CN112480449B - 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法 - Google Patents

一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法 Download PDF

Info

Publication number
CN112480449B
CN112480449B CN202011534352.7A CN202011534352A CN112480449B CN 112480449 B CN112480449 B CN 112480449B CN 202011534352 A CN202011534352 A CN 202011534352A CN 112480449 B CN112480449 B CN 112480449B
Authority
CN
China
Prior art keywords
polyvinylidene fluoride
eutectic solvent
deep eutectic
composite film
choline chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011534352.7A
Other languages
English (en)
Other versions
CN112480449A (zh
Inventor
王海军
袁慕华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wanzhida Technology Co ltd
Zhaoqing Compound New Materials Co ltd
Original Assignee
Zhaoqing Compound New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing Compound New Materials Co ltd filed Critical Zhaoqing Compound New Materials Co ltd
Priority to CN202011534352.7A priority Critical patent/CN112480449B/zh
Publication of CN112480449A publication Critical patent/CN112480449A/zh
Application granted granted Critical
Publication of CN112480449B publication Critical patent/CN112480449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/096Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜材料。所述复合材料的制法为:将聚偏氟乙烯溶解在足量的N,N‑二甲基甲酰胺中;配制深共晶溶剂与聚偏氟乙烯共混(深共晶溶剂包括氯化胆碱/甘油、氯化胆碱/乙二醇、氯化胆碱/尿素、氯化胆碱/草酸)形成聚偏氟乙烯/深共晶溶剂复合薄膜;将偏氟乙烯/深共晶溶剂复合薄膜通过溶液浇铸法、旋涂法和热压法,得到具有高含量极性相聚偏氟乙烯的偏氟乙烯/深共晶溶剂复合材料。这种复合材料的制作工艺简单,成本低廉,流程可控。

Description

一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法
技术领域
本发明属于高分子材料制备技术领域,具体涉及一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法。
背景技术
聚偏氟乙烯(PVDF)是一种典型的多晶型聚合物,具有α、β、γ、δ和ε五种不同的晶型。其中α-PVDF 晶型为单斜晶系,以反式-偏转(trans-gauche)交替 TGTG’(T为反式,G和G′为左右式)的构型,总偶极矩为零,不显极性;β-PVDF 晶型具有全反式构象(TTT 构象),β晶型的晶胞中含有极性的锯齿形链,偶极平行排列。γ-PVDF 晶体内的分子链构象为TTTGTTTGʹ,含有 G/Gʹ构象。目前绝大部分的研究都致力于聚偏氟乙烯极性相的制备。为了获得大比例的聚偏氟乙烯的极性相,研究人员尝试了各种方法,如拉伸、共混和纳米复合。在聚偏氟乙烯中加入离子液体诱导极性相的生成也是研究热点之一,离子液体在离子液体/聚偏氟乙烯复合材料生产中的应用多种多样。常规室温离子液体具有大极性、抗静电高、导电性、低挥发性等有利的特性,但它们十分昂贵,合成方法复杂,并且是不可生物降解的,在实际生产中难以推广,因此本课题组采取了一种新型离子液体—深共晶溶剂(DES),溶剂可以通过将作为氢键受体的季铵盐与氢键供体以特定的摩尔比混合形成低共熔混合物来容易地制备,并且在室温下是液体。常用的氢键受体有氯化胆碱、脯氨酸、丙氨酸、甜菜碱等,氢键供体可以来自醇、羧酸或酰胺类,如乙二醇、甘油、琥珀酸或尿素。除了表现出传统离子液体的特性之外,作为一类新的“绿色”溶剂,深共晶溶剂的优点还包括易于制备、成本低、成分易得、不挥发、热稳定性高和可生物降解,它也被认为是离子液体的绿色廉价替代品。目前DES仅在分析化学领域的应用较多,如作为萃取剂色谱分离,电化学分析,液体和固体样品的分解,新吸附材料的合成和改性。但没有研究人员把它对于聚偏氟乙烯复合材料物理化学特性的影响进行系统研究。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种聚偏氟乙烯/深共晶溶剂复合材料,该复合材料成本低、结晶快、无污染,制备方法简单易行,在其工业应用方面具有很大的潜力。
所述材料和方法涉及到的原料:聚偏氟乙烯(PVDF)、深共晶溶剂(DES)(氯化胆碱/甘油、氯化胆碱/乙二醇、氯化胆碱/尿素、氯化胆碱/草酸)、N,N-二甲基甲酰胺(DMF)。
本发明中,PVDF为主体材料,完全溶解在DMF中,DES均匀的分散在PVDF的DMF溶液中。制备方法包括以下步骤:
1)分别称取一定量的PVDF,分别置于10ml的容量瓶中,分别标识为1号、2号、3号、4号;
2)称取一定量的氯化胆碱溶解于甘油/乙二醇/尿素/草酸后分别称取一定量置于步骤1)中的1号、2号、3号、4号中,用PVDF的良溶剂DMF定容至10ml,加入磁力搅拌转子常温磁力搅拌30min,使PVDF完全溶解,一式三份,得到PVDF与DES的含量分别为2wt%、4wt%、8wt%的三份共混溶液;
3)将步骤2)所制得的三种不同配比的PVDF/DES溶液通过溶液浇铸法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发,后置于真空干燥机中于50℃真空干燥8小时;
4)将步骤3)制得的复合薄膜置入200℃的恒温热台中,恒温培养10min,将完全消除热历史后的上述复合薄膜的培养温度迅速降至140℃,恒温培养12h使其完全重结晶。
5)将步骤2)所制得的三种不同配比的PVDF/DES溶液通过旋涂法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发;
6)将步骤2)所制得的三种不同配比的PVDF/DES溶液通过200℃热压法,制得厚度统一薄膜。
这种复合可生物降解材料的制作工艺简单科学,成本低廉,流程可控,有望工业化生产,具有极大的潜在应用前景和经济效益。
为实现上述目的,本发明采用的技术方案是:一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜材料及其制备方法,包括以下步骤:
1)分别称取PVDF=0.5g,分别置于10ml的容量瓶中,分别标识为1号、2号、3号、4号;
2)氯化胆碱与乙二醇/甘油/尿素/草酸以1:2摩尔比配比,置于10ml的容量瓶中,溶解至无色透明,形成DES溶液;
3)分别称取DES=0.01g、0.02g、0.04g置于步骤1)中的1号、2号、3号、4号中,用DMF定容至10ml,加入磁力搅拌转子常温磁力搅拌30min,使PVDF与DES完全溶解,一式三份,得到PVDF/DES的含量分别为2wt%、4wt%、8wt%的三份共混溶液;
4)将步骤 3)所制得的三种不同配比的PVDF/DES溶液通过溶液浇铸法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发,后置于真空干燥机中于50℃真空干燥8小时;
5)将步骤 3)所制得的三种不同配比的PVDF/DES溶液通过旋涂法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发,
6)将步骤 4) 制得的复合薄膜置入200℃的恒温热台中,恒温培养10min,保证聚合物薄膜充分熔融以消除热历史后迅速将温度降至140℃,恒温培养12h使其完全重结晶;
7)将步骤 3)所制得的三种不同配比的PVDF/DES溶液通过200℃热压法,制得厚度统一薄膜。
8)将步骤 6)充分结晶后的产物从恒温加热台中取出,冷却至室温,待检测。通过在偏光显微镜下观察,发现我们获得一种具有不同成核密度及晶体形貌的复合材料。
通过上述步骤制得的不同共混比例以及不同成膜方法的PVDF/DES复合薄膜材料置于偏光显微镜下观察,发现除球晶尺寸在根据结晶温度变化以外,同时也会根据DES含量的变化而发生很大的变化;对比纯的PVDF在加入DES后PVDF的结晶形貌也发生了变化,并且随着DES含量的变化而变化。
使用偏光显微镜观察样品的成核及生长情况。用红外光谱仪来判断复合物的极性相类型。
本发明的有益效果是:
与现有技术相比,本发明中的组分DES,易于制备、成本低、成分易得、可生物降解。DES在PVDF基体中分散均匀,确保了在结晶过程中不会因为团聚作用而对其力学性能造成不可逆的影响。并加速了PVDF中α晶体类型的分子链构象向β和γ晶体类型转变。
本发明通过添加DES对PVDF晶体进行诱导相变,通过溶液浇铸法制得厚度统一的薄膜。检测对比发现,在加入DES复合薄膜中,PVDF发生了快速的相变。对比纯的PVDF,由于DES对PVDF的诱导作用,PVDF的相变速率提高,β和γ相晶体的相对含量大大提高。提供了一种晶体相变机制,该方法缩短了制备时间,并能在较短时间制备出稳定的含有大量β和γ相晶体的复合薄膜。
附图说明
图1为本发明中PVDF/DES不同浓度的复合材料样品在140℃下培养12小时后的偏光显微镜图。A聚偏氟乙烯;B聚偏氟乙烯/2%深共晶溶剂;C聚偏氟乙烯/4%深共晶溶剂;D聚偏氟乙烯/8%深共晶溶剂;
图2为本发明PVDF/DES复合材料样品红外光谱图。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
实施例1:
一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜的制备方法,包括以下步骤:
1)称取PVDF=0.5g,置于10ml的容量瓶中,标识为1号;
2)称取DES=0.01g,置于步骤1)中的1号中,用DMF定容至10ml,加入磁力搅拌转子常温磁力搅拌30min,使PVDF与DES完全溶解,一式三份,得到PVDF/DES含量为2wt%的共混溶液;
3)将步骤2)所制得的PVDF/DES溶液通过溶液浇铸法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发,后置于真空干燥机中于50℃真空干燥8小时;
4)将步骤3)制得的复合薄膜置入200℃的恒温热台中,恒温培养10min,保证聚合物薄膜充分熔融以消除热历史;
5)将完全消除热历史后的上述复合薄膜的培养温度迅速降至140℃,恒温培养12h使其完全重结晶;
6)将步骤5)充分结晶后的产物从恒温加热台中取出,冷却至室温,待检测。
实施例2:
一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜的制备方法,包括以下步骤:
1)称取PVDF=0.5g,置于10ml的容量瓶中,标识为2号;
2)称取DES=0.02g,置于步骤1)中的2号中,用DMF定容至10ml,加入磁力搅拌转子常温磁力搅拌30min,使PVDF与氯化胆碱-乙二醇完全溶解,得到PVDF/DES含量为4wt%的共混溶液;
3)将步骤2)所制得的PVDF/DES溶液通过溶液浇铸法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发,后置于真空干燥机中于50℃真空干燥8小时;
4)将步骤3)制得的复合薄膜置入200℃的恒温热台中,恒温培养10min,保证聚合物薄膜充分熔融以消除热历史;
5)将完全消除热历史后的上述复合薄膜的培养温度迅速降至140℃,恒温培养12h使其完全重结晶;
6)将步骤5)充分结晶后的产物从恒温加热台中取出,冷却至室温,待检测。
实施例3:
一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜的制备方法,包括以下步骤:
1)称取PVDF=0.5g,置于10ml的容量瓶中,标识为3号;
2)称取DES=0.04g,置于步骤1)中3号中,用DMF定容至10ml,加入磁力搅拌转子常温磁力搅拌30min,使PVDF与DES,得到得到PVDF/DES含量为8wt%的共混溶液;
3)将步骤2)所制得的PVDF/DES溶液通过溶液浇铸法,制得厚度统一薄膜,常温下待溶剂DMF完全挥发,后置于真空干燥机中于50℃真空干燥8小时;
4)将步骤3)制得的复合薄膜置入200℃的恒温热台中,恒温培养10min,保证聚合物薄膜充分熔融以消除热历史;
5)将完全消除热历史后的上述复合薄膜的培养温度迅速降至140℃,恒温培养12h使其完全重结晶;
6)将步骤5)充分结晶后的产物从恒温加热台中取出,冷却至室温,待检测。
实施例4:
参见图1,为本实验所制备不同配比的PVDF/DES复合材料在140℃下培养12小时的偏光显微镜图。A为PVDF的样品;B为2% PVDF/DES的样品,C为4% PVDF/DES的样品;D为8%PVDF/DES的样品,通过偏光显微镜观察,显示了PVDF和不同浓度PVDF-DES共混物在140℃结晶12h的球晶形态。相比于PVDF,PVDF-DES的球晶生长明显变小,说明加入DES后改变了PVDF的晶体结构并减小了球晶尺寸。然而,PVDF-2%DES中的球晶生长速率显著降低,这表明DES抑制了PVDF的结晶。并且,随着DES浓度的增加,表现出大的高双折射α相球晶和小的低双折射β/γ相球晶的混合物,这进一步表明α相PVDF部分转化为β/γ相。因此,在PVDF-DES共混物中存在更小、更暗和低双折射的β/γ相,而在当前条件下无法观察到。
将实施例1~3制备的样品置于红外光谱仪进行官能团的分析,测试结果参见图2。图2为不同共混比率的PVDF/DES复合材料的红外光谱图,其中在140℃PVDF的红外光谱中可以发现α相聚偏氟乙烯在532、614、765和796cm-1处的典型吸收峰。随着不同浓度DES的加入,α相吸收峰强度降低甚至消失,在840cm-1、1234cm-1和1274cm-1处出现对应于β相和γ相的新吸收峰。这表明随着DES的加入,α相聚偏氟乙烯部分转化为β相和γ相。在140℃时,加入浓度为2%-8%的DES,PVDF/DES复合材料中极性晶体结构含量均可达到80%以上,最高可达近90%,相比于PVDF在140℃形成极性相的含量提高了60%。

Claims (2)

1.深共晶溶剂用于使聚偏氟乙烯由α晶体向β晶体和/或γ晶体转变的应用或者用于缩短聚偏氟乙烯溶液成膜时间的应用或者用于抑制聚偏氟乙烯α晶体球晶生长速率的应用或者用于诱导聚偏氟乙烯结晶极性的应用,其特征在于,包括如下步骤:
1)将氯化胆碱与乙二醇、甘油、尿素或草酸以1:2摩尔比共混,搅拌并加热至100℃,直到形成均匀无色的溶液,得深共晶溶剂溶液;
2)将聚偏氟乙烯溶解在足量的N,N-二甲基甲酰胺中;完全溶解后加入深共晶溶剂制成聚偏氟乙烯/深共晶溶剂混合液,通过溶液浇铸法、旋涂法或热压法制成复合薄膜,常温下待溶剂DMF完全挥发,后置于真空干燥机中于50℃真空干燥8小时;
3)将步骤2)制得的复合薄膜置入200℃的恒温热台中,恒温培养10min,保证聚合物薄膜充分熔融以消除热历史;
4)将完全消除热历史后的步骤3)得到的复合薄膜的培养温度迅速降至140℃,恒温培养12h使其完全重结晶;
5)将步骤4)充分结晶后的产物从恒温加热台中取出,冷却至室温;
所述深共晶溶剂为氯化胆碱/甘油、氯化胆碱/乙二醇、氯化胆碱/尿素或氯化胆碱/草酸深共晶溶剂;
所述深共晶溶剂的用量为聚偏氟乙烯总质量的2%~8%。
2.如权利要求1所述的应用,其特征在于,所述深共晶溶剂中氯化胆碱与甘油、乙二醇、尿素或草酸的摩尔比为1:2。
CN202011534352.7A 2020-12-23 2020-12-23 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法 Active CN112480449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011534352.7A CN112480449B (zh) 2020-12-23 2020-12-23 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011534352.7A CN112480449B (zh) 2020-12-23 2020-12-23 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112480449A CN112480449A (zh) 2021-03-12
CN112480449B true CN112480449B (zh) 2023-07-21

Family

ID=74915447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011534352.7A Active CN112480449B (zh) 2020-12-23 2020-12-23 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112480449B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085604B (zh) * 2021-12-30 2023-03-03 广东美涂士建材股份有限公司 一种耐高温自清洁涂料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615943A (en) * 1983-08-15 1986-10-07 Kureha Kagaku Kogyo Kabushiki Kaisha Vinylidene fluoride copolymer film
CN107090088A (zh) * 2017-05-25 2017-08-25 陕西科技大学 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法
CN108603214A (zh) * 2016-02-05 2018-09-28 豪夫迈·罗氏有限公司 基于硫羟的深共晶溶剂
CN108948604A (zh) * 2018-06-15 2018-12-07 陕西科技大学 一种γ型聚偏氟乙烯/聚己二酸丁二醇酯复合材料及其制备方法
CN109054261A (zh) * 2018-08-06 2018-12-21 苏州大学 基于β相聚偏氟乙烯的压电复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615943A (en) * 1983-08-15 1986-10-07 Kureha Kagaku Kogyo Kabushiki Kaisha Vinylidene fluoride copolymer film
CN108603214A (zh) * 2016-02-05 2018-09-28 豪夫迈·罗氏有限公司 基于硫羟的深共晶溶剂
CN107090088A (zh) * 2017-05-25 2017-08-25 陕西科技大学 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法
CN108948604A (zh) * 2018-06-15 2018-12-07 陕西科技大学 一种γ型聚偏氟乙烯/聚己二酸丁二醇酯复合材料及其制备方法
CN109054261A (zh) * 2018-08-06 2018-12-21 苏州大学 基于β相聚偏氟乙烯的压电复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"基于低共熔溶剂的固体电解质制备及其应用研究";蒋海英;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190815;第9-14页,图3-5 *

Also Published As

Publication number Publication date
CN112480449A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Yuan et al. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly (vinylpyrrolidone) and poly (vinylpyrrolidone-co-vinyl acetate) studied using 13C solid-state NMR
Chatani et al. Structural study on syndiotactic polystyrene: 2. Crystal structure of molecular compound with toluene
Kistenmacher et al. The crystal structure of the 1: 1 radical cation–radical anion salt of 2, 2'-bis-l, 3-dithiole (TTF) and 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ)
CN112480449B (zh) 一种极性相聚偏氟乙烯/深共晶溶剂复合薄膜及其制备方法
Huang et al. Aggregation properties of cationic gemini surfactants with dihydroxyethylamino headgroups in aqueous solution
CN107163069A (zh) 镧系金属有机框架材料的制备及其可视化检测手性对映体的方法
Gu et al. Crystal growth and characterization of CuI single crystals by solvent evaporation technique
CN107090088A (zh) 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法
CN103351399B (zh) 反式六元瓜环的合成、分离方法
Murray et al. On the Intermolecular Force Field of Nitriles
Chimdi et al. A study of phase behavior and conductivity of mixtures of the organic ionic plastic crystal N-methyl-N-methyl-pyrrolidinium dicyanamide with sodium dicyanamide
CN108948604B (zh) 一种γ型聚偏氟乙烯/聚己二酸丁二醇酯复合材料及其制备方法
Vizhi et al. Bulk growth and characterization of novel organic piperazinium (bis) hydrogen succinate single crystals
Robertson et al. A new form of resorcinol. II. Thermodynamic properties in relation to structure
CN113214296B (zh) 由羟基拓展的一维镝链磁性配合物的制备方法与应用
Saliba et al. ZnO/liquid crystalline nanohybrids: From properties in solution to anisotropic growth
Sasaki et al. Distinctive Thermal Behavior and Nanoscale Phase Separation in the Heterogeneous<? format?> Liquid-Crystal B 4 Matrix of Bent-Core Molecules
CN103627094B (zh) 一种石墨烯/全同聚丁烯-1复合材料及其制备方法
Yue et al. Structure evolution upon heating and cooling and its effects on nucleation performance: A review on aromatic amide β‐nucleating agents for isotactic polypropylene
CN106831593A (zh) 一种亚乙基脲的合成方法
CN110669529A (zh) 彩色液晶材料及其应用
Cox et al. The Spontaneous Transformation from Macrocrystalline to Microcrystalline Phases at Low Temperatures. The Heat Capacity of MgSO4· 6H2O1
Li et al. The effect of polymorphism on polymer properties: crystal structure, stability and polymerization of the short-chain bio-based nylon 52 monomer 1, 5-pentanediamine oxalate
CN110684288B (zh) 一种用于提高聚丁烯-1晶型转化速率的专用助剂制备方法及专用助剂的应用
CN114405053A (zh) 一种基于乙醇法使硫酸锰溶液结晶的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230626

Address after: 526000 Room 3, Building A, Community 2, No.1 Industrial Park, Xinguang Road, Guangli Town, Dinghu District, Zhaoqing City, Guangdong Province

Applicant after: Zhaoqing Compound New Materials Co.,Ltd.

Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Applicant before: Shenzhen Wanzhida Technology Co.,Ltd.

Effective date of registration: 20230626

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Applicant after: Shenzhen Wanzhida Technology Co.,Ltd.

Address before: 710021 Shaanxi province Xi'an Weiyang university campus of Shaanxi University of Science and Technology

Applicant before: SHAANXI University OF SCIENCE & TECHNOLOGY

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant