WO2020031690A1 - ピロリン酸コバルトリチウムの製造方法及びピロリン酸コバルトリチウム炭素複合体の製造方法 - Google Patents
ピロリン酸コバルトリチウムの製造方法及びピロリン酸コバルトリチウム炭素複合体の製造方法 Download PDFInfo
- Publication number
- WO2020031690A1 WO2020031690A1 PCT/JP2019/028938 JP2019028938W WO2020031690A1 WO 2020031690 A1 WO2020031690 A1 WO 2020031690A1 JP 2019028938 W JP2019028938 W JP 2019028938W WO 2020031690 A1 WO2020031690 A1 WO 2020031690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium cobalt
- slurry
- pyrophosphate
- raw material
- cobalt
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing lithium cobalt pyrophosphate useful as a positive electrode material for lithium secondary batteries, all solid state batteries, and the like, and a method for producing a lithium cobalt pyrophosphate carbon composite.
- Lithium-ion batteries are used as batteries for portable devices and notebook computers. Lithium ion batteries are generally considered to be excellent in capacity and energy density. It is also expected to be used for hybrid vehicles and electric vehicles.
- Pyro-type phosphates such as lithium cobalt pyrophosphate (Li 2 CoP 2 O 7 ) have a high capacity and a high energy density, and have a high positive electrode active material for lithium secondary batteries (see, for example, Patent Documents 1 and 2), Attention has been paid to positive electrode active materials such as all solid state batteries having potential and capacity (for example, Patent Documents 3 and 4).
- Patent Literature 1 discloses that a lithium source, a cobalt source, and a phosphorus source are mixed by a ball mill, and the obtained particle mixture is further pelletized, and the pelletized mixture is obtained.
- Patent Literature 3 discloses a method of mixing a lithium source, a cobalt source, and a phosphorus source, temporarily firing the resulting mixture in an air atmosphere, and then temporarily firing the resultant temporarily fired product. A method of firing at 650 to 680 ° C. for 20 to 30 hours in an air atmosphere at a temperature higher than the preliminary firing has been proposed.
- lithium cobalt pyrophosphate has attracted attention as a safe positive electrode active material, and its provision by an industrially advantageous method is desired.
- an object of the present invention is to provide a method capable of obtaining a single-phase lithium cobalt pyrophosphate by X-ray diffraction by an industrially advantageous method.
- Another object of the present invention is to provide a method capable of obtaining a complex of lithium cobalt pyrophosphate and carbon.
- the present inventors have conducted intensive studies in view of the above-mentioned circumstances, and as a result, at least using cobalt hydroxide, phosphoric acid and lithium hydroxide as raw materials, a method for preparing a raw material mixture in a wet manner, in the presence of an organic acid.
- a method for preparing a raw material mixture in a wet manner in the presence of an organic acid.
- each raw material is uniformly dispersed, and an aqueous raw material slurry that can be easily handled is obtained.
- the aqueous raw material slurry can be subjected to wet pulverization by a media mill.
- a reaction precursor obtained by spray-drying a slurry containing a pulverized product obtained by wet-pulverizing the aqueous raw material slurry has excellent reactivity. Further, they have found that a single-phase lithium cobalt pyrophosphate can be obtained by X-ray diffraction by firing the reaction precursor at a specific temperature or higher, and have completed the present invention.
- the present invention (1) provides the following general formula (1): Li x Co 1-y M y P 2 O 7 (1) (Where 1.7 ⁇ x ⁇ 2.2 and 0 ⁇ y ⁇ 0.5, and M is Mg, Zn, Cu, Fe, Cr, Mn, Ni, Al, B, Na, K, F , Cl, Br, I, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, Yb, Si, S, Mo, W, V, Bi, Te, Pb, Ag, Cd, In, Sn , Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy, and Ho.
- a method for producing lithium cobalt pyrophosphate represented by: A first step of adding an organic acid and cobalt hydroxide to a water solvent, and then adding phosphoric acid and lithium hydroxide to prepare an aqueous raw material slurry (1); A second step of subjecting the aqueous raw material slurry (1) to wet
- the present invention (2) further comprises an M source (M is Mg, Zn, or M) in the aqueous raw slurry (1) in the first step or the slurry (2) containing the raw material pulverized product in the second step.
- M is Mg, Zn, or M
- Cu Fe, Cr, Mn, Ni, Al, B, Na, K, F, Cl, Br, I, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, Yb, Si, S, One or more selected from Mo, W, V, Bi, Te, Pb, Ag, Cd, In, Sn, Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy and Ho
- the present invention (3) is characterized in that the slurry (2) containing the raw material pulverized product has an average particle diameter of solids of 1.5 ⁇ m or less. It is intended to provide a method for producing lithium cobalt pyrophosphate.
- the present invention (4) provides the process for producing lithium cobalt cobalt pyrophosphate according to any one of (1) to (3), wherein the organic acid is a carboxylic acid.
- the present invention (5) provides a method for producing lithium cobalt cobalt pyrophosphate according to any one of (1) to (3), wherein the organic acid is oxalic acid.
- the present invention (6) provides the method for producing lithium cobalt cobalt pyrophosphate according to any one of (1) to (5), wherein the reaction precursor contains an organic acid salt of cobalt and a phosphate of lithium. Is provided.
- the present invention (7) further includes a fifth (A) step of subjecting the lithium cobalt pyrophosphate obtained by the fourth step to a heat treatment. And a method for producing lithium cobalt phosphate.
- the present invention (8) provides the method for producing lithium cobalt phosphate (7) according to (7), wherein the heat treatment temperature in the step (A) is 200 to 700 ° C.
- the present invention (9) provides a conductive carbon material obtained by performing the method for producing lithium cobalt pyrophosphate according to any one of the present invention (1) to (6), and a conductive carbon material from which carbon is deposited by thermal decomposition.
- the present invention it is possible to provide a method capable of obtaining single-phase lithium cobalt pyrophosphate by X-ray diffraction by an industrially advantageous method. Further, according to the present invention, a composite of the lithium cobalt pyrophosphate and carbon can be provided.
- FIG. 5 is an X-ray diffraction diagram of the reaction precursor obtained in the third step of Example 1.
- FIG. 3 is an X-ray diffraction diagram of lithium cobalt pyrophosphate obtained in Example 1.
- FIG. 3 is an X-ray diffraction diagram of the fired product obtained in Comparative Example 1.
- FIG. 9 is an X-ray diffraction diagram of the solid content obtained in Comparative Example 2.
- 3 is an SEM photograph of lithium cobalt pyrophosphate obtained in Example 1.
- FIG. 9 is an X-ray diffraction diagram of lithium cobalt pyrophosphate obtained in Example 4.
- the method for producing lithium cobalt pyrophosphate of the present invention comprises the following general formula (1): Li x Co 1-y M y P 2 O 7 (1) (Where 1.7 ⁇ x ⁇ 2.2 and 0 ⁇ y ⁇ 0.5, and M is Mg, Zn, Cu, Fe, Cr, Mn, Ni, Al, B, Na, K, F , Cl, Br, I, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, Yb, Si, S, Mo, W, V, Bi, Te, Pb, Ag, Cd, In, Sn , Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy, and Ho.
- a method for producing lithium cobalt pyrophosphate represented by: A first step of adding an organic acid and cobalt hydroxide to a water solvent, and then adding phosphoric acid and lithium hydroxide to prepare an aqueous raw material slurry (1); A second step of subjecting the
- Lithium cobalt pyrophosphate obtained by the method for producing lithium cobalt pyrophosphate of the present invention has the following general formula (1): Li x Co 1-y M y P 2 O 7 (1) (Where 1.7 ⁇ x ⁇ 2.2 and 0 ⁇ y ⁇ 0.5, and M is Mg, Zn, Cu, Fe, Cr, Mn, Ni, Al, B, Na, K, F , Cl, Br, I, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, Yb, Si, S, Mo, W, V, Bi, Te, Pb, Ag, Cd, In, Sn , Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy, and Ho.) It is lithium cobalt pyrophosphate represented by these.
- X in the formula of general formula (1) is 1.7 or more and 2.2 or less, preferably 1.8 or more and 2.1 or less.
- y is 0 or more and 0.5 or less, preferably 0 or more and 0.4 or less.
- M is a metal element contained as necessary for the purpose of improving battery characteristics.
- M is Mg, Zn, Cu, Fe, Cr, Mn, Ni, Al, B, Na, K, F, Cl, Br, I, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y , Yb, Si, S, Mo, W, V, Bi, Te, Pb, Ag, Cd, In, Sn, Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy and Ho Represents one or more metal elements, and is preferably one or more selected from Fe, Ni and Mn.
- an aqueous raw material slurry (1) is added by adding an organic acid and cobalt hydroxide to a water solvent, and then adding phosphoric acid and lithium hydroxide. This is the step of preparing.
- the first step first, an organic acid and cobalt hydroxide are added to a water solvent, whereby the cobalt hydroxide reacts with the organic acid to form an organic acid salt of cobalt.
- phosphoric acid and lithium hydroxide are added to the aqueous slurry (A) containing the organic acid salt of cobalt, whereby phosphoric acid and lithium hydroxide further react to form lithium phosphate. Therefore, the aqueous raw material slurry (1) obtained by performing the first step contains at least an organic acid salt of cobalt and a phosphate of lithium.
- the organic acid according to the first step includes, for example, monocarboxylic acids such as formic acid, acetic acid, glycolic acid, lactic acid, and gluconic acid, oxalic acid, maleic acid, malonic acid, malic acid, tartaric acid, dicarboxylic acids such as succinic acid, and carboxylic acid.
- monocarboxylic acids such as formic acid, acetic acid, glycolic acid, lactic acid, and gluconic acid
- oxalic acid maleic acid, malonic acid, malic acid, tartaric acid
- dicarboxylic acids such as succinic acid
- carboxylic acid carboxylic acid.
- Carboxylic acids such as citric acid having 3 groups are exemplified.
- oxalic acid is preferred as the organic acid because of its excellent reactivity with cobalt hydroxide.
- the amount of the organic acid added is such that the molar ratio (C / Co) of the carbon atoms in the organic acid to the cobalt atoms in the cobalt hydroxide becomes 1.5 or more.
- the molar ratio of carbon atoms in the organic acid to cobalt atoms in the cobalt hydroxide (C / Co) is, if less than the above range, Co 3 (PO 4) 2 ⁇ 8H 2 O is produced, the slurry becomes cake-like , Tend to be unable to stir.
- the amount of the organic acid added is such that the molar ratio (C / Co) of the carbon atoms in the organic acid to the cobalt atoms in the cobalt hydroxide is 1.5 to 2.5 from the viewpoint that the viscosity of the slurry is stabilized. Is particularly preferred, and an amount of 1.7 to 2.3 is particularly preferred.
- the amount of cobalt hydroxide added to the aqueous solvent is 5 to 30 parts by weight, preferably 7 to 25 parts by weight, based on 100 parts by weight of the aqueous solvent.
- the amount of cobalt hydroxide added to the water solvent is within the above range, the viscosity of the slurry is stabilized.
- the organic acid and cobalt hydroxide After the addition of the organic acid and cobalt hydroxide to the aqueous solvent, the organic acid and cobalt hydroxide are reacted at 15 to 90 ° C., preferably 20 to 80 ° C., for 30 minutes or more, preferably 30 minutes to 2 hours. It is preferable to stir for a time. Then, an aqueous slurry (A) containing at least an organic acid salt of cobalt can be obtained by reacting the organic acid with cobalt hydroxide.
- the addition order of the organic acid and the cobalt hydroxide is not particularly limited, but it is possible to add the organic acid to the aqueous solvent and then add the cobalt hydroxide. This is preferable in that the viscosity of the slurry is stabilized.
- phosphoric acid and lithium hydroxide are then added to the aqueous slurry (A) containing the organic acid salt of cobalt.
- the amount of phosphoric acid added to the aqueous slurry (A) containing the organic acid salt of cobalt is preferably the molar ratio (P / Co) of phosphorus atoms in phosphoric acid to cobalt atoms in the aqueous slurry (A) is preferably 1
- the amount is from 0.7 to 2.2, particularly preferably from 1.8 to 2.1.
- the amount of lithium hydroxide added to the aqueous slurry (A) containing the organic acid salt of cobalt is preferably such that the molar ratio of lithium atoms in lithium hydroxide to phosphorus atoms in phosphoric acid (Li / P) is 0.1.
- the amount is 8 to 1.2, particularly preferably 0.9 to 1.1.
- the molar ratio of lithium atoms in lithium hydroxide to phosphorus atoms in phosphoric acid (Li / P) is within the above range, a single-phase lithium cobalt pyrophosphate can be easily obtained by X-ray diffraction.
- the first step when phosphoric acid and lithium hydroxide are added to the aqueous slurry (A) containing an organic acid salt of cobalt, phosphoric acid and lithium hydroxide react to form lithium phosphate.
- the aqueous raw material slurry (1) in the first step preferably contains lithium phosphate.
- the order of adding phosphoric acid and lithium hydroxide to the aqueous slurry (A) containing the organic acid salt of cobalt is not particularly limited. However, adding phosphoric acid to the aqueous slurry (A) containing an organic acid salt of cobalt and then adding lithium hydroxide can stabilize the viscosity of the slurry by maintaining the pH of the slurry on the acidic side. It is preferable because it can be performed.
- the aqueous raw material slurry (1) is obtained in the first step.
- the aqueous raw material slurry (1) is further added to the aqueous raw material slurry (1) in the first step.
- M source (M is Mg, Zn, Cu, Fe, Cr, Mn, Ni, Al, B, Na, K, F, Cl, Br, I, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, Yb, Si, S, Mo, W, V, Bi, Te, Pb, Ag, Cd, In, Sn, Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy and Or one or more metal elements selected from Ho.).
- M source examples include oxides, hydroxides, carbonates, organic acid salts, nitrates, and phosphates containing the M element.
- the addition amount of the M source is preferably the molar ratio of M atoms in the M source (M / (M + Co)) to the total molar ratio of the cobalt atoms in the cobalt hydroxide and the M atoms in the M source, and is preferably from 0 to 0. .5.
- M / (M + Co) the molar ratio of M atoms in the M source
- M + Co the molar ratio of M atoms in the M source
- the addition amount of the M source is preferably the molar ratio of M atoms in the M source (M / (M + Co)) to the total molar ratio of the cobalt atoms in the cobalt hydroxide and the M atoms in the M source, and is preferably from 0 to 0. .5.
- the molar ratio of phosphorus atoms in phosphoric acid to the total moles of M atoms in the M source is from 1.8 to 2.2, preferably from 1.9 to 2.1. It is preferable in that a single-phase lithium cobalt pyrophosphate can be obtained by X-ray diffraction.
- the addition time of the M source in the first step is not particularly limited, but the M source can be added and contained in the aqueous raw material slurry (1) at any time before the second step is performed.
- each of the raw materials is prepared by first adding an organic acid and cobalt hydroxide to a water solvent, and then adding phosphoric acid and lithium hydroxide.
- phosphoric acid and lithium hydroxide are uniformly dispersed, the handling is easy, and the aqueous raw material slurry (1) which can be wet-pulverized by a media mill is obtained.
- the aqueous raw material slurry (1) obtained by performing the first step is wet-pulverized by a media mill to obtain a slurry (2) containing the pulverized product. This is the step of obtaining.
- the solid content concentration in the aqueous raw material slurry (1) when performing wet pulverization with a media mill is 5 to 40% by mass, particularly preferably 10 to 35% by mass.
- the solid content concentration in the aqueous raw material slurry (1) when performing wet pulverization with a media mill is within the above range, operability is good and pulverization can be performed efficiently.
- the solid content concentration of the aqueous raw material slurry (1) is adjusted so as to have the above-mentioned solid content concentration, and then the wet pulverization treatment is performed in the second step. preferable.
- the aqueous raw material slurry (1) is wet-pulverized by a media mill.
- the solid content contained in the aqueous raw material slurry (1) can be finely pulverized by subjecting the aqueous raw material slurry (1) to wet pulverization by a media mill, so that an excellent reaction can be achieved.
- a reaction precursor having the property can be obtained.
- Examples of the media mill include a bead mill, a ball mill, a paint shaker, an attritor, and a sand mill, and a bead mill is preferable.
- a bead mill is used, the operating conditions and the type and size of the beads are appropriately selected according to the size of the apparatus and the throughput.
- a dispersant may be added to the aqueous slurry (A) or the aqueous raw material slurry (1) containing the organic acid salt of cobalt.
- the dispersant is appropriately selected according to the type and characteristics of the slurry. Examples of the dispersant include various surfactants and ammonium polycarboxylate.
- the concentration of the dispersant in the slurry is preferably from 0.01 to 10% by mass, particularly preferably from 0.1 to 5% by mass, from the viewpoint of obtaining a sufficient dispersing effect.
- the wet pulverization treatment using a media mill is performed, and the average particle diameter of the solid content in the slurry (2) containing the pulverized product is D50 determined by a laser scattering / diffraction method, preferably 1.5 ⁇ m or less.
- the process is particularly preferably performed until the thickness becomes 0.1 to 1.2 ⁇ m.
- the D50 obtained by the laser scattering / diffraction method refers to, for example, a particle size of 50% by volume integration in a particle size distribution curve obtained by a laser scattering / diffraction method using MT3300 manufactured by Microtrack Bell.
- a slurry (2) containing a pulverized product can be obtained.
- the slurry (2) containing the pulverized product is obtained by performing the second step.
- the pulverized product of the second step is optionally included.
- the slurry may further contain an M source.
- the type of the M source and the amount of the M source added in the second step are the same as the type of the M source and the amount of the M source added in the first step.
- the addition time of the M source in the second step is not particularly limited, but can be added to the slurry (2) containing the pulverized product at any time before the third step. .
- the third step according to the method for producing lithium cobalt pyrophosphate of the present invention is a step of spray-drying the slurry (2) containing the pulverized product obtained in the second step to obtain a reaction precursor.
- the method for producing lithium cobalt pyrophosphate of the present invention is based on the finding that it is advantageous to select the spray drying method.
- the drying method is adopted.
- the drying is performed by the spray drying method, the raw materials are uniformly contained, and a granulated product in which the raw material particles are densely packed is obtained. Then, the granulated material is used as a reaction precursor, and the reaction precursor is calcined in a fourth step described later, whereby a single-phase lithium cobalt pyrophosphate can be obtained by X-ray diffraction.
- the reaction precursor is obtained by atomizing the slurry by a predetermined means and drying the fine droplets generated thereby.
- the atomization of the slurry includes, for example, a method using a rotating disk and a method using a pressure nozzle. In the third step, any method can be used.
- the relationship between the size of the droplets of the atomized slurry and the size of the particles of the pulverized product contained therein affects stable drying and the properties of the obtained dry powder.
- the size of the atomized droplet is preferably 1 to 50 ⁇ m, and particularly preferably 10 to 40 ⁇ m. It is preferable that the supply amount of the slurry to the spray drying device is determined in consideration of this viewpoint.
- the reaction precursor obtained by the spray drying in the third step is subjected to calcination in the fourth step, and the powder characteristics such as the average particle size of the obtained lithium cobalt cobalt pyrophosphate generally inherit the characteristics of the reaction precursor. Become like for this reason, in the spray drying in the third step, the size of the secondary particles of the reaction precursor is determined by scanning electron microscope (SEM) observation from the viewpoint of controlling the target particle diameter of lithium cobalt pyrophosphate. It is preferable to carry out spray drying so as to have a required particle size of 1 to 50 ⁇ m, and it is particularly preferable to carry out spray drying so as to have a required particle size of 10 to 40 ⁇ m.
- SEM scanning electron microscope
- the drying temperature in the spray drying apparatus is adjusted to a hot air inlet temperature of 150 to 350 ° C., preferably 200 to 330 ° C., and a hot air outlet temperature of 80 to 200 ° C., preferably 100 to 170 ° C. It is preferable to adjust so as to prevent moisture absorption of the powder and facilitate recovery of the powder.
- the reaction precursor obtained by performing the third step preferably contains at least an organic acid salt of cobalt and a phosphate of lithium.
- the lithium phosphate contained in the reaction precursor is preferably Li (H 2 PO 4 ), and the cobalt organic acid salt varies depending on the type of organic acid used. When used, cobalt oxalate (Co (C 2 O 4 ) (H 2 O) 2 ) is mentioned. Further, as long as the effects of the present invention are not impaired, an organic acid salt of cobalt by-produced in the reaction process may be contained.
- reaction precursor containing the M source may be a double salt of an organic acid with cobalt and M.
- the fourth step according to the method for producing lithium cobalt pyrophosphate of the present invention is a step of firing the reaction precursor obtained by performing the third step to obtain a single-phase lithium cobalt cobalt pyrophosphate by X-ray. .
- the firing temperature in the fourth step is 600 ° C. or higher, preferably 600 to 730 ° C.
- the firing temperature is within the above range, a single phase of lithium cobalt pyrophosphate can be obtained in an X-ray manner.
- the firing temperature is lower than the above range, the reaction is not completed, and lithium cobalt pyrophosphate cannot be obtained.
- the firing atmosphere in the fourth step is an air atmosphere or an inert gas atmosphere.
- an air atmosphere a high temperature of 700 ° C. or more
- a molten material is obtained, and powdery material cannot be obtained.
- the inert gas include an argon gas, a helium gas, a nitrogen gas, and the like.
- a nitrogen gas is preferable from the viewpoint of being inexpensive and industrially advantageous.
- the firing time in the fourth step is not particularly limited, and is 0.5 hour or more, preferably 2 to 20 hours.
- a single-phase lithium cobalt pyrophosphate can be obtained by X-ray diffraction by firing for 0.5 hours or more, preferably for 2 to 20 hours.
- the lithium cobalt pyrophosphate once fired may be fired a plurality of times, if necessary.
- the lithium cobalt phosphate obtained by performing the fourth step may be subjected to a crushing treatment or a crushing treatment, if necessary, and further classified.
- step (A) or step (B) may be carried out on lithium cobalt pyrophosphate obtained by performing step (4). It can be carried out.
- the fifth (A) step is a step of further performing a heat treatment on lithium cobalt pyrophosphate obtained by performing the fourth step to adjust the amount of carbon contained in the lithium cobalt pyrophosphate.
- a heat treatment is performed on the lithium cobalt pyrophosphate obtained in the fourth step to oxidize carbon in the lithium cobalt pyrophosphate.
- the heat treatment in the fifth (A) step is preferably performed in an oxygen-containing atmosphere.
- the oxygen concentration in the atmosphere is preferably 5% by volume or more, and more preferably 10 to 30% by volume, from the viewpoint of oxidizing carbon with high efficiency.
- the temperature of the heat treatment in the fifth (A) step is 200 to 700 ° C, preferably 250 to 600 ° C.
- the time of the heat treatment in the fifth (A) step is not critical in the method for producing lithium cobalt pyrophosphate of the present invention. The longer the time of the heat treatment in the fifth step, the lower the content of carbon contained in lithium cobalt pyrophosphate.
- the lithium cobalt phosphate obtained in the fourth step and a conductive carbon material source from which carbon is deposited by thermal decomposition (hereinafter, also simply referred to as “conductive carbon material source”).
- a conductive carbon material source from which carbon is deposited by thermal decomposition
- the conductive carbon material source a material that is thermally decomposed by heat treatment in at least the fifth (B) step to precipitate carbon by use is used.
- the conductive carbon material source is a component that imparts conductivity to lithium cobalt pyrophosphate.
- a lithium cobalt pyrophosphate carbon composite is used as a positive electrode active material.
- the lithium secondary battery described above can be expected to have improved discharge capacity and cycle characteristics.
- coal tar pitch from soft pitch to hard pitch for example, coal tar pitch from soft pitch to hard pitch; coal-based heavy oil such as dry distillation liquefied oil, normal pressure residual oil, DC heavy oil of reduced pressure residual oil, crude oil, naphtha, etc.
- Petroleum-based heavy oil such as ethylene tar which is a by-product of pyrolysis of ethylene; aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, phenanthrene; polyphenylenes such as phenazine, biphenyl, terphenyl; polyvinyl chloride
- Water-soluble polymers such as polyvinyl alcohol, polyvinyl butyral, and polyethylene glycol, and insolubilized products thereof; nitrogen-containing polyacrylonitrile; organic polymers such as polypyrrole; organic polymers such as sulfur-containing polythiophene and polystyrene; , Sugars such as fructose, lactose, maltos
- the mixing ratio of the conductive carbon material source is such that the carbon atom in the conductive carbon material source is 0.1 to 20.0% by mass, preferably 0.5 to 15.0% by mass with respect to lithium cobalt pyrophosphate.
- a conductive carbon material source from the viewpoint of improving the discharge capacity and cycle characteristics of a lithium secondary battery using a lithium cobalt cobalt pyrophosphate composite as a positive electrode active material.
- the lithium cobalt phosphate and the conductive carbon material source can be mixed by a dry method or a wet method.
- the mixing treatment by mechanical means in that a uniform mixture can be obtained.
- the apparatus used for dry mixing is not particularly limited as long as a uniform mixture can be obtained.
- examples include a high-speed mixer, a super mixer, a turbosphere mixer, an Erich-mixer, a Henschel mixer, a Nauter mixer, and a ribbon.
- examples include a blender, a V-type mixer, a conical blender, a jet mill, a cosmomizer, a paint shaker, a bead mill, and a ball mill.
- a household mixer is sufficient.
- a lithium cobalt phosphate and a conductive carbon material source are added to an aqueous solvent with a solid content of 10 to 80% by mass, preferably 20 to 80% by mass. 70% by mass, and the mixture is mixed by mechanical means to prepare a slurry. Then, the slurry is dried while standing, or the slurry is dried by spray drying.
- a method of obtaining a mixture of lithium cobalt pyrophosphate and a conductive carbon material source may be mentioned.
- the apparatus used for the wet mixing is not particularly limited as long as a uniform slurry can be obtained.
- a stirrer, a stirrer with a stirring blade, a three-roll, a ball mill, a disper mill, a homogenizer, a vibration mill, a sand grind Devices such as mills, attritors, and strong stirrers are included.
- the wet mixing process is not limited to the mixing process using the mechanical means exemplified above.
- a surfactant may be added to the slurry to perform a mixing process.
- a mixture of the lithium cobalt phosphate and the conductive carbon material source prepared as described above is subjected to heat treatment.
- the heat treatment needs to be performed at a temperature at which the conductive carbon material source is thermally decomposed to deposit carbon, and the heating temperature is 180 to 900 ° C, preferably 210 to 800 ° C.
- the heating temperature of the heat treatment is within the above range, aggregation can be suppressed while carbon is uniformly coated on the particle surface.
- the heating time of the heat treatment is 0.2 hours or more, preferably 0.5 to 5 hours. It is preferable that the atmosphere of the heat treatment be an inert gas atmosphere because the oxidation of carbon can be suppressed.
- the conductive carbon material source is melted by heating once to the melting point of the conductive carbon material source used, and then heat-treated in the above range.
- Precipitating carbon from a conductive carbon material source is preferable in that carbon can be uniformly coated on the particle surface.
- the lithium cobalt pyrophosphate and the lithium cobalt cobalt pyrophosphate obtained by the method for producing lithium cobalt pyrophosphate of the present invention in this way are, in addition to being a single-phase lithium cobalt cobalt pyrophosphate in X-ray diffraction,
- the average particle size determined by SEM observation is preferably 10 ⁇ m or less, particularly preferably 0.05 to 5 ⁇ m, and the BET specific surface area is preferably 0.1 m 2 / g or more, particularly preferably 0.5 to 15 m 2 / g. It is.
- the lithium cobalt pyrophosphate and the lithium cobalt lithium pyrophosphate composite obtained by the method for producing lithium cobalt pyrophosphate of the present invention are suitably used as a positive electrode material for lithium secondary batteries, all-solid batteries, and the like.
- Example 1 ⁇ First step> 1604.5 g of oxalic acid / dihydrate was added to 11 L of pure water at room temperature (25 ° C.), and the mixture was stirred for 30 minutes using a three-one motor stirrer, and 228 g of a dispersant (ammonium polycarboxylate) was added. Next, 1200 g of cobalt hydroxide was added and stirred for 30 minutes. Next, 2922.4 g of 85% by mass phosphoric acid was added and stirred for 30 minutes. Next, 1068.8 g of lithium hydroxide monohydrate was added and stirred for 1 hour to obtain an aqueous raw material slurry.
- a dispersant ammonium polycarboxylate
- ⁇ Second step> Next, while stirring this aqueous raw material slurry, it was supplied to a media stirring type bead mill charged with zirconia beads having a diameter of 0.5 mm, and mixed for 3 hours to perform wet pulverization. The average particle diameter of the solid content in the slurry after the wet pulverization determined by the laser scattering / diffraction method was 0.5 ⁇ m.
- ⁇ Third step> Subsequently, the slurry was supplied at a supply rate of 2.4 L / h to a spray dryer in which the temperature of the hot air inlet was set to 220 ° C. to obtain a reaction precursor.
- FIG. ⁇ Fourth step> the obtained reaction precursor was fired at 650 ° C. for 4 hours in a nitrogen atmosphere to obtain a black fired product.
- the fired product was a single-phase Li 1.86 CoP 2 O 7 .
- FIG. 2 shows an X-ray diffraction pattern of the fired product.
- Example 2 A black fired product was obtained in the same manner as in Example 1, except that the fourth step was performed at 700 ° C. for 4 hours in a nitrogen atmosphere.
- the fired product was a single-phase Li 1.86 CoP 2 O 7 .
- FIG. 3 shows an X-ray diffraction pattern of the fired product.
- Example 1 A baked purple product was obtained in the same manner as in Example 1 except that the fourth step was performed at 550 ° C. for 4 hours in an air atmosphere.
- the fired product was a mixture of Li 1.86 CoP 2 O 7 and LiCoPO 4 .
- Example 3 Lithium cobalt pyrophosphate obtained in Example 1 was subjected to a heat treatment at 350 ° C. for 4 hours in an air atmosphere (oxygen concentration: 20% by volume). When the obtained heat-treated product was subjected to X-ray diffraction analysis, it was found to be single-phase Li 1.86 CoP 2 O 7 .
- Example 4 The lithium cobalt pyrophosphate obtained in Example 1 was subjected to a heat treatment at 700 ° C. for 4 hours in an air atmosphere (oxygen concentration: 20% by volume). When the obtained heat-treated product was subjected to X-ray diffraction analysis, it was found to be single-phase Li 1.86 CoP 2 O 7 .
- Example 5 In the second step, after the aqueous raw material slurry is pulverized by the media stirring type bead mill, 218 g of aluminum nitrate 9-hydrate is added to the slurry in the media stirring type bead mill, and the slurry is stirred by the media stirring type bead mill.
- a heat-treated product of lithium cobalt phosphate having Li 1.86 CoP 2 O 7 containing Al in a molar ratio of Al / Co of 0.04 was used. I got When the obtained heat-treated product was analyzed by X-ray diffraction, no heterophase was observed and it was confirmed that the heat-treated product was a single-phase Li 1.86 CoP 2 O 7 (FIG. 6).
- FIG. 5 shows an SEM photograph of lithium cobalt pyrophosphate obtained in Example 1.
- it observed at 10,000 times magnification with a scanning electron microscope, and calculated
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
とにより、X線回折的に単相のピロリン酸コバルトリチウムが得られることを見出し、本発明を完成するに至った。
LixCo1-yMyP2O7 (1)
(式中、1.7≦x≦2.2、0≦y≦0.5であり、Mは、Mg、Zn、Cu、Fe、Cr、Mn、Ni、Al、B、Na、K、F、Cl、Br、I、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Y、Yb、Si、S、Mo、W、V、Bi、Te、Pb、Ag、Cd、In、Sn、Sb、Ga、Ge、La、Ce、Nd、Sm、Eu、Tb、Dy及びHoから選ばれる1種又は2種以上の金属元素を示す。)
で表されるピロリン酸コバルトリチウムの製造方法であって、
水溶媒に、有機酸及び水酸化コバルトを添加し、次いで、リン酸及び水酸化リチウムを添加して、水性原料スラリー(1)を調製する第1工程と、
該水性原料スラリー(1)をメディアミルにより湿式粉砕処理して、原料粉砕処理物を含むスラリー(2)を得る第2工程と、
該原料粉砕処理物を含むスラリー(2)を噴霧乾燥処理して、反応前駆体を得る第3工程と、
該反応前駆体を600℃以上で焼成する第4工程と、
を有することを特徴とするピロリン酸コバルトリチウムの製造方法を提供するものである。
LixCo1-yMyP2O7 (1)
(式中、1.7≦x≦2.2、0≦y≦0.5であり、Mは、Mg、Zn、Cu、Fe、Cr、Mn、Ni、Al、B、Na、K、F、Cl、Br、I、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Y、Yb、Si、S、Mo、W、V、Bi、Te、Pb、Ag、Cd、In、Sn、Sb、Ga、Ge、La、Ce、Nd、Sm、Eu、Tb、Dy及びHoから選ばれる1種又は2種以上の金属元素を示す。)
で表されるピロリン酸コバルトリチウムの製造方法であって、
水溶媒に、有機酸及び水酸化コバルトを添加し、次いで、リン酸及び水酸化リチウムを添加して、水性原料スラリー(1)を調製する第1工程と、
該水性原料スラリー(1)をメディアミルにより湿式粉砕処理して、原料粉砕処理物を含むスラリー(2)を得る第2工程と、
該原料粉砕処理物を含むスラリー(2)を噴霧乾燥処理して、反応前駆体を得る第3工程と、
該反応前駆体を600℃以上で焼成する第4工程と、
を有することを特徴とするピロリン酸コバルトリチウムの製造方法である。
LixCo1-yMyP2O7 (1)
(式中、1.7≦x≦2.2、0≦y≦0.5であり、Mは、Mg、Zn、Cu、Fe、Cr、Mn、Ni、Al、B、Na、K、F、Cl、Br、I、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Y、Yb、Si、S、Mo、W、V、Bi、Te、Pb、Ag、Cd、In、Sn、Sb、Ga、Ge、La、Ce、Nd、Sm、Eu、Tb、Dy及びHoから選ばれる1種又は2種以上の金属元素を示す。)
で表されるピロリン酸コバルトリチウムである。
Mnから選ばれる1種又は2種以上であることが好ましい。
理の温度は、200~700℃、好ましくは250~600℃である。第5(A)工程における加熱温度が上記範囲にあることにより、残存する炭素を高効率で酸化処理することができる。 第5(A)工程における加熱処理の時間は、本発明のピロリン酸コバルトリチウムの製造方法において臨界的ではない。第5工程における加熱処理の時間が長くなるほどピロリン酸コバルトリチウムに含有される炭素の含有量が低くなる。第5工程(A)では、所望の炭素の含有量となるよう、予め適宜好適な条件を設定して加熱処理を行うことが好ましい。
<第1工程>
純水11Lに室温(25℃)でシュウ酸・2水塩1604.5gを加えてスリーワンモーター攪拌機を用いて30分攪拌し、分散剤(ポリカルボン酸アンモニウム)228gを加えた。次に水酸化コバルト1200gを加えて30分攪拌した。次に85質量%リン酸2922.4gを加えて30分攪拌した。次に水酸化リチウム・1水塩1068.8gを加えて1時間攪拌し水性原料スラリーを得た。
<第2工程>
次いで、この水性原料スラリーを攪拌しながら、直径0.5mmのジルコニアビーズを仕込んだメディア攪拌型ビーズミルに供給し、3時間混合して湿式粉砕を行った。レーザー散乱・回折法により求められる湿式粉砕後のスラリー中の固形分の平均粒子径は0.5μmであった。
<第3工程>
続いて、熱風入口の温度を220℃に設定したスプレードライヤーに、2.4L/hの供給速度でスラリーを供給し、反応前駆体を得た。得られた反応前駆体をX線回折分析したところ、Co(C2O4)(H2O)2、Li(H2PO4)の混合物であることが確認された。反応前駆体のX線回折図を図1に示す。
<第4工程>
次いで、得られた反応前駆体を、650℃で4時間、窒素雰囲気中で焼成し、黒色の焼成品を得た。
得られた焼成品をX線回折分析したところ、焼成品は単相のLi1.86CoP2O7であった。焼成品のX線回折図を図2に示す。
第4工程において700℃で4時間、窒素雰囲気中で焼成したこと以外は、実施例1と同様に行い、黒色の焼成品を得た。
得られた焼成品をX線回折分析したところ、焼成品は単相のLi1.86CoP2O7であった。焼成品のX線回折図を図3に示す。
第4工程において550℃で4時間、大気雰囲気中で焼成したこと以外は、実施例1と同様に行い、紫色の焼成品を得た。
得られた焼成品をX線回折分析したところ、焼成品はLi1.86CoP2O7とLiCoPO4の混合物であった。
純水1Lに室温(25℃)で水酸化コバルト1200gを加えてリーワンモーター攪拌機を用いて30分攪拌し、分散剤(ポリカルボン酸アンモニウム)228gを加えた。次に85質量%リン酸2922.4gを加えたところ紫色のケーキ状となり撹拌不能となった。その後の工程は行えなかった。得られた固形物をX線回折分析したところ、Co3(PO4)2・8H2Oであった。その結果を図4に示す。
実施例1で得られたピロリン酸コバルトリチウムを、350℃で4時間、大気雰囲気中(酸素濃度20体積%)で、加熱処理を行った。
得られた加熱処理品をX線回折分析したところ、単相のLi1.86CoP2O7であった。
実施例1で得られたピロリン酸コバルトリチウムを、700℃で4時間、大気雰囲気中(酸素濃度20体積%)で、加熱処理を行った。
得られた加熱処理品をX線回折分析したところ、単相のLi1.86CoP2O7であった。
第2工程において、メディア攪拌型ビーズミルで、水性原料スラリーを粉砕後、メディア攪拌型ビーズミル内のスラリーに、硝酸アルミニウム9水和物を218g加え、メディア攪拌型ビーズミルでスラリーを撹拌し、第3工程に供するスラリーを得たこと以外は、実施例4と同様にして、Li1.86CoP2O7にAlをモル比Al/Coで0.04で含有させたピロリン酸コバルトリチウムの加熱処理品を得た。
得られた加熱処理品をX線回折分析したところ、異相は観察されず、単相のLi1.86CoP2O7であることを確認した(図6)。
実施例で得られたピロリン酸コバルトリチウムについて、平均粒子径及びBET比表面積を測定し、その結果を表2に示す。また、実施例1で得られたピロリン酸コバルトリチウムのSEM写真を図5に示す。
なお、平均粒子径の測定については、走査型電子顕微鏡において倍率1万倍で観察し、任意に抽出した粒子50個以上の平均値を、平均粒子径として求めた。
Claims (9)
- 下記一般式(1):
LixCo1-yMyP2O7 (1)
(式中、1.7≦x≦2.2、0≦y≦0.5であり、Mは、Mg、Zn、Cu、Fe、Cr、Mn、Ni、Al、B、Na、K、F、Cl、Br、I、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Y、Yb、Si、S、Mo、W、V、Bi、Te、Pb、Ag、Cd、In、Sn、Sb、Ga、Ge、La、Ce、Nd、Sm、Eu、Tb、Dy及びHoから選ばれる1種又は2種以上の金属元素を示す。)
で表されるピロリン酸コバルトリチウムの製造方法であって、
水溶媒に、有機酸及び水酸化コバルトを添加し、次いで、リン酸及び水酸化リチウムを添加して、水性原料スラリー(1)を調製する第1工程と、
該水性原料スラリー(1)をメディアミルにより湿式粉砕処理して、原料粉砕処理物を含むスラリー(2)を得る第2工程と、
該原料粉砕処理物を含むスラリー(2)を噴霧乾燥処理して、反応前駆体を得る第3工程と、
該反応前駆体を600℃以上で焼成する第4工程と、
を有することを特徴とするピロリン酸コバルトリチウムの製造方法。 - 前記第1工程の水性原料スラリー(1)又は前記第2工程の原料粉砕処理物を含むスラリー(2)に、更に、M源(Mは、Mg、Zn、Cu、Fe、Cr、Mn、Ni、Al、B、Na、K、F、Cl、Br、I、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Y、Yb、Si、S、Mo、W、V、Bi、Te、Pb、Ag、Cd、In、Sn、Sb、Ga、Ge、La、Ce、Nd、Sm、Eu、Tb、Dy及びHoから選ばれる1種又は2種以上の金属元素を示す。)を含有させることを特徴とする請求項1記載のピロリン酸コバルトリチウムの製造方法。
- 前記原料粉砕処理物を含むスラリー(2)中の固形分の平均粒子径が1.5μm以下であることを特徴とする請求項1又は2いずれか1項記載のピロリン酸コバルトリチウムの製造方法。
- 前記有機酸がカルボン酸であることを特徴とする請求項1~3いずれか1項記載のピロリン酸コバルトリチウムの製造方法。
- 前記有機酸がシュウ酸であることを特徴とする請求項1~3いずれか1項記載のピロリン酸コバルトリチウムの製造方法。
- 前記反応前駆体がコバルトの有機酸塩及びリチウムのリン酸塩を含有することを特徴とする請求項1~5いずれか1項記載のピロリン酸コバルトリチウムの製造方法。
- 更に、前記第4工程を行い得られるピロリン酸コバルトリチウムを、加熱処理する第5(A)工程を有することを特徴とする請求項1~6いずれか1項記載のピロリン酸コバルトリチウムの製造方法。
- 前記第5(A)工程おける加熱処理温度が200~700℃であることを特徴とする請求項7記載のピロリン酸コバルトリチウムの製造方法。
- 請求項1~6いずれか1項記載のピロリン酸コバルトリチウムの製造方法を行い得られたピロリン酸コバルトリチウムと、加熱分解により炭素が析出する導電性炭素材料源とを混合し、該ピロリン酸コバルトリチウムと該導電性炭素材料源との混合物を得、次いで、該混合物を加熱処理して、該導電性炭素材料源を加熱分解することにより、ピロリン酸コバルトリチウム炭素複合体を得る第5(B)工程を有することを特徴とするピロリン酸コバルトリチウム炭素複合体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980053051.1A CN112566870A (zh) | 2018-08-10 | 2019-07-24 | 焦磷酸钴锂的制造方法和焦磷酸钴锂碳复合体的制造方法 |
KR1020217006808A KR102700307B1 (ko) | 2018-08-10 | 2019-07-24 | 피로인산코발트리튬의 제조 방법 및 피로인산코발트리튬 탄소 복합체의 제조 방법 |
JP2020536440A JP6875605B2 (ja) | 2018-08-10 | 2019-07-24 | ピロリン酸コバルトリチウムの製造方法及びピロリン酸コバルトリチウム炭素複合体の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018151544 | 2018-08-10 | ||
JP2018-151544 | 2018-08-10 | ||
JP2019015095 | 2019-01-31 | ||
JP2019-015095 | 2019-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031690A1 true WO2020031690A1 (ja) | 2020-02-13 |
Family
ID=69413564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028938 WO2020031690A1 (ja) | 2018-08-10 | 2019-07-24 | ピロリン酸コバルトリチウムの製造方法及びピロリン酸コバルトリチウム炭素複合体の製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6875605B2 (ja) |
KR (1) | KR102700307B1 (ja) |
CN (1) | CN112566870A (ja) |
TW (1) | TW202017858A (ja) |
WO (1) | WO2020031690A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241410A1 (ja) * | 2020-05-25 | 2021-12-02 | Fdk株式会社 | ピロリン酸コバルトリチウムの製造方法及び固体電池の製造方法 |
WO2022239684A1 (ja) * | 2021-05-13 | 2022-11-17 | 日本化学工業株式会社 | 遷移金属含有リチウムリン系複合酸化物の製造方法及び遷移金属含有リチウムリン系複合酸化物炭素複合体の製造方法 |
US12009519B2 (en) | 2021-04-20 | 2024-06-11 | Samsung Electronics Co., Ltd. | Cathode active material, preparation method thereof, cathode including the same, and secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113979418B (zh) * | 2021-07-30 | 2023-06-20 | 合肥学院 | 一种磷酸亚铁锂废料转化为焦磷酸铁锂的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006523930A (ja) * | 2003-04-08 | 2006-10-19 | ヴァレンス テクノロジー インコーポレーテッド | オリゴリン酸塩をベースとした電極活物質およびその製造方法 |
WO2011068255A1 (ja) * | 2009-12-04 | 2011-06-09 | 国立大学法人 東京大学 | ピロリン酸塩化合物およびその製造方法 |
WO2013035222A1 (ja) * | 2011-09-09 | 2013-03-14 | 株式会社日立製作所 | 二次電池用正極材料およびそれを用いた二次電池 |
JP2014221690A (ja) * | 2011-09-05 | 2014-11-27 | 国立大学法人 東京大学 | リチウム含有酸素酸塩化合物の製造方法 |
WO2018003071A1 (ja) * | 2016-06-30 | 2018-01-04 | 富士通株式会社 | 二次電池用正極材料、及びその製造方法、並びにリチウムイオン二次電池 |
JP2019149302A (ja) * | 2018-02-27 | 2019-09-05 | Fdk株式会社 | 正極活物質の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101462821B1 (ko) * | 2011-02-02 | 2014-11-20 | 후루카와 덴키 고교 가부시키가이샤 | 미립자 혼합물, 정극 활물질 재료, 정극, 2차전지 및 이들의 제조방법 |
CN104662717B (zh) * | 2013-09-04 | 2018-01-02 | 株式会社Lg 化学 | 过渡金属‑焦磷酸盐负极活性物质及其制备方法、包含它的锂二次电池或混合电容器 |
JP6389688B2 (ja) | 2014-08-06 | 2018-09-12 | Fdk株式会社 | リチウム二次電池用正極活物質およびリチウム二次電池 |
JP6832073B2 (ja) | 2016-03-29 | 2021-02-24 | Fdk株式会社 | 全固体電池用正極活物質材料の製造方法 |
JP6748348B2 (ja) | 2016-06-23 | 2020-09-02 | 富士通株式会社 | 全固体電池 |
-
2019
- 2019-07-24 KR KR1020217006808A patent/KR102700307B1/ko active IP Right Grant
- 2019-07-24 JP JP2020536440A patent/JP6875605B2/ja active Active
- 2019-07-24 WO PCT/JP2019/028938 patent/WO2020031690A1/ja active Application Filing
- 2019-07-24 CN CN201980053051.1A patent/CN112566870A/zh active Pending
- 2019-07-30 TW TW108126946A patent/TW202017858A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006523930A (ja) * | 2003-04-08 | 2006-10-19 | ヴァレンス テクノロジー インコーポレーテッド | オリゴリン酸塩をベースとした電極活物質およびその製造方法 |
WO2011068255A1 (ja) * | 2009-12-04 | 2011-06-09 | 国立大学法人 東京大学 | ピロリン酸塩化合物およびその製造方法 |
JP2014221690A (ja) * | 2011-09-05 | 2014-11-27 | 国立大学法人 東京大学 | リチウム含有酸素酸塩化合物の製造方法 |
WO2013035222A1 (ja) * | 2011-09-09 | 2013-03-14 | 株式会社日立製作所 | 二次電池用正極材料およびそれを用いた二次電池 |
WO2018003071A1 (ja) * | 2016-06-30 | 2018-01-04 | 富士通株式会社 | 二次電池用正極材料、及びその製造方法、並びにリチウムイオン二次電池 |
JP2019149302A (ja) * | 2018-02-27 | 2019-09-05 | Fdk株式会社 | 正極活物質の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241410A1 (ja) * | 2020-05-25 | 2021-12-02 | Fdk株式会社 | ピロリン酸コバルトリチウムの製造方法及び固体電池の製造方法 |
CN115667135A (zh) * | 2020-05-25 | 2023-01-31 | Fdk株式会社 | 焦磷酸钴锂的制造方法及固体电池的制造方法 |
US12009519B2 (en) | 2021-04-20 | 2024-06-11 | Samsung Electronics Co., Ltd. | Cathode active material, preparation method thereof, cathode including the same, and secondary battery |
WO2022239684A1 (ja) * | 2021-05-13 | 2022-11-17 | 日本化学工業株式会社 | 遷移金属含有リチウムリン系複合酸化物の製造方法及び遷移金属含有リチウムリン系複合酸化物炭素複合体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6875605B2 (ja) | 2021-05-26 |
CN112566870A (zh) | 2021-03-26 |
TW202017858A (zh) | 2020-05-16 |
KR20210039462A (ko) | 2021-04-09 |
KR102700307B1 (ko) | 2024-08-30 |
JPWO2020031690A1 (ja) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5309264B2 (ja) | リン酸バナジウムリチウム炭素複合体の製造方法 | |
WO2020031690A1 (ja) | ピロリン酸コバルトリチウムの製造方法及びピロリン酸コバルトリチウム炭素複合体の製造方法 | |
JP4829557B2 (ja) | リチウム鉄複合酸化物の製造方法 | |
JP5835540B2 (ja) | リン酸第二鉄含水物粒子粉末の製造法、オリビン型リン酸鉄リチウム粒子粉末の製造法、並びに非水電解質二次電池の製造法。 | |
US10164241B2 (en) | Electrode material for lithium-ion rechargeable battery and method for manufacturing same | |
KR20110007112A (ko) | 인산철리튬 입자 분말의 제조 방법, 올리빈형 구조의 인산철리튬 입자 분말, 상기 인산철리튬 입자 분말을 이용한 정극재 시트 및 비수용매계 이차 전지 | |
JP6168218B1 (ja) | リチウムイオン二次電池用電極材料およびその製造方法 | |
JP2006347805A (ja) | リチウム鉄複合酸化物の製造方法 | |
JP5604216B2 (ja) | リン酸バナジウムリチウム炭素複合体の製造方法 | |
JP5604217B2 (ja) | リン酸バナジウムリチウム炭素複合体の製造方法 | |
WO2014163124A1 (ja) | リン酸鉄リチウムの製造方法 | |
JP7303039B2 (ja) | ピロリン酸チタンの製造方法、リン酸チタンの製造方法及びプロトン伝導体の製造方法 | |
JP6345227B2 (ja) | リン酸バナジウムリチウムの製造方法 | |
JP6751492B2 (ja) | リン酸コバルトリチウムの製造方法及びリン酸コバルトリチウム炭素複合体の製造方法 | |
WO2022239684A1 (ja) | 遷移金属含有リチウムリン系複合酸化物の製造方法及び遷移金属含有リチウムリン系複合酸化物炭素複合体の製造方法 | |
JP2022175373A (ja) | 遷移金属含有ピロリン酸リチウムの製造方法及び遷移金属含有ピロリン酸リチウム炭素複合体の製造方法 | |
JP2022175372A (ja) | 遷移金属含有リン酸リチウムの製造方法及び遷移金属含有リン酸リチウム炭素複合体の製造方法 | |
JP2020149825A (ja) | 複合材料の製造方法 | |
WO2022145323A1 (ja) | リン酸バナジウムリチウムの製造方法 | |
WO2017154690A1 (ja) | リン酸バナジウムリチウムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19846574 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020536440 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217006808 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19846574 Country of ref document: EP Kind code of ref document: A1 |