WO2020030200A1 - 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件 - Google Patents

带铝硅合金镀层的热冲压部件的制造方法及热冲压部件 Download PDF

Info

Publication number
WO2020030200A1
WO2020030200A1 PCT/CN2019/104708 CN2019104708W WO2020030200A1 WO 2020030200 A1 WO2020030200 A1 WO 2020030200A1 CN 2019104708 W CN2019104708 W CN 2019104708W WO 2020030200 A1 WO2020030200 A1 WO 2020030200A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
aluminum
silicon alloy
temperature
holding
Prior art date
Application number
PCT/CN2019/104708
Other languages
English (en)
French (fr)
Inventor
谭宁
付江
洪继要
方学华
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to DK19847997.4T priority Critical patent/DK3770295T3/da
Priority to ES19847997T priority patent/ES2962214T3/es
Priority to RU2020133922A priority patent/RU2764729C1/ru
Priority to PL19847997.4T priority patent/PL3770295T3/pl
Priority to FIEP19847997.4T priority patent/FI3770295T3/fi
Priority to US17/049,547 priority patent/US20210252579A1/en
Priority to EP19847997.4A priority patent/EP3770295B1/en
Publication of WO2020030200A1 publication Critical patent/WO2020030200A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the present invention relates to the manufacturing technology of hot stamped parts, in particular to a manufacturing method of hot stamped parts with aluminum-silicon alloy coating and hot stamped parts.
  • Chinese patent CN101583486B discloses a method for coating stamped products, including the temperature and time of stamping, and the heating rate from room temperature to 700 ° C is 4-12 ° C / s. The main purpose is to ensure the spot welding performance of stamped parts.
  • Chinese patent CN102300707B further discloses the heating method of hot stamped coated parts, specifically the heating rate at the melting temperature, the holding time at the austenitizing temperature, etc., but the user considers the efficiency and production of the heat treatment furnace during use It was found that the heating method still could not solve the problem of nodulation of sticky rolls of aluminum-silicon coating, which caused the life of heat treatment furnace rollers to be reduced, and the coating of hot stamped parts to fall off.
  • the purpose of the present invention is to provide a method for manufacturing a hot stamped part with an aluminum-silicon alloy coating and a hot stamped part, which can effectively solve the problem of sticking rollers of the aluminum-silicon coating, reduce the nodulation probability of the heat treatment furnace roller, and improve the service life of the roller. At the same time, the integrity of the hot stamping parts plating and the mechanical properties, welding performance, coating performance and corrosion resistance of the components are guaranteed.
  • a method for manufacturing a hot stamped part with an aluminum-silicon alloy coating layer includes the following steps: the steel plate coated with the aluminum-silicon alloy coating is processed into a blank of a desired shape of a part, the blank is heat treated, and hot stamping is formed; in the heat treatment of the blank, The billet is put into a heat treatment furnace for austenitizing heat treatment, and the billet heat treatment process includes first, second, and third heating and holding sections; wherein:
  • the first heating and holding section, the heating and holding temperature and time are limited in the graphic ABCD, which has A (750 ° C, 30s), B (750 ° C, 90s), C (870 ° C, 90s), D (870 ° C, 30s) limited temperature and time range;
  • the second heating and holding section, the heating and holding temperature and time are limited in the graphic EFGH, which has E (875 ° C, 60s), F (875 ° C, 240s), G (930 ° C, 150s), H (930 ° C, 30s) limited temperature and time range;
  • the third heating and holding section, the heating and holding temperature and time are limited in the pattern IJKL, which has I (935 ° C, 60s), J (935 ° C, 240s), K (955 ° C, 180s), and L (955 ° C, 30s) limited temperature and time range;
  • the first heating and holding section, the heating and holding temperature and time are limited in the figure A'B'C'D ', the figure A'B'C'D' has A '(750 ° C, 30s), B' (750 ° C, 90s), C '(890 ° C, 90s), D' (890 ° C, 30s) temperature and time range;
  • the second heating and holding section, the heating and holding temperature and time are limited in the figure E'F'G'H ', which has E' (895 ° C, 90s), F '(895 ° C, 270s), G '(940 ° C, 210s), H' (940 ° C, 60s) temperature and time range;
  • the third heating and holding section, the heating and holding temperature and time are limited to the figure I'J'K'L ', the figure I'J'K'L' has I '(945 ° C, 60s), J' (945 ° C, 240s), K '(955 ° C, 180s), L' (955 ° C, 30s) temperature and time range.
  • the blank heat treatment process includes first and third heating and holding sections, and the heating and holding time of the second heating and holding section is zero, forming a two-stage heating and holding;
  • the section heating and heating in the furnace shortens the heating and holding time and improves production efficiency.
  • the heating temperature is higher, the energy consumption is increased, and the heating capacity of the equipment is required to be higher.
  • the first heating and holding section, the heating and holding temperature and time are limited in the graphic abcd, which has a (750 ° C, 30s), b (750 ° C, 90s), c (870 ° C, 90s), and d (870 ° C, 30s) limited temperature and time range;
  • the temperature of the third heating and holding section, the heating and holding temperature and time are limited to the graph ijkl, which has i (935 ° C, 180s), j (935 ° C, 300s), k (955 ° C, 270s), and 1 (955 ° C , 150s) temperature and time range;
  • the heating and holding temperature and time are limited to a figure a'b'c'd ', the figure a'b'c'd' has a '(750 ° C, 30s), b' (750 ° C, 90s), c '(890 ° C, 90s), d' (890 ° C, 30s) temperature and time range;
  • the temperature of the third heating and holding section, the heating and holding temperature and time are limited to the figure i'j'k'l ', the figure i'j'k'l' has i '(945 ° C, 180s), j' (945 ° C , 300s), k '(955 ° C, 270s), l' (955 ° C, 150s) temperature and time range.
  • the temperatures in the first, second, and third heating and holding sections are stepped temperature rises or a temperature is set.
  • the heat treatment process may be: the first heating and holding section is 800 ° C, 60s, the second heating and holding section is 930 ° C, 120s, and the third heating and holding section is 940 ° C, 60s;
  • One heating and holding section is set to multiple temperatures, such as 770 ° C, 40s, 820 ° C, 30s, 770 ° C, and 50s.
  • the second heating and holding section is set to multiple temperatures, such as 900 ° C, 60s, 930 ° C, and 60s.
  • the third heating and holding section is 935 ° C, 60s, 940 ° C, 60s.
  • the time of the heat treatment process of the billet is not less than 150s and not more than 600s. Within this time range, the surface quality of the billet after heat treatment is high, the coating performance is good, and the welding performance is good.
  • the blank heat treatment process uses a heat treatment furnace, the oxygen content in the furnace atmosphere is not less than 15%, and the dew point in the furnace is not higher than -5 ° C.
  • the final hot stamped part has a low hydrogen content and excellent resistance to delayed cracking.
  • the heat-treated blank is quickly transferred to a mold for stamping, the transfer time is 4-12 seconds, and the temperature of the blank is not lower than 600 ° C before entering the mold; the mold is cooled before pressing Reduce the temperature to ensure that the surface temperature of the mold before stamping is lower than 100 ° C, and the cooling rate of the blank is greater than 30 ° C / s.
  • the microstructure of the hot stamped parts obtained through the above process is mainly martensite or bainite, which has excellent mechanical properties and meets the requirements for use.
  • the aluminum-silicon alloy-coated steel sheet includes a substrate and an aluminum-silicon alloy plating layer on at least one surface thereof, and the component weight percentage of the substrate is: C: 0.04-0.8%, Si ⁇ 1.2%, and Mn: 0.1 -5%, P ⁇ 0.3%, S ⁇ 0.1%, Al ⁇ 0.3%, Ti ⁇ 0.5%, B ⁇ 0.1%, Cr ⁇ 3%, and the rest are Fe and unavoidable impurities.
  • the weight percentage of the components of the aluminum-silicon alloy plating layer is: Si: 4 to 14%, Fe: 0 to 4%, and the balance is Al and unavoidable impurities.
  • the average weight of the aluminum-silicon alloy coating is 58-105 g / m 2 on one side; more preferably, the average weight of the aluminum-silicon alloy coating is 72-88 g / m 2 on one side.
  • the final hot stamped part has uniform appearance color, no color difference, good coating performance, and good welding performance.
  • the aluminum-silicon alloy plating layer of the hot stamped part obtained by the manufacturing method of the present invention includes a surface alloy layer and a diffusion layer, and the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.08-0.5.
  • the final hot stamped part has uniform appearance color, good coating performance and good welding performance.
  • the aluminum-silicon alloy plating layer includes two layers, and the diffusion layer is in contact with the substrate.
  • Al in the aluminum-silicon alloy plating layer and Fe of the substrate further diffuse to form a diffusion layer; Al and Fe of the substrate will be alloyed to form a surface alloy layer; in the parts after hot stamping, the ratio of the thickness of the diffusion layer to the total thickness of the aluminum-silicon alloy plating layer (including the diffusion layer and the surface alloy layer) is 0.08-0.5.
  • the hot stamping part according to the present invention has a yield strength of 400-1300 MPa, a tensile strength of 500-2000 MPa, and an elongation of ⁇ 4%.
  • the elongation of the hot stamped part according to the present invention is 4 to 20%.
  • the non-plated layer melts the sticky roller, the plating layer is complete, the adhesion is good, and the surface is not significantly peeled off.
  • the coating of the hot-formed component according to the present invention does not fall off, the surface roughness meets the requirements, and the ratio of the thickness of the diffusion layer to the thickness of the coating is between 0.08 and 0.5.
  • the paint film is complete and the paint film adhesion is evaluated as 0 or higher. .
  • the thickness of the diffusion layer and the plating layer of the hot-formed part according to the present invention meets the requirements.
  • the ratio of the thickness of the diffusion layer to the thickness of the plating layer is between 0.08 and 0.5.
  • the spot welding performance is excellent, and the spot welding intervals are all above 2KA.
  • the diffusion of the plating layer and the austenitization of the substrate can be satisfactorily satisfied, and at the same time, the melting sticky roll of the plating layer can be avoided, thereby obtaining heat with good coating performance and substrate performance. Stamped parts.
  • the melting point of the aluminum-silicon alloy coating Al-Si alloy is 580 to 600 ° C
  • the austenitizing temperature of the steel plate is above 840 ° C
  • the aluminum-silicon alloy coating layer will melt during the heat treatment process, and adhere to the furnace roll.
  • Al and Fe in the plating layer will diffuse to form an Fe-Al alloy.
  • the alloy has strong heat resistance, high melting temperature, and will not cause adhesion to the furnace roller.
  • the present invention controls the heating process, heating and insulation of the aluminum-silicon coating layer.
  • the dwell time of the section in order to avoid the melting of the aluminum-silicon alloy coating as much as possible, the adhesion to the heat treatment furnace rollers, resulting in nodulation of the furnace rollers, and at the same time to ensure that the coating can reach the appropriate alloying degree according to the production cycle, and obtain the appropriate coating thickness and diffusion
  • the thickness of the layer and the quality of the coating surface ensure the weldability and paintability of the part.
  • the invention reduces the adhesion of the aluminum-silicon alloy coating to the heat treatment furnace rollers, reduces the occurrence of nodules in the heat treatment furnace rollers, and extends the maintenance cycle and service life of the rollers.
  • the blank heat treatment process of the present invention can improve the surface quality of stamped parts and prevent the coating from peeling off during the heat treatment process.
  • the billet heat treatment method of the present invention adopts a stepwise heating method, fully considers the characteristics of the aluminum-silicon alloy coating, and appropriately adjusts the temperature and time according to the thickness of the material, so that the energy can be effectively used and has a good energy saving effect.
  • FIG. 1 is a surface of an aluminum-silicon alloy plated hot stamped part prepared in Comparative Example 1.
  • FIG. 1 is a surface of an aluminum-silicon alloy plated hot stamped part prepared in Comparative Example 1.
  • FIG. 2 is a surface of an aluminum-silicon alloy plated hot stamped part prepared in Example 1 of the present invention.
  • Example 3 is a cross-sectional view of an aluminum-silicon alloy plated hot stamped part prepared in Example 1 of the present invention.
  • FIG. 4 is a schematic diagram of the heating and holding temperature and time range of the first to third heating and holding sections of the billet heat treatment process (three-stage heating and holding) according to the present invention (steel plate thickness ⁇ 1.5mm).
  • FIG. 5 is a schematic diagram of the heating temperature and time range of the first to third heating and holding sections of the billet heat treatment process (three-stage heating and holding) according to the present invention (steel plate thickness 1.5 mm or more).
  • FIG. 6 is a schematic diagram of the heating temperature and time range of the first and third heating and holding sections of the blank heat treatment process (two-stage heating and holding) according to the present invention.
  • Table 1 shows the composition of the steel plate substrate according to the embodiment of the present invention
  • Table 2 shows the manufacturing process and performance of the hot stamped part according to the embodiment of the present invention.
  • a 1.2mm substrate was hot-dip aluminized at 650 ° C, the composition of the bath was 8% Si, 2.3% Fe, and the rest was Al and unavoidable impurities.
  • the steel plate coated with the aluminum-silicon alloy coating was continuously blanked into a certain shape. The blank is heat treated. The specific heat treatment parameters are shown in Table 2. The appearance of the obtained hot stamped parts is shown in Figure 2.
  • the cross-sectional microstructure of the aluminum-silicon alloy coating is shown in Figure 3.
  • the aluminum-silicon alloy coating includes a surface alloy layer and The diffusion layer, the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy coating is 0.25.
  • a 0.9mm substrate was hot-dip aluminized at 660 ° C, the bath composition was 9% Si, 2.5% Fe, and the rest was Al and inevitable impurities.
  • the aluminum-silicon alloy coated steel sheet was continuously blanked into a certain shape. The blank is heat-treated. Specific heat-treatment parameters are shown in Table 2. The ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.3.
  • a 1.0mm substrate was hot-dip aluminized at 660 ° C, the bath composition was 8.5% Si, 2.5% Fe, and the rest was Al and unavoidable impurities.
  • the aluminum-silicon alloy coated steel sheet was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy coating is 0.15.
  • a 1.1mm substrate was hot-dip aluminized at 680 ° C, the bath composition was 9.5% Si, 2.5% Fe, and the rest was Al and unavoidable impurities.
  • the aluminum-silicon alloy coated steel sheet was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy coating is 0.28.
  • a 1.2mm substrate was hot-dip aluminized at 680 ° C, the composition of the bath was 8.8% Si, 2.4% Fe, and the rest was Al and inevitable impurities.
  • the steel plate coated with the aluminum-silicon alloy coating was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.35.
  • a 1.5mm substrate was hot-dip aluminized at 680 ° C, the composition of the bath was 8.8% Si, 2.4% Fe, and the rest was Al and unavoidable impurities.
  • the steel plate coated with the aluminum-silicon alloy coating was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.35.
  • a 1.6mm substrate was hot-dip aluminized at 680 ° C, the composition of the bath was 8.8% Si, 2.4% Fe, and the rest was Al and inevitable impurities.
  • the steel plate coated with the aluminum-silicon alloy coating was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.3.
  • a 1.8mm substrate was hot-dip aluminized at 680 ° C, the composition of the plating solution was 8.8% Si, 2.4% Fe, and the rest was Al and unavoidable impurities.
  • the steel plate coated with the aluminum-silicon alloy coating was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.35.
  • a 2.0mm substrate was hot-dip aluminized at 680 ° C, the composition of the bath was 8.8% Si, 2.4% Fe, and the rest was Al and unavoidable impurities.
  • the steel plate coated with the aluminum-silicon alloy coating was continuously blanked into a certain shape. The blank is heat-treated; the ratio of the thickness of the diffusion layer to the thickness of the aluminum-silicon alloy plating layer is 0.4.
  • Figure 1 is the surface of a hot stamped part in the comparative example.
  • the surface aluminum-silicon plating layer is melted, which will cause the coating sticking roller.
  • FIG. 2 is a surface of a hot stamped part in Example 1 of the present invention.
  • the surface of the aluminum-silicon alloy plating layer shows no sign of melting, and the alloying is sufficient.
  • Embodiment 3 is a cross-sectional view of a plated layer of a hot stamped part in Embodiment 1 of the present invention. It can be seen from the figure that the aluminum-silicon alloy coating includes two layers-a surface alloy layer and a diffusion layer. The thickness ratio of the diffusion layer to the aluminum-silicon alloy coating is about 0.25.
  • the substrate is mainly composed of martensite.
  • FIG. 4 is the range of the first, second, and third heating and holding sections when the thickness of the aluminum-silicon-coated steel sheet according to the present invention is less than 1.5 mm, and the heating and holding temperature and time of the first heating and holding section are limited in the graph ABCD
  • the temperature and time of the second heating and holding section are limited within the graphic EFGH
  • the temperature and time of the third heating and holding section are limited within the graphic IJKL.
  • FIG. 5 is the temperature and time of the first heating and heat-preserving section when the thickness of the steel plate coated with the aluminum-silicon alloy according to the present invention is greater than or equal to 1.5 mm, and the temperature and time are limited within the graph A'B'C'D ';
  • the heating and holding temperature and time of the segment heating are limited within the graphic E'F'G'H ', and the heating and holding temperature and time of the third heating and holding segment are limited to the graphic I'J'K'L'.
  • FIG. 6 is a schematic diagram of the heating temperature and time range of the first and third heating and holding sections of the blank heat treatment process (two-stage heating and holding) according to the present invention.
  • the heating and holding time of the second heating and holding section is zero, forming two Section heating insulation.
  • the heating and holding temperature and time of the first heating and holding section are limited to the figure abcd, and the heating and holding temperature and time of the third heating and holding section are limited to the figure ijkl.
  • the heating and holding temperature and time of the first heating and holding section are limited to the figure a'b'c'd ', and the heating and holding temperature and time of the third heating and holding section Confined within the figure i'j'k'l '.

Abstract

带铝硅合金镀层的热冲压部件的制造方法及热冲压部件,其方法包括如下步骤:涂覆铝硅合金镀层的钢板加工成零件所需形状的坯料,坯料热处理,热冲压成形;所述坯料热处理采用两段式或三段式加热保温,加热保温为阶梯式升温;所述涂覆铝硅合金镀层的钢板包括基板及其至少一个表面上的铝硅合金镀层。本发明方法充分考虑了铝硅镀层特性,可有效解决铝硅镀层的粘辊问题,降低热处理炉辊子的结瘤概率,提升辊子的使用寿命,同时保证热冲压部件镀层的完整性及部件的机械性能、焊接性能、涂装性能及耐蚀性能。

Description

带铝硅合金镀层的热冲压部件的制造方法及热冲压部件 技术领域
本发明涉及热冲压部件制造技术,特别涉及一种带铝硅合金镀层的热冲压部件的制造方法及热冲压部件。
背景技术
轻量化、减少排放是汽车行业的主要发展趋势,采用强度相对较低的材料,通过热处理来改变微观组织,最终实现汽车零件的高强度,这种热成形技术实现了汽车零件成形水平的提高和高强度性能的保证。铝硅镀层相对无镀层热冲压产品具有好的厚度和尺寸精度、良好的耐蚀性及焊接性能,在目前的使用热冲压钢的比例约70%左右,在可预见的将来比例将越来越高。
中国专利CN101583486B公开了涂覆的冲压产品的方法,包括冲压的温度和时间,从室温至700℃的加热速率是4~12℃/s,主要目的是保证冲压部件的点焊性能。
中国专利CN102300707B进一步公开了热冲压涂覆部件的加热方法,具体是熔融温度下的加热速率,奥氏体化温度下的保温时间等,但用户在使用过程中,考虑到热处理炉的效率及生产节拍,发现该加热方法仍不能很好地解决铝硅镀层粘辊结瘤问题,造成热处理炉辊子寿命下降,热冲压部件镀层脱落等问题。
发明内容
本发明的目的在于一种带铝硅合金镀层的热冲压部件的制造方法及热冲压部件,可以有效解决铝硅镀层的粘辊问题,降低热处理炉辊子的结瘤概率,提升辊子的使用寿命,同时保证热冲压部件镀层的完整性及部件的机械性能、焊接性能、涂装性能及耐蚀性能。
为达到上述目的,本发明的技术方案是:
一种带铝硅合金镀层的热冲压部件的制造方法,包括如下步骤:涂覆铝硅合金镀层的钢板加工成零件所需形状的坯料,坯料热处理,热冲压成形;所述坯料热处理中,将坯料放入热处理炉进行奥氏体化热处理,所述的坯料热处理工艺包括第一、第二、第三加热保温段;其中:
涂覆铝硅合金镀层的钢板的厚度<1.5mm时,
第一加热保温段,加热保温温度和时间限定在图形ABCD内,该图形ABCD具有A(750℃,30s),B(750℃,90s),C(870℃,90s),D(870℃,30s)所限定的温度和时间范围;
第二加热保温段,加热保温温度和时间限定在图形EFGH内,该图形EFGH具有E(875℃,60s),F(875℃,240s),G(930℃,150s),H(930℃,30s)所限定的温度和时间范围;
第三加热保温段,加热保温温度和时间限定在图形IJKL内,该图形IJKL具有I(935℃,60s),J(935℃,240s),K(955℃,180s),L(955℃,30s)所限定的温度和时间范围;
涂覆铝硅合金镀层的钢板的厚度≥1.5mm时,
第一加热保温段,加热保温温度和时间限定在图形A'B'C'D'内,该图形A'B'C'D'具有A'(750℃,30s),B'(750℃,90s),C'(890℃,90s),D'(890℃,30s)所限定的温度和时间范围;
第二加热保温段,加热保温温度和时间限定在图形E'F'G'H'内,该图形E'F'G'H'具有E'(895℃,90s),F'(895℃,270s),G'(940℃,210s),H'(940℃,60s)所限定的温度和时间范围;
第三加热保温段,加热保温温度和时间限定在图形I'J'K'L'内,该图形I'J'K'L'具有I'(945℃,60s),J'(945℃,240s),K'(955℃,180s),L'(955℃,30s)所限定的温度和时间范围。
进一步,所述的坯料热处理工艺中包括第一、第三加热保温段,所述第二加热保温段的加热保温时间为零,形成两段式加热保温;相对于前述三段式加热保温,二段式加热保温在炉内加热保温时间缩短,提升生产效率;同时因为加热温度更高,能耗有所增加,对设备加热能力要求更高,其中,
涂覆铝硅合金镀层的钢板的厚度<1.5mm时,
第一加热保温段,加热保温温度和时间限定在图形abcd内,该图形abcd具有a(750℃,30s),b(750℃,90s),c(870℃,90s),d(870℃,30s)所限定的温度和时间范围;
第三加热保温段温度,加热保温温度和时间限定在图形ijkl内,该图形ijkl具有i(935℃,180s),j(935℃,300s),k(955℃,270s),l(955℃,150s)所限定的温度和时间范围;
涂覆铝硅合金镀层的钢板的厚度≥1.5mm时,
第一加热保温段,加热保温温度和时间限定在图形a'b'c'd'内,该图形a'b'c'd'具有a'(750℃,30s),b'(750℃,90s),c'(890℃,90s),d'(890℃,30s)所限定的温度和时间范围;
第三加热保温段温度,加热保温温度和时间限定在图形i'j'k'l'内,该图形i'j'k'l'具有i'(945℃,180s),j'(945℃,300s),k'(955℃,270s),l'(955℃,150s)所限定的温度和时间范围。
更进一步,所述的坯料热处理工艺中,所述第一、第二、第三加热保温段中的温度为阶梯式温度升温或设定一个温度。
例如,1.2mm铝硅合金镀层钢板,其热处理工艺可以是,第一加热保温段800℃,60s,第二加热保温段930℃,120s,第三加热保温段940℃,60s;也可以是第一加热保温段设定为多个温度,如770℃,40s,820℃,30s,770℃,50s,第二加热保温段设定为多个温度,如900℃,60s,930℃,60s,第三加热保温段935℃,60s,940℃,60s。
优选的,所述的坯料热处理工艺的时间不低于150s,不超过600s,在该时间范围内,坯料热处理后表面质量高,涂装性能好,焊接性能好。
优选的,所述的坯料热处理工艺采用热处理炉,炉内气氛氧含量不低于15%,炉内露点不高于-5℃。最终热冲压部件内的氢含量低,耐延迟开裂性能优异。
优选的,所述的热冲压成形工序中,将热处理后的坯料快速转移至模具进行冲压成形,转移时间为4~12秒,入模具前坯料温度不低于600℃;冲压前对模具进行冷却降温,确保冲压前模具的表面温度低于100℃,坯料的冷却速率大于30℃/s。通过上述工艺得到的热冲压部件组织结构主要为马氏体或贝氏体,力学性能优异,满足使用要求。
又,所述涂覆铝硅合金镀层的钢板包括基板及其至少一个表面上的铝硅合金镀层,所述基板的成分重量百分比为:C:0.04-0.8%,Si<1.2%,Mn:0.1-5%,P<0.3%,S<0.1%,Al<0.3%,Ti<0.5%,B<0.1%,Cr<3%,其余为Fe及不可避免杂质。
优选的,所述的铝硅合金镀层的成分重量百分比为:Si:4~14%,Fe:0~4%,余量为Al及不可避免杂质。采用前述硅合金镀层成分,得到的合金层厚度均匀,厚度薄,镀层附着力好,加工性能好。
优选的,所述的铝硅合金镀层的重量平均值为58~105g/m 2单面;更优选的,所述的铝硅合金镀层的重量平均值为72~88g/m 2单面。通过控制铝硅合金镀层的重量平均值在该范围内,最终热冲压部件外观颜色均匀,无色差,涂装性能好,焊接性能好。
另外,本发明制造方法获得的热冲压部件的铝硅合金镀层中包含表面合金层和扩散层,扩散层厚度与铝硅合金镀层厚度的比值为0.08-0.5。最终热冲压部件外观颜色均匀,涂装性能好,焊接性能好。
具体的,所述的铝硅合金镀层包含两层,与基板接触的是扩散层,热处理过程中,铝硅合金镀层中的Al与基板的Fe进一步扩散,形成扩散层;铝硅合金镀层中的Al与基板的Fe会发生合金化,形成表面合金层;热冲压后的部件中,扩散层厚度与铝硅合金镀层总厚度(包含扩散层与表面合金层)的比值为0.08-0.5。
本发明所述的热冲压部件的屈服强度400-1300MPa,抗拉强度500-2000MPa,延伸率≥4%。
优先地,本发明所述的热冲压部件的延伸率4~20%。
本发明所述的热成形部件在热处理过程中,无镀层融化粘辊,镀层完整,粘附力好,表面无明显剥落。
本发明所述的热成形部件镀层无脱落,表面粗糙度满足要求,扩散层厚度与镀层厚度比值在0.08-0.5之间,电泳涂装后,漆膜完整,漆膜附着力评价为0级以上。
本发明所述的热成形部件扩散层厚度和镀层厚度满足要求,扩散层厚度与镀层厚度比值在0.08-0.5之间,点焊性能优良,点焊区间均在2KA以上。
本发明所述的热成形部件上镀层在热处理过程中,可以很好地满足镀层的扩散及基板的奥氏体化,同时避免镀层的融化粘辊,从而得到具备良好镀层性能和基板性能的热冲压部件。
具体来讲,铝硅合金镀层Al-Si合金的熔点在580~600℃,钢板的奥氏体化温度在840℃以上,铝硅合金镀层在热处理过程中会发生镀层融化,粘附炉辊,同时镀层中Al与基板Fe会发生扩散,形成Fe-Al合金,该合金耐热性强,融化温度高,不会对炉辊造成粘附,本发明通过控制铝硅镀层在加热过程、加热保温段的停留时间,从而尽量避免铝硅合金镀层的融化,对热处理炉辊子的粘附,造成炉辊结瘤,同时根据生产节拍保证镀层能达到合适的合金化程度,得到合适的镀层厚度和扩散层厚度,以及镀层表面质量,从而保证部件的焊接性、涂装性。
本发明的有益效果:
本发明通过设计坯料热处理工艺,减少了铝硅合金镀层对热处理炉辊子的粘附,降低热处理炉辊子的结瘤发生率,延长辊子的维护周期和使用寿命。
同时,本发明坯料热处理工艺可提高冲压部件的表面质量,防止镀层在热处理过程中的剥落。
另外,本发明坯料热处理方法采用阶梯式升温方式,充分考虑了铝硅合金镀层特性,根据料厚情况,合理调节温度和时间,使能量得以有效利用,具备很好的节能效果。
附图说明
图1为对比例1制备的铝硅合金镀层热冲压部件的表面。
图2为本发明实施例1制备的铝硅合金镀层热冲压部件的表面。
图3为本发明实施例1制备的铝硅合金镀层热冲压部件的截面图。
图4为本发明所述坯料热处理工艺(三段式加热保温)第一~第三加热保温段加热保温温度和时间范围示意图(钢板厚度<1.5mm)。
图5为本发明所述坯料热处理工艺(三段式加热保温)第一~第三加热保温段加热温度和时间范围示意图(钢板厚度≥1.5mm)。
图6为本发明所述坯料热处理工艺(两段式加热保温)第一、第三加热保温段加热温度和时间范围示意图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
表1为本发明实施例钢板基板的成分;表2为本发明实施例的热冲压部件制造工艺及热冲压部件的性能。
实施例1
将1.2mm基板在650℃下进行热浸镀铝,镀液成分为8%Si,2.3%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理,具体热处理参数如表2所示,所得热冲压部件的外观如图2所示,所述铝硅合金镀层截面微观结构图3所示,铝硅合金镀层中包含表面合金层和扩散层,扩散层厚度与铝硅合金镀层厚度的比值是0.25。
实施例2
将0.9mm基板在660℃下进行热浸镀铝,镀液成分为9%Si,2.5%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理,具体热处理参数如表2所示,所述扩散层厚度与铝硅合金镀层厚度的比值是0.3。
实施例3
将1.0mm基板在660℃下进行热浸镀铝,镀液成分为8.5%Si,2.5%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.15。
实施例4
将1.1mm基板在680℃下进行热浸镀铝,镀液成分为9.5%Si,2.5%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.28。
实施例5
将1.2mm基板在680℃下进行热浸镀铝,镀液成分为8.8%Si,2.4%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.35。
实施例6
将1.5mm基板在680℃下进行热浸镀铝,镀液成分为8.8%Si,2.4%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.35。
实施例7
将1.6mm基板在680℃下进行热浸镀铝,镀液成分为8.8%Si,2.4%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.3。
实施例8
将1.8mm基板在680℃下进行热浸镀铝,镀液成分为8.8%Si,2.4%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.35。
实施例9
将2.0mm基板在680℃下进行热浸镀铝,镀液成分为8.8%Si,2.4%Fe,其余为Al及不可避免杂质,涂覆铝硅合金镀层的钢板连续落料成一定形状的坯料,坯料进行热处理;所述扩散层厚度与铝硅合金镀层厚度的比值是0.4。
表1 钢板基板成分重量百分比(wt%)
实施例 C Si Mn P S Al Ti B Cr
1 0.22 0.10 2.90 0.059 0.038 0.09 0.090 0.031 0.150
2 0.10 0.02 0.8 0.018 0.007 0.08 0.001 0.001 0.003
3 0.20 0.23 1.19 0.015 0.040 0.08 0.027 0.005 0.200
4 0.39 0.36 3.00 0.044 0.030 0.07 0.050 0.006 0.300
5 0.08 0.05 0.70 0.02 0.010 0.05 0.002 0.002 0.220
6 0.25 0.40 2.30 0.059 0.038 0.09 0.090 0.031 0.150
7 0.12 0.20 0.90 0.018 0.007 0.08 0.001 0.001 0.003
8 0.30 0.30 1.70 0.015 0.040 0.08 0.027 0.005 0.200
9 0.50 0.36 3.00 0.044 0.030 0.07 0.050 0.006 0.300
对比例 0.22 0.10 2.90 0.059 0.038 0.09 0.090 0.031 0.150
表2
Figure PCTCN2019104708-appb-000001
Figure PCTCN2019104708-appb-000002
图1是对比例中热冲压部件表面,表面铝硅镀层发生融化,会造成镀层粘辊。
图2是本发明实施例1中热冲压部件表面,表面铝硅合金镀层没有融化迹象,合金化充分。
图3是本发明实施例1中热冲压部件镀层截面图。从图中可以看出:铝硅合金镀层包含两层——表面合金层和扩散层,扩散层与铝硅合金镀层厚度比值为0.25左右,基板主要由马氏体组成。
图4是本发明所述的涂覆铝硅合金镀层的钢板的厚度<1.5mm时,第一、第二、第三加热保温段范围,第一加热保温段加热保温温度和时间限定在图形ABCD内,第二加热保温段加热保温温度和时间限定在图形EFGH内,第三加热保温段加热保温温度和时间限定在图形IJKL内。
图5是本发明所述的涂覆铝硅合金镀层的钢板的厚度≥1.5mm时,第一加热保温段加热保温温度和时间限定在图形A'B'C'D'内,第二加热保温段加热保温温度和时间限定在图形E'F'G'H'内,第三加热保温段加热保温温度和时间限定在图形I'J'K'L'内。
图6所示为本发明所述坯料热处理工艺(两段式加热保温)第一、第三加热保温段加热温度和时间范围示意图,所述第二加热保温段的加热保温时间为零,形成两段式加热保温。
涂覆铝硅合金镀层的钢板的厚度<1.5mm时,第一加热保温段的加热保温温度和时间限定在图形abcd内,第三加热保温段温度的加热保温温度和时间限定在图形ijkl内。
涂覆铝硅合金镀层的钢板的厚度≥1.5mm时,第一加热保温段的加热保温温度和时间限定在图形a'b'c'd'内,第三加热保温段的加热保温温度和时间限定在图形i'j'k'l'内。

Claims (12)

  1. 带铝硅合金镀层的热冲压部件的制造方法,包括如下步骤:涂覆铝硅合金镀层的钢板加工成零件所需形状的坯料,坯料热处理,热冲压成形;其特征是,所述坯料热处理中,将坯料放入热处理炉进行奥氏体化热处理,所述的坯料热处理工艺包括第一、第二、第三加热保温段;其中:
    涂覆铝硅合金镀层的钢板的厚度<1.5mm时,
    第一加热保温段,加热保温温度和时间限定在图形ABCD内,该图形ABCD具有A(750℃,30s),B(750℃,90s),C(870℃,90s),D(870℃,30s)所限定的温度和时间范围;
    第二加热保温段,加热保温温度和时间限定在图形EFGH内,该图形EFGH具有E(875℃,60s),F(875℃,240s),G(930℃,150s),H(930℃,30s)所限定的温度和时间范围;
    第三加热保温段,加热保温温度和时间限定在图形IJKL内,该图形IJKL具有I(935℃,60s),J(935℃,240s),K(955℃,180s),L(955℃,30s)所限定的温度和时间范围;
    涂覆铝硅合金镀层的钢板的厚度≥1.5mm时,
    第一加热保温段,加热保温温度和时间限定在图形A'B'C'D'内,该图形A'B'C'D'具有A'(750℃,30s),B'(750℃,90s),C'(890℃,90s),D'(890℃,30s)所限定的温度和时间范围;
    第二加热保温段,加热保温温度和时间限定在图形E'F'G'H'内,该图形E'F'G'H'具有E'(895℃,90s),F'(895℃,270s),G'(940℃,210s),H'(940℃,60s)所限定的温度和时间范围;
    第三加热保温段,加热保温温度和时间限定在图形I'J'K'L'内,该图形I'J'K'L'具有I'(945℃,60s),J'(945℃,240s),K'(955℃,180s),L'(955℃,30s)所限定的温度和时间范围。
  2. 如权利要求1所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的坯料热处理工艺中包括第一、第三加热保温段,所述第二加热保温段的加热保温时间为零,形成两段式加热保温;其中,
    涂覆铝硅合金镀层的钢板的厚度<1.5mm时,
    第一加热保温段,加热保温温度和时间限定在图形abcd内,该图形abcd具有a(750℃,30s),b(750℃,90s),c(870℃,90s),d(870℃,30s)所限定的温度和时间范围;
    第三加热保温段温度,加热保温温度和时间限定在图形ijkl内,该图形ijkl具有i(935℃,180s),j(935℃,300s),k(955℃,270s),l(955℃,150s)所限定的温度和时间范围;
    涂覆铝硅合金镀层的钢板的厚度≥1.5mm时,
    第一加热保温段,加热保温温度和时间限定在图形a'b'c'd'内,该图形a'b'c'd'具有a'(750℃,30s),b'(750℃,90s),c'(890℃,90s),d'(890℃,30s)所限定的温度和时间范围;
    第三加热保温段温度,加热保温温度和时间限定在图形i'j'k'l'内,该图形i'j'k'l'具有i'(945℃,180s),j'(945℃,300s),k'(955℃,270s),l'(955℃,150s)所限定的温度和时间范围。
  3. 如权利要求1所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的坯料热处理工艺中,所述第一、第二、第三加热保温段中的温度为阶梯式温度升温或设定一个温度。
  4. 如权利要求1所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的坯料热处理工艺的时间不低于150s,不超过600s。
  5. 如权利要求1所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的坯料热处理工艺采用热处理炉,炉内气氛氧含量不低于15%,炉内露点不高于-5℃。
  6. 如权利要求1所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的热冲压成形工序中,将热处理后的坯料快速转移至模具进行冲压成形,转移时间为4~12秒,入模具前坯料温度不低于600℃;冲压前对模具进行冷却降温,确保冲压前模具的表面温度低于100℃,坯料的冷却速率大于30℃/s。
  7. 如权利要求1所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述涂覆铝硅合金镀层的钢板包括基板及其至少一个表面上的铝硅合金镀层,所述基板的成分重量百分比为:C:0.04-0.8%,Si<1.2%,Mn:0.1-5%,P<0.3%,S<0.1%,Al<0.3%,Ti<0.5%,B<0.1%,Cr<3%, 其余为Fe及不可避免杂质。
  8. 如权利要求7所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的铝硅合金镀层的成分重量百分比为:Si:4~14%,Fe:0~4%,余量为Al及不可避免杂质。
  9. 如权利要求7或8所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的铝硅合金镀层的重量平均值为58~105g/m 2单面。
  10. 如权利要求7或8所述的带铝硅合金镀层的热冲压部件的制造方法,其特征是,所述的铝硅合金镀层的重量平均值为72~88g/m 2单面。
  11. 如权利要求1~10任何一项所述的带铝硅合金镀层的热冲压部件的制造方法获得的热冲压部件,其特征是,所述的热冲压部件的铝硅合金镀层中包含表面合金层和扩散层,扩散层厚度与铝硅合金镀层厚度的比值为0.08-0.5。
  12. 如权利要求11所述的带铝硅合金镀层的热冲压部件的制造方法获得的热冲压部件,其特征是,所述的热冲压部件的屈服强度400-1300MPa,抗拉强度500-2000MPa,延伸率≥4%。
PCT/CN2019/104708 2018-06-09 2019-09-06 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件 WO2020030200A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK19847997.4T DK3770295T3 (en) 2018-08-08 2019-09-06 Manufacturing method for hot stamping component having aluminium-silicon alloy coating
ES19847997T ES2962214T3 (es) 2018-08-08 2019-09-06 Método de fabricación para un componente de estampación en caliente que tiene un revestimiento de aleación de aluminio y silicio
RU2020133922A RU2764729C1 (ru) 2018-08-08 2019-09-06 Способ изготовления горячештампованного компонента с алюминиево-кремниевым покрытием и горячештампованный компонент
PL19847997.4T PL3770295T3 (pl) 2018-08-08 2019-09-06 Metoda wytwarzania komponentu wytłaczanego na gorąco z powłoką ze stopu aluminiowo-krzemowego
FIEP19847997.4T FI3770295T3 (fi) 2018-08-08 2019-09-06 Alumiini-piiseospinnoitteella varustetun kuumapuristuskomponentin valmistusmenetelmä
US17/049,547 US20210252579A1 (en) 2018-06-09 2019-09-06 Manufacturing method for hot stamping component having aluminium-silicon alloy coating, and hot stamping component
EP19847997.4A EP3770295B1 (en) 2018-08-08 2019-09-06 Manufacturing method for hot stamping component having aluminium-silicon alloy coating

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810896744.4 2018-08-08
CN201810896744 2018-08-08
CN201811035118.2A CN109518114A (zh) 2018-08-08 2018-09-06 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件
CN201811035118.2 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020030200A1 true WO2020030200A1 (zh) 2020-02-13

Family

ID=65770861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104708 WO2020030200A1 (zh) 2018-06-09 2019-09-06 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件

Country Status (11)

Country Link
US (1) US20210252579A1 (zh)
EP (1) EP3770295B1 (zh)
CN (2) CN117483561A (zh)
DK (1) DK3770295T3 (zh)
ES (1) ES2962214T3 (zh)
FI (1) FI3770295T3 (zh)
HU (1) HUE063894T2 (zh)
PL (1) PL3770295T3 (zh)
PT (1) PT3770295T (zh)
RU (1) RU2764729C1 (zh)
WO (1) WO2020030200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180146A4 (en) * 2020-07-10 2023-05-31 POSCO Co., Ltd PROCESS FOR MAKING A HOT PRESS FORMED ITEM WITH EXCELLENT MANUFACTURING, WELDING AND FORMABILITY

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117483561A (zh) * 2018-08-08 2024-02-02 宝山钢铁股份有限公司 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件
CN112877590A (zh) * 2019-11-29 2021-06-01 宝山钢铁股份有限公司 一种性能优异的带涂层热成形部件及其制造方法
CN112877592B (zh) * 2019-11-29 2022-06-28 宝山钢铁股份有限公司 具有优异漆膜附着力的热成形部件及其制造方法
DE202019107269U1 (de) * 2019-12-30 2020-01-23 C4 Laser Technology GmbH Verschleiß- und Korrosionsschutzschicht aufweisende Bremseinheit
CN111647802B (zh) * 2020-05-11 2021-10-22 首钢集团有限公司 一种涂覆铝硅合金镀层的热冲压构件的制备方法及其产品
CN114807739A (zh) * 2021-01-28 2022-07-29 宝山钢铁股份有限公司 一种镀铝钢板、热成形部件及制造方法
CN115673074A (zh) * 2021-07-28 2023-02-03 宝山钢铁股份有限公司 一种1500MPa以上的铝硅镀层热冲压钢零件制备方法及零件
CN113814654A (zh) * 2021-08-20 2021-12-21 首钢集团有限公司 一种使用含铝镀层热成形板制备热成形零件的方法
CN116000169A (zh) * 2021-10-21 2023-04-25 香港大学 一种用于预涂覆钢板的热冲压成形方法
CN116851528A (zh) * 2022-03-28 2023-10-10 宝山钢铁股份有限公司 用于生产高冷弯性能的高强度热冲压部件的方法、热冲压部件
CN115156845A (zh) * 2022-06-16 2022-10-11 唐山钢铁集团高强汽车板有限公司 一种防止镀层粘辊的镀锌热成形钢生产方法
CN116219271B (zh) * 2022-07-22 2024-01-09 宝山钢铁股份有限公司 一种铝硅镀层钢板、热成形部件及其制造方法
CN115318912A (zh) * 2022-07-28 2022-11-11 苏州普热斯勒先进成型技术有限公司 热冲压成型零件的制备装置及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714500A (en) * 1984-12-21 1987-12-22 Krupp Stahl Ag Method for thermal treatment of pearlitic rail steels
CN101117697A (zh) * 2007-08-31 2008-02-06 成都银河动力股份有限公司 Al-Si合金活塞材料双温热处理工艺
CN101583486A (zh) 2006-10-30 2009-11-18 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
US20110056594A1 (en) 2008-01-30 2011-03-10 Thyssenkrupp Steel Europe Ag Process for producing a component from a steel product provided with an al-si coating and intermediate product of such a process
CN102300707A (zh) 2009-02-02 2011-12-28 安赛乐米塔尔研究发展有限公司 涂覆的冲压部件的制造方法和由其制造的部件
CN102605308A (zh) * 2012-04-19 2012-07-25 南京工程学院 钢帘线直接热镀铜锌合金环保生产工艺及装置
CN105886750A (zh) * 2016-04-18 2016-08-24 河北钢铁股份有限公司 1180MPa级Q&P钢的连续热镀锌方法
CN106466697A (zh) 2016-08-12 2017-03-01 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制热冲压产品及其制造方法
CN106734470A (zh) * 2017-01-05 2017-05-31 广东科学技术职业学院 汽车覆盖件热冲压成型方法
CN106995875A (zh) * 2015-12-19 2017-08-01 通用汽车环球科技运作有限责任公司 制造被镀层的、通过热加工硬化的物体的方法以及该物体
CN109518114A (zh) * 2018-08-08 2019-03-26 宝山钢铁股份有限公司 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
EP2497840B2 (de) * 2011-03-10 2020-02-26 Schwartz GmbH Ofensystem zum partiellen Erwärmen von Stahlblechteilen
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
KR101318060B1 (ko) * 2013-05-09 2013-10-15 현대제철 주식회사 인성이 향상된 핫스탬핑 부품 및 그 제조 방법
JP6376140B2 (ja) * 2013-12-25 2018-08-22 新日鐵住金株式会社 自動車部品及び自動車部品の製造方法
DE102016201025A1 (de) * 2016-01-25 2017-07-27 Schwartz Gmbh Wärmebehandlungsverfahren und Wärmebehandlungsvorrichtung
US20180237878A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Systems, methods and devices for hot forming of steel alloy parts
DE102017115755A1 (de) * 2017-07-13 2019-01-17 Schwartz Gmbh Verfahren und Vorrichtung zur Wärmebehandlung eines metallischen Bauteils

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714500A (en) * 1984-12-21 1987-12-22 Krupp Stahl Ag Method for thermal treatment of pearlitic rail steels
CN101583486A (zh) 2006-10-30 2009-11-18 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
CN101117697A (zh) * 2007-08-31 2008-02-06 成都银河动力股份有限公司 Al-Si合金活塞材料双温热处理工艺
US20110056594A1 (en) 2008-01-30 2011-03-10 Thyssenkrupp Steel Europe Ag Process for producing a component from a steel product provided with an al-si coating and intermediate product of such a process
CN102300707A (zh) 2009-02-02 2011-12-28 安赛乐米塔尔研究发展有限公司 涂覆的冲压部件的制造方法和由其制造的部件
CN102605308A (zh) * 2012-04-19 2012-07-25 南京工程学院 钢帘线直接热镀铜锌合金环保生产工艺及装置
CN106995875A (zh) * 2015-12-19 2017-08-01 通用汽车环球科技运作有限责任公司 制造被镀层的、通过热加工硬化的物体的方法以及该物体
CN105886750A (zh) * 2016-04-18 2016-08-24 河北钢铁股份有限公司 1180MPa级Q&P钢的连续热镀锌方法
CN106466697A (zh) 2016-08-12 2017-03-01 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制热冲压产品及其制造方法
CN106734470A (zh) * 2017-01-05 2017-05-31 广东科学技术职业学院 汽车覆盖件热冲压成型方法
CN109518114A (zh) * 2018-08-08 2019-03-26 宝山钢铁股份有限公司 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Standard Specification for Steel Sheet, Aluminium-Coated, by the Hot-Dip Process", ASTM DESIGNATION A 463/A 463M - 06, 2006, XP055516366
KAMALPREET SINGH JHAJJ: "Heat Transfer Modeling of Roller Hearth and Muffle Furnace", THESIS UNIVERSITY OF WATERLOO, 2015, XP055808280
TAWK ET AL.: "Advancements in furnace design improve hot stamping", STAMPING JOURNAL, January 2017 (2017-01-01), pages 18 - 23, XP055808290

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180146A4 (en) * 2020-07-10 2023-05-31 POSCO Co., Ltd PROCESS FOR MAKING A HOT PRESS FORMED ITEM WITH EXCELLENT MANUFACTURING, WELDING AND FORMABILITY

Also Published As

Publication number Publication date
HUE063894T2 (hu) 2024-02-28
FI3770295T3 (fi) 2023-11-01
RU2764729C1 (ru) 2022-01-19
EP3770295B1 (en) 2023-08-16
DK3770295T3 (en) 2023-10-30
EP3770295A4 (en) 2022-03-09
ES2962214T3 (es) 2024-03-18
US20210252579A1 (en) 2021-08-19
CN117483561A (zh) 2024-02-02
CN109518114A (zh) 2019-03-26
PT3770295T (pt) 2023-11-06
PL3770295T3 (pl) 2024-01-22
EP3770295A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2020030200A1 (zh) 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件
JP6025867B2 (ja) メッキ表面品質及びメッキ密着性に優れた高強度溶融亜鉛メッキ鋼板及びその製造方法
JP6636512B2 (ja) 冷間圧延および再結晶焼鈍平鋼製品、ならびにそれを製造するための方法
WO2017036260A1 (zh) 屈服强度500MPa级高延伸率热镀铝锌及彩涂钢板及其制造方法
WO2017036261A1 (zh) 屈服强度600MPa级高延伸率热镀铝锌及彩涂钢板及其制造方法
JPWO2010005121A1 (ja) 急速加熱ホットプレス用アルミめっき鋼板、その製造方法、及びこれを用いた急速加熱ホットプレス方法
CN111394679B (zh) 具有薄的铝合金镀层的镀层钢板及其涂镀方法
WO2021103805A1 (zh) 具有优异漆膜附着力的热成形部件及其制造方法
CN111647802B (zh) 一种涂覆铝硅合金镀层的热冲压构件的制备方法及其产品
JP7326615B2 (ja) 優れた性能を有するコーティング付き熱成形部品及びその製造方法
CN108642425B (zh) 热冲压用Al-Si-Ti合金镀层钢板及其生产方法
JP3931859B2 (ja) 熱間成形用亜鉛系めっき鋼材と熱間成形方法
JP7393551B2 (ja) 加工性及び耐食性に優れたアルミニウム系合金めっき鋼板及びこの製造方法
CN112935048A (zh) 一种轻量化铝硅变厚板零件及其制备方法
TWI788080B (zh) 熱成形硬化鋁基鍍覆鋼板及其製造方法
TWI580799B (zh) High strength and high elongation hot dip galvanized steel manufacturing method
WO2022161049A1 (zh) 一种镀铝钢板、热成形部件及制造方法
CN115125439B (zh) 一种锌基镀层1800Mpa级热冲压成型钢及制备方法
CN112877607B (zh) 一种高强度低合金热镀铝合金钢带及其制造方法
CN116855838A (zh) 一种热冲压用铝硅镀层钢、汽车零部件及其制备方法
JP3947444B2 (ja) 電池缶用Niメッキ鋼板の製造方法
CN116815096A (zh) 一种铝合金体系镀层热成形部件及其制备方法
CN116568422A (zh) 热冲压用镀覆钢板和热冲压成型体的制造方法、以及热冲压成型体
KR20100064503A (ko) 도금성이 우수한 고망간 용융아연도금 강판의 제조방법
JPH02263971A (ja) めっき層の加工性に優れた合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019847997

Country of ref document: EP

Effective date: 20201020

NENP Non-entry into the national phase

Ref country code: DE