WO2020030012A1 - 水包油型乳化组合物以及包含其的化妆品 - Google Patents

水包油型乳化组合物以及包含其的化妆品 Download PDF

Info

Publication number
WO2020030012A1
WO2020030012A1 PCT/CN2019/099657 CN2019099657W WO2020030012A1 WO 2020030012 A1 WO2020030012 A1 WO 2020030012A1 CN 2019099657 W CN2019099657 W CN 2019099657W WO 2020030012 A1 WO2020030012 A1 WO 2020030012A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil phase
phase particles
water
particles
Prior art date
Application number
PCT/CN2019/099657
Other languages
English (en)
French (fr)
Inventor
周卫东
陈露莹
西岛义人
Original Assignee
株式会社资生堂
周卫东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社资生堂, 周卫东 filed Critical 株式会社资生堂
Priority to JP2021506408A priority Critical patent/JP7246467B2/ja
Publication of WO2020030012A1 publication Critical patent/WO2020030012A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system

Definitions

  • the invention belongs to the field of cosmetics, in particular to a cosmetic based on an oil-in-water emulsified composition.
  • Oil-in-water emulsion compositions have been widely used in the field of cosmetics.
  • an oil phase is used as a dispersed phase and exists in a continuous phase formed by a water phase in the form of particles or beads.
  • Such oil phase particles are formed into various desired forms in the water phase by the action of auxiliary additives such as thickeners and surfactants.
  • oil phase particles are also related to the particle size of the oil phase particles or oil beads.
  • oil phase particles of tens to hundreds of nanometers or a few microns can be formed. In some products, it is expected that these particles can be used in production. It is stable and can be stored stably.
  • cosmetics including oil-in-water emulsion compositions in which large oily particles having an average particle diameter of 50 ⁇ m to 10 mm are dispersed in an aqueous phase are also known.
  • oil-in-water cosmetics containing such large oil particles because the oily particles can be dispersed into the water phase in a way that is clearly visible from the outside, not only has unique visual innovation and aesthetics, but also when applied to the skin, It also brings freshness to users. Furthermore, it can bring a continuous moisturizing feeling with the passage of time, and such a performance is unprecedented. Therefore, the use of the emulsified composition having larger oil phase particles can obtain a variety of unprecedented new feelings of use such as touch.
  • the size of the oil-phase particles can form a good barrier and protection for these easily-decomposable substances, and therefore, it can also suppress the oil-solubility. The effect of component decomposition.
  • the particle size retention of the oil phase particles is important in consideration of external appearance and use feeling.
  • many cosmetics need to undergo long-distance transportation and multiple handling during the sales process. Therefore, during the transportation or during the transportation process, they often experience different degrees of vibration or irregular shearing forces. Under such conditions, it is also necessary to maintain the stability and integrity of the particle size of the oil phase in the emulsified composition.
  • the oil phase particles in the emulsified composition will experience irregular collisions. If such collisions are too frequent or too strong, the oil phase particles may be damaged, making the emulsified composition cloudy.
  • the decomposition-prone substances wrapped in the oil phase particles are precipitated due to the above-mentioned damage, and these components may also cause undesired degradation or decomposition.
  • the cosmetic product containing the emulsified composition when delivered to consumers, the latter causes deterioration in appearance or reduction in use effect.
  • oily component in an emulsified composition in some products, in order to achieve a variety of use effects, a plurality of oily components may be mixed in some cases. In this case, it is important to maintain the particle size stability of the overall oil phase particles.
  • the oil phase particles formed by mixing multiple oil components are dispersed in the continuous phase. It is expected that the various oil components can remain unseparated for as long as possible, that is, the oil phase particles should be avoided as much as possible during production, storage, and use. Separation or segregation of different oil phase components due to differences in compatibility results in deterioration of the appearance and appearance of the emulsified composition or decrease in the use experience.
  • Reference 1 describes a capsule-containing composition in which an oily component containing an amphiphilic substance such as behenyl alcohol that is solid at room temperature is dispersed in an aqueous solvent in the form of an oily capsule having an average particle diameter of 100 ⁇ m or more. in.
  • an oily component containing an amphiphilic substance such as behenyl alcohol that is solid at room temperature
  • an aqueous solvent in the form of an oily capsule having an average particle diameter of 100 ⁇ m or more.
  • a water phase thickener is used in combination.
  • a carboxyvinyl polymer is blended as a water-soluble thickener.
  • Cited Document 2 describes a skin external preparation which is further compounded with a polyoxyethylene-based associative thickener to improve the decrease in skin compatibility caused by the carboxyvinyl polymer compounded in Patent Document 1. Wait.
  • aqueous thickeners are used for the purpose of stabilizing oily particles with large particle sizes
  • the use of these thickeners can be achieved by increasing the consistency of the aqueous phase.
  • Improve the stability of oil phase particles dispersed in the water phase (although the particle distribution is uniform, but the ability to freely move is limited), but at the same time, it may also cause the composition to appear similar to gelation, which further limits
  • the mobility of the oil phase particles in the water phase especially in some occasions where the movement of the oil phase particles is needed to increase the external viewing, leads to a reduction in the aesthetic appearance of the product, and may also cause visual greasiness The feeling of rising and reducing the desire to buy products, so there is still room for further discussion on the use of thickeners.
  • oil-in-water emulsion compositions with large particle size oil phase particles these particles are often expected to be relatively stable in the composition, or only these oil phases are desired.
  • the particles do limited movement in the composition to obtain stable, long-lasting external viewing.
  • external ornamental properties in some occasions, there is also a need to allow oil phase particles to repeatedly settle to create a special effect. Therefore, the ornamental properties of oil-in-water emulsion compositions with large particle size oil phase particles are diverse. There is a need for further development.
  • One of the technical problems to be solved by the present invention is to provide an oil-in-water emulsified composition in which oil-phase particles having a large particle size are present.
  • the oil-phase particles can be freely moved or repeatedly settled. The oil phase particles will be broken due to the collision of the oil phase particles during manufacturing, transportation or storage.
  • the problem to be solved is also to provide stability of oil phase particles in an oil-in-water emulsion composition in which oil phase particles having a large particle size are present, that is, even if such oil phases have different oil properties It also does not cause phase separation in the oil phase particles during manufacture, transportation, or storage.
  • the technical problem to be solved by the present invention is that by controlling the oil phase particles in the oil-in-water emulsion composition to move freely and repeatedly to settle, a new oil-in-water emulsion composition with beautiful ornamental properties is provided.
  • the present invention first provides an oil-in-water emulsion composition, which composition includes:
  • Oil phase particles dispersed in the water phase Oil phase particles dispersed in the water phase
  • the water phase contains an aqueous thickener, and the yield stress value of the water phase measured at 30 ° C is 1.0 Pa or less;
  • the oil phase particles have an average particle diameter of 50 ⁇ m to 10 mm.
  • composition described above further includes a surfactant having an HLB value of 10 or more.
  • the specific gravity difference between the oil phase particles and the water phase is -0.01-0.1 g / cm 3 .
  • the amount of the surfactant used is 0.002% to 0.1% by mass of the amount of the composition.
  • the oil phase particles include an oily component and an oily thickener, and the oily component includes a solid oily component and a liquid oily component.
  • the content of the oily thickener is 0.02% to 10% by mass of the oily component.
  • the present invention also provides a cosmetic comprising the composition according to any one of the above.
  • the oil-in-water emulsion composition with large-phase oil-phase particles provided by the present invention has the following advantages:
  • the technical solution of the present invention allows the oil phase particles to move freely and repeatedly settle in the emulsified composition, which can create an external ornamental effect of rain or snow, which has not been experienced in the past and meets more needs for use. Can give users special beauty.
  • the technical solution of the present invention can still make the oil phase particles with a larger particle size exist in the oil-in-water emulsion composition in a form with stable particle size:
  • the "oil-in-water emulsified composition” is an emulsified composition in which an oil phase as a dispersed phase is dispersed in an aqueous phase as a continuous phase by means of a dispersion assisting means.
  • the oil phase as a dispersed phase exists in the form of particles having a larger size.
  • the "particles" used in the present invention may exist in the form of beads or approximately beads.
  • the oil phase particles in the emulsified composition may be suspended in the aqueous phase and may move in the emulsified composition under the action of any external force.
  • the oil phase particles can form a sedimentation motion in the emulsified composition under the action of any external force and gravity.
  • the oil phase particles can be enriched at the bottom of the emulsified composition through sedimentation, and then re-moved to other parts of the emulsified composition through shaking or other external forces, so that repeated sedimentation can be performed to create a special External ornamental effect.
  • the oil phase particles can maintain the particle size or dimensional stability.
  • the stability of the particle size or size mainly refers to the damage of the oil phase particles caused by the collision of the oil phase particles or the decomposition of the oil phase particles due to the phase separation of different oily components and the like. Structural stability issues.
  • the composition of the water phase and the oil phase particles may be, based on the total mass of the composition, the oil phase particles are 0.05-40% by mass, preferably 1-35% by mass or 1.5 -20% by mass.
  • the aqueous phase is used as a continuous phase of the emulsified composition, and its composition is mainly water.
  • the mixing amount of water constituting the water phase is not particularly limited, but is usually 50 to 99% by mass, preferably 60 to 98% by mass, and more preferably 70% to 95% by mass with respect to the total mass of the water phase.
  • the specific gravity of the water phase and oil phase particles has the following relationship:
  • the specific gravity of the oil phase particles is controlled to be slightly smaller or substantially the same as that of the water phase.
  • the oil phase particles may exist in the emulsified composition in a size-stable form.
  • an external force such as external shock exists, the oil phase particles can move freely in the emulsified composition.
  • control oil phase with the aqueous phase as compared to the proportion of particles is greater than 0 in 0.1g / cm 3 or less (e.g., in 0.01-0.05g / cm 3 or 0.05-0.1g / cm 3 Range), so that the oil phase particles can settle freely in the water phase after standing for a period of time or at the beginning of standing. And the sedimentation rate at this time is also appropriate, so as not to affect the external ornamentalness too quickly.
  • the sedimented oil phase particles can be re-dispersed in various parts of the water phase, and can still be settled freely after standing still again.
  • Such an effect is important for developing a new external ornamental effect based on an emulsified combination containing oil phase particles having a large particle size.
  • an aqueous thickener is used in the water phase, and the yield stress value measured at 30 ° C. of the water phase is 1.0 Pa or less, preferably 0.6 Pa or 0.2 Pa.
  • the yield stress is defined in the following manner:
  • yield In the process of stretching or compressing a material, when the stress reaches a certain value, there is a slight increase in stress, but a sharp increase in strain is called yield.
  • the normal stress when a material yields is the material's yield stress.
  • the yield stress of a fluid means that for some non-Newtonian fluids, the fluid only deforms and does not flow when the applied shear stress is small.
  • the shear stress increases to a certain value, the fluid begins to flow. The shear stress at this time is called the yield stress of the fluid.
  • the yield stress value of the water phase is higher than 1.0Pa, the consistency of the water phase will be too large, which will cause the above-mentioned processes of sedimentation, dispersion and re-settling to be difficult to achieve.
  • the oil phase particles tend to suspend in a stable manner. In the water phase, either the oil phase particles move freely or the sedimentation rate is too slow, which causes the visually undesired effect.
  • test method for yield stress there is no particular limitation on the test method for yield stress, and test conditions and instruments commonly used in the art can be used.
  • yield stress in the present invention is measured under the following instruments and conditions:
  • Test instrument Anton Paar rotary rheometer MCR302; using rotor: CP50-1; measurement temperature: 30 degrees Celsius.
  • Test method After loading the sample, measure the viscosity of the sample between 1S -1 and 100S -1 . The data was fitted using the Casson model, and the yield stress of the sample was calculated by the system.
  • aqueous phase of the present invention in order to achieve the above-mentioned effects of the present invention, it is necessary and important to use an aqueous thickener.
  • the use of the aqueous thickener can control the yield stress value of the aqueous phase within the above specific range, which can suppress oil The phase particles collide with each other without affecting the sedimentation effect of the oil phase particles.
  • the type of water-soluble thickener is not particularly limited, including but not limited to gum arabic, tragacanth, xanthan gum, galactan, carob gum, guar gum, sycamore gum, carrageenan, pectin , Agar, coriander seed (papaya), algin (brown algae extract) and other plant-based polymers, dextran, succindextran, amylopectin and other microbial polymers, collagen, casein, albumin, Animal polymers such as gelatin, methyl cellulose, nitrocellulose, ethyl cellulose, methyl hydroxypropyl cellulose, hydroxyethyl cellulose, sodium cellulose sulfate, hydroxypropyl cellulose, carboxymethyl fiber
  • Cellulose-based polymers such as sodium plain, crystalline cellulose, cellulose powder, alginic polymers such as sodium alginate, propylene glycol alginate, polyvinyl alcohol, polyvinyl methyl ether, polyviny
  • the aqueous thickener is preferably xanthan gum, hydroxyethyl cellulose, PEG-240 / HDI copolymer bis-decyltetradecanol polyether-20 ether, polyacrylic acid One or more of the sodium salts.
  • the use of thickeners in the aqueous phase to increase the viscosity or consistency of emulsified compositions is well known in the art, in the conventional prior art, as previously described, the use of thickeners focuses only on the space of the dispersed phase. Stability (the use of thickeners results in restricted movement or movement of the dispersed phase).
  • the use of an aqueous thickener enables the yield stress value of the aqueous phase to meet the above conditions (less than 1.0Pa), and the effect is that the free movement or free sedimentation of large-phase oil phase particles can be insignificantly prevented. It can also slow down the occurrence of excessive or too frequent collisions between the oil phase particles during these movements, which have not been considered in the past.
  • a surfactant may also be used in the aqueous phase.
  • the surfactant includes a surfactant having an HLB value of 10 or more.
  • the surfactant may be: sodium cocoyl amphoteric acetate, sodium lauryl glycol carboxylate, sodium polyoxyethylene lauryl ether sulfate, and methyl coconut oil.
  • surfactants one kind or any combination of two or more kinds can be used.
  • a surfactant having an HLB value of 10 or more it has better water solubility in the water phase, while maintaining the relatively transparent appearance of water.
  • These surface activities, when present in the water phase can foam when subjected to vibration or external shear forces. In such a case, it is possible to cushion the collision between the oil phase particles in the composition. Therefore, it is beneficial to slow down the collision of oil phase particles during transportation and storage.
  • the amount of the surface active agent may be 0.002 to 0.1%, preferably 0.02 to 0.07%, of the total mass of the oil-in-water emulsion composition.
  • the amount of the surfactant is lower than the lower limit of the above range, the impact buffering effect on the oil phase particles is not obvious.
  • the amount of the surfactant is higher than the above range, the increase in the impact buffering effect on the oil phase particles is small, and The oil-in-water emulsion composition tends to become cloudy.
  • cosmetic components commonly used in the art may be used as long as the above-mentioned effects of the present invention are not impaired.
  • the oil phase particles of the present invention are formed by dispersing an oily component.
  • the oily component of the present invention may be an oily component or a mixture of a plurality of oily components.
  • the oily component may be a mixture of two or more liquid oily components that are liquid at normal temperature, or two or more solid oily components that are solid / semi-solid at normal temperature.
  • the ingredients are mixed.
  • the oily component includes at least a solid oily component and a liquid oily component.
  • solid oily component in the present invention refers to an oily component that appears in a solid or semi-solid state at normal temperature (25 ° C).
  • the solid oily component used in the present invention is not particularly limited, and for example, a solid oily component having a melting point of 40 ° C or higher, 50 ° C or higher, 60 ° C or higher, or 70 ° C or higher can be used.
  • solid oily component in the present invention include, but are not limited to, the following types:
  • alcohol e.g. behenyl alcohol, stearyl alcohol, cetyl alcohol, etc.
  • shark alcohol carnauba wax, beeswa
  • a solid oily component having a melting point of 65 ° C or higher and lower than 85 ° C include, but are not limited to, hydrogenated jojoba oil (melting point: 68 ° C), glyceryl behenate diacetate (melting point: 66 ° C), alcohols such as stearyl alcohol (melting point: 52 to 62 ° C) and behenyl alcohol (melting point: 68 ° C), higher alcohols having a carbon number of 16 or more, preferably 18 or more, microcrystalline wax (melting point: 80 ° C), ceresin (melting point: 68 to 75 ° C), polyethylene wax (melting point: 80 ° C), shark alcohol (melting point: 70 ° C), carnauba wax (melting point: 83 ° C), candelilla wax (melting point: 71 ° C), hydrogenated castor oil (melting point : :
  • the amount of the aforementioned solid oily components that can be used is preferably 5 to 50% by mass, and more preferably 10 to 20% by mass.
  • Solid oil content When the compounding amount is less than 5% by mass of the oily component, the stability of the composition in the formed oily particles tends to deteriorate, and when it exceeds 50%, the oily particles tend to be too hard, usability and skin familiarity Degrees tend to worsen.
  • liquid oily component in the present invention means an oily component exhibiting a liquid state at normal temperature (25 ° C).
  • Specific examples of liquid oily ingredients that can be used in the present invention include, but are not limited to:
  • Succinates such as diethoxyethyl succinate, octanoates such as cetyl octanoate, isooctanoates such as tri-2-ethylhexanoate, pentaerythritol tetraethylhexanoate, and laurate Esters such as laurate, isopropyl myristate, octyldodecyl myristate, palmitate such as octyl palmitate, stearate such as isohexadecyl stearate , Isostearates such as isopropyl stearate, isopalmitates such as octyl isopalmitate, oleates such as isodecyl oleate, adipic acid diesters such as diisopropyl adipate, decyl Ester oils such as sebacic acid diesters such as diethyl dia
  • Dimethyl polysiloxane (dimethyl silicone oil), methyl phenyl polysiloxane (phenyl methyl silicone oil) and other phenyl-containing silicone oil, methyl hydrogen polysiloxane chain and other chain silicone oil, ten Cyclic silicone oils such as methylcyclopentasiloxane and dodecylcyclohexasiloxane, including amino modified silicone oil, polyether modified silicone oil, carboxyl modified silicone oil, alkyl modified silicone oil, ammonium salt modified silicone oil , Fluorine modified silicone oil and other modified silicone oil. Particularly preferred are phenyl-containing silicone oils and fluorine-modified silicone oils.
  • liquid oily components may be used alone or in combination of two or more.
  • the mixing amount of the liquid oily component is preferably 50 to 95% by mass relative to the total mass of the oily component in the oil phase particles. It is more preferably 60 to 90% by mass.
  • the mixing amount of the liquid oily component in the oily component is less than 50% by mass, the oily particles tend to be too hard, and the usability and skin compatibility tend to deteriorate, and when it exceeds 95% by mass, the stability of the composition Tends to deteriorate.
  • the oil phase particles formed by the oily component can maintain the phase uniformity in the emulsified composition obtained at the beginning of production.
  • the phase separation of the liquid oily component from the solid oily component may occur, that is, the liquid oily component segregates and detaches from the oil phase particles, resulting in the destruction of the oil phase particle structure.
  • the external appearance of the emulsified composition may be deteriorated due to the dissolution of the liquid oily component.
  • an oily thickener in addition to using an oily component in the composition of the oil phase particles, an oily thickener is also used in combination.
  • the oily thickener according to the present invention is an oil-soluble thickener, and can be selected from, for example, dextrin fatty acid esters, metal soaps, lipophilic bentonite, amino acid derivatives, sucrose fatty acid esters, and sorbitol. Benzyl derivatives and the like.
  • dextrin fatty acid ester examples include dextrin palmitate, dextrin oleate, and dextrin stearate.
  • metal soap examples include aluminum stearate, magnesium stearate, zinc myristate, and the like, in which hydroxyl groups remain.
  • lipophilic bentonite examples include dimethylbenzyldodecylammonium montmorillonite, dimethylbisoctadecylammonium montmorillonite, and the like.
  • amino acid derivative examples include N-lauroyl-L-glutamic acid, ⁇ , ⁇ -di-n-butylamine, and the like.
  • sucrose fatty acid ester for example, three or less of eight hydroxyl groups are sucrose fatty acid esters esterified with a higher fatty acid, wherein the higher fatty acid is stearic acid and palmitic acid.
  • benzylidene derivative of sorbitol examples include monobenzylidene sorbitol, dibenzylidene sorbitol, and the like.
  • the oily thickeners include oil-soluble gum thickeners, silicone oil-modified silicas, and the like, typically, such as thickeners dibutyl lauroyl glutamine, dibutyl Ethylhexanoyl glutamine, glyceryl behenate / icosanate, dimethylsilylated silica, 12-hydroxystearic acid, polyamide-8 and the like.
  • the amount of the oily thickener is from 0.02 to 10% by mass of the oily component in the oil phase particle, and preferably from 0.04 to 8 in terms of suppressing phase separation in oil phase particles with different oily component composition. quality%. If it is more than 10% by mass, the composition may tend to gel when the oil phase component is prepared, and if it is less than 0.02% by mass, the stabilizing effect may not be achieved.
  • a solid powder may be used in addition to the oily components described above in the oil phase particles.
  • the solid powder is added to the oil phase, thereby improving the particle size and shape uniformity of the oil phase particles to be formed.
  • the "solid powder” is not particularly limited as long as it can be incorporated into a skin external preparation such as a cosmetic, and may be an inorganic solid powder or an organic solid powder.
  • the powder examples include talc, mica, kaolin, mica, sericite (sericite), muscovite, phlogopite, synthetic mica, red mica, biotite, lithium mica, vermiculite, magnesium carbonate, calcium carbonate, aluminum silicate, Barium silicate, calcium silicate, magnesium silicate, strontium silicate, metal tungstate, magnesium, spherical silica, zeolite, barium sulfate, calcined calcium sulfate (calcined gypsum), calcium phosphate, fluoroapatite, hydroxyl Apatite, ceramic powder, metal soap (zinc myristate, calcium palmitate, aluminum stearate, etc.), inorganic powder such as boron nitride; polyamide spherical resin powder (nylon spherical powder), spherical polyethylene, cross-linked Poly (meth) acrylate spherical resin powder, spherical polyester, cross
  • the solid powder is particularly preferably talc.
  • the solid powder of the present invention may be surface-treated or not surface-treated, and the shape of the powder is not particularly limited.
  • the average particle diameter of the powder is not particularly limited. In some preferred embodiments of the present invention, it is preferable to use a powder having a particle diameter of about 1 to 100 m, preferably 20 to 60 m.
  • the amount of the solid powder is preferably 0.12 to 30% by mass, more preferably 0.15% to 15% by mass, and still more preferably 0.3% by mass relative to the total mass of the oily component according to the present invention. -9% by mass.
  • the compounding amount of the powder in the oil phase particles relative to the total mass of the oily components is less than 0.1% by mass, the dispersibility of the oil phase particles is reduced, which tends to cause agglomeration.
  • the compounding amount exceeds 30% by mass of the oily component, the particle diameter and the degree of dispersion tend to become large.
  • oil phase particles of the present invention various active ingredients, medicinal ingredients, nutritional ingredients, perfumes, and other auxiliary materials such as surfactants can also be used.
  • the content of these auxiliary ingredients may be 10% by weight or less based on the total weight of the oily particles.
  • the specific content of the thickener is used in the oily component of the oil phase particles, even if the above-mentioned powder, and various active ingredients or In the case of an auxiliary material, it is also possible to suppress the tendency of the oily components in the oil phase particles to undergo phase separation.
  • the oil phase particles of the present invention have an average particle diameter of 50 ⁇ m to 10 mm, preferably 100 ⁇ m to 5 mm, more preferably 200 ⁇ m to 3 mm, and still more preferably 500 ⁇ m to 1 mm.
  • the particle size is less than 50 ⁇ m, the size of the oil phase particles is too small, which affects the external appearance during use, and it tends to reduce the sedimentation effect.
  • the particle size is too large, the oil droplets may be damaged, and the oil phase particles are The sedimentation rate in the emulsified composition is too fast, causing a de facto tendency for two-phase separation.
  • the oil-in-water emulsion composition in the present invention is realized by dispersing an oil phase in an aqueous phase, and the oil phase exists in the form of independent oil phase particles.
  • the method for preparing the emulsified composition of the present invention is not particularly limited, and a two-phase mixing method generally used in the art may be adopted, such as directly dispersing an oil phase in an aqueous phase to form oil phase particles having a certain particle diameter and dispersing in water. Phase in the system.
  • auxiliary mixing means such as stirring and heating can be used.
  • the present invention has no special requirements, and any equipment in the art that can implement the above method can be used.
  • the present invention further provides a cosmetic containing the composition on the basis of the above-mentioned oil-in-water emulsion composition system.
  • such cosmetics consist essentially of the oil-in-water emulsion composition described above.
  • auxiliary materials such as oil phase, humectant, preservative, and purified water, wherein the oil phase includes solid oily components and liquid oily components.
  • An oil-in-water emulsion composition was obtained by dispersing the oil phase in the water phase according to the composition in the following table.
  • Test instrument Anton Paar rotary rheometer MCR302; Rotor used: CP50-1; Measurement temperature: 30 ° C.
  • Test method After loading the sample, measure the viscosity of the sample between 1S -1 and 100S -1 . The data was fitted using the Casson model, and the yield stress of the sample was calculated by the system. Concussion experiment:
  • Test equipment AS-ONE shock tester AS-1N;
  • Test method Take a 100ml sample and inject it into a 110ml screw cap bottle.
  • the screw-top bottle containing the sample was fixed on the vibration tester, and the upper and lower vibrations were set, the rotation speed was 300 rpm, and the test time was 5 minutes. After the test, remove the screw cap bottle, leave it to stand, and evaluate after stabilization.
  • Example 1 and Comparative Example 1 were configured according to the above method and the following composition, see Table 1.
  • Example 1 Compared with Example 2, Example 1 also uses a certain amount of surfactant with an HLB value greater than 10. Therefore, in general, Example 1 maintains the dimensional stability of the oil phase particles during the shaking experiment With better results.
  • Examples 3-6 were prepared according to the above preparation method, and their compositions are shown in Table 2. Different types of aqueous thickeners were used in the water phase (the yield stress values of the water phase were all below 1.0Pa). The test results could pass the shock test. No obvious damage was found in the oil phase particles in the composition, and the oil phase particles settled Nor was it significantly affected.
  • Examples 7-10 and Comparative Example 2 were prepared according to the above-mentioned preparation method, and their compositions are shown in Table 3.
  • water content thickeners of different contents and / or types were used to adjust the yield stress value of the water phase. It can be seen from the test that when the use of the aqueous thickener makes the yield stress value of the water phase below 1.0 Pa, it will not have a significant effect on the sedimentation of the oil phase particles.
  • Examples 11-15 and Comparative Examples 3-4 were prepared according to the above-mentioned preparation methods, and their compositions are shown in Table 4. However, since the HLB value of the surfactant in the water phase used in Comparative Examples 3-4 was not more than 10, there was a tendency that the composition became cloudy.
  • Examples 16-20 and Comparative Examples 5-6 were prepared according to the above preparation method, and their compositions are shown in Table 5. Among them, excessive use of surfactants in the water phase may easily cause turbidity between the oil phase and the water phase. When the amount of the surfactant is too low, although the achievement of the technical effects of the present invention will not be affected, the effect of slowing the collision of oil phase particles with each other may be reduced (Example 20).
  • Reference Example 1 in Table 6 shows that when the oily components in the oil phase particles have a tendency to phase separate at ordinary temperature, in a preferred embodiment of the present invention, the use of an oily thickener may be assisted.
  • Reference examples 2-7 were prepared according to the above preparation method, and their compositions are shown in Table 7. Among them, in Reference Example 4-5, the use amount of the oily thickener in the oil phase particles is not within the preferred range of the present invention. Therefore, when different oily components with large compatibility differences appear in the oil phase, There is a tendency for gelation at high temperatures or phase separation of the oil phase. At the same time, other reference examples used the oil-based thickener in the preferred range of the present invention, and further showed that even in the face of oil-phase particles formed by various oily components with poor compatibility, the present invention is preferred The embodiment can also suppress the phenomenon of oil phase separation.
  • High-temperature gelation In the present invention, the phenomenon of gelation occurs when the high-temperature oil phase is cooled to around 100 ° C (near the boiling point of the water phase).
  • the oil-in-water emulsion composition provided by the present invention can be produced industrially and can be used as a cosmetic or a raw material thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

一种水包油型乳化组合物以及包含其的化妆品。所述水包油型乳化组合物包括:水相;分散于所述水相中的油相颗粒;以及所述水相中包含水性增稠剂,并且所述水相在30℃下测得的屈服应力值为1.0Pa以下;所述油相颗粒平均粒径为50μm~10mm。其提供的具有大粒径的油相颗粒存在的水包油乳化组合物中,油相颗粒可以进行自由运动或反复沉降,同时也不会因为制造、运输或存储时由于油相颗粒的碰撞而导致油相颗粒的破碎。

Description

水包油型乳化组合物以及包含其的化妆品 技术领域
本发明属于化妆品领域,具体而言,属于一种基于水包油型乳化组合物的化妆品。
背景技术
水包油型乳化组合物已经被广泛的应用于化妆品领域中。通常情况下,在水包油乳化组合物中,油相作为分散相,以颗粒状或者珠状的形式存在于水相所形成的连续相中。这样的油相颗粒在增稠剂、表面活性剂等辅助性添加剂的作用下,在水相中形成各种所需的形态。
油相的存在状态也与油相颗粒或者油珠的粒径存在着关系,例如,可以形成几十到几百纳米或几微米左右的油相颗粒,在一些产品中,期望这些颗粒能够在生产时稳定的存在并且在能够稳定的保存。
进一步,包括平均粒径为50μm至10mm的大的油性颗粒分散在水相中的水包油型乳化组合物的化妆品也是已知的。在含有这种大油粒的水包油型化妆品中,因为油性颗粒可以以外部明显可见的方式分散与水相中,不仅具有独特的视觉创新性和美观性,并且当涂抹在皮肤上时,也会给使用者带来新鲜感。进一步,随着时间推移也能够带来持续的湿润感,这样的性能是以往所没有的。因此,具有较大油相颗粒的乳化组合物的使用可以获得诸如触感之类的多种前所未有的新的使用感。
另外,需要在油相颗粒中保持具有分解性的油溶性成分时,由于油相颗粒的尺寸较大,能够对这些易分解物质形成很好的隔绝和保护,因此,还具有能够抑制该油溶性成分分解的效果。
对于这样的水包油型的乳化组合物,出于外部观感以及使用感受的考虑,油相颗粒的粒度保持性是重要的。尤其的,目前在销售过程中,很多化妆品需要经过长途运输以及多次的搬运,因此,在运输途中或者搬运过程中通常会经历不同程度的震动或者不规则的剪切力的作用。在这样的条件下,保持乳化组合物中油相颗粒尺寸的稳定性和完整性也是必要的。例如,通常震动 过程中,乳化组合物中油相颗粒之间会经历不规则的碰撞,如果这样的碰撞过于频繁或者过于强烈,则有可能导致油相颗粒的破损,使得乳化组合物变得浑浊。并且在一些情况下,油相颗粒中所包裹的有分解倾向的物质由于上述破损而析出,则这些成分也会产生不期望的降解或分解。最终的结果,导致包含这种乳化组合物的化妆品产品在投递到消费者时后者在这之前就造成外观的恶化或者使用效果的降低。
另外,作为乳化组合物中的油性成分,在一些产品中,为了实现多种使用效果,有时可能会使用多种油性成分进行混合。在这种情况下,保持油相颗粒总体的颗粒尺寸稳定性是重要的。例如,多种油成分混合形成的油相颗粒分散于连续相中,期望各种油成分能够在尽可能长的时间内保持不分离,即,油相颗粒应当尽量避免在生产、存储和使用过程中出现不同油相成分因为相容性的差异所导致的分离或偏析,因而导致乳化组合物外观形貌的恶化或者使用感受的降低。
因此,在使用以水包油乳化组合物为基础的化妆品的制备中,尤其是在油相颗粒以大颗粒形式存在的条件下,虽然目前的研究大多对于产品静态状态下的分散均匀性或者经时稳定性进行改进的,但对于上述所提及的由于运输、存储过程等引起的震荡所导致的油相颗粒破碎或者由不同油相相容性所导致的相分离也是需要进一步进行探讨的。
引用文献1中记载了一种含胶囊的组合物,其中,含有山嵛醇等在室温下为固体的两亲性物质的油性成分以平均粒径为100μm以上的油性胶囊的形态分散在水性溶剂中。然而,为了使100μm以上的油性颗粒(胶囊)在水相中分散,配合使用了水相增稠剂,在专利文献1的实施例中配混了羧基乙烯基聚合物作为水溶性增稠剂。
引用文献2中记载了一种皮肤外用制剂,其进一步配混有聚氧乙烯系缔合性增稠剂,以改善由专利文献1中配混的羧基乙烯基聚合物引起的皮肤相容性降低等。
尽管如上所述的现有技术中出于稳定粒径较大的油性颗粒的目的使用了水性增稠剂,然而在一些使用场合下,这些增稠剂的使用尽管能够通过增加水相的稠度而提高在水相中分散的油相颗粒的稳定性(尽管颗粒分布均匀, 但自由运动能力受限),但与此同时,也可能导致组合物出现类似凝胶化的表象,这也进一步限制了油相颗粒在水相中的移动性,特别是在一些需要以油相颗粒的移动作为增加外部观赏性的场合中,导致了产品外部观感的美观性的降低,同时也可能导致视觉上的油腻感上升,降低购买产品的欲望,因此,增稠剂的使用情况还有继续探讨的余地。
并且如上所述,现有的化妆品产品中,对于有大粒径油相颗粒存在的水包油乳化组合物,往往是期望这些颗粒相对稳定的存在于组合物中,或者是仅仅期望这些油相颗粒在组合物中做有限的运动,以获得稳定、长久的外部观赏性。但在外部观赏性方面,一些场合中,也存在例如允许油相颗粒反复沉降以营造特殊效果的需要,因此,对于有大粒径油相颗粒存在的水包油乳化组合物的观赏性的多样化还有进一步开拓的必要。
另外,上述文献对于油性颗粒本身存在着相容性差异的不同油性成分的相分离性的问题也没有讨论,因此,对于这方面问题的改善也不能说是充分的。
【引用文献1】
JP 479889 B
【引用文献2】
JP 2012-67024 A
发明内容
发明要解决的问题
本发明所要解决的技术问题之一在于,提供一种具有大粒径的油相颗粒存在的水包油乳化组合物,该组合物中,油相颗粒可以进行自由运动或反复沉降,同时也不会因为制造、运输或存储时由于油相颗粒的碰撞而导致油相颗粒的破碎。
另外,本发明中,所要解决的问题也在于提供一种稳定具有大粒径的油相颗粒存在的水包油乳化组合物中油相颗粒的稳定性,即,即使这样的油相中存在不同油性成分时,也不会在制造、运输或存储时在油相颗粒中产生相分离。
同时,本发明所要解决的技术问题还在于,通过控制水包油乳化组合物中的油相颗粒可以自由移动和反复沉降,从而提供一种全新的具有优美观赏性的水包油乳化组合物。
用于解决问题的方案
经过深入研究和探索,本发明提出了采用如下方案以解决上述技术问题:
本发明首先提供了一种水包油型乳化组合物,所述组合物包括:
水相;
分散于所述水相中的油相颗粒;以及
所述水相中包含水性增稠剂,并且所述水相在30℃下测得的屈服应力值为1.0Pa以下;
所述油相颗粒平均粒径为50μm~10mm。
根据以上所述的组合物,还包括HLB值为10以上的表面活性剂。
根据以上所述的组合物,所述油相颗粒与所述水相的比重差(油相颗粒比重-水相比重)为-0.01-0.1g/cm 3
根据以上所述的组合物,所述表面活性剂用量为所述组合物用量的0.002质量%~0.1质量%。
根据以上任一项所述的组合物,所述油相颗粒包含油性组分以及油性增稠剂,并且,所述油性组分包括,固体油性组分、液体油性组分。
根据以上所述组合物,在所述油相颗粒中,所述油性增稠剂的含量为所述油性组分0.02质量%~10质量%。
进而,本发明也提供了一种化妆品,所述化妆品包括根据以上任一项所述的组合物。
发明的效果
通过采用上述技术方案,本发明所提供的具有大粒径的油相颗粒的水包油乳化组合物,具有如下的优点:
本发明技术方案中允许油相颗粒在乳化组合物中自由移动、反复沉降,能够营造一种下雨或者下雪的外部观赏效果,这在以往是没有过的,满足了更多的使用需要,能够给使用者以特殊美感。
在以上效果基础上,本发明技术方案仍然能够使具有较大粒径的油相颗 粒以粒径尺寸稳定的形式存在于水包油乳化组合物中:
一方面,能够减少在源于运输、储存和使用过程中出现的震动而导致的上述较大粒径的油相颗粒由于相互碰撞所引起的破损,同时,也不至于过度抑制油相颗粒在所述水包油乳化组合物中自由运动和沉降而导致的乳化组合物外观效果的恶化。
另一方面,本发明进一步的技术方案,对于较大粒径的油相颗粒,即使在油相颗粒中存在多种不同油性成分,也能够抑制这些成分在油相颗粒形成后,在后续的存储或使用中产生相分离的倾向,从而进一步保持油相颗粒粒径尺寸的稳定性。
具体实施方式
以下将对本发明的具体实施方式进行描述,如无特殊声明,本发明所使用的单位均为国际标准单位,并且本发明中出现的数值,数值范围,均应当理解为包含了工业也生产中所不可避免的系统性误差。
<水包油乳化组合物>
本发明中,所述“水包油乳化组合物”即通过分散辅助手段,将作为分散相的油相分散于作为连续相的水相中,形成乳化组合物。其中作为分散相的油相以具有较大尺寸颗粒的形式存在。需要说明的是本发明所使用的“颗粒”在一些实施方案中,可以以珠状或近似珠状的形式存在。
进一步,在一些实施方案中,乳化组合物中的油相颗粒可以悬浮于水相中,并可以在任意外力的作用下在乳化组合物中移动。在另外一些实施方案中,在任意外力以及重力的作用下,油相颗粒可以在乳化组合物中形成沉降运动。在另外一些实施方案中,油相颗粒可以经过沉降富集于乳化组合物底部,而后经过晃动或者其他外部力作用而重新运动到乳化组合物的其他部分,从而能够进行反复的沉降,以营造特殊的外部观赏效果。并且上述情况下,油相颗粒能够保持粒径或者尺寸的稳定性。所述粒径或者尺寸的稳定性,主要是指油相颗粒相互碰撞所导致的油相颗粒的破损,或者,油相颗粒本身由于不同的油性成分的相分离等原因引起的分解等所导致的结构稳定性问题。
本发明的水包油型乳化组合物中,水相与油相颗粒的组成可以为,以组 合物的总质量计,油相颗粒为0.05-40质量%、优选为1-35质量%或者1.5-20质量%。
水相
本发明中,水相作为乳化组合物的连续相而使用,其组成中主要是水。构成水相的水的混合量没有特别限制,但通常是相对于水相的总质量,为50~99质量%,优选60~98质量%,更优选70%~95质量%。
并且,本发明优选的实施方案中,水相与油相颗粒的比重存在如下关系:
-0.01≤油相颗粒比重-水相比重≤0.1(g/cm 3)
在本发明的一些实施方式中,控制油相颗粒比重与水相相比略小或者实质上相同,此时,静态下,油相颗粒可以以尺寸稳定的形式存在于乳化组合物中,而当存在外部震荡等外部作用力时,油相颗粒则可以在乳化组合物中自由移动。
在本发明另外的一些实施方式中,控制油相颗粒比重与水相相比,为大于0而在0.1g/cm 3以下(例如在0.01-0.05g/cm 3或者0.05-0.1g/cm 3的范围内),这样使得油相颗粒能够在静置一段时间后或者静置开始时,在水相中发生自由沉降。并且此时的沉降速率也是适当的,不至于过快影响外部观赏性。并且,当对乳化组合物施加震动或者额外的力时,沉降后的油相颗粒又能够重新分散于水相各个部位中,进而再次静置后仍然能够进行自由沉降。
这样的效果对于基于含有大粒径的油相颗粒的乳化组合开拓新的外部观赏性效果而言是重要的。
进一步,为了实现上述的外观效果,并抑制水包油乳化组合物中油相颗粒在外力作用下由于反复运动或反复沉降发生过度碰撞而引起的油相颗粒的破损。本发明中,在水相中使用水性增稠剂,并且使得水相在30℃下测得的屈服应力值为1.0Pa以下,优选为0.6Pa以下或0.2Pa以下。
本发明中,所述屈服应力通过以下方式定义:
在材料拉伸或压缩过程中,当应力达到一定值时,应力有微小的增加,而应变却急剧增长的现象,称为屈服,使材料发生屈服时的正应力就是材料的屈服应力。流体的屈服应力是指对于某些非牛顿流体,施加的剪应力较小时流体只发生变形,不产生流动。当剪应力增大到某一定值时流体才开始流 动,此时的剪应力称为该流体的屈服应力。
如果水相的屈服应力值高于1.0Pa,则导致水相稠度过大,因而导致上述沉降、分散、再沉降的过程难以实现,例如在一些情况下,油相颗粒倾向于过于稳定的悬浮于水相中,或者是油相颗粒自由移动或者沉降速率过于缓慢而导致视觉上没有期望的效果。
对于屈服应力的测试方法,没有特殊的限定,可以使用本领域通常的测试条件和仪器。例如,本发明中所述屈服应力是按照如下的仪器和条件下测定的:
测试仪器:安东帕(Anton Paar)旋转流变仪MCR302;使用转子:CP50-1;测定温度:30摄氏度。
测试方法:装样后,测定样品在1S -1~100S -1间的粘度。使用Casson模型对数据进行拟合,样品屈服应力由系统计算给出。
本发明水相中,为了实现上述本发明的效果,使用水性增稠剂是必要和重要的,通过水性增稠剂的使用将水相的屈服应力值控制在上述特定的范围以内,能够抑制油相颗粒的相互碰撞,同时也不至于影响油相颗粒的沉降效果。
水溶性增稠剂的种类没有特别限制,包括但不限于阿拉伯树胶、黄蓍胶、黄原胶、半乳聚糖、角豆胶、瓜尔胶、刺梧桐胶、角叉菜胶、果胶、琼脂、榅桲籽(木瓜)、藻胶(褐藻提取物)等植物系高分子,葡聚糖、琥珀葡聚糖、支链淀粉等微生物系高分子,胶原蛋白、酪蛋白、白蛋白、明胶等动物系高分子,甲基纤维素,硝化纤维素,乙基纤维素,甲基羟丙基纤维素,羟基乙基纤维素,纤维素硫酸钠,羟丙基纤维素,羧甲基纤维素钠、结晶纤维素、纤维素粉末等纤维素系高分子,藻酸钠、藻酸丙二醇酯等藻酸系高分子,聚乙烯醇、聚乙烯基甲基醚、聚乙烯吡咯烷酮、羧基乙烯基聚合物、烷基改性的羧乙烯基聚合物等乙烯基系高分子,聚氧乙烯系高分子,聚氧乙烯聚氧丙烯系高分子,聚丙烯酸钠、聚丙烯酸乙酯、聚丙烯酰胺等丙烯酸系高分子,聚乙烯亚胺,阳离子聚合物,膨润土、硅酸铝镁、锂皂石、锂蒙脱石、硅酸酐等无机水溶性高分子。
在本发明的一些优选的实施方案中,水性增稠剂优选为,黄原胶、羟乙 基纤维素、PEG-240/HDI共聚物双-癸基十四醇聚醚-20醚、聚丙烯酸钠盐中的一种或多种。
尽管在水相中使用增稠剂对于乳化组合物粘度或稠度的提高是本领域公知的,但通常的现有技术中,如前文所述,对于增稠剂的使用仅仅关注于分散相的空间稳定情况(增稠剂的使用导致分散相的移动或运动受限制)。而本发明中,通过水性增稠剂的使用使得水相的屈服应力值满足上述条件(1.0Pa以下),其效果为即可以不明显的阻碍大粒径油相颗粒的自由移动或者自由沉降,又能够减缓在上述这些运动过程中,油相颗粒之间发生过度或者过于频繁的碰撞,这在以往是没有被考虑过的。
进一步,在本发明一些优选的实施方案中,在水相中,还可以使用表面活性剂。所述表面活性剂包括HLB值为10以上的表面活性剂,例如可以为:椰油酰两性基乙酸钠,月桂基甘醇羧酸钠,聚氧乙烯十二烷醚硫酸钠,甲基椰油酰基牛磺酸钠,PEG-60氢化蓖麻油,聚季铵盐,聚乙二醇甘油异硬脂酸酯等。
对于这些表面活性剂,可以使用一种或两种以上的任意组合。
本发明发现,对于HLB值为10以上的表面活性剂,在水相中具有较好的水溶性,同时也保持水相对透明外观。这些表面活性在水相中存在时,能够在遇到震动或者外部剪切力的作用时起泡。这样的情况下,能够对组合物中油相颗粒之间的碰撞起到缓冲作用。因此对于减缓运输、存储过程中的油相颗粒碰撞是有利的。
对于表面活性的用量,可以为水包油型乳化组合物的总质量的0.002-0.1%,优选为0.02-0.07%。当表面活性剂的用量低于上述范围下限时,对于油相颗粒的碰撞缓冲作用不明显,当表面活性剂的用量高于上述范围时,对于油相颗粒的碰撞缓冲作用增加程度很小,并且有增加水包油乳化组合物变浑浊的倾向。
对于水相中的其他组分,不受限制的,可以使用本领域通常使用的化妆品组分,只要不损害本发明上述效果即可。
油相颗粒
本发明的油相颗粒由油性组分经分散而形成。组成本发明的油性组分可 以是一种油性组分或是多种油性组分的混合。在本发明的一些实施方案中,油性组分可以是两种或多种常温下均为液态的液体油性组分混合而成,或者是两种或多种常温均为固体/半固体的固体油性组分混合而成。在本发明的一些优选的实施方案中,所述油性组分至少包括固体油性组分和液体油性组分。
本发明中的“固体油性组分”是指常温(25℃)下的呈现为固体或半固体状态的油性组分。用于本发明的固体油性组分没有特别限制,例如可以使用熔点为40℃以上、50℃以上、60℃以上或70℃以上的固体油性组分。
本发明中的固体油性组分的具体实例包括但不限于以下种类:
固体石蜡、微晶蜡、地蜡、蜂蜡、聚乙烯蜡、硅蜡、高级醇(例如,山嵛醇、硬脂醇、十六醇等)、鲨肝醇、巴西棕榈蜡、蜜蜡、小烛树蜡、荷荷巴蜡、羊毛脂、虫胶蜡、鲸蜡、木蜡、高级脂肪酸(例如,肉豆蔻酸、棕榈酸、硬脂酸、山嵛酸等)、酯油(例如,肉豆蔻酸肉豆蔻酸酯等)、可可脂、氢化蓖麻油、氢化油、氢化棕榈油、棕榈油、氢化椰子油、聚乙烯、凡士林、各种氢化植物油脂、脂肪酸单羧酸羊毛脂醇酯等。
其中,在本发明的一些优选的实施方案中,优选使用熔点为65℃或更高且低于85℃的固体油性组分。这种固体油性组分包括但不限于氢化荷荷巴油(熔点:68℃)、二十二烷酸二十烷二酸甘油酯(熔点:66℃)、硬脂醇等醇类(熔点:52~62℃)和山嵛醇(熔点:68℃)等碳数为16或更多、优选18或更多的高级醇、微晶蜡(熔点:80℃)、地蜡(熔点:68至75℃)、聚乙烯蜡(熔点:80℃)、鲨肝醇(熔点:70℃)、巴西棕榈蜡(熔点:83℃)、小烛树蜡(熔点:71℃)、氢化蓖麻油(熔点:84℃)、硬脂酸(熔点):58至63℃)、山嵛酸(熔点:69至80℃)等。
上述这些固体油性组分可以单独使用或两种或多种组合使用。
在本发明的油相颗粒中,基于油相颗粒中的油性组分的总质量,可以使用的上述固体油性组分的量优选为5至50质量%,更优选为10至20质量%。固体油含量当配混量小于油性组分的5质量%时,形成的油性颗粒中组合物的稳定性趋于劣化,并且当其超过50%时,往往导致油性颗粒太硬,可用性和皮肤熟悉度趋于恶化。
本发明中的“液体油性组分”是指常温(25℃)下的呈现出液体状态的 油性成分。对于本发明可使用的液体油性成分的具体实例包括但不限于有:
亚麻籽油、山茶油、澳洲坚果油、玉米油、橄榄油、鳄梨油、油茶籽油、蓖麻油、红花油、杏仁油、肉桂油、荷荷巴油、葡萄油、甜杏仁油、菜籽油、芝麻油、葵花籽油、小麦胚芽油、米胚芽油、米糠油、棉籽油、大豆油、花生油、茶籽油、月见草油、甘油三酯、三辛酸甘油酯、三异棕榈酸甘油酯、椰子油、棕榈油、棕榈仁油等油脂。
液体石蜡、地蜡、角鲨烷、角鲨烯、姥鲛烷、石蜡、异链烷烃、凡士林等烃油。
琥珀酸二乙氧基乙酯等琥珀酸酯,辛酸十六烷酯等辛酸酯,甘油三-2-乙基己酸酯、四乙基己酸季戊四醇酯等异辛酸酯,月桂酸己酯等月桂酸酯,肉豆蔻酸异丙酯、肉豆蔻酸辛基十二烷基酯等肉豆蔻酸酯,棕榈酸辛酯等棕榈酸酯,硬脂酸异十六烷基酯等硬脂酸酯,异硬脂酸异丙酯等异硬脂酸酯,异棕榈酸辛酯等异棕榈酸酯,油酸异癸酯等油酸酯,己二酸二异丙酯等己二酸二酯,癸二酸二乙酯等癸二酸二酯,苹果酸二异硬脂基酯等酯油。在本发明一些优选的实施方案中,液体油性成分特别优选的是琥珀酸二乙氧基乙酯、苹果酸二异硬脂基酯、己二酸二异丙酯中一种或多种。
二甲基聚硅氧烷(二甲基硅油),甲基苯基聚硅氧烷(苯基甲基硅油)等含苯基的硅油,甲基氢聚硅氧烷链等链状硅油,十甲基环五硅氧烷、十二甲基环六硅氧烷等环状硅油,包含氨基改性硅油、聚醚改性硅油、羧基改性硅油,烷基改性硅油、铵盐改性硅油、氟改性硅油等改性硅油的硅油。特别优选含苯基的硅油和氟改性硅油。
这些液体油性组分可以单独使用或两种或多种组合使用。
对于液体油性组分的用量,相对于油相颗粒中的油性组分的总质量,液体油性组分的混合量优选为50至95质量%。更优选为60至90质量%。当油性组分中液体油性组分的混合量低于50质量%时,油性颗粒往往太硬,并且可用性和皮肤相容性趋于变差,当其超过95质量%时,组合物的稳定性趋于劣化。
在油相颗粒中,使用了两种以上的油性成分时,尽管在较高的温度下,例如50~90℃时,倾向于形成稳定的完全互溶的均相体系。但在另一些情况 下,例如室温或者低于室温,甚至考虑到某些用户所居住的地方的冬季气温可能达到零下10℃,因此,在这样的相对低的温度下,不同油性组分在水包油乳化组合物的生产、存储过程中,由于相容性的降低而产生相分离或者偏析的倾向。例如,当固体油性组分与液体油性组分共同作为油性组分时,虽然生产初始得到的乳化组合物中,油性组分形成的油相颗粒能够保持相的均一性,但随着放置时间的增长或者随着外部震荡的增加,则可能会发生液体油性组分与固体油性组分的相分离,即,液体油性组分发生偏析,并脱离油相颗粒,造成油相颗粒结构的破坏。同时,也可能由于液体油性组分的溶出而造成乳化组合物外部观感的恶化。
本发明中,为了解决上述问题,在本发明一些进一步优选的实施方案中,在油相颗粒的组成中除了使用油性组分以外,还配合使用油性增稠剂。
本发明所述的油性增稠剂为具有油溶性的增稠剂,例如可以选自:糊精脂肪酸酯、金属皂、亲油性膨润土、氨基酸衍生物、蔗糖脂肪酸酯、山梨糖醇的亚苄基衍生物等。
作为糊精脂肪酸酯,例如,糊精棕榈酸酯、糊精油酸酯、糊精硬脂酸酯等。
作为金属皂,例如,残留有羟基的硬脂酸铝、硬脂酸镁、肉豆蔻酸锌等。
作为亲油性膨润土,例如,二甲基苄基十二烷基铵蒙脱石、二甲基双十八烷基铵蒙脱石等。
氨基酸衍生物的实例包括N-月桂酰基-L-谷氨酸,α,γ-二正丁胺等。
作为蔗糖脂肪酸酯,例如,八个羟基中的三个或更少被高级脂肪酸酯化的蔗糖脂肪酸酯,其中,高级脂肪酸是硬脂酸和棕榈酸。
作为山梨糖醇的亚苄基衍生物,例如,单亚苄基山梨糖醇,二亚苄基山梨糖醇等。
此外,在本发明一些优选的实施方案中,油性增稠剂包括油溶性胶类增稠剂、硅油改性的硅石等,典型地,例如增稠剂二丁基月桂酰谷氨酰胺、二丁基乙基己酰基谷氨酰胺、甘油山嵛酸酯/二十酸酯、二甲基甲硅烷基化硅石、12-羟基硬脂酸、聚酰胺-8等。
本发明中,从抑制不同油性成分组成的油相颗粒中相分离的方面,所述 油性增稠剂的用量为所述油相颗粒中油性组分的0.02~10质量%,优选为0.04-8质量%。如果高于10质量%,则可能在制备油相成分时导致组合物中产生凝胶化的倾向,如果低于0.02质量%,则无法起到稳定作用。
在本发明的一些其他实施方案中,油相颗粒中除了包括以上所述的油性组分以外,还可以使用固体粉末。
将固体粉末加入油相中,由此改善了要形成的油相颗粒的粒度和形状的均匀性。在本发明中,“固体粉末”没有特别限制,只要其可以混入皮肤外用制剂如化妆品中即可,可以是无机固体粉末也可以是有机固体粉末。
粉末的实例包括滑石、云母、高岭土、云母、绢云母(绢云母)、白云母、金云母、合成云母、红云母、黑云母、锂云母、蛭石、碳酸镁、碳酸钙、硅酸铝、硅酸钡、硅酸钙、硅酸镁、硅酸锶、钨酸金属盐、镁、球形二氧化硅、沸石、硫酸钡、煅烧硫酸钙(焙烧石膏)、磷酸钙、氟磷灰石、羟基磷灰石、陶瓷粉末、金属皂(肉豆蔻酸锌、棕榈酸钙、硬脂酸铝等)、氮化硼等无机粉末;聚酰胺球形树脂粉(尼龙球形粉)、球形聚乙烯、交联聚(甲基)丙烯酸甲酯球形树脂粉末、球形聚酯、交联聚苯乙烯球形树脂粉末、苯乙烯与丙烯酸的共聚物球形树脂粉末、苯并胍胺球形树脂粉末、球形四氟乙烯粉末、球形纤维素等球形有机粉末;二氧化钛、氧化锌等无机白色颜料;氧化铁(氧化铁)、钛酸铁等无机红色颜料;γ-氧化铁等无机褐色颜料;黄色氧化铁、黄土等无机黄色颜料;黑色氧化铁、炭黑、低级氧化钛等无机黑色颜料;芒果紫、钴紫等无机紫色颜料;氧化铬、氢氧化铬和钛酸钴等无机绿色颜料;群青、普鲁士蓝等无机蓝色颜料;氧化钛涂层云母、氧化钛涂层氯氧化铋、氧化钛涂层滑石、彩色氧化钛涂层云母、氯氧化铋、硼硅酸(Ca/Al)、鱼鳞箔等珠光颜料;铝粉、铜粉等金属粉末颜料;红色、黄色、橙色、黄色、绿色和蓝色等的着色材料、或者是将它们用锆、钡或铝等进行了色淀化的着色材料(有机颜料);叶绿素、β-胡萝卜素等天然色素等。
其中,对于以上固体粉末,可以使用一种或多种形成的混合粉末。在本发明一些实施方案中,固体粉末特别优选滑石。
另外,本发明的上述固体粉末可以进行表面处理或不进行表面处理,粉末的形状也没有特别限制。粉末的平均粒径没有特别限制,在本发明的一些 优选的实施方案中,优选使用粒径为约1-100μm,优选20-60μm的粉末。
对于上述固体粉末的用量,相对于本发明所述的油性组分的总质量,固体粉末的量优选为0.12至30质量%,更优选为0.15质量%~15质量%,进一步优选为0.3质量%~9质量%。
当油相颗粒中相对于油性组分的总质量,粉末的配混量小于0.1质量%时,油相颗粒的分散性降低,它往往会导致结块。另一方面,当配混量超过油性组分的30质量%时,粒径和分散度趋于变大。
此外,不受限制的,在本发明中的油相颗粒中,还可以使用各种活性成分、药性成分、营养成分、香料,其他的表面活性剂等辅料。在本发明的一些实施方案中,这些辅料成分的含量,以油性颗粒的总重量计,可以为10重量%以下。
需要说明的是,本发明中由于在油相颗粒的油性组分中使用了上述特定含量的增稠剂,即使是在油相颗粒中使用了如上述所述的粉末、以及各种活性成分或辅料时,也能够抑制油相颗粒中油性组分产生相分离的倾向。
本发明的油相颗粒,平均粒径为50μm~10mm,优选为100μm~5mm,更优选为200μm~3mm,进一步优选500μm~1mm。当粒径低于50μm,油相颗粒尺寸过小,影响使用时的外部观感,并且,有减弱沉降效果的倾向;当粒径过大,则可能产生油滴破损的倾向,并且油相颗粒在乳化组合物中沉降速度过快,造成事实上的两相分离倾向。
<制备方法>
本发明中水包油型乳化组合物是通过将油相分散于水相中而实现的,并且油相以相互独立的油相颗粒的形式而存在。
本发明的乳化组合物的制备方法没有具体限制,可以采用本领域通常所用的两相混合的方法,例如直接将油相分散于水相中,以形成具有一定粒径的油相颗粒分散于水相中的体系。
此外,不受限制的,可以使用搅拌、加热等辅助混合手段。
对于以上水包油型乳化组合物制备过程中所使用的设备,本发明没有特别的要求,可以使用本领域任意可以实现上述方法的设备。
<化妆品>
本发明在上述水包油型乳化组合物体系的基础上,进一步提供了一种含有该组合物的化妆品。
在一些优选的实施方案中,这样的化妆品基本上由上述水包油型乳化组合物组成。
另外,为了获得外部观感以及使用触感方面的效果,还可以在这些化妆品中使用其他的功能性成分,只要不会导致本发明技术效果的丧失,这些功能性成分的种类就没有限制。
实施例
以下将通过具体的实施例对本发明进行说明,需要说明的是,以下实施例仅仅是对本发明具体实施方法的举例,并不能视为对本发明可行的实施方案的限制。
<水包油性乳化组合物的制备>
1)准备油相、保湿剂、防腐剂等辅料以及精制水,其中,油相包括固体油性组分以及液体油性组分。
2)按照如下表中组成将油相分散于水相中得到水包油乳化组合物。
<测试方法>
屈服应力
测试仪器:安东帕(Anton Paar)旋转流变仪MCR302;使用转子:CP50-1;测定温度:30℃。
测试方法:装样后,测定样品在1S -1~100S -1间的粘度。使用Casson模型对数据进行拟合,样品屈服应力由系统计算给出。震荡实验:
测试仪器:亚速旺(AS-ONE)震荡测试仪AS-1N;
测试方法:取100ml样品注入110ml螺口瓶中。将含样品的螺口瓶固定在震荡测试仪上,设置上下震荡,转速300rpm,测试时间:5min。测试结束后取下螺口瓶,静置,待稳定后进行评价。
实施例1-2、比较例1
实施例1以及比较例1按照上述方法以及如下组成进行配置,参见表1。
从数据对比可以看出,当满足本发明权利要求1的全部条件时,能够获得即使在经受震荡下,也能够保持油相颗粒尺寸稳定性,并且也不至于影响油相颗粒的沉降效果。
实施例1与实施例2相比,实施例1中还使用了一定量的HLB值大于10的表面活性剂,因此,总体上,实施例1在震荡实验过程中维持油相颗粒尺寸稳定性方面具有更好的效果。
对于比较例1,由于没有使用水性增稠剂,则导致在震荡测试时,由于对油相颗粒相互碰撞的抑制不足,导致油相颗粒受到破损。
实施例3-6
实施例3-6按照上述的制备方法制备得到,其组成参见表2。在水相中使用了不同种类的水性增稠剂(水相屈服应力值均为1.0Pa以下),测试结果能够通过震荡实验,组合物中油相颗粒没有发现明显的破损,并且油相颗粒的沉降也没有受到明显的影响。
实施例7-10、比较例2
实施例7-10、比较例2按照上述的制备方法制备得到,其组成参见表3。其中实施例7-10和比较例2分别使用了不同含量和/或种类的水性增稠剂以调节水相屈服应力值。测试可以看出,当水性增稠剂的使用使得水相屈服应力值在1.0Pa以下时,对于油相颗粒的沉降将不产生明显的影响。
实施例11-15、比较例3-4
实施例11-15、比较例3-4按照上述的制备方法制备得到,其组成参见表4。其中,比较例3-4中使用的水相中的表面活性剂的HLB值没有在10以上,因此,有造成组合物变浑浊的倾向。
实施例16-20、比较例5-6
实施例16-20、比较例5-6按照上述的制备方法制备得到,其组成参见表5。其中,水相中表面活性剂过量使用,容易引起油相与水相间产生浑浊。当表 面活性剂用量过低时,虽然不至于影响本发明技术效果的实现,但有可能使得减缓油相颗粒相互碰撞的效果有所降低(实施例20)。
参考例1
表6中的参考例1中显示了当油相颗粒中的油性组分在常温时具有相分离的倾向时,在本发明的优选的实施方案中,可以辅助使用油性增稠剂。
参考例2-7
参考例2-7按照上述的制备方法制备得到,其组成参见表7。其中,参考例4-5中,油相颗粒中油性增稠剂的使用量没有在本发明的优选的范围以内,因此,当油相中出现相容性差异较大的不同油性成分混合时,有可能出现高温凝胶化或者油相相分离的倾向。同时其他参考例中使用了本发明的优选用量范围的油性增稠剂,则进一步显示出了即使在面对相容性较差的多种油性组分所形成的油相颗粒时,本发明优选的实施方案也能够抑制出现油相相分离的现象。
表1:
Figure PCTCN2019099657-appb-000001
○:非常好;△:好;X:差
表2
Figure PCTCN2019099657-appb-000002
○:非常好;△:好;X:差
表3
Figure PCTCN2019099657-appb-000003
○:非常好;△:好;X:差
表4
Figure PCTCN2019099657-appb-000004
○:非常好;△:好;X:差
表5
Figure PCTCN2019099657-appb-000005
○:非常好;△:好;X:差
表6
  参考例1
固体油份 0.5
液体油份 2
二丁基月桂酰谷氨酰胺  
二甲基甲硅烷基化硅石  
PEG-240/HDI共聚物双-癸基十四醇聚醚-20醚 0.5
月桂基甜菜碱 0.05
保湿剂 8
防腐剂 0.5
pH调节剂 0.1
螯合剂 0.05
精制水 余量
合计 100
油相颗粒相分离 X
○:没有发生相分离;△:非常轻微的相分离;X:明显相分离
表7
Figure PCTCN2019099657-appb-000006
○:没有发生相分离;△:非常轻微的相分离;X:明显相分离
高温凝胶化:本发明中特指高温油相在降温至100℃附近(水相沸点附近)时即发生凝胶化的现象
产业上的可利用性
本发明所提供的水包油型乳化组合物可以在工业上进行生产并且可以被用作化妆品或其原料。

Claims (7)

  1. 一种水包油型乳化组合物,其特征在于,所述组合物包括:
    水相;
    分散于所述水相中的油相颗粒;以及
    所述水相中包含水性增稠剂,并且所述水相在30℃下测得的屈服应力值为1.0Pa以下;
    所述油相颗粒平均粒径为50μm~10mm。
  2. 根据权利要求1所述的组合物,其特征在于,还包括HLB值为10以上的表面活性剂。
  3. 根据权利要求1或2所述的组合物,其特征在于,所述油相颗粒与所述水相的比重差为-0.01~0.1g/cm 3
  4. 根据权利要求2或3所述的组合物,其特征在于,所述表面活性剂用量为所述组合物用量的0.002质量%~0.1质量%。
  5. 根据权利要求1~4任一项所述的组合物,其特征在于,所述油相颗粒包含油性组分以及油性增稠剂,并且,所述油性组分包括固体油性组分和液体油性组分。
  6. 根据权利要求5所述组合物,其特征在于,在所述油相颗粒中,所述油性增稠剂的含量为所述油性组分0.02质量%~10质量%。
  7. 一种化妆品,其特征在于,所述化妆品包括根据权利要求1~6任一项所述的组合物。
PCT/CN2019/099657 2018-08-08 2019-08-07 水包油型乳化组合物以及包含其的化妆品 WO2020030012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021506408A JP7246467B2 (ja) 2018-08-08 2019-08-07 水中油型乳化組成物及びそれを含む化粧料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810896276.0A CN110812279A (zh) 2018-08-08 2018-08-08 水包油型乳化组合物以及包含其的化妆品
CN201810896276.0 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020030012A1 true WO2020030012A1 (zh) 2020-02-13

Family

ID=69415393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099657 WO2020030012A1 (zh) 2018-08-08 2019-08-07 水包油型乳化组合物以及包含其的化妆品

Country Status (4)

Country Link
JP (1) JP7246467B2 (zh)
CN (1) CN110812279A (zh)
TW (1) TW202017553A (zh)
WO (1) WO2020030012A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151613A (zh) * 2018-02-13 2019-08-23 吴明轩 清洁剂组合物及其制造方法
CN115006311B (zh) * 2022-07-06 2024-03-26 浙江宜格企业管理集团有限公司 一种透明双相防晒组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073230A (ja) * 2001-08-29 2003-03-12 Shiseido Co Ltd カプセル含有組成物、および、これを用いた外用組成物
CN1980634A (zh) * 2004-07-02 2007-06-13 株式会社资生堂 含有油性粒子的外用组合物
JP2012067024A (ja) * 2010-09-22 2012-04-05 Shiseido Co Ltd 皮膚外用剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036001A (ja) 2003-07-03 2005-02-10 Shiseido Co Ltd 油性粒子を含有する外用組成物
WO2005025526A1 (en) * 2003-09-15 2005-03-24 Unilever Plc Leave- on hair care composition
CN101884603B (zh) 2009-05-14 2014-06-04 花王株式会社 皮肤用组合物及其制造方法
JP6279457B2 (ja) 2013-11-19 2018-02-14 株式会社 資生堂 水中油型乳化化粧料
JP6388942B2 (ja) * 2014-07-08 2018-09-12 大東化成工業株式会社 水中油型乳化組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073230A (ja) * 2001-08-29 2003-03-12 Shiseido Co Ltd カプセル含有組成物、および、これを用いた外用組成物
CN1980634A (zh) * 2004-07-02 2007-06-13 株式会社资生堂 含有油性粒子的外用组合物
JP2012067024A (ja) * 2010-09-22 2012-04-05 Shiseido Co Ltd 皮膚外用剤

Also Published As

Publication number Publication date
CN110812279A (zh) 2020-02-21
TW202017553A (zh) 2020-05-16
JP7246467B2 (ja) 2023-03-27
JP2021533155A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP4991161B2 (ja) 化粧料組成物
WO2010044261A1 (ja) 皮膚外用剤組成物
JP5352064B2 (ja) ハイドロゲル粒子
KR101601618B1 (ko) 피부외용제
JP2000309505A (ja) 粉末化粧料
WO2006003733A1 (ja) 油性粒子を含有する外用組成物
WO2020030012A1 (zh) 水包油型乳化组合物以及包含其的化妆品
JP6205297B2 (ja) 油中水型乳化化粧料
JP7404651B2 (ja) 水中油型乳化化粧料及びその製造方法
JP2022515538A (ja) 固体連続水相中に分散された水性スフェロイドを含有する固体化粧品組成物
JP6879670B2 (ja) シワ及び/又は毛穴の隠蔽用の外用組成物
JP5088766B2 (ja) 油の微細分散組成物
JP7234107B2 (ja) 水中油型乳化組成物
JP7229914B2 (ja) 水中油型乳化化粧料
JP2011046629A (ja) 油性粒子を含有する外用組成物
JP2005036001A (ja) 油性粒子を含有する外用組成物
JP2010189389A (ja) ホホバオイルを含むメイクアップ除去ゲル
JP5922287B1 (ja) 包油粉体組成物及びその製造方法
JP7177461B2 (ja) 水中油型睫用化粧料
WO2016121761A1 (ja) 分散体、その製造方法及び化粧料
US11696878B2 (en) Oil-in-water type emulsified cosmetic
WO2019044877A1 (ja) 多層型粉末化粧料
WO2016121760A1 (ja) 分散体
JP5536721B2 (ja) 油の微細分散組成物
JP4700903B2 (ja) 含水粉末化粧料基材および化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846033

Country of ref document: EP

Kind code of ref document: A1