式会社村田製作所 アンテナモジュールおよび電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659332A (zh) * 2021-08-06 2021-11-16 超讯通信股份有限公司 有源功放集成天线及通信设备

Also Published As

Publication number Publication date
US20210143531A1 (en) 2021-05-13
US11527816B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6930591B2 (ja) アンテナモジュールおよび通信装置
JP6750738B2 (ja) アンテナモジュールおよび通信装置
US11171421B2 (en) Antenna module and communication device equipped with the same
CN111742447B (zh) 天线模块和搭载有天线模块的通信装置
US11581635B2 (en) Antenna module
US11936096B2 (en) Wiring substrate, antenna module, and communication device
JP6760541B2 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020217689A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP7375936B2 (ja) アンテナモジュール、接続部材、およびそれを搭載した通信装置
WO2020050341A1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
CN114026965A (zh) 柔性基板和具备柔性基板的天线模块
CN110933957A (zh) 天线装置、天线模块以及在该天线模块中使用的电路基板
WO2020031777A1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2020031876A1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
WO2023120357A1 (ja) アンテナモジュールおよび通信装置
WO2023032805A1 (ja) アンテナ装置、アンテナモジュールおよび通信装置
US12126070B2 (en) Antenna module and communication device equipped with the same
US20220181766A1 (en) Antenna module and communication device equipped with the same
WO2022230427A1 (ja) アンテナ装置
WO2022185874A1 (ja) アンテナモジュールおよびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP