WO2020031774A1 - 排熱回収ボイラ - Google Patents

排熱回収ボイラ Download PDF

Info

Publication number
WO2020031774A1
WO2020031774A1 PCT/JP2019/029663 JP2019029663W WO2020031774A1 WO 2020031774 A1 WO2020031774 A1 WO 2020031774A1 JP 2019029663 W JP2019029663 W JP 2019029663W WO 2020031774 A1 WO2020031774 A1 WO 2020031774A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
heat recovery
exhaust gas
recovery boiler
exhaust
Prior art date
Application number
PCT/JP2019/029663
Other languages
English (en)
French (fr)
Inventor
森川 昭二
風間 健一
匡博 伊福
浩三 伊豆田
石川 雅之
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201980006179.2A priority Critical patent/CN111433515B/zh
Publication of WO2020031774A1 publication Critical patent/WO2020031774A1/ja
Priority to PH12020550601A priority patent/PH12020550601A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/24Supporting, suspending, or setting arrangements, e.g. heat shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to an exhaust heat recovery boiler that introduces exhaust gas discharged from a gas turbine into a casing and absorbs the heat of the exhaust gas with an internal heat exchanger to generate steam.
  • the present invention relates to an exhaust heat recovery boiler divided into a plurality of blocks along.
  • a combined cycle power plant which is receiving attention as part of high-efficiency power generation, first generates power using a gas turbine, and recovers heat in exhaust gas discharged from the gas turbine in a waste heat recovery boiler (HRSG).
  • the steam generated by the recovery boiler drives a steam turbine to generate power.
  • This combined cycle power plant can perform both power generation using a gas turbine and power generation using a steam turbine at the same time, so the power generation efficiency is high and the gas turbine has excellent load responsiveness, which is enough to cope with a sudden increase in power demand. There is also the advantage that it can be done.
  • a heat exchanger such as a superheater, an evaporator, and a economizer that collects heat of exhaust gas from a gas turbine is disposed in a casing of an exhaust heat recovery boiler.
  • a denitration device is disposed for denitration of exhaust gas.
  • the casing has a housing structure composed of left and right side surfaces and upper and lower wall surfaces. After the exhaust gas exchanges heat with the heat exchanger in the casing, the exhaust gas is radiated into the atmosphere from a chimney provided at an outlet of the casing.
  • the casing needs to support a variety of heavy equipment and must have sufficient strength against horizontal forces acting in the event of an earthquake or storm. It is composed of Furthermore, since the temperature of the exhaust gas flowing in the casing is high, a heat insulating material is lined inside the casing. Since the casing is a large-sized structure, the casing is usually transported in small modules divided into a plurality of blocks, and the small modules are assembled on site.
  • the casing is divided into a plurality of blocks at pillar positions, and each pillar is formed of a U-shaped channel steel so that two ends are formed at two ends.
  • Unit blocks surrounded by channel steel are constructed and transported by such modularized blocks for on-site assembly.
  • a stiffener and an inner case are welded between columns in the block at a factory, and a heat insulating material having a predetermined thickness is attached to the inner case.
  • the channel steels of adjacent blocks on the site are connected back to back, and the webs of these channel steels are fastened with bolts.
  • FIG. 8 is a cross-sectional view showing the wall structure of the casing divided into a plurality of blocks as described above.
  • the casing 100 is formed by connecting the channel steels 101 of the unit blocks, and a heat insulating material 103 having a predetermined thickness is attached to the inner case 102 welded between the channel steels 101 of the respective blocks. ing.
  • a thick heat insulating material 103 is attached to the block installed on the upstream side of the exhaust gas.
  • a thin heat insulating material 103 is attached to a block installed on the downstream side.
  • the present invention has been made in view of such a situation of the related art, and an object of the present invention is to provide an exhaust heat recovery boiler which can be flattened without a step on an inner surface side of a casing.
  • a typical present invention includes a casing through which exhaust gas from a gas turbine is guided, a heat insulating material covering an inner surface side of the casing, and a heat exchanger disposed inside the casing.
  • the block In the exhaust heat recovery boiler, wherein the casing is divided into a plurality of blocks along the flow direction of the exhaust gas, the block has a wall structure in which both ends along the flow direction of the exhaust gas are surrounded by a grooved steel.
  • the casing can be flattened without any step on the inner surface side.
  • FIG. 3 is a plan view showing an installation state of a pressure receiving member applied to the casing of FIG. 2. It is a side view which shows the installation state of this pressure receiving member. It is a front view showing the installation state of the pressure receiving member. It is a perspective view showing the installation state of the pressure receiving member. It is a cross-sectional view which shows the wall surface structure of the casing which concerns on a modification. It is a cross-sectional view which shows the wall surface structure of the casing which concerns on a prior art example.
  • FIG. 1 is a side view showing the internal structure of the heat recovery steam generator according to the embodiment.
  • exhaust gas 1 from a gas turbine flows into a casing 2 of an exhaust heat recovery boiler (HRSG), and a superheater 3 and a first The evaporator 4, the denitration device 5, the second evaporator 6, and the economizer 7 are arranged.
  • Exhaust gas 1 flowing into the casing 2 comes into contact with the heat exchangers constituting the heat transfer surfaces of the superheater 3, the first evaporator 4, the second evaporator 6, and the economizer 7, and is heat-absorbed. Thereafter, the relatively low-temperature gas is released into the atmosphere from a chimney 8 provided at the outlet of the casing 2.
  • the casing 2 has a housing structure including left and right sides and upper and lower walls, and is supported on the ground via a frame 9.
  • the casing 2 is transported in small modules divided into a plurality of blocks, and the small modules are assembled and installed on site.
  • FIG. 2 is a cross-sectional view showing the wall structure of the casing 2.
  • the casing 2 is divided into five blocks a, b, c, d, and e.
  • the casing 2 is divided into five blocks a, b, c, d, and e at positions of columns, and the divided positions of these blocks a to e are the superheater 3 and the first evaporator. 4, corresponding to the installation positions of the denitration device 5, the second evaporator 6, and the economizer 7.
  • the block a is outside the superheater 3
  • the block b is outside the first evaporator 4
  • the block c is outside the denitration device 5
  • the block d is outside the second evaporator 6
  • the block e is Are located outside the economizer 7 respectively.
  • the column of the casing 2 is formed of a channel steel 10 having a U-shaped cross section, and both ends of each of the blocks a to e are surrounded by two channel steels 10.
  • each block a to e surrounds both ends with two channel steels 10 of the same size, but channel steels having different width dimensions are used for each of the blocks a to e.
  • the block a installed at the most upstream side of the exhaust gas 1 uses the channel steel 10 having the minimum web height
  • the block b adjacent to the downstream side of the block a is the channel steel of the block a.
  • the channel steel 10 whose web height is longer than 10 is used.
  • the blocks c and d adjacent to the downstream side of the block b use the channel steel 10 whose web height is longer than the channel steel 10 of the block b, and the block installed at the most downstream side of the exhaust gas 1.
  • a channel steel 10 having the longest web height is used.
  • the reason why the channel steel 10 having the same size is used for the block c and the block d is that the equipment disposed inside the block c is the denitration device 5 and the heat absorption of the exhaust gas 1 is not performed at the corresponding portion. It is.
  • a stiffener 11 and an inner case 12 are provided between the channel steels 10 of the blocks a to e.
  • the stiffener 11 and the inner case 12 are welded at a factory before transportation.
  • a heat insulating material 13 is attached to the inner case 12, and the thickness of the heat insulating material 13 is optimal for each of the blocks a, b, c, d, and e.
  • a thick heat insulating material 13 is used for the block a in which the temperature of the exhaust gas 1 is the highest, and the thickness of the heat insulating material 13 is reduced in the order of the block b and the blocks c and d in which the temperature of the exhaust gas 1 gradually decreases.
  • a thin heat insulating material 13 is used for the block e which is thinned and has the lowest temperature.
  • the size of the step of the connection portion in each of the blocks a to e described above is set in consideration of the difference in the thickness of the heat insulating material 13 required for each of the blocks a to e.
  • a channel steel 10 having a predetermined web height is used for the blocks a to e. For example, assuming that the thickness of the heat insulating material 13 required for the block a is t1 and the thickness of the heat insulating material 13 required for the block b is t2, the step between the block a and the block b is (t1-t2). As described above, the channel steel 10 in which the web height of the block b is longer than that of the block a by (t1 ⁇ t2) is used.
  • the step generated at the connecting portion between the blocks is offset by the difference in the thickness of the heat insulating materials 13.
  • the inner surface of the heat insulating material 13 facing the heat exchanger is flat with no steps. Therefore, no gap is formed between the inner side surface of the casing 2 and the side surface of the heat exchanger due to a step, and a baffle plate (flow prevention plate) for filling the gap is not required. Assembly costs can be reduced.
  • FIG. 3 is a plan view showing the installation state of such a pressure receiving member
  • FIG. 4 is a side view showing the installation state of the pressure receiving member
  • FIG. 5 is a front view showing the installation state of the pressure receiving member
  • FIG. It is a perspective view which shows the installation state of.
  • the pressure receiving member 14 is configured by combining the stiffener 11 and the reinforcing plate 15, and the pressure receiving member 14 is disposed, for example, at a connecting portion between the blocks b and c having a large step. .
  • the step B occurs at the joint between the channel steel 10A and the channel steel 10B.
  • the stiffener 11 is made of an H-shaped steel, and the stiffener 11 extends in the horizontal direction so as to connect the channel steels 10A at both ends of the block b.
  • the reinforcing plate 15 is made of a pentagonal steel material, and is disposed between the web of the channel steel 10A and the web of the H-shaped steel (stiffener) 11. The reinforcing plate 15 is located on the extension of the inner flange of the channel steel 10A joined back-to-back with the channel steel 10B, and one side thereof is in contact with the web surface of the H-shaped steel 11 via the relay plate 16.
  • the reinforcing plate 15 may be a member that is continuous in the vertical direction of the pillar. That is, a member symmetrical to the inner flange of the channel steel 10A of the block b may be brought into contact with the web surface of the channel steel 10B of the block c.
  • the relationship between the stiffener 11 and the reinforcing plate 15 may be such that the outer flange portion not in contact with the casing of the stiffener 11 and the reinforcing plate 15 are joined in addition to the above-described example.
  • the relay plate 16 may be omitted.
  • the reinforcing plate 15 is provided at the joint between the stiffener 11 and the channel steel 10B located downstream in the flow direction of the exhaust gas 1 among the channel steels 10A and 10B of the two blocks continuous with a step.
  • the pressure-receiving member 14 composed of the stiffener 11 and the reinforcing plate 15 is positioned on the extension of the inner flange of the channel steel 10A, the casing 2 can be moved horizontally along the front-rear direction (flow direction of the exhaust gas 1) during an earthquake. Even if a force acts, the horizontal force can be received by the pressure receiving member 14 and the earthquake resistance can be improved.
  • all the channel steels 10 provided in the blocks a to e are configured to be flush on the outside of the casing 2, but as in the modification shown in FIG. If the inner flanges of the channel steels 10 to be joined together are continuous with a step, the outer flanges of the channel steels 10 need not be flush. At this time, like the channel steel 10 provided in the block c, both ends of an arbitrary block may be surrounded by two channel steels 10 having different web heights. Also in this modified example, when the step at the joint of the adjacent blocks is large, it is preferable to reinforce the portion with the pressure receiving member 14 as described above.
  • two channel steels 10 having different web heights are connected back-to-back, so that the inner flanges are continuous with a step. May be used as the channel steels 10 provided in the same, and the webs of the channel steels 10 may be joined to each other while being shifted in the left-right direction.
  • the case where the superheater 3, the first evaporator 4, the denitration device 5, the second evaporator 6, and the economizer 7 are arranged inside the casing 2 has been described.
  • the type and number of heat exchangers disposed inside the heat exchanger are not limited to the above.
  • a duct burner may be disposed on the upstream side of the superheater 3 to increase the amount of heat recovery in the heat exchanger. .
  • the duct burner is a heating means for reheating the exhaust gas
  • the thickness of the heat insulating material 13 required for the block surrounding the duct burner is required for the block surrounding the superheater 3 on the downstream side. The thickness of the heat insulating material 13 becomes thinner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

ケーシングの内面側の段差をなくしてフラット化することができる排熱回収ボイラを提供する。ガスタービンからの排ガス(1)が導かれるケーシング(2)と、ケーシング(2)の内面側を覆う保温材(13)と、ケーシングの内部に配置された熱交換器とを備え、ケーシング(2)が排ガス(1)の流れ方向に沿って複数のブロックに分割されている排熱回収ボイラにおいて、ブロックが両端部を2本の溝型鋼(10)で囲んだ壁面構造となし、隣接するブロックに備えられる溝型鋼(10)のウェブどうしを、互いの内側フランジが段差を持って連続するように接続すると共に、厚み寸法が段階的に異なる保温材(13)を段差によって生じた隙間に配置することにより、ケーシング(2)内の熱交換器に対向する保温材(13)の内面側が面一となるように構成した。

Description

排熱回収ボイラ
 本発明は、ガスタービンから排出される排ガスをケーシング内に導入し、内部の熱交換器で排ガスの熱を吸収して蒸気を発生させる排熱回収ボイラに係り、特に、ケーシングが排ガスの流れ方向に沿って複数のブロックに分割されている排熱回収ボイラに関する。
 高効率発電の一環として注目されている複合発電プラントは、まず、ガスタービンによる発電を行うと共に、ガスタービンから排出される排ガス中の熱を排熱回収ボイラ(HRSG)において回収し、この排熱回収ボイラで発生した蒸気によって蒸気タービンを駆動させて発電するものである。この複合発電プラントは、ガスタービンによる発電と蒸気タービンによる発電を同時に行うことができるため、発電効率が高い上にガスタービンは負荷応答性に優れており、急激な電力需要の上昇にも十分対応し得るという利点もある。
 この種の複合発電プラントにおいて、一般的に、排熱回収ボイラのケーシング内には、ガスタービンの排ガスの熱を回収する過熱器、蒸発器、節炭器などの熱交換器が配置されていると共に、排ガスの脱硝を行うために脱硝装置が配置されている。ケーシングは左右両側面と上下壁面とで構成された筐体構造であり、排ガスはケーシング内で前記熱交換器と熱交換した後、ケーシングの出口に設けられた煙突から大気中に放散される。
 また、ケーシングは、重量物である様々な機器をサポートする必要があり、地震や暴風時などに作用する水平力に対して十分な強度がなければならないため、柱や梁などの強度部材が主体で構成されている。さらに、ケーシング内を流れる排ガスの温度が高温であるため、ケーシングの内部には保温材が内張りされている。なお、ケーシングは大型構造物であるため、通常、ケーシングは複数のブロックに分割した小モジュールで輸送し、この小モジュールを現地で組立てるようにしている。
 例えば、特許文献1に記載された排熱回収ボイラでは、ケーシングを柱の位置で複数のブロックに分割すると共に、各柱を断面コ字形の溝型鋼で形成することにより、両端部を2本の溝型鋼で囲んだ単位ブロックを構成し、このようにモジュール化したブロックで輸送して現地組立てを行うようにしている。その際、ブロック内の柱と柱間にはスチフナーとインナーケースが工場にて溶接されていると共に、インナーケースに所定厚の保温材が取り付けられている。そして、現地で隣り合うブロックの溝形鋼を背中合わせに接続し、これら溝形鋼のウェブどうしをボルトで締結するようにしている。
 図8は、このように複数のブロックに分割されたケーシングの壁面構造を示す横断面図である。図8に示すように、ケーシング100は単位ブロックの溝型鋼101どうしを接続して構成されており、各ブロックの溝型鋼101間に溶接されたインナーケース102に所定厚の保温材103が取り付けられている。ここで、ケーシング100の内部を流れる排ガスの温度は入口に近い上流側が高く、出口側に向かって次第に低温となるため、排ガスの上流側に設置されるブロックには厚みの厚い保温材103が取り付けられ、下流側に設置されるブロックには厚みの薄い保温材103が取り付けられている。
特開昭63-183302号公報
 図8に示すように、同一サイズの溝型鋼101どうしを背中合わせで接続してケーシング100を構成する場合、各溝型鋼101の内側フランジは排ガスの流れ方向に沿って面一となるため、排ガスの上流側と下流側に配置される保温材103の厚みの違いにより、ケーシング100の内側面と熱交換器の側面との間に凹凸状の段差ができてしまう。このため、従来は、段差によって生じた隙間を埋めるようにバッフルプレート(流れ防止板)104を配置する必要があり、かかるバッフルプレート104によって部品コストや組立コストが上昇するという問題があった。
 本発明は、このような従来技術の実情からなされたもので、その目的は、ケーシングの内面側の段差をなくしてフラット化することができる排熱回収ボイラを提供することにある。
 上記目的を達成するために、代表的な本発明は、ガスタービンからの排ガスが導かれるケーシングと、前記ケーシングの内面側を覆う保温材と、前記ケーシングの内部に配置された熱交換器とを備え、前記ケーシングが排ガスの流れ方向に沿って複数のブロックに分割されている排熱回収ボイラにおいて、前記ブロックを排ガスの流れ方向に沿う両端部が溝型鋼で囲まれた壁面構造となし、隣接する前記ブロックに備えられる前記溝型鋼のウェブどうしを、互いの内側フランジが段差を持って連続するように接続すると共に、厚み寸法が異なる前記保温材を前記段差によって生じた隙間に配置することにより、前記熱交換器に対向する前記保温材の内面側が面一となるように構成したことを特徴とする。
 本発明の排熱回収ボイラによれば、ケーシングの内面側の段差をなくしてフラット化することができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
実施の形態に係る排熱回収ボイラの内部構造を示す側面図である。 図1の排熱回収ボイラに備えられるケーシングの壁面構造を示す横断面図である。 図2のケーシングに適用される受圧部材の設置状態を示す平面図である。 該受圧部材の設置状態を示す側面図である。 該受圧部材の設置状態を示す正面図である。 該受圧部材の設置状態を示す斜視図である。 変形例に係るケーシングの壁面構造を示す横断面図である。 従来例に係るケーシングの壁面構造を示す横断面図である。
 以下、本発明の実施の形態を図1~図7を参照しつつ説明する。
 図1は、実施の形態に係る排熱回収ボイラの内部構造を示す側面図である。図1に示すように、図示せぬガスタービンからの排ガス1は、排熱回収ボイラ(HRSG)のケーシング2に流入するようになっており、ケーシング2の内部には過熱器3、第1の蒸発器4、脱硝装置5、第2の蒸発器6、節炭器7が配置されている。ケーシング2内に流入した排ガス1は、過熱器3、第1の蒸発器4、第2の蒸発器6及び節炭器7の伝熱面を構成する熱交換器と接触して熱吸収された後、比較的低温になったガスがケーシング2の出口に設けられた煙突8から大気中に放散される。
 ケーシング2は、左右両側面と上下壁面とで構成された筐体構造であり、架構9を介して地面に支持されている。ここで、ケーシング2は、複数のブロックに分割した小モジュールで輸送され、この小モジュールを現地で組立て据え付けするようにしている。
 図2はケーシング2の壁面構造を示す横断面図であり、本例では、ケーシング2が5つのブロックa,b,c,d,eに分割されている。図2に示すように、ケーシング2は柱の位置で5つのブロックa,b,c,d,eに分割されており、これらブロックa~eの分割位置は過熱器3、第1の蒸発器4、脱硝装置5、第2の蒸発器6、節炭器7の設置位置に対応している。すなわち、ブロックaは過熱器3の外側に、ブロックbは第1の蒸発器4の外側に、ブロックcは脱硝装置5の外側に、ブロックdは第2の蒸発器6の外側に、ブロックeは節炭器7の外側にそれぞれ位置するようになっている。
 ケーシング2の柱は断面コ字形の溝型鋼10で形成されており、各ブロックa~eの両端部は2本の溝型鋼10で囲まれている。ここで、各ブロックa~eは同一サイズの2本の溝型鋼10で両端部を囲んでいるが、各ブロックa~e毎に幅寸法の異なる溝型鋼10が用いられている。具体的には、排ガス1の最も上流側に設置されるブロックaはウェブ高さを最小とする溝型鋼10を用いており、ブロックaの下流側に隣接するブロックbは、ブロックaの溝型鋼10よりもウェブ高さが長い溝型鋼10を用いている。また、ブロックbの下流側に隣接するブロックcとブロックdは、ブロックbの溝型鋼10よりもさらにウェブ高さが長い溝型鋼10を用いており、排ガス1の最も下流側に設置されるブロックeはウェブ高さを最長とする溝型鋼10を用いている。なお、ブロックcとブロックdで同一サイズの溝型鋼10を用いているのは、ブロックcの内側に配置される機器が脱硝装置5であり、当該部位では排ガス1の熱吸収が行われないからである。
 隣り合う2つのブロックは、それぞれの溝型鋼10のウェブが背中合わせに接続されるように図示せぬボルトで締結されている。その際、各ブロックa~eは全ての溝型鋼10の外側フランジが面一となるように接続されるため、各ブロックa~eの内面側の接続部についてみると、ウェブ高さが異なる2つの溝型鋼10の内側フランジ間に段差を生じることになる。
 各ブロックa~eの溝型鋼10間にはスチフナー11とインナーケース12が設けられており、これらスチフナー11とインナーケース12は輸送前に工場にて溶接される。また、インナーケース12には保温材13が取り付けられており、この保温材13の厚みはブロックa,b,c,d,e毎に最適なものが用いられている。具体的には、排ガス1の温度が最も高温となるブロックaに厚い保温材13が用いられ、以下、排ガス1の温度が次第に低くなるブロックb及びブロックc,dの順に保温材13の厚みを薄くし、最も低温となるブロックeに薄い保温材13が用いられている。
 ここで、前述した各ブロックa~eにおける接続部の段差の大きさは、各ブロックa~eに必要とされる保温材13の厚みの違いを考慮して設定されており、それに基づいて各ブロックa~eに所定のウェブ高さを有する溝型鋼10が用いられている。例えば、ブロックaに必要とされる保温材13の厚みをt1、ブロックbに必要とされる保温材13の厚みをt2とすると、ブロックaとブロックb間の段差が(t1-t2)となるように、ブロックaよりもブロックbの方がウェブ高さを(t1-t2)だけ長くした溝型鋼10を用いるようにしている。
 このように厚みの異なる保温材13を各ブロックa~eの内面側に取り付けると、前述したブロック間の接続部に生じる段差が保温材13の厚みの違いによって相殺されるため、ケーシング2内の熱交換器に対向する保温材13の内面は段差のないフラットなものとなる。したがって、ケーシング2の内側面と熱交換器の側面との間に段差による隙間は発生せず、当該隙間を埋めるためのバッフルプレート(流れ防止板)が不要となるため、その分だけ部品コストや組立コストを削減することができる。
 図2に示すケーシング2において、隣接するブロック間の段差が大きい場合は、当該部位を受圧部材によって補強することが好ましい。図3はこのような受圧部材の設置状態を示す平面図、図4は該受圧部材の設置状態を示す側面図、図5は該受圧部材の設置状態を示す正面図、図6は該受圧部材の設置状態を示す斜視図である。
 図3~図6に示すように、受圧部材14はスチフナー11と補強板15を組み合わせて構成されており、この受圧部材14は例えば段差の大きいブロックbとブロックcの接続部に配置されている。
 説明の都合上、ブロックbの溝型鋼に符号10Aを付し、ブロックcの溝型鋼に符号10Bを付すと、溝型鋼10Aのウェブ高さよりも溝型鋼10Bのウェブ高さの方が長いため、前述したように、溝型鋼10Aと溝型鋼10Bの接合部には段差Bが生じている。スチフナー11はH型鋼からなり、このスチフナー11はブロックbの両端部の溝型鋼10Aを連結するように水平方向に延びている。補強板15は5角形状の鋼材からなり、溝型鋼10AのウェブとH型鋼(スチフナー)11のウェブとの間に配置されている。補強板15は、溝型鋼10Bに背中合わせに接合された溝型鋼10Aの内側フランジの延長線上に位置しており、その一辺は中継板16を介してH型鋼11のウェブ面に当接している。
 なお、受圧部材14を構成する部材の組合せや形態は上述の例に限定されるものではない。補強板15は、柱の上下方向に連続する部材としても良い。すなわち、ブロックbの溝型鋼10Aの内側フランジと対称な部材をブロックcの溝型鋼10Bのウェブ面に当接させるようにしても良い。スチフナー11と補強板15の関係は、上述の例のほか、スチフナー11のケーシングに接しない外側のフランジ部と補強板15とを接合するようにしても良い。また、中継板16を省略しても良い。
 以上説明したように、段差を持って連続する2つのブロックの溝型鋼10A,10Bうち、排ガス1の流れ方向の下流側に位置する溝型鋼10Bとスチフナー11との結合部に補強板15を介設し、これらスチフナー11と補強板15とで構成される受圧部材14を溝型鋼10Aの内側フランジの延長線上に位置させると、地震時にケーシング2に前後方向(排ガス1の流れ方向)に沿う水平力が作用したとしても、その水平力を受圧部材14で受け止めて耐震性を高めることができる。
 なお、本発明は上記した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。
 例えば、上記の実施形態では、各ブロックa~eに備えられる全ての溝型鋼10がケーシング2の外側で面一となるように構成されているが、図7に示す変形例のように、背中合わせで接合される溝型鋼10の内側フランジどうしが段差を持って連続していれば、溝型鋼10の外側フランジについては面一になっていなくても良い。その際、ブロックcに備えられる溝型鋼10のように、任意のブロックの両端部をウェブ高さが異なる2本の溝型鋼10で囲むようにしても良い。なお、この変形例においても、隣接するブロックの接合部の段差が大きい場合は、当該部位を前述したような受圧部材14によって補強することが好ましい。
 また、上記の実施形態では、ウェブ高さの異なる2つの溝型鋼10を背中合わせに接続することにより、互いの内側フランジが段差を持って連続するように構成されているが、各ブロックa~eに備えられる溝型鋼10として全て同じウェブ高さのものを使用し、これら溝型鋼10のウェブどうしを左右方向にずらして接合するようにしても良い。
 また、上記の実施形態では、ケーシング2の内部に過熱器3、第1の蒸発器4、脱硝装置5、第2の蒸発器6、節炭器7を配置した場合について説明したが、ケーシング2内に配置される熱交換器の種類や数量はこれに限定されず、例えば、過熱器3の上流側にダクトバーナーを配置して熱交換器での熱回収量増大を図るようにしても良い。この場合、ダクトバーナーは排ガスを再加熱する加熱手段であるため、ダクトバーナーを包囲するブロックに必要とされる保温材13の厚みは、その下流側の過熱器3を包囲するブロックに必要とされる保温材13の厚みよりも薄くなる。
 1 排ガス
 2 ケーシング
 3 過熱器(熱交換器)
 4 第1の蒸発器(熱交換器)
 5 脱硝装置
 6 第2の蒸発器(熱交換器)
 7 節炭器(熱交換器)
 10,10A,10B 溝型鋼
 11 スチフナー
 12 インナーケース
 13 保温材
 14 受圧部材
 15 補強板
 16 中継板
 a,b,c,d,e ブロック
 B 段差

Claims (4)

  1.  ガスタービンからの排ガスが導かれるケーシングと、前記ケーシングの内面側を覆う保温材と、前記ケーシングの内部に配置された熱交換器とを備え、前記ケーシングが排ガスの流れ方向に沿って複数のブロックに分割されている排熱回収ボイラにおいて、
     前記ブロックを排ガスの流れ方向に沿う両端部が溝型鋼で囲まれた壁面構造となし、
     隣接する前記ブロックに備えられる前記溝型鋼のウェブどうしを、互いの内側フランジが段差を持って連続するように接続すると共に、厚み寸法が異なる前記保温材を前記段差によって生じた隙間に配置することにより、前記熱交換器に対向する前記保温材の内面側が面一となるように構成したことを特徴とする排熱回収ボイラ。
  2.  請求項1に記載の排熱回収ボイラにおいて、
     ウェブの高さ寸法が異なる2種類の前記溝型鋼を用い、これら溝型鋼の外側フランジどうしが面一となるように隣接する前記ブロックを接続したことを特徴とする排熱回収ボイラ。
  3.  請求項1または2に記載の排熱回収ボイラにおいて、
     前記段差を介して接続された一対の前記ブロックのうち、排ガスの流れ方向の下流側に位置する前記ブロックは、相対向する前記溝型鋼のウェブ間を連結する受圧部材を備えており、
     前記受圧部材が、排ガスの流れ方向の上流側に位置する前記ブロックに設けられた前記内側フランジの延長線上に配置されていることを特徴とする排熱回収ボイラ。
  4.  請求項3に記載の排熱回収ボイラにおいて、
     前記受圧部材がH型鋼と補強板との組合体からなり、
     前記H型鋼がフランジを排ガスの流れ方向に向けて配置されていると共に、前記補強板が前記溝型鋼のウェブと前記H型鋼のウェブとの間に配置されていることを特徴とする排熱回収ボイラ。
PCT/JP2019/029663 2018-08-06 2019-07-29 排熱回収ボイラ WO2020031774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980006179.2A CN111433515B (zh) 2018-08-06 2019-07-29 废热回收锅炉
PH12020550601A PH12020550601A1 (en) 2018-08-06 2020-05-06 Heat recovery steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-147971 2018-08-06
JP2018147971A JP6665242B2 (ja) 2018-08-06 2018-08-06 排熱回収ボイラ

Publications (1)

Publication Number Publication Date
WO2020031774A1 true WO2020031774A1 (ja) 2020-02-13

Family

ID=69414176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029663 WO2020031774A1 (ja) 2018-08-06 2019-07-29 排熱回収ボイラ

Country Status (4)

Country Link
JP (1) JP6665242B2 (ja)
CN (1) CN111433515B (ja)
PH (1) PH12020550601A1 (ja)
WO (1) WO2020031774A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183302A (ja) * 1987-01-27 1988-07-28 バブコツク日立株式会社 廃熱ボイラ
JP2002168403A (ja) * 2000-11-30 2002-06-14 Mitsubishi Heavy Ind Ltd 排熱回収ボイラ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373771B2 (ja) * 1997-10-08 2003-02-04 株式会社東芝 排熱回収ボイラ
AU2003252323A1 (en) * 2003-07-30 2005-02-15 Babcock-Hitachi Kabushiki Kaisha Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
JP6267028B2 (ja) * 2014-03-24 2018-01-24 三菱日立パワーシステムズ株式会社 排熱回収装置、これを備えているガスタービンプラント、及び排熱回収方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183302A (ja) * 1987-01-27 1988-07-28 バブコツク日立株式会社 廃熱ボイラ
JP2002168403A (ja) * 2000-11-30 2002-06-14 Mitsubishi Heavy Ind Ltd 排熱回収ボイラ

Also Published As

Publication number Publication date
CN111433515A (zh) 2020-07-17
PH12020550601A1 (en) 2021-03-01
JP2020024056A (ja) 2020-02-13
CN111433515B (zh) 2021-03-23
JP6665242B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
EP1662198B1 (en) Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module
US5207184A (en) Boiler buckstay system for membranded tube wall end connection
AU2003252325B2 (en) Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
US5557901A (en) Boiler buckstay system
JP6840008B2 (ja) 熱交換器、熱交換ユニットおよび熱源機
JP6665242B2 (ja) 排熱回収ボイラ
CA2575259C (en) Suspended steam boiler
US5655594A (en) Rotary regenerative heat exchanger
JP3594606B2 (ja) プレート型熱交換器
JP6142518B2 (ja) 排熱回収ボイラの支持構造
JP3546179B2 (ja) 排熱回収ボイラ
JP5374349B2 (ja) 排熱回収ボイラ
WO2022113484A1 (ja) 排熱回収ボイラのサポート機構
US5386676A (en) Adjustable packed panel joint end cover
JP4076014B2 (ja) 排熱回収ボイラ及びその据付方法
KR102340723B1 (ko) 배열회수보일러의 배관 지지구조
WO2019052854A1 (en) DEFLECTOR
KR20100066496A (ko) 증기 발생기
US2916021A (en) Waste heat boiler casing structure of corrugated plates
US3254704A (en) Bottom supported air heater
JPS5974497A (ja) 排ガス熱交換器
JP2753176B2 (ja) 伝熱管パネル
JP7089913B2 (ja) 熱交換装置
JPS6391494A (ja) 熱交換器の支持装置
JP3150539B2 (ja) ボイラ炉内圧支持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846762

Country of ref document: EP

Kind code of ref document: A1