WO2020029428A1 - 基于β相聚偏氟乙烯的压电复合材料及其制备方法 - Google Patents

基于β相聚偏氟乙烯的压电复合材料及其制备方法 Download PDF

Info

Publication number
WO2020029428A1
WO2020029428A1 PCT/CN2018/111064 CN2018111064W WO2020029428A1 WO 2020029428 A1 WO2020029428 A1 WO 2020029428A1 CN 2018111064 W CN2018111064 W CN 2018111064W WO 2020029428 A1 WO2020029428 A1 WO 2020029428A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
pvdf
phase
composite material
mixed solution
Prior art date
Application number
PCT/CN2018/111064
Other languages
English (en)
French (fr)
Inventor
胡志军
李青青
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2020029428A1 publication Critical patent/WO2020029428A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds

Definitions

  • the invention relates to the technical field of piezoelectric material manufacturing, in particular to a piezoelectric composite material based on ⁇ -phase polyvinylidene fluoride and a preparation method thereof.
  • Piezoelectric materials are a class of dielectrics with piezoelectric properties.
  • the piezoelectricity of piezoelectric materials can be used to convert between mechanical energy and electrical energy.
  • Piezoelectric materials can sense various mechanical motions and convert motion signals into electrical signals to achieve energy collection and detection.
  • the application of piezoelectric materials is everywhere in daily life, such as piezoelectric sensors, piezoelectric resonators, piezoelectric igniters, etc.
  • Piezoelectric materials are not only widely used in daily life, but also have a large number of applications in the military, such as military radar, military navigation equipment and other aspects. In addition, piezoelectric materials are also widely used in transportation and medical equipment.
  • piezoelectric materials have a history of more than 100 years, and a variety of piezoelectric materials have been widely studied and used.
  • inorganic materials such as piezoelectric ceramics represented by barium titanate and lead titanate are widely used in sensors, transducers, exciters and other fields due to their high piezoelectric coefficients.
  • inorganic piezoelectric ceramics have many disadvantages, such as brittleness, high energy consumption, and high cost.
  • some inorganic materials, such as lead zirconate titanate piezoelectric ceramics (PZT) are harmful to the environment and are not suitable for widespread use.
  • Piezoelectric polymer is an important type of piezoelectric material, which has many advantages, such as: 1 good flexibility, which can process large areas to make films; 2 biocompatibility; 3 stable properties, corrosion resistance, and high durability; 4 Light weight and low density; 5 Low cost and easy processing; 6 High mechanical strength, can withstand external mechanical deformation such as bending and pressing, and environmental protection. These natural advantages make piezoelectric polymers a research hotspot in related fields.
  • PVDF Polyvinylidene fluoride
  • its copolymers not only have these common characteristics of piezoelectric polymers, but also polymers with the highest dielectric constant and electroactive response, and have good dielectric properties, piezoelectricity, and thermal release.
  • PVDF is a semi-crystalline polymer, consisting of crystalline regions and amorphous morphology. Whether or not PVDF has piezoelectricity is determined by the crystal structure during crystallization.
  • crystallizes there are four kinds of crystal structures, namely ⁇ phase, ⁇ phase, ⁇ phase, and ⁇ phase. Each crystal structure has a different chain conformation.
  • ⁇ phase and ⁇ phase are non-polar phase and weak polarity phase; ⁇ phase polarity is between ⁇ phase and ⁇ phase, which is a weakly polar phase; ⁇ phase PVDF is an all-trans conformation, and the dipole is perpendicular to The molecular chains are aligned in parallel and have the strongest polarity.
  • Different crystal forms have a great impact on the performance of PVDF, and several crystal forms can be converted to each other. It is of great practical significance and value to study the different crystal forms of PVDF and their mutual transformation mechanism.
  • ⁇ -phase PVDF has the most polar crystal structure, and has the most excellent piezoelectric and ferroelectric properties. These properties make ⁇ -phase PVDF have many applications.
  • ⁇ -phase PVDF crystal structure In the ⁇ -phase PVDF crystal structure, adjacent molecular chains are arranged in anti-parallel and have no polarity. It is the most stable phase in all the crystal structures of PVDF. Generally, the ⁇ -phase is obtained from the melt cooling or the natural crystallization in solution, but the ⁇ -phase PVDF does not have properties such as piezoelectricity and ferroelectricity, so it is not conducive to practical application. ⁇ -phase PVDF with good piezoelectricity can be obtained after mechanical stretching, high electric field polarization, and adding nucleating agents. How to obtain ⁇ -phase PVDF with higher content effectively and economically has been a hot topic of research.
  • molecular ferroelectrics have great applications in energy conversion and data storage. Such molecular ferroelectrics are also an important class of piezoelectric materials. However, most molecular ferroelectrics are unipolar axial, and the polar axis of the entire film must be oriented to a specific direction to achieve macroscopic ferroelectricity. In order to solve this problem, it is necessary to use a single crystal thin film growth method with controlled orientation, which is complicated and costly. And molecular ferroelectrics with multiaxial properties can solve these problems.
  • the ⁇ -phase of polyvinylidene fluoride polymer can be induced to a certain extent by adding the above filler to polyvinylidene fluoride, but the content of ⁇ -phase of polyvinylidene fluoride prepared by these methods is low, which is not conducive to standardized production and application.
  • some fillers are conductive materials, such as carbon nanotubes, graphene, etc., the composite materials produced will have obvious leakage current phenomenon, and the increase in the conductivity of the composite material will affect the polymer polarization process, these shortcomings will affect It's widely used.
  • the object of the present invention is to provide a ⁇ -phase polyvinylidene fluoride-based piezoelectric composite material and a preparation method thereof.
  • the piezoelectric composite material of the present invention has a high ⁇ -phase polyvinylidene fluoride content and stable performance. It has good piezoelectricity and its preparation method is simple and easy to operate.
  • the first object of the present invention is to provide a ⁇ -phase polyvinylidene fluoride-based piezoelectric composite material, which includes ⁇ -phase polyvinylidene fluoride and a molecular ferroelectric having multiple polar axes, and the ⁇ -phase polyvinylidene fluoride occupies piezoelectricity.
  • the mass fraction of the composite material is 85% -96%.
  • the molecular ferroelectrics having multiple polar axes are 1,4-diazabicyclo [2.2.2] octanefluoroborate (dabcoHBF 4 ), 1,4-diazabicyclo [2.2. 2] One or more of octane periodate (dabcoHIO 4 ), 1,4-diazabicyclo [2.2.2] octane periodate (dabcoHReO 4 ), and quinine ring periodate Species.
  • the molecular ferroelectric is dabcoHReO 4 .
  • the piezoelectric composite material is in a thin film shape, and the thickness of the thin film is 0.1 ⁇ m to 1000 ⁇ m. Preferably, the thickness of the film is 1 ⁇ m to 100 ⁇ m.
  • the ⁇ -phase polyvinylidene fluoride-based piezoelectric composite material of the present invention has a higher content of ⁇ -phase polyvinylidene fluoride (higher than 85%), and the composite material has better piezoelectric response, and the period is at a frequency of 2HZ
  • the bending is more flexible, and the measured open circuit potential value has been greatly improved.
  • the maximum range is -0.66 to 0.57V.
  • a second object of the present invention is to provide a method for preparing the above-mentioned ⁇ -phase polyvinylidene fluoride-based piezoelectric composite material, including the following steps:
  • PVDF Polyvinylidene fluoride
  • molecular ferroelectrics with multiple polar axes are mixed and dissolved in an organic solvent to obtain a mixed solution, wherein the mass ratio of polyvinylidene fluoride to molecular ferroelectrics 99: 1-4: 1; the sum of the masses of polyvinylidene fluoride and molecular ferroelectrics accounts for 0.1% -65% of the mass fraction of the mixed solution;
  • the organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, acetone , Methyl ethyl ketone, cyclohexanone, N-methylpyrrolidone, trimethyl phosphate, and triethyl phosphate.
  • the organic solvent is a mixed solution of N, N-dimethylformamide (DMF) and acetone (Ac).
  • the molecular ferroelectrics are 1,4-diazabicyclo [2.2.2] octanefluoroborate (dabcoHBF 4 ), 1,4-diazabicyclo [2.2. 2]
  • octane periodate (dabcoHIO 4 )
  • 1,4-diazabicyclo [2.2.2] octane periodate (dabcoHReO 4 )
  • quinine ring periodate Species Preferably, dabcoHReO 4 .
  • the mass ratio of polyvinylidene fluoride to molecular ferroelectric is 24: 1-9: 1.
  • the sum of the mass of the polyvinylidene fluoride and the molecular ferroelectric accounts for 1% to 15% of the mass fraction of the mixed solution, and more preferably, 10%.
  • the dissolution temperature is 50-55 ° C.
  • step (2) the temperature at which the solvent is evaporated is 50-100 ° C.
  • the organic solvent can be volatilized and the polyvinylidene fluoride can be phase-transformed to form ⁇ -phase polyvinylidene fluoride.
  • step (2) the solvent evaporation time is 4-8h.
  • step (2) the mixed solution is formed into a film by a casting method to obtain a ⁇ -phase polyvinylidene fluoride-based piezoelectric composite thin film having a thickness of 0.1 ⁇ m to 1000 ⁇ m.
  • the molecular ferroelectrics act as a nucleating agent to induce the formation of ⁇ -phase PVDF.
  • the interaction causes the F and H atoms in the PVDF molecular chain to be aligned, and promotes the formation of the all-trans conformation of the PVDF, thereby obtaining a piezoelectric composite material with a higher ⁇ phase content.
  • the composite material has good piezoelectric properties.
  • the present invention has at least the following advantages:
  • the ⁇ -phase polyvinylidene fluoride-based piezoelectric composite material of the present invention has a high content of ⁇ -phase PVDF, has stable performance, and has good piezoelectric performance. These characteristics make the prepared piezoelectric composite materials have better application prospects in various piezoelectric sensors, nano-power generation systems and other fields.
  • the ⁇ -phase polyvinylidene fluoride-based piezoelectric composite material of the present invention can be prepared in a short period of time only by simple solution blending and related operations.
  • the method provided by the invention has easy-to-obtain raw materials, is cheap, and is environmentally friendly.
  • the preparation method and process are simple and convenient, and the required equipment is simple and easy to operate, which is beneficial to large-scale industrial production.
  • the invention successfully uses a simple, efficient, and low-cost method to successfully prepare a PVDF composite material with high ⁇ -phase crystal content, and also solves the problem of poor film formation of molecular ferroelectrics.
  • the raw materials used are environmentally friendly, low cost, and simple to prepare. These advantages will be conducive to their widespread use.
  • Example 1 is an infrared spectrum (IR) and an X-ray diffraction (XRD) chart of the PVDF film prepared in Example 2 and the PVDF / dabcoHReO 4 composite film prepared in Example 3;
  • IR infrared spectrum
  • XRD X-ray diffraction
  • Example 2 is an infrared spectrum (IR) and an X-ray diffraction (XRD) chart of the PVDF film prepared in Example 2 and the PVDF / dabcoHReO 4 composite film prepared in Example 4;
  • IR infrared spectrum
  • XRD X-ray diffraction
  • Example 3 is an infrared spectrum (IR) and an X-ray diffraction (XRD) chart of the PVDF film prepared in Example 2 and the PVDF / dabcoHReO 4 composite film prepared in Example 5;
  • IR infrared spectrum
  • XRD X-ray diffraction
  • Example 4 is an infrared spectrum (IR) and an X-ray diffraction (XRD) chart of the PVDF film prepared in Example 2 and the PVDF / dabcoHReO 4 composite film prepared in Example 6;
  • IR infrared spectrum
  • XRD X-ray diffraction
  • Example 5 is an infrared spectrum (IR) and an X-ray diffraction (XRD) chart of the PVDF film prepared in Example 2 and the PVDF / dabcoHReO 4 composite film prepared in Example 7;
  • IR infrared spectrum
  • XRD X-ray diffraction
  • FIG. 6 is an open-circuit voltage-time curve of a PVDF film and a PVDF / dabcoHReO 4 composite film in Examples 2-7.
  • sample materials and solvents used in the following examples of the present invention are all commercially available products, and the solvent purity is analytical purity.
  • the infrared spectroscopy and X-ray diffractometer can be used to test the crystal form of PVDF.
  • This embodiment provides a method for preparing a dabcoHReO 4 salt. It includes the following steps:
  • this embodiment provides a method for preparing a polyvinylidene fluoride film. It includes the following steps:
  • This embodiment provides a method for preparing a high-content ⁇ -phase polyvinylidene fluoride composite material. Specifically, the dabcoHReO 4 salt prepared in Example 1 is mixed with PVDF according to a certain mass ratio, and a PVDF / dabcoHReO 4 composite film is prepared. This method effectively increases the ⁇ phase content of polyvinylidene fluoride. It includes the following steps:
  • This embodiment provides a method for preparing a high-content ⁇ -phase polyvinylidene fluoride composite material, specifically, mixing dabcoHReO 4 salt with PVDF according to a certain mass ratio, and preparing a PVDF / dabcoHReO 4 composite film.
  • the specific preparation method was carried out according to the method in Example 3, except that, when preparing the mixed solution, the dabcoHReO 4 salt and PVDF were mixed at a mass ratio of 4:96.
  • This embodiment relates to a method for preparing a high-content ⁇ -phase polyvinylidene fluoride composite material, specifically, mixing a dabcoHReO 4 salt with PVDF according to a certain mass ratio, and preparing a PVDF / dabcoHReO 4 composite film.
  • the specific preparation method was carried out according to the method in Example 3, except that, when preparing the mixed solution, the dabcoHReO 4 salt and PVDF were mixed at a mass ratio of 6:94.
  • This embodiment relates to a method for preparing a high-content ⁇ -phase polyvinylidene fluoride composite material, specifically, mixing a dabcoHReO 4 salt with PVDF according to a certain mass ratio, and preparing a PVDF / dabcoHReO 4 composite film.
  • the specific preparation method is carried out according to the method in Example 3, except that when preparing the mixed solution, the dabcoHReO 4 salt and PVDF are mixed according to a mass ratio of 8:92.
  • This embodiment relates to a method for preparing a high-content ⁇ -phase polyvinylidene fluoride composite material, specifically, mixing a dabcoHReO 4 salt with PVDF according to a certain mass ratio, and preparing a PVDF / dabcoHReO 4 composite film.
  • the specific preparation method is carried out according to the method in Example 3, except that when preparing the mixed solution, the dabcoHReO 4 salt and PVDF are mixed according to a mass ratio of 10:90.
  • the infrared spectroscopy and X-ray diffractometer were used to detect the crystal forms of the PVDF thin films and PVDF / dabcoHReO 4 composite films prepared in Examples 2-7.
  • a metal aluminum electrode was sputtered on both sides of the PVDF thin film or PVDF / dabcoHReO 4 composite film prepared in Example 2-7 by ion sputtering technology, and the electrode thickness was 200 nm. Copper wires were connected to the aluminum electrode surfaces on both sides.
  • a PVDF film or a PVDF / dabcoHReO 4 composite film sputtered with an aluminum electrode was coated with polydimethylsiloxane (PDMS) on both sides.
  • the PVDF film or PVDF / dabcoHReO 4 composite membrane generator is controlled by a motion controller to periodically bend at a frequency of 2HZ.
  • the RST3000 series electrochemical workstation is used to record the open circuit voltage-time curve of the thin film generator to detect the PVDF film or PVDF Piezoelectric properties of / dabcoHReO 4 composite membrane generator.
  • FIG. 1 is an infrared spectrum diagram of a composite film (represented by 2wt%) prepared by mixing a pure PVDF film (represented by PVDF) in Example 2 and a dabcoHReO 4 salt and PVDF according to a mass ratio (2:98) in Example 3 ( Figure 1a) and X-ray diffraction pattern ( Figure 1b).
  • FIG. 2 is an infrared spectrum diagram of a composite film (represented by 4wt%) prepared by mixing a pure PVDF film (represented by PVDF) in Example 2 and a dabcoHReO 4 salt and PVDF according to a mass ratio (4:96) in Example 4 and X-ray diffraction pattern.
  • 3 is an infrared spectrum diagram of a composite film (represented by 6wt%) prepared by mixing a pure PVDF film (represented by PVDF) in Example 2 and a dabcoHReO 4 salt and PVDF according to a mass ratio (6:94) in Example 5; and X-ray diffraction pattern.
  • 4 is an infrared spectrum diagram of a composite film (represented by 8wt%) prepared by mixing a pure PVDF film (represented by PVDF) in Example 2 and a dabcoHReO 4 salt and PVDF according to a mass ratio (8:92) in Example 6 and X-ray diffraction pattern.
  • Example 5 is an infrared spectrum diagram of a composite film (represented by 10 wt%) prepared by mixing a pure PVDF film (represented by PVDF) in Example 2 and a dabcoHReO 4 salt and PVDF according to a mass ratio (10:90) in Example 7 and X-ray diffraction pattern.
  • the ⁇ -phase content in the pure PVDF film is relatively low, about 30.5%.
  • the ⁇ phase content in the composite films prepared in Examples 3-7 of the present invention is significantly increased.
  • the ⁇ phase content in the prepared composite films is approximately 85.66%, 93.55%, 94.29%, 95.54%, and 95.27%, respectively.
  • Figure 6 shows the pure PVDF film (represented by PVDF) in Example 2 and the dabcoHReO 4 salt and PVDF in Examples 3-7 according to the mass ratio (2:98, 4:96, 6:94, 8:92, 10:90 ) Open circuit voltage-time curves of the composite films (represented by 2wt%, 4wt%, 6wt%, 8wt%, and 10wt%, respectively) prepared by mixing.
  • the open-circuit potential of pure PVDF is -0.19 to 0.15V
  • the PVDF / dabcoHReO 4 composite film (2wt%, 4wt%, 6wt%, 8wt%, respectively) (Indicated by 10 wt%)
  • the open circuit potential values have been greatly improved, which are -0.35 to 0.38V, -0.52 to 0.48V, -0.66 to 0.57V, -0.60 to 0.56V, -0.58 to 0.54V, respectively. From the above results, it can be seen that the PVDF / dabcoHReO 4 composite film has a better piezoelectric response than the pure PVDF film.
  • the molecular ferroelectric having multiple polar axes is dabcoHReO 4
  • the thickness of the PVDF / dabcoHReO 4 composite film prepared is 60 ⁇ m.
  • the thickness of the molecular ferroelectric and the thin film of the present invention can be adjusted according to actual conditions.
  • This embodiment provides a method for preparing a PVDF / dabcoHBF 4 composite film, which specifically includes the following steps:
  • This embodiment provides a method for preparing a PVDF / dabcoHIO 4 composite film, which specifically includes the following steps:
  • This embodiment provides a method for preparing a PVDF / quinine ring periodate composite film, which specifically includes the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种基于β相聚偏氟乙烯的压电复合材料,包括β相聚偏氟乙烯和具有多个极性轴的分子铁电体,β相聚偏氟乙烯占压电复合材料质量分数的85%-96%。本发明还提供了其制备方法:将PVDF和具有多个极性轴的分子铁电体在有机溶剂中混匀并溶解,得到混合溶液,其中,聚偏氟乙烯与分子铁电体的质量比为99:1-4:1;聚偏氟乙烯与分子铁电体的质量之和占混合溶液质量分数的1%-15%;将混合溶液中进行蒸发结晶,得到基于β相聚偏氟乙烯的压电复合材料。本发明的压电复合材料中β相聚偏氟乙烯的含量较高,性能稳定、具有较好的压电性,制备方法简单易操作。

Description

基于β相聚偏氟乙烯的压电复合材料及其制备方法 技术领域
本发明涉及压电材料制造技术领域,尤其涉及一种基于β相聚偏氟乙烯的压电复合材料及其制备方法。
背景技术
压电材料是一类具有压电性质的电介质。利用压电材料的压电性,能实现机械能和电能之间的转换。压电材料可以感应各种机械运动,并将运动信号转化为电信号等,从而实现能量的收集和检测。压电材料的应用遍及日常生活中的各个角落,比如压电传感器、压电谐振器、压电点火器等。压电材料不仅在日常生活中得到广泛使用,在军事上也有大量应用,比如在军用雷达、军用导航设备等方面的应用。另外,压电材料还在交通、医疗设备等方面有广泛应用。目前,压电材料已经有了一百多年的发展历史,多种压电材料被广泛研究和使用。其中,以钛酸钡、钛酸铅为代表的压电陶瓷等无机材料由于其具有较高的压电系数而被广泛应用在传感器、换能器、激振器等领域。但无机压电陶瓷具有许多缺点,比如脆性、高耗能、高成本等。并且一些无机材料,比如锆钛酸铅压电陶瓷(PZT)等,对环境有害,不适合广泛使用。
压电聚合物是一类重要的压电材料,具有许多优点,比如:①柔韧性好,能大面积加工制作薄膜;②有生物相容性;③性质稳定,抗腐蚀,具有高耐用性;④质量轻,密度小;⑤成本低,易于加工;⑥机械强度高,可承受弯曲、按压等外部机械形变⑦环保。这些天然优势,使得压电聚合物成为相关领域的研究热点。聚偏氟乙烯(简称PVDF)及其共聚物不仅具有压电聚合物的这些共性,还是具有最高介电常数和电活性响应的聚合物,具有较好的介电性、压电性、热释电性、铁电性等性能,这些独特性能使得聚偏氟乙烯及其共聚物材料在压力传感器、能量收集、信息存储等领域具有较好的应用前景。PVDF是一种半结晶聚合物,由结晶区域和无定形态组成,PVDF是否具有压电性是由结晶时的晶体结构决定的。PVDF结晶时主要有4种晶体结构,分别是α相、β相、γ相和δ相,每种晶体结构具有不同的链构象。其中,α相和δ相为无极性相和弱极性相;γ相极性介于α相和β相之间,是弱极性相;β相PVDF为全反式构象,偶极垂直于分子链方向平行排列,具有最强的极性。不同的晶型对PVDF的性能有很大的影响,几种晶型之间可以相互转化。对PVDF不同晶型及它们之间的相互转化机制进行研究,具有较大的实际意义和价值。这几种不同晶型中,β相PVDF因具有最强极 性晶体结构,而具有最优异的压电性、铁电性等性能,这些性能使得β相PVDF有多种应用。α相PVDF晶体结构中,相邻分子链反向平行排列,不具有极性,是PVDF所有晶体结构中最稳定相,一般从熔体降温或溶液中自然结晶得到的是α相,但α相PVDF不具有压电性、铁电性等性能,因此不利于实际应用,需经过机械拉伸、高电场极化、添加成核剂等方式处理后才能得到压电性较好的β相PVDF。如何有效、经济地得到较高含量的β相PVDF一直是研究的热点问题。
在过去的十年中,分子铁电体的研究取得了很大的进展,并发现了一系列新化合物,其自发极化和转变温度与无机物相当或优于部分无机物。分子铁电体在能量转换、数据存储等方面有较大应用,这类分子铁电体也是重要的一类压电材料。然而,大多数分子铁电体是单极轴向的,整个薄膜的极轴必须定向到特定的方向才能实现宏观的铁电性。为了解决这个问题,必须采用取向控制的单晶薄膜生长方法,方法复杂且成本高。而具有多轴特性的分子铁电体可以解决这些问题。目前有研究报道出多种具有多个极性轴的分子铁电体,这类分子都具有多轴特性,在可穿戴设备、柔性材料、能量收集等应用领域显示出巨大的潜力。在这些分子铁电体中,1,4-二氮杂双环[2.2.2]辛烷高铼酸盐(dabcoHReO 4)不仅具有多轴特性,还具有较高的居里转变温度(499K),是目前已知的分子铁电体中最高的。dabcoHReO 4具有生物相容性好、成本低廉等优点,在信息存储、能量收集等方面有极大应用潜力。但dabcoHReO 4不易成膜,这个缺点在某些方面限制了dabcoHReO 4的应用。
目前有许多诱导PVDF聚合物β相的方法,比如高电场极化、机械拉伸等。但这些方法,普遍成本较高,操作较复杂。一些研究表明,在PVDF基体中加入填料如粘土、沸石、金属纳米颗粒、离子液体、碳纳米管、石墨烯、活性炭等,可以诱导复合材料中聚偏氟乙烯β相。中国专利(申请号:201210228203.7)公布了一种通过用离子液体改性过的碳纳米管与聚偏氟乙烯共混来制备高β相含量的聚偏氟乙烯复合材料的方法。另一专利(申请号:201710378379.3)公布了一种利用离子液体和单轴牵伸作用来获得高β相含量的聚偏氟乙烯复合材料的方法。
通过在聚偏氟乙烯中加入上述填料可以在一定程度上诱导聚偏氟乙烯聚合物β相,但是这些方法制备的聚偏氟乙烯β相含量较低,不利于标准化生产和应用。另外,一些填料是导电材料,比如碳纳米管、石墨烯等,制得的复合材料会有较明显的漏电流现象,并且复合材料导电性的增加会影响聚合物极化过程,这些缺点都会影响其广泛使用。
发明内容
为解决上述技术问题,本发明的目的是提供一种基于β相聚偏氟乙烯的压电复合材料及其制备方法,本发明的压电复合材料中β相聚偏氟乙烯的含量较高,性能稳定、具有较好的压电性,制备方法简单易操作。
本发明的第一个目的是提供一种基于β相聚偏氟乙烯的压电复合材料,包括β相聚偏氟乙烯和具有多个极性轴的分子铁电体,β相聚偏氟乙烯占压电复合材料质量分数的85%-96%。
进一步地,具有多个极性轴的分子铁电体为1,4-二氮杂双环[2.2.2]辛烷氟硼酸盐(dabcoHBF 4)、1,4-二氮杂双环[2.2.2]辛烷高碘酸盐(dabcoHIO 4)、1,4-二氮杂双环[2.2.2]辛烷高铼酸盐(dabcoHReO 4)和奎宁环高碘酸盐中的一种或几种。优选地,分子铁电体为dabcoHReO 4
进一步地,压电复合材料呈薄膜状,薄膜的厚度为0.1μm-1000μm。优选地,薄膜的厚度为1μm-100μm。
本发明的基于β相聚偏氟乙烯的压电复合材料,具有较高含量的β相聚偏氟乙烯(高于85%),该复合材料具有更好的压电响应性,在2HZ的频率下周期性弯曲,所测得的开路电势值有较大的提高,最大范围可为-0.66~0.57V。
本发明的第二个目的是提供一种上述基于β相聚偏氟乙烯的压电复合材料的制备方法,包括以下步骤:
(1)将聚偏氟乙烯(PVDF)和具有多个极性轴的分子铁电体在有机溶剂中混匀并溶解,得到混合溶液,其中,聚偏氟乙烯与分子铁电体的质量比为99:1-4:1;聚偏氟乙烯与分子铁电体的质量之和占混合溶液质量分数的0.1%-65%;
(2)将混合溶液中的溶剂蒸发掉,得到基于β相聚偏氟乙烯的压电复合材料。
进一步地,在步骤(1)中,有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基乙酰胺、二甲基亚砜、丙酮、甲乙酮、环己酮、N-甲基吡咯烷酮、磷酸三甲酯和磷酸三乙酯中的一种或几种。优选地,有机溶剂为N,N-二甲基甲酰胺(DMF)和丙酮(Ac)的混合液。
进一步地,在步骤(1)中,分子铁电体为1,4-二氮杂双环[2.2.2]辛烷氟硼酸盐(dabcoHBF 4)、1,4-二氮杂双环[2.2.2]辛烷高碘酸盐(dabcoHIO 4)、1,4-二氮杂双环[2.2.2]辛烷高铼酸盐(dabcoHReO 4)和奎宁环高碘酸盐中的一种或几种。优选地,dabcoHReO 4
优选地,在步骤(1)中,聚偏氟乙烯与分子铁电体的质量比为24:1-9:1。
优选地,在步骤(1)中,聚偏氟乙烯与分子铁电体的质量之和占混合溶液质量分数的1%-15%,更优选地,为10%。
进一步地,在步骤(1)中,溶解温度为50-55℃。
进一步地,在步骤(2)中,溶剂蒸发的温度为50-100℃。控制蒸发温度,可以使有机溶剂挥发,同时使得聚偏氟乙烯发生相转变,形成β相聚偏氟乙烯。
进一步地,在步骤(2)中,溶剂蒸发时间为4-8h。
进一步地,在步骤(2)中,将混合溶液用流延法成膜,得到基于β相聚偏氟乙烯的压电复合薄膜,其厚度为0.1μm-1000μm。
本发明通过将PVDF和具有多个极性轴的分子铁电体进行溶液混合,分子铁电体起到成核剂的作用,诱导β相PVDF的形成,利用PVDF和分子铁电体之间的相互作用使得PVDF分子链中F原子和H原子进行定向排列,促进PVDF形成全反式构象,从而得到具有较高β相含量PVDF的压电复合材料。同时,由于PVDF的全反式极性构象,使得所制备的复合材料具有较好的压电性能。
借由上述方案,本发明至少具有以下优点:
本发明的基于β相聚偏氟乙烯的压电复合材料具有较高含量的β相PVDF,性能稳定,且具有较好的压电性能。这些特性使得所制备的压电复合材料在各种压电类传感器、纳米发电系统等领域有较好的应用前景。
本发明的基于β相聚偏氟乙烯的压电复合材料仅需要简单的溶液共混及相关操作,就可以在短时间内制得。本发明提供的方法,原料易得、价格便宜、绿色环保,制备方法和流程简单方便,所需设备简单易操作,有利于大规模的工业化生产。
本发明利用简单、高效、低成本的方法成功制备高β相结晶含量的PVDF复合材料,还解决了分子铁电体成膜性差的问题。所使用原料环保、成本低、制备简单,这些优点都将有利于其广泛使用。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为实施例2中制备的PVDF薄膜和实施例3中制备的PVDF/dabcoHReO 4复合薄膜的红外光谱图(IR)和X射线衍射图(XRD);
图2为实施例2中制备的PVDF薄膜和实施例4中制备的PVDF/dabcoHReO 4复合薄膜的红外光谱图(IR)和X射线衍射图(XRD);
图3为实施例2中制备的PVDF薄膜和实施例5中制备的PVDF/dabcoHReO 4复合薄膜的红外光谱图(IR)和X射线衍射图(XRD);
图4为实施例2中制备的PVDF薄膜和实施例6中制备的PVDF/dabcoHReO 4复合薄膜的红外光谱图(IR)和X射线衍射图(XRD);
图5为实施例2中制备的PVDF薄膜和实施例7中制备的PVDF/dabcoHReO 4复合薄膜的红外光谱图(IR)和X射线衍射图(XRD);
图6为实施例2-7中PVDF薄膜和PVDF/dabcoHReO 4复合薄膜的开路电压-时间(Voltage-time)曲线。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明以下实施例所用样品原料和溶剂均为市售商品,溶剂纯度为分析纯。
制备基于β相聚偏氟乙烯的压电复合薄膜后可利用红外光谱仪和X射线衍射仪对PVDF的晶型进行测试。
在得到红外光谱图后,利用以下公式计算PVDF中β相结晶含量F(β):
F(β)=A β/(1.26A α+A β)
其中,A α和A β分别对应红外光谱图中波数766cm -1和840cm -1的吸收强度。
实施例1
本实施例提供了一种制备dabcoHReO 4盐的方法。具体包括如下步骤:
1)室温下将1,4-二氮杂二环[2.2.2]辛烷(dabco)溶于超纯水中,dabco与超纯水质量比为20:100。
2)待完全溶解后,按1,4-二氮杂二环[2.2.2]辛烷(dabco)和高铼酸(HReO 4)摩尔比为1:1,在dabco水溶液中加入高铼酸(HReO 4)水溶液。酸碱中和反应后,得到dabcoHReO 4盐。
3)室温下将dabcoHReO 4盐再次溶解在水中,待溶解完全后,将dabcoHReO 4盐水溶液放入超低温冰箱中冷冻至完全成固体状,取出,使用冻干机将固体水除去,即可得到dabcoHReO 4盐固体。
实施例2
为了作为对照,本实施例提供了一种制备聚偏氟乙烯薄膜的方法。具体包括以下步骤:
1)将适量PVDF粉末溶解在DMF/AC(体积比=1:1)混合溶液中,在50℃超声仪中超声加热3小时,以促进PVDF粉末溶解完全,在室温下静置24小时以上,保证样品溶解完全, 制得质量浓度为10wt%的PVDF溶液。
2)将配制好的溶液在70℃的烘箱中进行蒸发结晶,待溶剂挥发完全,制备出厚度均匀的薄膜,经过5小时热处理后关闭烘箱,自然冷却到室温后取出,得到PVDF薄膜。
实施例3
本实施例提供了一种制备高含量β相聚偏氟乙烯复合材料的方法,具体为将实施例1制备的dabcoHReO 4盐按照一定的质量比与PVDF混合,并制备PVDF/dabcoHReO 4复合膜。该方法有效提高聚偏氟乙烯β相含量。具体包括如下步骤:
1)将适量PVDF粉末溶解在DMF/AC(体积比=1:1)混合溶液中,在50℃超声仪中超声加热3小时,以促进PVDF粉末溶解完全。在室温下静置8小时。
2)将dabcoHReO 4盐与PVDF按照2:98的质量比混合,在50℃超声仪中超声加热3小时,在室温下静置24小时以上,保证样品溶解完全,得到混合溶液,混合溶液中,dabcoHReO 4盐与PVDF的总重占混合溶液总重的10%。
3)将配制好的混合溶液在70℃的烘箱中进行蒸发结晶,待溶剂挥发完全,制备出厚度均匀的薄膜,经过5小时热处理后关闭烘箱,自然冷却到室温后取出,得到具有高含量β相、较好结晶性质的PVDF/dabcoHReO 4复合薄膜。
实施例4
本实施例提供了一种制备高含量β相聚偏氟乙烯复合材料的方法,具体为将dabcoHReO 4盐按照一定的质量比与PVDF混合,并制备PVDF/dabcoHReO 4复合膜。
具体制备方法按照实施例3中的方法进行,不同之处在于:制备混合溶液时,dabcoHReO 4盐与PVDF按照4:96的质量比混合。
实施例5
本实施例涉及一种制备高含量β相聚偏氟乙烯复合材料的方法,具体为将dabcoHReO 4盐按照一定的质量比与PVDF混合,并制备PVDF/dabcoHReO 4复合膜。
具体制备方法按照实施例3中的方法进行,不同之处在于:制备混合溶液时,dabcoHReO 4盐与PVDF按照6:94的质量比混合。
实施例6
本实施例涉及一种制备高含量β相聚偏氟乙烯复合材料的方法,具体为将dabcoHReO 4盐按照一定的质量比与PVDF混合,并制备PVDF/dabcoHReO 4复合膜。
具体制备方法按照实施例3中的方法进行,不同之处在于:制备混合溶液时,dabcoHReO 4盐与PVDF按照8:92的质量比混合。
实施例7
本实施例涉及一种制备高含量β相聚偏氟乙烯复合材料的方法,具体为将dabcoHReO 4盐按照一定的质量比与PVDF混合,并制备PVDF/dabcoHReO 4复合膜。
具体制备方法按照实施例3中的方法进行,不同之处在于:制备混合溶液时,dabcoHReO 4盐与PVDF按照10:90的质量比混合。
使用红外光谱仪和X射线衍射仪对实施例2-7所制备的PVDF薄膜和PVDF/dabcoHReO 4复合膜的晶型进行检测。
此外,通过离子溅射技术在实施例2-7所制备的PVDF薄膜或PVDF/dabcoHReO 4复合膜的两面各溅射金属铝电极,电极厚度为200纳米,两面铝电极表面各连接铜导线,在溅射过铝电极的PVDF薄膜或PVDF/dabcoHReO 4复合膜两面各包覆聚二甲基硅氧烷(PDMS)。通过运动控制器控制PVDF薄膜或PVDF/dabcoHReO 4复合膜发电机在2HZ的频率下周期性弯曲,使用RST3000系列电化学工作站记录薄膜发电机的开路电压-时间曲线,以此来检测PVDF薄膜或PVDF/dabcoHReO 4复合膜发电机的压电特性。
以上样品测试结果如下:
图1是实施例2中纯PVDF薄膜(用PVDF表示)和实施例3中dabcoHReO 4盐与PVDF按照质量比(2:98)混合制得的复合薄膜(用2wt%表示)的红外光谱图(图1a)和X射线衍射图(图1b)。图2是实施例2中纯PVDF薄膜(用PVDF表示)和实施例4中dabcoHReO 4盐与PVDF按照质量比(4:96)混合制得的复合薄膜(用4wt%表示)的红外光谱图和X射线衍射图。图3是实施例2中纯PVDF薄膜(用PVDF表示)和实施例5中dabcoHReO 4盐与PVDF按照质量比(6:94)混合制得的复合薄膜(用6wt%表示)的红外光谱图和X射线衍射图。图4是实施例2中纯PVDF薄膜(用PVDF表示)和实施例6中dabcoHReO 4盐与PVDF按照质量比(8:92)混合制得的复合薄膜(用8wt%表示)的红外光谱图和X射线衍射图。图5是实施例2中纯PVDF薄膜(用PVDF表示)和实施例7中dabcoHReO 4盐与PVDF按照质量比(10:90)混合制得的复合薄膜(用10wt%表示)的红外光谱图和X射线衍射图。
显然,从红外光谱图中可以看出,纯PVDF薄膜中β相含量较低,约为30.25%。而本发明实施例3-7制备的复合薄膜中β相含量显著提高,所制备的复合薄膜中β相含量分别约为85.56%、93.55%、94.29%、95.54%和95.27%。
X射线衍射结果与红外光谱结果一致。在XRD图中,18.75°对应的是PVDF的α相和γ相,20.56°对应的是PVDF的极性β相。通过PVDF和PVDF/dabcoHReO 4复合薄膜对比可知,PVDF/dabcoHReO 4复合薄膜中非极性α相对应的峰相对强度显著变弱,而β相对应的峰相对 强度变强。以上结果证实了由于PVDF和dabcoHReO 4之间的相互作用导致了PVDF/dabcoHReO 4复合薄膜中PVDF极性β相(TTTT)含量的提高。由于PVDF/dabcoHReO 4复合薄膜中PVDF的β相含量的提高,因此PVDF/dabcoHReO 4复合薄膜应当具有更好的压电响应。
图6为实施例2中纯PVDF薄膜(用PVDF表示)和实施例3-7中dabcoHReO 4盐与PVDF按照质量比(2:98、4:96、6:94、8:92、10:90)混合制得的复合薄膜(分别用2wt%、4wt%、6wt%、8wt%、10wt%表示)的开路电压-时间曲线。从图中可看出,在相同外力条件和测试条件下,纯的PVDF的开路电势为-0.19~0.15V,而PVDF/dabcoHReO 4复合薄膜(分别用2wt%、4wt%、6wt%、8wt%、10wt%表示)的开路电势值有较大的提高,分别为-0.35~0.38V、-0.52~0.48V、-0.66~0.57V、-0.60~0.56V、-0.58~0.54V。由以上结果可知,与纯PVDF薄膜相比,PVDF/dabcoHReO 4复合薄膜具有更好的压电响应。
以上实施例中,所使用的具有多个极性轴的分子铁电体为dabcoHReO 4,制备的PVDF/dabcoHReO 4复合膜薄膜厚度均为60μm。但本发明的分子铁电体和薄膜厚度可根据实际情况进行调节。
实施例8
本实施例提供了一种PVDF/dabcoHBF 4复合膜的制备方法,具体包括如下步骤:
1)将适量PVDF粉末溶解在DMF/AC(体积比=1:1)混合溶液中,在50℃超声仪中超声加热3小时,以促进PVDF粉末溶解完全。在室温下静置8小时。
2)将dabcoHBF 4盐与PVDF按照1:4的质量比混合,在55℃超声仪中超声加热3小时,在室温下静置24小时以上,保证样品溶解完全,得到混合溶液,混合溶液中,dabcoHBF 4盐与PVDF的总重占混合溶液总重的1%。
3)将配制好的混合溶液在60℃的烘箱中进行蒸发结晶,待溶剂挥发完全,制备出厚度均匀的薄膜,经过5小时热处理后关闭烘箱,自然冷却到室温后取出,得到具有高含量β相、较好结晶性质的PVDF/dabcoHBF 4复合薄膜,其厚度为1μm。
实施例9
本实施例提供了一种PVDF/dabcoHIO 4复合膜的制备方法,具体包括如下步骤:
1)将适量PVDF粉末溶解在DMF/AC(体积比=1:1)混合溶液中,在50℃超声仪中超声加热3小时,以促进PVDF粉末溶解完全。在室温下静置8小时。
2)将dabcoHIO 4盐与PVDF按照1:20的质量比混合,在55℃超声仪中超声加热3小时,在室温下静置24小时以上,保证样品溶解完全,得到混合溶液,混合溶液中,dabcoHIO 4盐与PVDF的总重占混合溶液总重的5%。
3)将配制好的混合溶液在65℃的烘箱中进行蒸发结晶,待溶剂挥发完全,制备出厚度均匀的薄膜,经过8小时热处理后关闭烘箱,自然冷却到室温后取出,得到具有高含量β相、较好结晶性质的PVDF/dabcoHIO 4复合薄膜,其厚度为10μm。
实施例10
本实施例提供了一种PVDF/奎宁环高碘酸盐复合膜的制备方法,具体包括如下步骤:
1)将适量PVDF粉末溶解在DMF/AC(体积比=1:1)混合溶液中,在50℃超声仪中超声加热3小时,以促进PVDF粉末溶解完全。在室温下静置8小时。
2)将奎宁环高碘酸盐与PVDF按照1:50的质量比混合,在55℃超声仪中超声加热3小时,在室温下静置24小时以上,保证样品溶解完全,得到混合溶液,混合溶液中,奎宁环高碘酸盐与PVDF的总重占混合溶液总重的15%。
3)将配制好的混合溶液在75℃的烘箱中进行蒸发结晶,待溶剂挥发完全,制备出厚度均匀的薄膜,经过6小时热处理后关闭烘箱,自然冷却到室温后取出,得到具有高含量β相、较好结晶性质的PVDF/奎宁环高碘酸盐复合薄膜,其厚度为100μm。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (9)

  1. 一种基于β相聚偏氟乙烯的压电复合材料,其特征在于:包括β相聚偏氟乙烯和具有多个极性轴的分子铁电体,所述β相聚偏氟乙烯占压电复合材料质量分数的85%-96%。
  2. 根据权利要求1所述的基于β相聚偏氟乙烯的压电复合材料,其特征在于:所述具有多个极性轴的分子铁电体为1,4-二氮杂双环[2.2.2]辛烷氟硼酸盐、1,4-二氮杂双环[2.2.2]辛烷高碘酸盐、1,4-二氮杂双环[2.2.2]辛烷高铼酸盐和奎宁环高碘酸盐中的一种或几种。
  3. 根据权利要求1所述的基于β相聚偏氟乙烯的压电复合材料,其特征在于:压电复合材料呈薄膜状,薄膜的厚度为0.1μm-1000μm。
  4. 一种权利要求1-3中任一项所述的基于β相聚偏氟乙烯的压电复合材料的制备方法,其特征在于,包括以下步骤:
    (1)将聚偏氟乙烯和具有多个极性轴的分子铁电体在有机溶剂中混匀并溶解,得到混合溶液,其中,所述聚偏氟乙烯与分子铁电体的质量比为99:1-4:1;所述聚偏氟乙烯与分子铁电体的质量之和占混合溶液质量分数的0.1%-65%;
    (2)将所述混合溶液中的溶剂蒸发掉,得到所述基于β相聚偏氟乙烯的压电复合材料。
  5. 根据权利要求4所述的制备方法,其特征在于:在步骤(1)中,所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基乙酰胺、二甲基亚砜、丙酮、甲乙酮、环己酮、N-甲基吡咯烷酮和磷酸三甲酯和磷酸三乙酯中的一种或几种。
  6. 根据权利要求4所述的制备方法,其特征在于:在步骤(1)中,所述分子铁电体为1,4-二氮杂双环[2.2.2]辛烷氟硼酸盐、1,4-二氮杂双环[2.2.2]辛烷高碘酸盐、1,4-二氮杂双环[2.2.2]辛烷高铼酸盐和奎宁环高碘酸盐中的一种或几种。
  7. 根据权利要求4所述的制备方法,其特征在于:在步骤(2)中,溶剂蒸发的温度为50-100℃。
  8. 根据权利要求4所述的制备方法,其特征在于:在步骤(2)中,溶剂蒸发的时间为4-8h。
  9. 根据权利要求4所述的制备方法,其特征在于:在步骤(2)中,将所述混合溶液用流延法成膜,得到基于β相聚偏氟乙烯的压电复合薄膜。
PCT/CN2018/111064 2018-08-06 2018-10-19 基于β相聚偏氟乙烯的压电复合材料及其制备方法 WO2020029428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810885216.9 2018-08-06
CN201810885216.9A CN109054261B (zh) 2018-08-06 2018-08-06 基于β相聚偏氟乙烯的压电复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020029428A1 true WO2020029428A1 (zh) 2020-02-13

Family

ID=64831740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111064 WO2020029428A1 (zh) 2018-08-06 2018-10-19 基于β相聚偏氟乙烯的压电复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN109054261B (zh)
WO (1) WO2020029428A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031797A (zh) * 2021-11-11 2022-02-11 常州大学 聚偏氟乙烯压电复合薄膜的制备方法
CN114672124A (zh) * 2022-03-18 2022-06-28 西北工业大学 一种高介电可调复合材料的制备方法
CN115031887A (zh) * 2022-06-06 2022-09-09 深圳大学 多孔压电薄膜及其制备方法、应用和压力传感器
CN115045044A (zh) * 2022-06-30 2022-09-13 苏州节并传感科技有限公司 一种基于静电纺丝工艺制备复合压电材料的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241694A1 (ja) * 2019-05-31 2020-12-03 国立大学法人北海道大学 含窒素化合物、多結晶成形体及び多結晶薄膜
CN110190180B (zh) * 2019-06-06 2023-10-31 苏州大学 压电触控膜及包含其的压电型触控显示面板
CN111416033A (zh) * 2020-03-17 2020-07-14 清华大学深圳国际研究生院 一种柔性压电复合材料、柔性压电器件及其制备方法
CN111755593A (zh) * 2020-06-16 2020-10-09 欧菲微电子技术有限公司 压电复合材料、压电复合薄膜及其制备方法和压电器件
CN112480449B (zh) * 2020-12-23 2023-07-21 肇庆复利新材料有限公司 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法
CN112718028B (zh) * 2020-12-24 2022-11-01 深圳先进技术研究院 一种光操控液滴运动材料及其制备方法和应用
CN113725351B (zh) * 2021-07-16 2024-04-30 浙江百安医疗科技有限公司 一种聚偏氟乙烯花状石墨烯复合压电薄膜及其制备方法
CN115615946A (zh) * 2022-09-09 2023-01-17 上海恩捷新材料科技有限公司 快速检测聚偏二氟乙烯的β相含量方法及其系统
CN116891569A (zh) * 2023-07-17 2023-10-17 吉林大学 一种还原氧化石墨烯/六氮杂三亚苯基有机复合物正极材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045795A (zh) * 2007-04-12 2007-10-03 中国科学院长春应用化学研究所 一种β相聚偏氟乙烯复合薄膜及其制备方法
KR20110112528A (ko) * 2010-04-07 2011-10-13 서울시립대학교 산학협력단 강유전물질 및 그 제조방법
CN105385077A (zh) * 2015-12-21 2016-03-09 中国科学院长春应用化学研究所 聚偏氟乙烯复合材料及其制备方法与应用
CN106751250A (zh) * 2017-01-12 2017-05-31 上海交通大学医学院附属新华医院 一种高分子压电复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045795A (zh) * 2007-04-12 2007-10-03 中国科学院长春应用化学研究所 一种β相聚偏氟乙烯复合薄膜及其制备方法
KR20110112528A (ko) * 2010-04-07 2011-10-13 서울시립대학교 산학협력단 강유전물질 및 그 제조방법
CN105385077A (zh) * 2015-12-21 2016-03-09 中国科学院长春应用化学研究所 聚偏氟乙烯复合材料及其制备方法与应用
CN106751250A (zh) * 2017-01-12 2017-05-31 上海交通大学医学院附属新华医院 一种高分子压电复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUI, YAN ET AL.: "Enhanced Switchable Dielectric Performance of beta-Pha- se-Dominated PVDF Composite Films Modified with Single-Protonated 1, 4- Diazabicyclo[2.2.2]octane Fluoborate", J. PHYS. CHEM. C., vol. 121, no. 25, 19 June 2017 (2017-06-19), pages 13586 - 13592, XP055685137 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031797A (zh) * 2021-11-11 2022-02-11 常州大学 聚偏氟乙烯压电复合薄膜的制备方法
CN114672124A (zh) * 2022-03-18 2022-06-28 西北工业大学 一种高介电可调复合材料的制备方法
CN114672124B (zh) * 2022-03-18 2023-10-24 西北工业大学 一种高介电可调复合材料的制备方法
CN115031887A (zh) * 2022-06-06 2022-09-09 深圳大学 多孔压电薄膜及其制备方法、应用和压力传感器
CN115031887B (zh) * 2022-06-06 2023-10-20 深圳大学 多孔压电薄膜及其制备方法、应用和压力传感器
CN115045044A (zh) * 2022-06-30 2022-09-13 苏州节并传感科技有限公司 一种基于静电纺丝工艺制备复合压电材料的方法

Also Published As

Publication number Publication date
CN109054261B (zh) 2021-01-26
CN109054261A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020029428A1 (zh) 基于β相聚偏氟乙烯的压电复合材料及其制备方法
Martins et al. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications
Wan et al. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure
Yang et al. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries
Liu et al. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator
Yan et al. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting
Zhang et al. Nanoconfinement‐induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density
Patra et al. Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor
Pusty et al. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy
US8148455B2 (en) Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same
CN102977524A (zh) 一种聚偏氟乙烯复合材料及其制备方法
Zhao et al. Ultra-high discharged energy density in PVDF based composites through inducing MnO2 particles with optimized geometric structure
CN106495559B (zh) 一种0-3型复合压电材料及其制备方法和器件
CN104829976A (zh) 聚偏氟乙烯-端羧基多壁碳纳米管复合介电材料的制备方法
CN106684245B (zh) 一种基于一维有机无机杂化聚合物链的电存储器件及其制备方法
CN105968392A (zh) 一种高含量聚偏氟乙烯压电β相的制备方法
Veronica et al. An insight into tunable innate piezoelectricity of silk for green bioelectronics
TW200421653A (en) Composition of composite polymer electrolyte containing nano-tube and manufacturing method thereof
Yang et al. Stretchable conductive hydrogel with super resistance-strain stability and ultrahigh durability enabled by specificity crosslinking strategy for high-performance flexible electronics
Zhang et al. Large-scale fabrication and performance improvement of polyvinylidene fluoride piezoelectric composite films
Huang et al. Highly ion-conducting, robust and environmentally stable poly (vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors
CN107474251A (zh) 一种膜电容器复合介电薄膜的制备方法
CN105118694B (zh) 一种掺铝氧化锌纳米阵列的制备方法
CN109265925B (zh) 一种聚合物基复合柔性压电传感器的制备方法
Chen et al. Predicting mechanical properties of polyvinylidene fluoride/carbon nanotube composites by molecular simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929377

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929377

Country of ref document: EP

Kind code of ref document: A1