CN107474251A - 一种膜电容器复合介电薄膜的制备方法 - Google Patents

一种膜电容器复合介电薄膜的制备方法 Download PDF

Info

Publication number
CN107474251A
CN107474251A CN201710713553.5A CN201710713553A CN107474251A CN 107474251 A CN107474251 A CN 107474251A CN 201710713553 A CN201710713553 A CN 201710713553A CN 107474251 A CN107474251 A CN 107474251A
Authority
CN
China
Prior art keywords
fluorine
hydroxyl group
phenolic hydroxyl
dielectric
containing phenolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710713553.5A
Other languages
English (en)
Inventor
黄程
薛朋
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710713553.5A priority Critical patent/CN107474251A/zh
Publication of CN107474251A publication Critical patent/CN107474251A/zh
Priority to PCT/CN2018/081103 priority patent/WO2019033761A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种膜电容器复合介电薄膜的制备方法,包括以下五个步骤:(1)采用一步法合成含氟酚羟基聚酰亚胺前驱体;(2)采用插层剥离法制备高介电氧化物纳米片;(3)配制两相聚酰亚胺/氧化物纳米片介电增强剂均匀混合溶液、或多相(三相)聚酰亚胺/氧化物纳米片介电增强剂/氮化硼纳米片热导增强剂均匀混合溶液;(4)干燥制得两相或多相(三相)含氟酚羟基聚酰亚胺/纳米片复合薄膜;(5)氮气氛围下高温处理制得两相或多相(三相)含氟聚苯并噁唑耐高温芳杂环/纳米片复合介电薄膜。本发明制得的膜电容器复合介电薄膜具有耐高温、高击穿强度、介电常数可调、高储能密度优异性能,且本发明工艺简单,绿色环保,可用于大规模制造。

Description

一种膜电容器复合介电薄膜的制备方法
技术领域
本发明涉及一种耐高温高介电膜电容器复合介电薄膜的制备方法,属于功能性高分子基电子电磁材料与电力电子领域。
背景技术
随着微电子科学技术不断革新,各类型电子器件高速化、小型化的趋势不断加强,具有耐高温、高击穿强度的材料日渐重要起来。近年来,聚酰亚胺基高温、高击穿强度的材料逐渐受到人们的重视,并被广泛应用于航空,航天,电子,交通运输和电信领域元器件。
在传统的压电陶瓷材料中,二氧化锆等氧化物是具有耐高温性能的介电陶瓷之一,常用做超高温隔热防护材料和陶瓷基复合增强材料。氮化硼具有多种优良性能,广泛应用于高压高频电及等离子弧的绝缘体、自动焊接耐高温架的涂层、高频感应电炉的材料、半导体的固相掺和料。另外氮化硼良好的导热性、热稳定性和耐磨性好以及化学稳定性强,可用作陶瓷基复合材料的增强剂、电绝缘器。但单纯的压电陶瓷材料与氮化硼材料,加工性差,无法满足电子器件小型化、轻型化的要求。与此同时,聚酰亚胺是耐热性十分良好的功能高分子材料,具有优良的热稳定性、机械性能、低介电性、耐辐射性和可加工性等优异的综合性能,常用作纳米复合材料的基体材料。因此,将具有高介电常数、耐高温的压电陶瓷颗粒,高导热性的氮化硼纳米颗粒与耐高温的类聚酰亚胺复合,可制得高温、高介电、高击穿强度、高储能密度的类聚酰亚胺复合材料。
目前,利用陶瓷颗粒和导电粒子改性聚合物是制备高介电复合材料的主要手段之一。国家知识产权局于2013年9.4公布的一篇专利申请号为201310226961.X,名称:聚酰亚胺高介电复合材料及其制备方法的发明专利,此发明专利公布了一种以聚酰亚胺为基体相,对苯二胺功能化改性的石墨烯和纳米钛酸钡为无机相,制备高介电聚酰亚胺复合材料的方法。由此专利制得的复合材料介电常数提高倍数有限,且原料成本高;由于导电粒子的加入与介电-导电逾渗体系难以调控,本征介电损耗一般较大,无法用于实际的膜电容储能器件。国家知识产权局于2014年9.10公布的一篇专利申请号为201410286099.6,名称为:石墨纸-钛酸钡/聚酰亚胺一体化复合薄膜电容器的发明专利。此发明专利以钛酸钡/聚酰亚胺为介电层,介电层以石墨纸为载体。虽然此种方法介电常数提高显著,但加工手段繁琐,不利于高介电常数聚酰亚胺复合材料的规模化生产与应用。由于传统的聚酰亚胺材料本征介电常数很低,低介电常数聚合物作为膜电容复合材料的基质,限制了膜电容储能密度的极大提高,需要发展具有较高介电常数的类聚酰亚胺基体;另外,传统高介电陶瓷颗粒的介电常数随温度变化较大,需要发展电容变化率温度依赖性较少的高介电陶瓷颗粒,作为膜电容复合材料的介电增强剂。
新型的聚合物基材特别需要具有耐高温、耐损耗、易加工、提高耐用性等特点,技术难度较大。美国杜邦公司研发的聚酰亚胺材料Kapton具有许多优异的特性(如能在-269℃到400°范围内保持稳定,杨氏模量超过2GPa)。尽管用途十分广泛,然而由于转化温度要到约600℃时才会发生变化,它很难通过传统技术加工。而且,目前使用的聚酰亚胺材料在极端环境温度的影响下,也容易出现裂缝和分解,因此在实际服役条件下较易出现一些问题而对整体性能造成损害。超越传统的聚酰亚胺PI材料或新型耐高温聚酰亚胺树脂材料,创新发展新一代柔性电子薄膜高温高储能密度材料聚苯并噁唑BPO基材是技术创新突破口之一。
发明内容
本发明要解决的问题是提供一种加工方法简单,且制得的复合薄膜耐高温、高击穿强度、介电常数可调、高储能密度、介电温度依赖性小的膜电容器复合介电薄膜的制备方法,现提出如下技术方案:
一种膜电容器复合介电薄膜的制备方法,制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,以间甲酚为反应溶剂,异喹啉为催化剂,室温下搅拌4-6小时至充分溶解;将所述溶解物在180-200℃下反应14-16小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在90-110℃下干燥12-15小时;
(2)配制含氟酚羟基聚酰亚胺溶液:将步骤(1)中制备得到的含氟酚羟基聚酰亚胺聚合物溶于N,N-二甲基甲酰胺,配制得5-25wt%的含氟酚羟基聚酰亚胺溶液;
(3)配制含氟酚羟基聚酰亚胺/氧化物纳米片介电增强剂均匀混合溶液:在步骤(2)中配制得到的含氟酚羟基聚酰亚胺溶液中加入制得的氧化物纳米片,氧化物纳米片与聚酰亚胺质量比范围为0:1至0.5:1,配制得均匀混合溶液一;
(4)干燥:将步骤(3)制备的均匀混合溶液采用溶液流延法均匀涂覆于洁净的玻璃板上,在60-90℃下制得含氟聚酰亚胺氧化物纳米片掺杂复合薄膜,然后继续在150-250℃下真空干燥6-12小时除尽溶剂,最后在250-300℃下真空干燥1-2小时硬化;
(5)将(4)中所制得薄膜在管式炉中氮气氛围下通气1小时,升温速度为5℃/min,并升温至300℃,保温1小时,最后降温至室温即制得聚苯并噁唑氧化物纳米片均匀复合薄膜。
优选的,在步骤(3)制得的均匀混合溶液中还继续掺杂5-15wt%氧化物纳米片,1-10wt%氮化硼纳米片,形成均匀混合溶液二。
优选的,步骤(3)中的氧化物二维纳米片介电增强剂包括:介电常数为125的二氧化钛纳米片Ti0.87O2、Ti0.8Co0.2O2、Ti0.6Fe0.4O2,钙钛矿纳米片LaNb2O7、介电常数为220的(Ca,Sr)2Nb3O10、介电常数为160的(Ca,Sr)2Ta3O10、Sr0.5(Nb0.5Ta0.5)O3、CaLaNb2TiO10、La2Ti2NbO10、Eu0.56Ta2O7、La0.9Eu0.05Na2O7、SrTa2O7、La0.7Tb0.3Ta2O7、Gd1.4Eu0.6Ti3O10、SrLaTi2TaO10、Ca2Ta2TiO10、Bi2WO6、SrBi2Ta2O9、Bi4Ti3O12、K2NbO3F、介电常数为150的HPb2Nb3O10、介电常数为300的KCa2Nb3O10、介电常数为390的KCa2NaNb4O13、介电常数为490的KCa2Na2Nb5O16、介电常数为500的KCa2Na3Nb6O19、Bi2Sr2CaCu2O,Nb/Ti/Ta氧化物纳米片Nb6O17、Nb3O8、介电常数为320的KTiNbO5/e-HTiNbO5、TiNbO5、Ti2NbO7、Ti5NbO14、TaO3,ZrO2、Ta2O5、Nb2O5、TiO2单相或混相纳米片,BaTiO3、SrTiO3、Pb(Zr,Ti)O3、(Pb,La)(Zr,Ti)O3、CaCu3Ti4O12纳米片中的任意一种。
优选的,在所述步骤(1)中,称取的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐、4,4-六氟异丙基邻苯二甲酸酐、2,2'-双(3,4-二羧酸)六氟丙烷二酐、间苯二甲酰氯或对苯二甲酰氯的用量摩尔比是1:1。
优选的,在所述步骤(1)中,间甲酚的用量为称取的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐、4,4-六氟异丙基邻苯二甲酸酐或2,2'-双(3,4-二羧酸)六氟丙烷二酐总质量的15-25wt%,所述异喹啉的用量为3-10滴。
优选的,在所述步骤(3)中,纳米片掺杂范围为0:1至0.5:1。
优选的,在所述步骤(2)至(4)中,采用薄膜干法代替湿法,进行纳米片与可溶可熔热塑性聚酰亚胺前驱体聚合物的螺杆热挤出混合、造粒并热挤出薄膜拉伸取向,制得纳米片混合均匀的含氟酚羟基聚酰亚胺薄膜。
本发明的有益效果在于:
(1)本发明一种膜电容器复合介电薄膜的制备方法中首先采用一步法合成含氟酚羟基聚酰亚胺前驱体,然后采用纳米片掺杂法制备含氟酚羟基聚酰亚胺/氧化物纳米片介电增强剂/氮化硼纳米片热导增强剂两相或多相(三相)混合相或溶液相,再用高温处理手段获得聚苯并恶唑基两相或多相(三相)纳米片均匀掺杂复合介电薄膜。本发明整个制备过程简单、薄膜湿法或干法兼可制备、操作简易,易于实现规模化制造。
(2)本发明制得的膜电容器复合介电薄膜具有更好的介电性能,同时具有优良的机械性能,耐高温和高击穿性能。实现从含氟酚羟基聚酰亚胺前驱体到聚苯并噁唑的薄膜基体转化,极大的提高了类聚酰亚胺的介电常数、更高的耐热性、更低的介电损耗。高介电氧化物二维纳米片材料,耐高温高介电性能二维钙钛矿型纳米片的使用,其特异性突破传统介电材料物理性能,从根本上克服了传统高介电氧化物颗粒与纳米颗粒的固有介电电容变化率温度依赖性等问题,实现宽温域高介电膜电容高能密度储能。
(3)用纳米片掺杂的方法,避免了在薄膜湿法掺杂沉降或干法中团聚问题,易于得到均匀的掺杂复合薄膜。由于含氟酚羟基聚酰亚胺前驱体的酚羟基可以与纳米片很好地化学相互作用,有效的实现表面活性剂插层剥离分子的替换,易生成分散均匀、成膜时不沉降、化学结构稳定的有机-无机杂化纳米薄膜材料。
(4)本发明采用常规的薄膜湿法溶液混合或干法过程,制备工艺简单,相应的制备成本降低,适合推广使用。
附图说明
图1是实施例1的含氟酚羟基聚酰亚胺前驱体PI与化学制备反应式;
图2是实施例1的含氟聚苯并噁唑耐高温芳杂环PBO薄膜的分子式与化学制备反应式;
图3是实施例1的含氟酚羟基聚酰亚胺前驱体PI与含氟聚苯并噁唑耐高温芳杂环PBO薄膜的热稳定性比较;
图4是实施例2的高介电氧化物二维纳米片的扫描电子显微镜图;
图5是实施例2的高介电氧化物二维纳米片的X射线衍射图;
图6是实施例1-5的含氟聚苯并噁唑耐高温芳杂环PBO薄膜与高介电氧化物二维纳米片复合薄膜的室温充放电回归曲线;
图7是实施例1-5的含氟聚苯并噁唑耐高温芳杂环PBO薄膜与高介电氧化物二维纳米片复合薄膜的充电能量密度图;
图8是实施例1-5的含氟聚苯并噁唑耐高温芳杂环PBO薄膜与高介电氧化物二维纳米片复合薄膜的放电能量密度图;
图9是实施例1-5的含氟聚苯并噁唑耐高温芳杂环PBO薄膜与高介电氧化物二维纳米片复合薄膜的充放电效率图;
图10是实施例1-5的含氟聚苯并噁唑耐高温芳杂环PBO薄膜的高温充放电回归曲线。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面以氧化物纳米片介电增强含氟酚羟基聚酰亚胺前驱体及其高温热处理制备的含氟聚苯并噁唑两相或多相(三相)纳米介电复合薄膜为例结合具体实施方式,进一步阐述本发明。
实施例1
一种膜电容器复合介电薄膜的制备方法,其含氟聚苯并噁唑耐高温芳杂环薄膜湿法制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取摩尔比为1:1的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,加入容器内原料质量的20%的间甲酚为反应溶剂,滴入6滴异喹啉为催化剂,室温下搅拌5小时至充分溶解;将所述溶解物在190℃下反应15小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述含氟聚酰亚胺聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在100℃下干燥13小时;
(2)配置含氟酚羟基聚酰亚胺溶液:将步骤(1)中制备得到的含氟酚羟基聚酰亚胺溶于N,N-二甲基甲酰胺,配制得5-25%的含氟酚羟基聚酰亚胺溶液;
(3)干燥:将步骤(2)制备的均匀混合溶液采用溶液流延法均匀涂覆于洁净的玻璃板上,在75℃下制得含氟酚羟基聚酰亚胺薄膜,然后继续在200℃下真空干燥9小时除尽溶剂,最后在275℃下真空干燥1-2小时硬化。
(4)将(3)中所制得薄膜于管式炉中300℃,氮气氛围下高温制得含氟聚苯并噁唑耐高温芳杂环薄膜,具体制备方案为,氮气氛围下通气1小时,5℃/min升温至300℃,保温1小时,降温至室温。
实施例2
一种膜电容器复合介电薄膜的制备方法,其二氧化钛纳米片介电增强的含氟聚苯并噁唑耐高温芳杂环两相复合薄膜湿法制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取摩尔比为1:1的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,加入容器内原料质量的15%的间甲酚为反应溶剂,滴入3滴异喹啉为催化剂,室温下搅拌4小时至充分溶解;将所述溶解物在180℃下反应14小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在90℃下干燥12小时;
(2)配置含氟酚羟基聚酰亚胺溶液:将步骤(1)制备得到的含氟酚羟基聚酰亚胺聚合物溶于N,N-二甲基甲酰胺,配制得5-25%的含氟酚羟基聚酰亚胺溶液;
(3)剥层法制备二氧化钛二维与少层纳米片:利用熔盐法,以MoO3混合TiO2,K2CO3,Li2CO3从1200℃缓慢冷却至950℃,冷却速率为4℃/h。以熔盐法得到的K0.8[Ti1.73Li0.27]O4,用HCl(0.5mol/L)反复浸泡洗涤(24小时更换一次溶液,洗涤5次)。氢离子对钾离子进行替换,得到H1.07Ti1.73O4·H2O。用大量去离子水洗涤,干燥。将H1.07Ti1.73O4·H2O用2.4mmol/L的氢氧化四丁基胺溶液进行剥离,将得到的混合溶液(液固比为250cm3/g)长时间轻轻摇晃或搅拌。得到Ti0.87O2悬浮液。冷冻干燥获得二氧化钛Ti0.87O2二维与少层纳米片;
(4)配制含氟酚羟基聚酰亚胺/纳米二氧化钛均匀混合溶液:在步骤(2)中配制得到的含氟酚羟基聚酰亚胺溶液中加入制得的二氧化钛纳米片,二氧化钛纳米片与聚酰亚胺质量比为0.1:1或0.2:1或0.3:1,配制得均匀混合溶液;
(5)干燥:将步骤(4)制备的均匀混合溶液采用溶液流延法均匀涂覆于洁净的玻璃板上,在60℃下制得含氟酚羟基聚酰亚胺二氧化钛纳米片掺杂复合薄膜,然后继续在150℃下真空干燥6小时除尽溶剂,最后在250℃下真空干燥1-2小时硬化。
(6)将(5)中所制得薄膜与管式炉中300℃,氮气氛围下高温制备含氟聚苯并噁唑耐高温芳杂环二氧化钛纳米片均匀复合薄膜。具体制备方案为,氮气氛围下通气1小时,5℃/min升温至300℃,保温1小时,降温至室温。
实施例3
一种膜电容器复合介电薄膜的制备方法,其氧化铌钙纳米片介电增强的含氟聚苯并噁唑耐高温芳杂环两相复合薄膜湿法制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取摩尔比为1:1的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,加入容器内原料质量的15%的间甲酚为反应溶剂,滴入3滴异喹啉为催化剂,室温下搅拌4小时至充分溶解;将所述溶解物在180℃下反应14小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在90℃下干燥12小时;
(2)配置含氟酚羟基聚酰亚胺溶液:将步骤(1)制备得到的含氟酚羟基聚酰亚胺聚合物溶于N,N-二甲基甲酰胺,配制得5-25%的含氟酚羟基聚酰亚胺溶液;
(3)剥层法制备氧化铌钙二维与少层纳米片:K2CO3,CaCO3,Nb2O5(K:Ca:Nb=1.1:2:3)管式炉空气中1200℃反应12小时;产物粉体5g放入200mL浓度5M HNO3溶液搅拌72h,用H+取代K+;之后过滤,过滤产物用去离子水清洗,在空气中干燥,制得HCa2Nb3O10.1.5H2O;产物分散在100ml四丁基氢氧化胺中,长时间搅拌,之后高速离心30min获得氧化铌钙Ca2Nb3O10二维与少层纳米片;
(4)配制含氟酚羟基聚酰亚胺/纳米氧化铌钙均匀混合溶液:在步骤(2)中配制得到的含氟酚羟基聚酰亚胺溶液中加入制得的氧化铌钙纳米片,氧化铌钙纳米片与聚酰亚胺质量比为0.1:1或0.2:1或0.3:1,配制得均匀混合溶液;
(5)干燥:将步骤(4)制备的均匀混合溶液采用溶液流延法均匀涂覆于洁净的玻璃板上,在60℃下制得含氟酚羟基聚酰亚胺氧化铌钙纳米片掺杂复合薄膜,然后继续在150℃下真空干燥6小时除尽溶剂,最后在250℃下真空干燥1-2小时硬化。
(6)将(5)中所制得薄膜与管式炉中300℃,氮气氛围下高温制备含氟聚苯并噁唑耐高温芳杂环氧化铌钙纳米片均匀复合薄膜。具体制备方案为,氮气氛围下通气1小时,5℃/min升温至300℃,保温1小时,降温至室温。
实施例4
一种膜电容器复合介电薄膜的制备方法,其氮化硼纳米片热导增强的含氟聚苯并噁唑耐高温芳杂环两相复合薄膜湿法制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取摩尔比为1:1的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,加入容器内原料质量的15%的间甲酚为反应溶剂,滴入3滴异喹啉为催化剂,室温下搅拌4小时至充分溶解;将所述溶解物在180℃下反应14小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在90℃下干燥12小时;
(2)配置含氟酚羟基聚酰亚胺溶液:将步骤(1)制备得到的含氟酚羟基聚酰亚胺聚合物溶于N,N-二甲基甲酰胺,配制得5-25%的含氟酚羟基聚酰亚胺溶液;
(3)配制含氟酚羟基聚酰亚胺/纳米氮化硼均匀混合溶液:在步骤(2)中配制得到的含氟酚羟基聚酰亚胺溶液中加入制得的氮化硼纳米片,氮化硼纳米片与聚酰亚胺质量比为0.1:1或0.2:1或0.3:1,配制得均匀混合溶液;
(4)干燥:将步骤(3)制备的均匀混合溶液采用溶液流延法均匀涂覆于洁净的玻璃板上,在60℃下制得含氟酚羟基聚酰亚胺氮化硼纳米片掺杂复合薄膜,然后继续在150℃下真空干燥6小时除尽溶剂,最后在250℃下真空干燥1-2小时硬化。
(5)将(4)中所制得薄膜与管式炉中300℃,氮气氛围下高温制备含氟聚苯并噁唑耐高温芳杂环氮化硼纳米片均匀复合薄膜。具体制备方案为,氮气氛围下通气1小时,5℃/min升温至300℃,保温1小时,降温至室温。
实施例5
一种膜电容器复合介电薄膜的制备方法,其二氧化钛纳米片介电增强的含氟聚苯并噁唑耐高温芳杂环两相复合薄膜干法制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取摩尔比为1:1的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,加入容器内原料质量的15%的间甲酚为反应溶剂,滴入3滴异喹啉为催化剂,室温下搅拌4小时至充分溶解;将所述溶解物在180℃下反应14小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在90℃下干燥12小时;
(2)纳米片混合均匀的含氟酚羟基聚酰亚胺薄膜制备::将步骤(1)制备得到的含氟酚羟基聚酰亚胺聚合物与剥层法制备二氧化钛二维与少层纳米片混合,用薄膜干法代替湿法,进行纳米片与可溶可熔热塑性聚酰亚胺前驱体聚合物的螺杆热挤出混合、造粒并热挤出薄膜拉伸取向,制得纳米片混合均匀的含氟酚羟基聚酰亚胺薄膜。
(3)将(2)中所制得薄膜与管式炉中300℃,氮气氛围下高温制备含氟聚苯并噁唑耐高温芳·杂环二氧化钛纳米片均匀复合薄膜。具体制备方案为,氮气氛围下通气1小时,5℃/min升温至300℃,保温1小时,降温至室温。
附图3可见,图中可以看出PBO热分解温度明显高于PI热分解温度。因此作为我们制备耐高温的复合介点薄膜的基质。符合我们制备耐高温复合介点薄膜的目的。附图4中可以看出我们制备的纳米氧化物具有明显的层状结构证明我们制备出了所需要的目标产物,附图5根据X射线衍射图进一步证明我们制备出了所需要的目标产物。
图6中可以看出掺杂10%比例时,综合对比,复合介点薄膜具有最优性能,击穿电压700MV/m,损耗较小储能密度较高。从图7、图8、图9可见,通过对不同比例掺杂性能对比,进一步可以看出综合性能对比下,10%时效率较高,损耗较小,放点能量密度最高。图10中可以看出所选基质介点测试可耐高温200℃以上,复合我们制备高温介点薄膜的目标要求。
综上,本发明通过制备氧化物纳米片介电增强含氟酚羟基聚酰亚胺前驱体PI及其高温热处理制备的含氟聚苯并噁唑PBO两相或多相(三相)纳米介电复合薄膜,其中二维纳米片的尺寸厚度在数纳米左右,二维纳米片复合比例为10%时,击穿电压为700MV/m,充电能量密度提高到22J/cc;损耗在0.001-0.002,效率可达98%,其工作温度可高达250℃。
如实施例一到实施例五所示,本发明所述的膜电容器复合介电薄膜的制备方法,工艺简单,绿色环保,可应用于大规模制造。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求范围内。

Claims (7)

1.一种膜电容器复合介电薄膜的制备方法,其特征在于,制备步骤如下:
(1)合成含氟酚羟基聚酰亚胺前驱体:称取2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐于容器内混合,以间甲酚为反应溶剂,异喹啉为催化剂,室温下搅拌4-6小时至充分溶解;将所述溶解物在180-200℃下反应14-16小时制得一种含氟酚羟基聚酰亚胺聚合物粘稠溶液,以甲醇作为沉淀剂沉淀所述聚合物粘稠溶液并用热甲醇洗涤,将洗涤后的含氟酚羟基聚酰亚胺聚合物在90-110℃下干燥12-15小时;
(2)配制含氟酚羟基聚酰亚胺溶液:将步骤(1)中制备得到的含氟酚羟基聚酰亚胺聚合物溶于N,N-二甲基甲酰胺,配制得5-25wt%的含氟酚羟基聚酰亚胺溶液;
(3)配制含氟酚羟基聚酰亚胺/氧化物纳米片介电增强剂均匀混合溶液:在步骤(2)中配制得到的含氟酚羟基聚酰亚胺溶液中加入制得的氧化物纳米片,氧化物纳米片与聚酰亚胺质量比范围为0:1至0.5:1,配制得均匀混合溶液一;
(4)干燥:将步骤(3)制备的均匀混合溶液采用溶液流延法均匀涂覆于洁净的玻璃板上,在60-90℃下制得含氟聚酰亚胺氧化物纳米片掺杂复合薄膜,然后继续在150-250℃下真空干燥6-12小时除尽溶剂,最后在250-300℃下真空干燥1-2小时硬化;
(5)将(4)中所制得薄膜在管式炉中氮气氛围下通气1小时,升温速度为5℃/min,并升温至300℃,保温1小时,最后降温至室温即制得聚苯并噁唑氧化物纳米片均匀复合薄膜。
2.根据权利要求1所述的一种膜电容器复合介电薄膜的制备方法,其特征在于:在步骤(3)制得的均匀混合溶液中还继续掺杂5-15wt%氧化物纳米片,1-10wt%氮化硼纳米片,形成均匀混合溶液二。
3.根据权利要求2所述的一种膜电容器复合介电薄膜的制备方法,其特征在于:步骤(3)中的氧化物二维纳米片介电增强剂包括:介电常数为125的二氧化钛纳米片Ti0.87O2、Ti0.8Co0.2O2、Ti0.6Fe0.4O2,钙钛矿纳米片LaNb2O7、介电常数为220的(Ca,Sr)2Nb3O10、介电常数为160的(Ca,Sr)2Ta3O10、Sr0.5(Nb0.5Ta0.5)O3、CaLaNb2TiO10、La2Ti2NbO10、Eu0.56Ta2O7、La0.9Eu0.05Na2O7、SrTa2O7、La0.7Tb0.3Ta2O7、Gd1.4Eu0.6Ti3O10、SrLaTi2TaO10、Ca2Ta2TiO10、Bi2WO6、SrBi2Ta2O9、Bi4Ti3O12、K2NbO3F、介电常数为150的HPb2Nb3O10、介电常数为300的KCa2Nb3O10、介电常数为390的KCa2NaNb4O13、介电常数为490的KCa2Na2Nb5O16、介电常数为500的KCa2Na3Nb6O19、Bi2Sr2CaCu2O,Nb/Ti/Ta氧化物纳米片Nb6O17、Nb3O8、介电常数为320的KTiNbO5/e-HTiNbO5、TiNbO5、Ti2NbO7、Ti5NbO14、TaO3,ZrO2、Ta2O5、Nb2O5、TiO2单相或混相纳米片,BaTiO3、SrTiO3、Pb(Zr,Ti)O3、(Pb,La)(Zr,Ti)O3、CaCu3Ti4O12纳米片中的任意一种。
4.根据权利要求1或2所述的一种膜电容器复合介电薄膜的制备方法,其特征在于:在所述步骤(1)中,称取的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐、4,4-六氟异丙基邻苯二甲酸酐、2,2'-双(3,4-二羧酸)六氟丙烷二酐、间苯二甲酰氯或对苯二甲酰氯的用量摩尔比是1:1。
5.根据权利要求1或2所述的一种膜电容器复合介电薄膜的制备方法,其特征在于:在所述步骤(1)中,间甲酚的用量为称取的2,2-双(3-氨基-4羟基苯基)-六氟丙烷与4,4’-联苯醚二酐、4,4-六氟异丙基邻苯二甲酸酐或2,2'-双(3,4-二羧酸)六氟丙烷二酐总质量的15-25wt%,所述异喹啉的用量为3-10滴。
6.根据权利要求1或2所述的一种膜电容器复合介电薄膜的制备方法,其特征在于:在所述步骤(3)中,纳米片掺杂范围为0:1至0.5:1。
7.根据权利要求1或2所述的一种膜电容器复合介电薄膜的制备方法,其特征在于:在所述步骤(2)至(4)中,采用薄膜干法代替湿法,进行纳米片与可溶可熔热塑性聚酰亚胺前驱体聚合物的螺杆热挤出混合、造粒并热挤出薄膜拉伸取向,制得纳米片混合均匀的含氟酚羟基聚酰亚胺薄膜。
CN201710713553.5A 2017-08-18 2017-08-18 一种膜电容器复合介电薄膜的制备方法 Pending CN107474251A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710713553.5A CN107474251A (zh) 2017-08-18 2017-08-18 一种膜电容器复合介电薄膜的制备方法
PCT/CN2018/081103 WO2019033761A1 (zh) 2017-08-18 2018-03-29 一种膜电容器复合介电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710713553.5A CN107474251A (zh) 2017-08-18 2017-08-18 一种膜电容器复合介电薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN107474251A true CN107474251A (zh) 2017-12-15

Family

ID=60601791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710713553.5A Pending CN107474251A (zh) 2017-08-18 2017-08-18 一种膜电容器复合介电薄膜的制备方法

Country Status (2)

Country Link
CN (1) CN107474251A (zh)
WO (1) WO2019033761A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033761A1 (zh) * 2017-08-18 2019-02-21 南京工业大学 一种膜电容器复合介电薄膜的制备方法
CN112216515A (zh) * 2020-10-09 2021-01-12 南通百正电子新材料股份有限公司 一种超薄电容膜及其制备方法
CN114957754A (zh) * 2022-07-12 2022-08-30 国网智能电网研究院有限公司 电容器薄膜的聚四甲基一戊烯-氮化硼复合薄膜制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254710A (zh) * 1998-09-29 2000-05-31 住友电木株式会社 聚苯并噁唑树脂及其前体
CN1927920A (zh) * 2006-09-05 2007-03-14 东华大学 一种聚苯并噁唑薄膜的制备方法
CN102321244A (zh) * 2011-07-22 2012-01-18 中山大学 含刚性非平面共轭结构的可溶性功能聚酰亚胺及其制备方法和应用
CN104927330A (zh) * 2015-06-15 2015-09-23 四川大学 一种高导热绝缘高分子复合材料及其制备方法和用途
CN106397769A (zh) * 2016-08-29 2017-02-15 广东丹邦科技有限公司 一种聚酰亚胺二氧化钛纳米片复合薄膜及其制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166292A (en) * 1991-10-29 1992-11-24 E. I. Du Pont De Nemours And Company Process for preparing a polyimide film with a preselected value for CTE
US5919892A (en) * 1994-10-31 1999-07-06 The Dow Chemical Company Polyamic acids and methods to convert polyamic acids into polyimidebenzoxazole films
US20020168785A1 (en) * 2001-05-10 2002-11-14 Symetrix Corporation Ferroelectric composite material, method of making same, and memory utilizing same
JP3953057B2 (ja) * 2004-08-04 2007-08-01 東洋紡績株式会社 ポリイミドベンゾオキサゾールフィルムおよびその製造方法
CN100999589A (zh) * 2006-12-22 2007-07-18 东南大学 合成高介电常数的聚酰亚胺/纳米钛酸钡复合薄膜的方法
CN103275488B (zh) * 2013-06-08 2015-05-20 华东理工大学 聚酰亚胺高介电复合材料及其制备方法
CN104046023B (zh) * 2014-06-13 2016-06-22 哈尔滨工业大学 一种高介电聚酰亚胺/钛酸钡复合薄膜的制备方法
CN104036957B (zh) * 2014-06-24 2017-06-06 中国海洋大学 石墨纸‑钛酸钡/聚酰亚胺一体化复合薄膜电容器
CN106084219B (zh) * 2016-06-02 2018-06-29 黑龙江科技大学 一种高性能聚酰亚胺/超薄氮化硼复合薄膜的制备方法
CN107474251A (zh) * 2017-08-18 2017-12-15 南京工业大学 一种膜电容器复合介电薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254710A (zh) * 1998-09-29 2000-05-31 住友电木株式会社 聚苯并噁唑树脂及其前体
CN1927920A (zh) * 2006-09-05 2007-03-14 东华大学 一种聚苯并噁唑薄膜的制备方法
CN102321244A (zh) * 2011-07-22 2012-01-18 中山大学 含刚性非平面共轭结构的可溶性功能聚酰亚胺及其制备方法和应用
CN104927330A (zh) * 2015-06-15 2015-09-23 四川大学 一种高导热绝缘高分子复合材料及其制备方法和用途
CN106397769A (zh) * 2016-08-29 2017-02-15 广东丹邦科技有限公司 一种聚酰亚胺二氧化钛纳米片复合薄膜及其制作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033761A1 (zh) * 2017-08-18 2019-02-21 南京工业大学 一种膜电容器复合介电薄膜的制备方法
CN112216515A (zh) * 2020-10-09 2021-01-12 南通百正电子新材料股份有限公司 一种超薄电容膜及其制备方法
CN112216515B (zh) * 2020-10-09 2022-02-08 南通百正电子新材料股份有限公司 一种超薄电容膜及其制备方法
CN114957754A (zh) * 2022-07-12 2022-08-30 国网智能电网研究院有限公司 电容器薄膜的聚四甲基一戊烯-氮化硼复合薄膜制备方法
CN114957754B (zh) * 2022-07-12 2023-11-28 国网智能电网研究院有限公司 电容器薄膜的聚四甲基一戊烯-氮化硼复合薄膜制备方法

Also Published As

Publication number Publication date
WO2019033761A1 (zh) 2019-02-21

Similar Documents

Publication Publication Date Title
Wang et al. Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites
Chi et al. Significantly enhanced energy storage density for poly (vinylidene fluoride) composites by induced PDA-coated 0.5 Ba (Zr 0.2 Ti 0.8) O 3–0.5 (Ba 0.7 Ca 0.3) TiO 3 nanofibers
Chi et al. High energy storage density for poly (vinylidene fluoride) composites by introduced core–shell CaCu3Ti4O12@ Al2O3 nanofibers
Wang et al. Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@ SiO2 nanofibers
Li et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors
Miao et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage
Hu et al. Significantly improved recoverable energy density and ultrafast discharge rate of Na0. 5Bi0. 5TiO3-based ceramics
Kumar et al. High dielectric permittivity and improved mechanical and thermal properties of poly (vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties
KR101140196B1 (ko) 폴리이미드 나노복합체 및 그 제조방법
CN105542447B (zh) 一种低黏度高热导率的导热绝缘塑料及其制备方法
CN110713717A (zh) 一种耐高温多巴胺包覆钛酸钡/聚酰亚胺(bt@pda/pi)介电纳米复合薄膜
CN107474251A (zh) 一种膜电容器复合介电薄膜的制备方法
Yue et al. Significantly enhanced dielectric constant and energy storage properties in polyimide/reduced BaTiO 3 composite films with excellent thermal stability
Wang et al. Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance
Thanki et al. Study on effect of cubic-and tetragonal phased BaTiO3 on the electrical and thermal properties of polymeric nanocomposites
JP2006265003A (ja) 誘電体セラミック形成用組成物および誘電体セラミック材料
CN107141763B (zh) 一种无机有机复合柔性高介电薄膜及其制备方法
CN107033502A (zh) 一种简单的高储能密度的钕掺杂钛酸钡/有机基体复合膜及其制备方法
Liu et al. Topologically distributed one-dimensional TiO 2 nanofillers maximize the dielectric energy density in a P (VDF-HFP) nanocomposite
CN105542459A (zh) 一种高介电系数聚酰亚胺薄膜
Li et al. Enhanced discharged energy density in poly (vinylidene fluoride) composites with a small loading of (K0. 5Na0. 5) NbO3 particles
WO2020195298A1 (ja) 粒状窒化ホウ素の製造方法および粒状窒化ホウ素
Hou et al. Improved energy storage performance of nanocomposites with Bi4. 2K0. 8Fe2O9+ δ nanobelts
CN101993536B (zh) 高介电常数聚酰亚胺/石墨杂化材料及其制备方法
KR101484304B1 (ko) 산화알루미늄이 코팅된 그라펜, 이의 제조방법과 이를 포함하는 나노복합재료

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171215

RJ01 Rejection of invention patent application after publication