WO2020027194A1 - カーボンナノチューブ電極又はカーボンナノホーン電極及び電極製造方法 - Google Patents
カーボンナノチューブ電極又はカーボンナノホーン電極及び電極製造方法 Download PDFInfo
- Publication number
- WO2020027194A1 WO2020027194A1 PCT/JP2019/030004 JP2019030004W WO2020027194A1 WO 2020027194 A1 WO2020027194 A1 WO 2020027194A1 JP 2019030004 W JP2019030004 W JP 2019030004W WO 2020027194 A1 WO2020027194 A1 WO 2020027194A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine powder
- transition metal
- electrode
- alloy
- metal fine
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 506
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 252
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 252
- 229910052799 carbon Inorganic materials 0.000 title claims description 250
- 239000002116 nanohorn Substances 0.000 title claims description 217
- 238000004519 manufacturing process Methods 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 11
- 239000000843 powder Substances 0.000 claims abstract description 956
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 675
- 150000003624 transition metals Chemical class 0.000 claims abstract description 675
- 239000000956 alloy Substances 0.000 claims abstract description 505
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 505
- 239000000203 mixture Substances 0.000 claims abstract description 234
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 106
- 239000002245 particle Substances 0.000 claims abstract description 47
- 238000002156 mixing Methods 0.000 claims abstract description 16
- 239000010419 fine particle Substances 0.000 claims description 233
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 223
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 196
- 239000010949 copper Substances 0.000 claims description 186
- 229910052802 copper Inorganic materials 0.000 claims description 51
- 229910052742 iron Inorganic materials 0.000 claims description 46
- 229910052759 nickel Inorganic materials 0.000 claims description 43
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 40
- 238000001704 evaporation Methods 0.000 claims description 33
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 32
- 238000000465 moulding Methods 0.000 claims description 20
- 238000010304 firing Methods 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 3
- 239000002071 nanotube Substances 0.000 claims 2
- 150000001720 carbohydrates Chemical class 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 46
- 239000000446 fuel Substances 0.000 description 106
- 210000004027 cell Anatomy 0.000 description 98
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 73
- 239000011701 zinc Substances 0.000 description 62
- 239000010936 titanium Substances 0.000 description 47
- 239000011572 manganese Substances 0.000 description 46
- 238000006555 catalytic reaction Methods 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 32
- 239000002184 metal Substances 0.000 description 32
- 239000011651 chromium Substances 0.000 description 27
- 230000005611 electricity Effects 0.000 description 27
- 239000012528 membrane Substances 0.000 description 27
- 239000010955 niobium Substances 0.000 description 27
- 229910052709 silver Inorganic materials 0.000 description 26
- 239000005518 polymer electrolyte Substances 0.000 description 25
- 229910052725 zinc Inorganic materials 0.000 description 24
- 238000005868 electrolysis reaction Methods 0.000 description 22
- 239000004332 silver Substances 0.000 description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 20
- 238000002844 melting Methods 0.000 description 20
- 230000008018 melting Effects 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 16
- 229910052748 manganese Inorganic materials 0.000 description 16
- 229910052750 molybdenum Inorganic materials 0.000 description 16
- 239000011733 molybdenum Substances 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 229910052719 titanium Inorganic materials 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 12
- 229910052804 chromium Inorganic materials 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 12
- 239000010941 cobalt Substances 0.000 description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 12
- 229910052758 niobium Inorganic materials 0.000 description 12
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 10
- 238000003825 pressing Methods 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 241000556720 Manga Species 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical group [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/18—Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a carbon nanotube electrode or a carbon nanohorn electrode used as an anode or a cathode, and to an electrode manufacturing method for manufacturing a carbon nanotube electrode or a carbon nanohorn electrode used as an anode or a cathode.
- a method of manufacturing a fuel cell using platinum-supported carbon nanotubes as a catalyst electrode used in a fuel cell membrane electrode assembly is disclosed (see Patent Document 1).
- a catalytic metal salt solution is dropped on the carbon nanotubes, dried and calcined and reduced, so that the catalytic metal ( A carbon nanotube electrode carrying a platinum catalyst is produced.
- the carbon nanotube electrode disclosed in Patent Document 1 has platinum supported on carbon nanotubes, the platinum group element is a noble metal, which is a scarce resource whose production amount is limited, so that its use is suppressed. Is required. Further, development of inexpensive carbon nanotube electrodes having a platinum-less catalyst using a metal other than expensive platinum is required for the spread of polymer electrolyte fuel cells in the future.
- An object of the present invention is to provide a carbon nanotube electrode or a carbon nanohorn that can be manufactured at low cost without using a platinum group element and that can exhibit substantially the same catalytic activity (catalysis) as an electrode containing a platinum group element.
- An object of the present invention is to provide an electrode and a method for manufacturing the electrode.
- Another object of the present invention is to generate sufficient electricity in a fuel cell, supply sufficient electric energy to a load connected to the fuel cell, and efficiently perform electrolysis in a hydrogen gas generator.
- An object of the present invention is to provide a carbon nanotube electrode or a carbon nanohorn electrode which can be performed well and can generate a large amount of hydrogen gas, and a method of manufacturing the electrode.
- a first premise of the present invention for solving the above problem is a carbon nanotube electrode or a carbon nanohorn electrode used as an anode or a cathode.
- the carbon nanotube electrode or the carbon nanohorn electrode is formed by uniformly mixing and dispersing transition metal fine powders of at least three types of transition metals selected from various transition metals. Alloy fine particles of an alloy molded product obtained by compressing and firing a metal fine powder mixture, and an aggregate of carbon nanotubes or an aggregate of carbon nanohorns. At least three types of transition metals are selected from various transition metals so that the work function of the platinum group element is similar to the work function of the platinum group element. On the surface of the carbon nanohorn. .
- an alloy fine particle laminated porous structure is formed on the surface of the carbon nanotube or the surface of the carbon nanohorn by the alloy fine particles overlapping outward from the surface of the carbon nanotube or the carbon nanohorn.
- the particle size of the transition metal fine powder is in the range of 10 ⁇ m to 200 ⁇ m, and the thickness dimension of the carbon nanotube electrode or the carbon nanohorn electrode is in the range of 0.03 mm to 0.3 mm.
- the transition metal fine powder mixture is mainly composed of Ni (nickel) fine powder, and in the transition metal fine powder mixture, the work function of Ni and at least two other types other than Ni are included.
- the work function of the transition metal and the work function of the transition metal similar to the work function of the platinum group element at least two types of transition metal fine particles of the transition metal other than the fine Ni powder are used. Selected.
- the weight ratio of the fine powder of Ni (nickel) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and one type excluding the fine powder of Ni is used.
- the weight ratio of the transition metal fine powder of the transition metal to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and the transition metal fine powder of at least one other transition metal excluding the Ni fine powder is used.
- the weight ratio of the transition metal fine powder mixture to the total weight is in the range of 3% to 20%.
- the transition metal fine powder mixture is mainly composed of Fe (iron) fine powder, and in the transition metal fine powder mixture, the work function of Fe and at least two other types except for Fe are included.
- the work function of the transition metal work function close to the work function of the platinum group element, at least two types of transition metal fine particles of the transition metal other than the fine powder of Fe are selected from various transition metals. Selected.
- the weight ratio of the fine powder of Fe (iron) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and one type of powder excluding the fine powder of Fe is used.
- the weight ratio of the transition metal fine powder of the transition metal to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and the transition metal fine powder of at least one other transition metal excluding the fine powder of Fe is used.
- the weight ratio of the transition metal fine powder mixture to the total weight is in the range of 3% to 20%.
- the transition metal fine powder mixture is mainly composed of Cu (copper) fine powder, and the transition metal fine powder mixture has a work function of Cu and at least two types other than the Cu. Transition metal fine powder of at least two other transition metals other than the fine powder of Cu from various transition metals so that the work function of the transition metal and the work function of the transition metal approximate the work function of the platinum group element. Is selected.
- the weight ratio of the fine powder of Cu (copper) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and one type of powder excluding the fine powder of Cu is used.
- the weight ratio of the transition metal fine powder of the transition metal to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and the transition metal fine powder of at least one other transition metal excluding the Cu fine powder is used.
- the weight ratio of the transition metal fine powder mixture to the total weight is in the range of 3% to 20%.
- transition metal fine powder of at least two kinds of transition metals among the selected transition metals is melted during firing of the transition metal fine powder mixture, and the molten transition metal is melted.
- the transition metal fine powder of these transition metals is joined using the transition metal fine powder as a binder.
- the second premise of the present invention for solving the above problem is an electrode manufacturing method for manufacturing a carbon nanotube electrode or a carbon nanohorn electrode used as an anode or a cathode.
- the feature of the electrode manufacturing method of the present invention on the second premise is that the electrode manufacturing method is such that the work function of at least three types of transition metals selected from various transition metals is close to the work function of a platinum group element.
- the alloy fine particle supporting step evaporates the alloy molded product simultaneously with the generation of the carbon nanotube or carbon nanohorn, and supports the alloy fine particles of the alloy molded product on the surface of the carbon nanotube or the surface of the carbon nanohorn. Let it.
- At least three types of transition metals selected in the transition metal selection step in the transition metal fine powder mixture forming step are finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m.
- the transition metal fine powder compact is prepared by pressing the transition metal fine powder mixture produced by the transition metal fine powder mixture production step at a pressure of 500 to 800 MPa. Make compressed powder.
- the alloy molding preparation step is performed at a temperature at which transition metal fine powder of at least two types of transition metals selected from the transition metals selected in the transition metal selection step is melted.
- the compressed fine powder is fired, and the transition metal fine powder of the transition metal is joined using the transition metal fine powder of the molten transition metal as a binder.
- the carbon nanotube electrode or the carbon nanohorn electrode compresses a transition metal fine powder mixture obtained by uniformly mixing and dispersing transition metal fine powders of at least three types of transition metals selected from various transition metals. Alloy fine particles of an alloy molded product fired and fired, and an aggregate of carbon nanotubes or an aggregate of carbon nanohorns, wherein the work function of at least three selected transition metals is a work function of a platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode is made of a transition metal fine powder mixture (alloy molded product) formed from transition metal fine powders of at least three types of transition metals selected from various transition metals, and utilizes an expensive platinum group element.
- the electrodes can be manufactured at low cost. Since carbon nanotube electrodes or carbon nanohorn electrodes exhibit almost the same catalytic activity (catalysis) as electrodes containing platinum group elements, sufficient electricity can be generated in fuel cells by using the electrodes in fuel cells. In addition to supplying sufficient electric energy to the load connected to the fuel cell, the electrode can be used for a hydrogen gas generator, so that electrolysis can be performed efficiently. A large amount of hydrogen gas can be generated.
- the carbon nanotube electrode or the carbon nanohorn electrode has substantially the same work function as the electrode containing the platinum group element, and can exhibit substantially the same catalytic activity (catalysis) as the electrode containing the platinum group element, It can be suitably used as an electrode of the charge cell and hydrogen gas generator. Since the carbon nanotube electrode or the carbon nanohorn electrode has almost the same catalytic activity (catalysis) as the electrode formed with the alloy fine particle laminated porous structure and the electrode containing the platinum group element, by using the electrode in a fuel cell, Sufficient electricity can be generated in the fuel cell, and sufficient electric energy can be supplied to the load connected to the fuel cell. And a large amount of hydrogen gas can be generated in a short time.
- the carbon nanotube electrode or carbon nanohorn electrode in which the transition metal fine powder has a particle size in the range of 10 ⁇ m to 200 ⁇ m and the thickness of the carbon nanotube electrode or carbon nanohorn electrode is in the range of 0.03 mm to 0.3 mm is a carbon nanotube electrode
- the electric resistance of the electrode can be reduced, and the current can flow smoothly through the electrode.
- the carbon nanotube electrode or the carbon nanohorn electrode allows a current to flow smoothly, sufficient electricity can be generated in the fuel cell by using the electrode in the fuel cell, and sufficient electricity can be supplied to the load connected to the fuel cell.
- electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.
- the transition metal fine powder mixture is mainly composed of Ni (nickel) fine powder, and the composite work function of the work function of Ni and the work function of at least two types of transition metals other than Ni is the work function of the platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode in which transition metal fine powders of at least two other transition metals other than the fine powder of Ni are selected from various transition metals, the work function of Ni and At least two other types of transition metals excluding fine Ni powder from various transition metals so that the composite work function with the work function of at least two types of transition metals other than Ni approximates the work function of the platinum group element.
- the carbon nanotube electrode or the carbon nano-hole having the alloy fine particles or the alloy fine particles laminated porous structure is used.
- the electrode has substantially the same work function as an electrode containing a platinum group element, and can exhibit almost the same catalytic activity (catalysis) as an electrode containing a platinum group element. It can be suitably used.
- the carbon nanotube electrode or the carbon nanohorn electrode is made of a transition metal of a transition metal fine powder mixture (alloy molded product) of at least two types of transition metals other than Ni fine powder and Ni fine powder selected from various transition metals. It is made of fine powder and does not use expensive platinum group elements, and is platinum-free, so that electrodes can be manufactured at low cost.
- the weight ratio of the transition metal fine powder of at least one other transition metal excluding the Ni fine powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50% with respect to the total weight of the body mixture. Is in the range of 3% to 20%, the composite work function of the work function of Ni and the work function of at least two types of transition metals other than Ni is a work function of a platinum group element.
- the transition metal fine powder of at least two other transition metals excluding the Ni fine powder is selected from various transition metals, and the weight ratio of the Ni fine powder
- the weight ratio of the transition metal fine powder of at least one type of transition metal excluding the Ni fine powder and the weight ratio of the transition metal fine powder of at least one other transition metal excluding the Ni fine powder are within the above ranges.
- a carbon nanotube electrode or a carbon nanohorn electrode having a porous structure of alloy fine particles or alloy fine particles has substantially the same work function as an electrode containing a platinum group element, and has substantially the same catalytic activity (catalysis) as an electrode containing a platinum group element.
- the electrodes in the fuel cell By using the electrodes in the fuel cell, sufficient electricity can be generated in the fuel cell, and sufficient electric energy can be supplied to the load connected to the fuel cell.
- electrolysis By using the electrode in a hydrogen gas generator, electrolysis can be performed efficiently and a large amount of hydrogen gas can be generated in a short time. .
- the transition metal fine powder mixture is mainly composed of a fine powder of Fe (iron), and the work function of Fe and the work function of at least two types of transition metals other than Fe is a work function of a platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode in which transition metal fine powders of at least two other types of transition metals other than the fine powder of Fe are selected from various transition metals, the work function of Fe and At least two other types of transition metals excluding fine powder of Fe from various transition metals so that the work function of the transition metal other than Fe and the work function of at least two types of transition metals other than Fe approximates the work function of the platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode having an alloy fine particle or an alloy fine particle laminated porous structure It has substantially the same work function as an electrode containing a platinum group element, and can exhibit almost the same catalytic activity (catalysis) as an electrode containing a platinum group element, and is suitable as an electrode for a fuel cell or a hydrogen gas generator.
- the carbon nanotube electrode or the carbon nanohorn electrode is made of a transition metal of a transition metal fine powder mixture (alloy molding) other than a fine powder of Fe and a fine powder of Fe selected from various transition metals except at least two types of transition metals.
- Electrodes It is made of fine powder and does not use expensive platinum group elements, and is platinum-free, so that electrodes can be manufactured at low cost. Since carbon nanotube electrodes or carbon nanohorn electrodes exhibit almost the same catalytic activity (catalysis) as electrodes containing platinum group elements, sufficient electricity can be generated in fuel cells by using the electrodes in fuel cells. Can supply sufficient electric energy to the load connected to the fuel cell, and can use the electrodes in a hydrogen gas generator to perform the electrolysis efficiently, and to produce a large amount of electricity in a short time. Hydrogen gas can be generated.
- a transition metal fine powder of a transition metal fine powder of one type of transition metal excluding a fine powder of Fe wherein the weight ratio of the fine powder of Fe (iron) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%; Weight ratio of the transition metal fine powder of at least one other transition metal excluding the fine powder of Fe to the total weight of the transition metal fine powder mixture, wherein the weight ratio of the transition metal fine powder to the total weight of the mixture is in the range of 20% to 50%.
- the work function of Fe and the work function of at least two other transition metals other than Fe have a work function of a platinum group element.
- the transition metal fine powder of at least two other transition metals excluding the fine powder of Fe is selected from various transition metals, and the weight ratio of the fine powder of Fe and Fe
- the weight ratio of the transition metal fine powder of at least one type of transition metal excluding the fine powder and the weight ratio of the transition metal fine powder of at least one other transition metal excluding the fine powder of Fe is set to the above ranges.
- a carbon nanotube electrode or a carbon nanohorn electrode having a porous structure of fine particles or alloy fine particles has substantially the same work function as an electrode containing a platinum group element and exhibits almost the same catalytic activity (catalysis) as an electrode containing a platinum group element.
- the electrode By using the electrode in a fuel cell, it is possible to generate sufficient electricity in the fuel cell, supply sufficient electric energy to a load connected to the fuel cell, and When used in a hydrogen gas generator, electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.
- the transition metal fine powder mixture contains Cu (copper) fine powder as a main component, and the composite work function of the work function of Cu and the work function of at least two types of transition metals other than Cu becomes the work function of the platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode in which transition metal fine powders of at least two other transition metals other than the fine powder of Cu are selected from various transition metals, the work function of Cu and At least two other types of transition metals excluding the fine powder of Cu from various transition metals so that the composite work function with the work function of at least two types of transition metals other than Cu approximates the work function of the platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode having an alloy fine particle or an alloy fine particle laminated porous structure It has substantially the same work function as an electrode containing a platinum group element, and can exhibit almost the same catalytic activity (catalysis) as an electrode containing a platinum group element, and is suitable as an electrode for a fuel cell or a hydrogen gas generator.
- the carbon nanotube electrode or the carbon nanohorn electrode is made of a transition metal of a transition metal fine powder mixture (alloy molded product) other than at least two types of transition metals other than a fine powder of Cu and a fine powder of Cu selected from various transition metals.
- Electrodes It is made of fine powder and does not use expensive platinum group elements, and is platinum-free, so that electrodes can be manufactured at low cost. Since carbon nanotube electrodes or carbon nanohorn electrodes exhibit almost the same catalytic activity (catalysis) as electrodes containing platinum group elements, sufficient electricity can be generated in fuel cells by using the electrodes in fuel cells. Can supply sufficient electric energy to the load connected to the fuel cell, and can use the electrodes in a hydrogen gas generator to perform the electrolysis efficiently, and to produce a large amount of electricity in a short time. Hydrogen gas can be generated.
- the transition metal fine powder of at least two types of other transition metals excluding the Cu fine powder is selected from various transition metals, and the weight ratio of the Cu fine powder and Cu
- the weight ratio of the transition metal fine powder of at least one type of transition metal excluding the fine powder and the weight ratio of the transition metal fine powder of at least one other transition metal excluding the fine powder of Cu is set to the above ranges.
- a carbon nanotube electrode or a carbon nanohorn electrode having a porous structure of fine particles or alloy fine particles has substantially the same work function as an electrode containing a platinum group element and exhibits almost the same catalytic activity (catalysis) as an electrode containing a platinum group element.
- the electrode By using the electrode in a fuel cell, sufficient electricity can be generated in the fuel cell, and sufficient electric energy can be supplied to a load connected to the fuel cell.
- electrolysis When used in a hydrogen gas generator, electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.
- transition metal fine powder of at least two types of transition metals among the selected transition metals is melted at the time of firing the transition metal fine powder mixture, and the transition metal fine powder of the molten transition metal is used as a binder.
- the carbon nanotube electrode or the carbon nanohorn electrode to which the transition metal fine powder of the metal is joined can form an alloy molded product by melting the transition metal fine powder of at least two kinds of transition metals among the transition metals.
- alloy fine particles of an alloy molded product can be produced, and a carbon nanotube electrode or a carbon nanohorn electrode having an alloy fine particle or an alloy fine particle laminated porous structure can be produced.
- a carbon nanotube electrode or a carbon nanohorn electrode has a work function substantially the same as an electrode containing a platinum group element, and a carbon nanotube electrode or a carbon nanohorn electrode having an alloy fine particle or an alloy fine particle laminated porous structure is substantially the same as an electrode containing a platinum group element.
- the same catalytic activity catalysis
- the electrode in the fuel cell sufficient electricity can be generated in the fuel cell, and sufficient electric energy can be supplied to the load connected to the fuel cell.
- the electrode in a hydrogen gas generator the electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.
- various transition metals are selected so that the composite work function of the work functions of at least three types of transition metals selected from various transition metals approximates the work function of the platinum group element.
- a carbon nanotube electrode or a carbon nanohorn electrode can be made by the process, a platinum-less electrode that does not use a platinum group element can be made at low cost, and it is possible to use the catalyst function sufficiently and reliably and it is excellent. It is possible to produce a platinum-less electrode which has suitable catalytic activity (catalysis) and can be suitably used for a fuel cell or a hydrogen gas generator.
- the method for supporting an alloy fine particle evaporates an alloy molded product at the same time as the generation of carbon nanotubes or carbon nanohorns, and the method for producing an electrode for supporting the alloy fine particles of the alloy molded product on the surface of the carbon nanotube or the surface of the carbon nanohorn is a carbon nanotube or carbon nanohorn. Since the alloy molded product was evaporated while generating the alloy fine particles of the alloy molded product on the surface of the carbon nanotube or the surface of the carbon nanohorn, the alloy fine particles were uniformly dispersed on the surface of the carbon nanotube or the surface of the carbon nanohorn.
- platinum-less electrode in which alloy fine particles are uniformly supported on the surface of carbon nanotubes or carbon nanohorns at low cost, and it is possible to use the catalyst function sufficiently and reliably. It can be made of platinum-less electrode that can be suitably used for fuel cells and hydrogen gas generator has an excellent catalytic activity (catalytic) Te.
- the method for producing an electrode in which the transition metal fine powder mixture preparing step pulverizes at least three types of transition metals selected in the transition metal selection step to a particle size of 10 ⁇ m to 200 ⁇ m, comprises pulverizing the transition metal to a particle size in the above range.
- the method for producing a compressed transition metal fine powder by pressurizing the transition metal fine powder mixture produced by the transition metal fine powder mixture production step in the transition metal fine powder mixture production step at a pressure of 500 Mpa to 800 Mpa includes a transition metal By pressing (compressing) the fine powder mixture at a pressure in the above range, a transition metal fine powder compact can be produced, and the transition metal fine powder compact can be fired to form an alloy molded product. It is possible to produce an alloy fine particle carrying an alloy fine particle of an alloy molded product or a carbon nanotube electrode or a carbon nanohorn electrode having an alloy fine particle-laminated porous structure, and it is possible to utilize the catalytic function sufficiently and reliably. Platinum-free electrode with excellent catalytic activity (catalysis) and suitable for use in fuel cells and hydrogen gas generators It can be made.
- the alloy molded article preparation step is performed by firing the transition metal fine powder compact at a temperature at which the transition metal fine powder of at least two kinds of transition metals selected from the transition metals selected in the transition metal selection step is melted.
- An electrode manufacturing method for joining transition metal fine powders of transition metals using the transition metal fine powder as a binder is to form an alloy molded product by melting transition metal fine powders of at least two types of transition metals among the transition metals. It is possible to produce a carbon nanotube electrode or a carbon nanohorn electrode having an alloy fine particle or an alloy fine particle laminated porous structure carrying alloy fine particles of an alloy molded product, and it is possible to sufficiently and reliably utilize the catalytic function. It has excellent catalytic activity (catalysis) and is suitable for use in fuel cells and hydrogen gas generators. It is possible to create a platinum-less electrode that can.
- the carbon nanotube electrode or the carbon nanohorn electrode is formed into a thickness in the range of 0.03 mm to 0.3 mm, and the alloy fine particles laminated from the surface of the carbon nanotube or the carbon nanohorn toward the outside are laminated with an alloy fine particle laminated porous structure.
- the method for producing an electrode is capable of forming an alloy fine particle laminated porous structure on the surface of the carbon nanotube or the surface of the carbon nanohorn by evaporating the alloy molded product, and increasing the specific surface area of the alloy powder.
- a platinum-less carbon nanotube electrode or a carbon nanohorn electrode having a porous structure can be produced. According to the electrode manufacturing method, by setting the thickness of the electrode in the above range, the electric resistance of the electrode can be reduced, and a platinum-less electrode capable of flowing a current smoothly can be manufactured.
- FIG. 2 is a partially enlarged front view of a carbon nanotube electrode or a carbon nanohorn electrode shown as an example.
- FIG. 2 is a conceptual diagram of a carbon nanotube shown as an example carrying alloy fine particles.
- FIG. 2 is a conceptual diagram of a carbon nanohorn shown as an example carrying alloy fine particles.
- FIG. 9 is a partially enlarged front view of a carbon nanotube electrode or a carbon nanohorn electrode shown as another example.
- FIG. 3 is a conceptual diagram of a carbon nanotube shown as another example carrying alloy fine particles.
- FIG. 3 is a conceptual diagram of a carbon nanohorn shown as another example carrying alloy fine particles.
- FIG. 3 is a conceptual diagram of a carbon nanohorn shown as another example carrying alloy fine particles.
- FIG 3 is an exploded perspective view showing an example of a cell using a carbon nanotube electrode or a carbon nanohorn electrode.
- FIG. 2 is a partially enlarged front view of the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A shown as an example
- FIG. 3 is a conceptual diagram of the carbon nanotube 15 shown as an example carrying the alloy fine particles 19.
- FIG. 4 is a conceptual diagram of the carbon nanohorn 16 shown as an example carrying the alloy fine particles 19.
- the thickness direction is indicated by an arrow X
- the radial direction is indicated by an arrow Y.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is used as an anode (anode) or a cathode (cathode).
- the electrode 10A (catalyst) of the fuel cell 24 (see FIG. 10) and the electrode 10A (catalyst) of the hydrogen gas generator 37 are used. (See FIG. 13).
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A has a front surface 11 and a rear surface 12, has a predetermined area and a predetermined thickness dimension L1, and has a square planar shape.
- the planar shape of the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is not particularly limited. And any other planar shape.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is composed of an alloy fine particle 19 (alloy fine particle) of an alloy molded product 52 (alloy molded product), a metal electrode thin plate 13 having a predetermined area or a carbon electrode thin plate 14 having a predetermined area, and a metal electrode thin plate. 13 or a carbon electrode thin plate 14, and an aggregate 17 of carbon nanotubes 15 (aggregate plate) of a predetermined area or an aggregate 18 of carbon nanohorns 16 (aggregate plate) of a predetermined area.
- the alloy molded product 52 (alloy molded product) (see FIG. 14) is a uniform transition metal fine powder 49 of at least three types of transition metals 48 selected from various transition metals 48 processed (pulverized) into powder.
- the transition metal fine powder mixture 50 (see FIG. 14) mixed and dispersed is compressed and fired (sintered).
- the alloy molded product 52 (alloy molded product) is finely pulverized into an alloy fine powder 53 (alloy fine powder) having a particle size of 10 ⁇ m to 200 ⁇ m (see FIG. 14), and the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is alloyed.
- Alloy fine particles 19 (alloy fine particles) of the fine powder 53, a metal electrode thin plate 13 or a carbon electrode thin plate 14 of a predetermined area, and an aggregate 17 (aggregate plate) of carbon nanotubes 15 of a predetermined area or carbon nanohorn of a predetermined area It may be formed from 16 aggregates 18 (aggregate plate).
- transition metal 48 a 3d transition metal or a 4d transition metal is used.
- 3d transition metal Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), and Zn (zinc) are used.
- Nb (niobium), Mo (molybdenum), and Ag (silver) are used as the 4d transition metal.
- the transition metal fine powder 49 of the transition metal 48 includes Ti (titanium) fine powder processed (pulverized), Cr (chromium) fine powder processed (pulverized) into powder, and powdered (Finely pulverized) Mn (manganese) fine powder, powdery (finely pulverized) Fe (iron) fine powder, powdery (finely pulverized) Co (cobalt) fine powder, powdery Processed (finely pulverized) Ni (nickel) fine powder, powdered (finely pulverized) Cu (copper) fine powder, powdered (finely pulverized) Zn (zinc) fine powder, powdery Nb (niobium) fine powder processed (finely pulverized), Mo (molybdenum) fine powder processed (pulverized) into powder, and Ag (silver) fine powder processed into powder are used.
- Fine powder of Ti Ti processed into a powder (finely pulverized)
- fine powder of Cr Cr processed into a powder (fine pulverized)
- fine powder of Mn processed into a powder (pulverized)
- fine powder of Fe Fe that has been processed (pulverized) into powder
- fine powder of Co Co that has been processed (pulverized) into powder
- fine powder of Ni processed into powder ( Ni) finely pulverized
- fine powder of Cu Cu finely processed (finely pulverized)
- fine powder of Zn Zn finely processed (finely pulverized)
- fine powder of Nb powder Nb processed into a shape (finely pulverized)
- Mo fine powder Mo processed into a fine powder (finely pulverized)
- Ag fine powder Ag processed into a powder shape (finely pulverized) Is in the range of 10 ⁇ m to 200 ⁇ m.
- the work function of at least three kinds of selected transition metals 48 is a work function of a platinum group element.
- At least three types of transition metals 48 are selected from the transition metals 48.
- the work function of Ti is 4.14 (eV)
- the work function of Cr is 4.5 (eV)
- the work function of Mn is 4.1 (eV)
- the work function of Fe is 4.67 (eV).
- the work function of Co is 5.0 (eV)
- the work function of Ni is 5.22 (eV)
- the work function of Cu is 5.10 (eV)
- the work function of Zn is 3.63.
- the work function of Nb is 4.01 (eV)
- the work function of Mo is 4.45 (eV)
- the work function of Ag is 4.31 (eV).
- the work function of platinum is 5.65 (eV).
- the transition metal fine powder mixture 50 a fine powder of Ni (nickel) processed (pulverized) in a powder form is used as a main component, and a fine powder of Ni and a non-Ni powder are processed (pulverized). And at least two other transition metals 48 (powder Ti (titanium), powder Cr (chromium), powder Mn (manganese), powder Fe (iron), powder Co (cobalt) , Powdered Cu (copper), powdered Zn (zinc), powdered Nb (niobium), powdered Mo (molybdenum), and powdered Ag (silver) transition metal This is a transition metal fine powder mixture 50 in which fine powder 49 is uniformly mixed and dispersed.
- the transition metal fine powder 49 of the transition metal 48 is selected.
- the transition metal fine powder 49 of at least two kinds of transition metals 48 among the selected transition metals 48 is melted at the time of firing the transition metal fine powder mixture 50,
- the transition metal fine powder 49 of the transition metal 48 is joined with the molten transition metal fine powder 49 of the transition metal 48 as a binder.
- the alloy fine powder 53 formed by finely pulverizing the alloy molded product 52 containing Ni as a main component is formed by compressing a transition metal fine powder mixture 50 containing Ni fine powder as a main component and then firing the mixture.
- the obtained alloy molded product 53 is a finely pulverized product having a particle size of 10 ⁇ m to 200 ⁇ m.
- transition metal fine powder mixture 50 mainly composed of Ni (nickel) fine powder
- the weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 50 is in the range of 30% to 50%.
- Transition metal fine powder 49 of one kind of transition metal 48 excluding fine powder (Ti (titanium) fine powder, Cr (chromium) fine powder, Mn (manganese) fine powder, Fe (iron) fine powder, Co (cobalt) fine powder Transition metal fine powder mixture 50 of at least one of powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, and Ag (silver) fine powder
- Fine powder Mn (manga ) Fine powder, Fe (iron) fine powder, Co (cobalt) fine powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, Ag (silver)
- the weight ratio of the transition metal fine powder mixture 50 of at least one other of the fine powders) to the total weight is in the range of 3% to 20%.
- the alloy molded product 52 containing Ni (nickel) as a main component a transition metal fine powder mixture 50 obtained by uniformly mixing and dispersing Ni fine powder, Cu fine powder, and ZN fine powder is compressed. This is a sintered alloy molded product 52.
- the alloy fine powder 52 containing Ni as a main component alloy fine powder containing Ni as a main component
- Ni fine powder, Cu fine powder, and ZN fine powder are uniformly mixed and dispersed.
- the transition metal fine powder mixture 50 is compressed and then fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- the weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 50 was 48%, and the weight ratio of the Cu fine powder to the total weight of the transition metal fine powder mixture 50. Is 42%, and the weight ratio of the Zn fine powder to the total weight of the transition metal fine powder mixture 50 is 10%. Since the melting point of Ni is 1455 ° C., the melting point of Cu is 1084.5 ° C., and the melting point of Zn is 419.85 ° C., the fine powder of Zn and the fine powder of Cu are melted. Ni fine powder is joined as a binder.
- an alloy molded product mainly containing Ni nickel
- a transition metal fine powder mixture 50 in which fine Ni powder, fine Mn powder, and fine Mo powder are uniformly mixed and dispersed is compressed.
- This is an alloy molded product 52 that is fired later.
- the alloy fine powder 52 containing Ni as a main component an alloy fine powder containing Ni as a main component
- Ni fine powder, Mn fine powder, and Mo fine powder are uniformly mixed.
- the dispersed transition metal fine powder mixture 50 is compressed and fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- the weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 50 was 48%, and the weight ratio of the Mn fine powder to the total weight of the transition metal fine powder mixture 50. Is 7%, and the weight ratio of the Mo fine powder to the total weight of the transition metal fine powder mixture 50 is 45%. Since the melting point of Ni is 1455 ° C., the melting point of Mn is 1246 ° C., and the melting point of Mo is 2623 ° C., the Mn fine powder and the Ni fine powder are melted, and the molten Mn and Ni fine powder serve as a binder. Mo fine powder is joined.
- transition metal fine powder mixture 50 a fine powder of Fe (iron) processed into fine powder (fine pulverized) is used as a main component, and processed into fine powder excluding Fe and fine powder (fine pulverized).
- Other transition metals 48 (powder Ti (titanium), powder Cr (chromium), powder Mn (manganese), powder Co (cobalt), powder Ni ( Nickel), powdered Cu (copper), powdered Zn (zinc), powdered Nb (niobium), powdered Mo (molybdenum), and powdered Ag (silver)).
- a transition metal fine-particle mixture 50 obtained by mixing a fine powder of Fe (iron) as a main component and a transition metal fine powder 49 of at least two other types of transition metals 48 other than Fe has a work function of Fe and excluding Fe. At least two other transition metals excluding the fine powder of Fe from the various transition metals 48 so that the composite work function with the work function of the other at least two transition metals approximates the work function of the platinum group element.
- the transition metal fine powder 49 of the metal 48 is selected.
- the transition metal fine powder 49 of at least two kinds of the transition metals 48 among the selected transition metals 48 is melted at the time of firing the transition metal fine powder mixture 49,
- the transition metal fine powder 49 of the transition metal 48 is joined using the molten transition metal fine powder 49 of the transition metal 48 as a binder.
- the alloy fine powder 53 formed by finely pulverizing the alloy molded product 52 containing Fe as a main component is formed by compressing the transition metal fine powder mixture 50 containing the Fe fine powder as a main component and then firing the mixture.
- the obtained alloy molded product 52 is a finely pulverized product having a particle size of 10 ⁇ m to 200 ⁇ m.
- transition metal fine powder mixture 50 mainly composed of Fe (iron) fine powder
- the weight ratio of the fine Fe powder to the total weight of the transition metal fine powder mixture 50 is in the range of 30% to 50%.
- Transition metal fine powder 49 of one kind of transition metal 48 excluding fine powder (Ti (titanium) fine powder, Cr (chromium) fine powder, Mn (manganese) fine powder, Co (cobalt) fine powder, Ni (nickel) fine powder Transition metal fine powder mixture 50 of at least one of powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, and Ag (silver) fine powder And a transition metal fine powder 49 (Ti (titanium) fine powder, Cr (chromium)) of at least one type of transition metal 48 other than the fine powder of Fe except for the fine powder of Fe.
- Fine powder Mn (manga ) Fine powder, Co (cobalt) fine powder, Ni (nickel) fine powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, Ag (silver)
- the weight ratio of the transition metal fine powder mixture 50 (at least one other of the fine powders) to the total weight is in the range of 3% to 20%.
- the alloy molded product 52 containing Fe (iron) as a main component a transition metal fine powder mixture 50 in which a fine powder of Fe, a fine powder of Ni, and a fine powder of Cu are uniformly mixed and dispersed is compressed.
- a sintered alloy molded product 52 As a specific example of the alloy fine powder 52 mainly composed of Fe (iron) (an alloy fine powder mainly composed of Fe), a fine powder of Fe, a fine powder of Ni, and a fine powder of Cu are uniformly mixed.
- the dispersed transition metal fine powder mixture 50 is compressed and then fired to form an alloy molded product 52.
- the alloy molded product 52 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- the weight ratio of the fine Fe powder to the total weight of the transition metal fine powder mixture 50 was 48%, and the weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 50. Is 48%, and the weight ratio of the fine Cu powder to the total weight of the transition metal fine powder mixture 50 is 4%. Since the melting point of Fe is 1536 ° C., the melting point of Ni is 1455 ° C., and the melting point of Cu is 1084.5 ° C., the fine powder of Cu and the fine powder of Ni are melted. To join Fe fine powder.
- the alloy molded product 52 containing Fe (iron) as a main component a transition metal fine powder mixture 50 in which fine powder of Fe, fine powder of Ti, and fine powder of Ag are uniformly mixed and dispersed is compressed. This is an alloy molded product 52 which is fired after being processed. Further, as another specific example of the alloy fine powder 53 containing Fe as a main component (an alloy fine powder containing Fe as a main component), fine powder of Fe, fine powder of Ti, and fine powder of Ag are uniformly mixed. The dispersed transition metal fine powder mixture 50 is compressed and fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- the weight ratio of the fine Fe powder to the total weight of the transition metal fine powder mixture 50 was 48%, and the weight ratio of the fine Ti powder to the total weight of the transition metal fine powder mixture 50. Is 46%, and the weight ratio of the Ag fine powder to the total weight of the transition metal fine powder mixture 50 is 6%. Since the melting point of Fe is 1536 ° C., the melting point of Ti is 1666 ° C., and the melting point of Ag is 961.93 ° C., the fine powder of Ag and the fine powder of Fe are melted. To join the Ti fine powder.
- transition metal fine powder mixture 50 a fine powder of Cu (copper) processed (pulverized) in a powder form is used as a main component, and a fine powder of Cu and a powder excluding Cu are processed (fine pulverized).
- Other transition metals 48 pellet Ti (titanium), powder Cr (chromium), powder Mn (manganese), powder Fe (iron), powder Co ( (Cobalt), powdered Ni (nickel), powdered Zn (zinc), powdered Nb (niobium), powdered Mo (molybdenum), powdered Ag (silver)).
- the transition metal fine powder 49 of the transition metal 48 is selected.
- the transition metal fine powder 49 of at least two kinds of the transition metals 48 among the selected transition metals 48 is melted when the transition metal fine powder mixture 50 is fired,
- the transition metal fine powder 49 of the transition metal 48 is joined using the molten transition metal fine powder 49 of the transition metal 48 as a binder.
- the alloy fine powder 53 produced by finely pulverizing the alloy molded product 52 containing Cu as a main component is formed by compressing a transition metal fine powder mixture 50 containing Cu fine powder as a main component and then firing the mixture.
- the obtained alloy molded product 53 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- transition metal fine powder mixture 50 mainly composed of Cu (copper) fine powder
- the weight ratio of the Cu fine powder to the total weight of the transition metal fine powder mixture 50 is in the range of 30% to 50%.
- Transition metal fine powder 49 of one kind of transition metal 48 excluding fine powder (Ti (titanium) fine powder, Cr (chromium) fine powder, Mn (manganese) fine powder, Fe (iron) fine powder, Co (cobalt) fine powder Transition metal fine powder mixture 50 of at least one of powder, Ni (nickel) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, and Ag (silver) fine powder And a transition metal fine powder 49 (Ti (titanium) fine powder, Cr (chromium)) of at least one other type of transition metal 48 excluding Cu fine powder.
- Fine powder Mn (manga ) Fine powder, Fe (iron) fine powder, Co (cobalt) fine powder, Ni (nickel) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, Ag (silver)
- the weight ratio of the transition metal fine powder mixture 50 of at least one other of the fine powders) to the total weight is in the range of 3% to 20%.
- the alloy molded product 52 containing Cu (copper) as a main component a transition metal fine powder mixture 50 obtained by uniformly mixing and dispersing Cu fine powder, Fe fine powder, and Zn fine powder is used.
- This is a sintered alloy molded product 52.
- the alloy fine powder 53 mainly composed of Cu (copper) (alloy fine powder mainly composed of Cu), a fine powder of Cu, a fine powder of Fe, and a fine powder of Zn are uniformly mixed.
- the dispersed transition metal fine powder mixture 50 is compressed and then fired to form an alloy molded product 52.
- the alloy molded product 52 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- the weight ratio of the Cu fine powder to the total weight of the transition metal fine powder mixture 50 was 48%, and the weight of the Fe fine powder to the total weight of the transition metal fine powder mixture 50.
- the ratio is 48%, and the weight ratio of the fine Zn powder to the total weight of the transition metal fine powder mixture 50 is 4%. Since the melting point of Cu is 1084.5 ° C., the melting point of Fe is 1536 ° C., and the melting point of Zn is 419.58 ° C., the fine powder of Zn and the fine powder of Cu are melted.
- a fine powder of Fe is joined as a binder.
- the alloy molded product 52 containing Cu (copper) as a main component a transition metal fine powder mixture 50 obtained by uniformly mixing and dispersing Cu fine powder, Fe fine powder, and Ag fine powder is compressed. An alloy molded product 52 fired after the sintering.
- the alloy fine powder 53 containing Cu as a main component alloy fine powder containing Cu as a main component
- a fine powder of Cu, a fine powder of Fe, and a fine powder of Ag are uniformly mixed.
- the dispersed transition metal fine powder mixture 50 is compressed and fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized with a particle size of 10 ⁇ m to 200 ⁇ m.
- the weight ratio of the Cu fine powder to the total weight of the transition metal fine powder mixture 50 was 48%, and the weight of the Fe fine powder to the total weight of the transition metal fine powder mixture 50.
- the ratio is 46%
- the weight ratio of the Ag fine powder to the total weight of the transition metal fine powder mixture 50 is 6%. Since the melting point of Cu is 1084.5 ° C., the melting point of Fe is 1536 ° C., and the melting point of Ag is 961.93 ° C., the Ag fine powder and the Cu fine powder are melted, and the fused Ag and Cu fine powder are melted.
- a fine powder of Fe is joined as a binder.
- the metal electrode thin plate 13 has a front surface and a rear surface, and has a predetermined area and a thickness of 0.02 to 0.2 mm.
- the metal electrode thin plate 13 is formed by forming a conductive metal (silver, copper, iron, or a conductive alloy) into a thin plate shape, and has a square planar shape.
- the metal electrode thin plate 13 has a large number of fine channels (fine through holes) through which gas and liquid flow.
- the planar shape of the metal electrode thin plate 13 is not particularly limited, and may be formed into any other planar shape such as a circle, an ellipse, and a polygon, in addition to a square.
- the carbon electrode thin plate 14 has a front surface and a rear surface, has a predetermined area and a thickness of 0.02 to 0.2 mm, and has a square planar shape. In the carbon electrode thin plate 14, a large number of fine channels (fine through holes) through which gas and liquid flow are formed.
- the planar shape of the carbon electrode plate 14 is not particularly limited, and may be formed into any other planar shape such as a circle, an ellipse, and a polygon, in addition to a square.
- a carbon graphite (graphite) powder of several ⁇ m to several tens ⁇ m and a conductive binder (conductive binder) are formed by cold isostatic pressing and then graphitized at about 3000 ° C. Use a sheet-like electrode material.
- carbon graphite (graphite) powder of several ⁇ m to several tens ⁇ m and a conductive binder (conductive binder) are extruded from an extrusion die and then graphitized at about 3000 ° C. Use a sheet-like electrode material.
- glassy carbon can also be used.
- the aggregates 17 of the carbon nanotubes 15 are fixed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 13 in which a large number of fine channels (fine through holes) are formed, or a large number of fine channels ( It is fixed (grown) on both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 on which the fine through holes (fine through holes) are formed.
- alloy fine particles 19 alloy fine particles 19 obtained by evaporating the alloy molded product
- alloy fine particles 19 alloy fine particles 19 (alloy fine powder obtained by pulverizing the alloy molded product) are formed.
- the alloy fine particles 19) obtained by evaporating the alloy fine powder are supported in a state of being uniformly and uniformly dispersed. Numerous fine openings through which gas and liquid flow are formed in the carbon nanotubes 15 carrying the alloy fine particles 19.
- the aggregates 18 of the carbon nanohorns 16 adhere (grow) to both surfaces (front and rear surfaces) of the metal electrode thin plate 13 in which a large number of fine channels (fine through holes) are formed, or a large number of fine channels ( It is fixed (grown) on both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 on which the fine through holes (fine through holes) are formed.
- alloy fine particles 19 of an alloy molded product alloy fine particles 19 obtained by evaporating the alloy molded product
- alloy fine particles 19 of an alloy fine powder obtained by pulverizing the alloy molded product are used.
- the alloy fine particles 19) obtained by evaporating the alloy fine powder are supported in a state of being uniformly and uniformly dispersed.
- the carbon nanohorn 16 carrying the alloy fine particles 19 has a large number of fine openings through which gas and liquid flow.
- the carbon nanotube electrode 10A (the aggregate 17 of the carbon nanotubes 15) or the carbon nanohorn electrode 10A (the aggregate 18 of the carbon nanohorn 16) has a thickness L1 in the range of 0.03 mm to 0.3 mm, preferably 0.05 mm. ⁇ 0.1 mm.
- the thickness L1 of the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is less than 0.03 mm, the strength is reduced, and the electrode 10A is easily broken or damaged when an impact is applied, and the shape thereof is maintained. It may not be possible.
- the electric resistance of the electrode 10A increases, the current does not flow smoothly to the electrode 10A, and the electrode 10A is used for the fuel cell 24. At times, sufficient electricity cannot be generated in the fuel cell 24, and sufficient electric energy cannot be supplied to the load connected to the fuel cell 24. Further, when the electrode 10A is used in the hydrogen gas generator 37, electrolysis cannot be performed efficiently, and the hydrogen gas generator 37 cannot generate a large amount of hydrogen gas in a short time.
- the carbon nanotube electrode 10A (the aggregate 17 of the carbon nanotubes 15) or the carbon nanohorn electrode 10A (the aggregate 18 of the carbon nanohorn 16) has a thickness L1 in the range of 0.03 mm to 0.3 mm, preferably 0.05 mm. Since it is within the range of 0.1 mm, the electrode 10A has a high strength and can maintain its shape, and it is possible to prevent the electrode 10A from being damaged or damaged when an impact is applied to the electrode 10A. Further, by setting the thickness L1 within the above range, the electric resistance of the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A can be reduced, the current flows smoothly to the electrode 10A, and the electrode 10A is used for the fuel cell 24.
- sufficient electricity can be generated in the fuel cell 24, and sufficient electric energy can be supplied to the load 36 connected to the fuel cell 24.
- the electrode 10A is used in the hydrogen gas generator 37, electrolysis can be efficiently performed, and the hydrogen gas generator 37 can generate a large amount of hydrogen gas in a short time.
- FIG. 5 is a partially enlarged front view of a carbon nanotube electrode 10B or a carbon nanohorn electrode 10B shown as another example
- FIG. 6 is a conceptual diagram of a carbon nanotube 15 shown as another example carrying alloy fine particles 19.
- FIG. 7 is a conceptual diagram of a carbon nanohorn 16 shown as another example carrying alloy fine particles 19.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is used as an anode (anode) or a cathode (cathode) in the same manner as the electrode 10A in FIG. 2, and the electrode 10B (catalyst) (see FIG. It is used as an electrode 10B (catalyst) of the generator 37 (see FIG. 13).
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B has a front surface 11 and a rear surface 12, has a predetermined area and a predetermined thickness L1, and has a square planar shape.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is composed of an alloy fine particle 19 (alloy fine particle) of an alloy molded product 52 (alloy molded product), a metal electrode thin plate 13 having a predetermined area or a carbon electrode thin plate 14 having a predetermined area, and It is formed from an aggregate 17 of carbon nanotubes 15 (aggregate plate) or an aggregate 18 of carbon nanohorns 16 (aggregate plate) having a predetermined area.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is a finely pulverized alloy molded product 52.
- It may be formed of an electrode thin plate 13 or a carbon electrode thin plate 14 having a predetermined area, and an aggregate 17 (aggregate plate) of carbon nanotubes 15 having a predetermined area or an aggregate 18 (aggregate plate) of carbon nanohorns 16 having a predetermined area.
- the aggregates 17 of the carbon nanotubes 15 are fixed on both surfaces (front and rear surfaces) of the metal electrode thin plate 13 having a thickness of 0.02 to 0.2 mm and formed with a large number of fine channels (micropores), Alternatively, it is fixed to both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 having a thickness of 0.02 to 0.2 mm and formed with a large number of fine channels (micro holes).
- the alloy fine particles 19 of the alloy molded product 52 the alloy fine particles 19 obtained by evaporating the alloy molded product 52
- the alloy fine powder 53 obtained by pulverizing the alloy molded product 52 are formed on the surface of the carbon nanotube 15.
- the alloy fine particles 19 (alloy fine particles 19 obtained by evaporating the alloy fine powder 53) are supported, and the alloy fine particles 19 overlapping from the surface of the carbon nanotube 15 to the outside form an alloy fine particle laminated porous structure 20.
- the aggregate 18 of the carbon nanohorn 16 is fixed to both surfaces (front and rear surfaces) of the metal electrode thin plate 13 having a thickness of 0.02 to 0.2 mm and a large number of fine channels (micropores) formed therein, Alternatively, it is fixed to both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 having a thickness of 0.02 to 0.2 mm and formed with a large number of fine channels (micro holes).
- alloy fine particles 19 of the alloy molded product 52 alloy fine particles 19 obtained by evaporating the alloy molded product 52
- an alloy fine powder 53 obtained by pulverizing the alloy molded product 52 are formed.
- the alloy fine particles 19 (alloy fine particles 19 obtained by evaporating the alloy fine powder 53) are supported, and the alloy fine particles 19 overlapping from the surface of the carbon nanohorn 16 to the outside form an alloy fine particle laminated porous structure 20.
- the alloy fine powder 53 (alloy fine powder) is made by finely pulverizing the alloy molded product 52 (alloy molded product).
- the alloy molded product 52 is obtained by compressing a transition metal fine powder mixture 50 in which at least three types of transition metal fine powders 49 selected from various transition metals 48 processed into a powder form (fine pulverization) are uniformly mixed and dispersed. It is made from firing (sintering) later.
- the transition metal 48, the transition metal fine powder mixture 50, the alloy molded product 52, and the alloy fine powder 53 are the same as those of the electrode 10A of FIG.
- the particle size of the transition metal fine powder 49, the particle size of the alloy fine powder 53, and the thickness L1 of the electrode 10B are the same as those of the electrode 10A of FIG.
- a large number of fine flow paths 21 (passage holes) having different diameters are formed in the porous alloy particle laminated structure 20.
- a gas (hydrogen gas or oxygen gas) or a liquid (water) flows through these flow paths 21 (passage holes).
- the flow paths 21 (passage holes) include a plurality of flow openings 22 opening on the front surface 11 side of the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B and a plurality of flow openings 22 opening on the rear surface 12 side of the electrode 10B. And penetrates the alloy fine particle laminated porous structure 20 toward the carbon nanotubes 15 or the carbon nanohorns 16.
- the channels 21 extend in various directions (thickness direction and vertical and horizontal directions) of the alloy fine particle laminated porous structure 20 while being bent irregularly.
- the flow paths 21 are partially connected inside the alloy fine particle laminated porous structure 20, and one flow path 21 and the other flow path 21 communicate with each other.
- the opening areas (opening diameters) of the flow paths 21 (passage holes) are not uniform inside the alloy fine particle laminated porous structure 20, but are irregularly changed.
- the alloy fine particle laminated porous structure 20 has a porosity in a range of 15% to 30% and a relative density in a range of 70% to 85%. If the porosity of the alloy fine particle laminated porous structure 20 is less than 15% and the relative density exceeds 85%, a large number of fine channels 21 (passage holes) are not formed in the alloy fine particle laminated porous structure 20, and the alloy fine particles The specific surface area of the laminated porous structure 20 cannot be increased.
- the opening area (opening diameter) of the flow path 21 (passage hole) becomes unnecessarily large, and the alloy fine particle laminated porous structure In some cases, when the strength of the alloy particle 20 is reduced and the impact is applied, the alloy fine particle laminated porous structure 20 is easily broken or damaged, and the form cannot be maintained.
- the alloy fine particle laminated porous structure 20 Since the porosity and the relative density of the alloy fine particle laminated porous structure 20 are within the above ranges, the alloy fine particle laminated porous structure 20 has a large number of fine flow paths 21 (passage holes) having different opening areas (opening diameters). The specific surface area of the alloy fine particle laminated porous structure 20 can be increased, and the gas or liquid flows through the flow path 21 (passage hole) while the gas or liquid flows through the contact surface of the alloy fine particle laminated porous structure 20 (the alloy fine particle 19). (The surface of the (alloy fine particles)).
- FIG. 8 is an exploded perspective view showing an example of a cell 23 using the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B.
- FIG. 9 is a diagram showing the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B. It is a side view of the cell 23 used.
- FIG. 10 is a diagram illustrating power generation of a fuel cell (polymer electrolyte fuel cell) using the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B.
- FIG. It is a figure showing the result of the electromotive force test of carbon nanohorn electrodes 10A and 10B.
- FIG. 12 is a diagram showing the results of an IV characteristic test of the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B.
- the used air electrode 26 cathode
- the solid polymer electrolyte membrane 27 electrolyte assembly film
- fluorine ion exchange membrane having a sulfonic acid group interposed between the fuel electrode 25 and the air electrode 26, and the fuel electrode
- the separator 25 is formed of a separator 28 (bipolar plate) located outside the thickness direction 25 and a separator 29 (bipolar plate) located outside the thickness direction of the air electrode 26.
- a supply flow path for a reaction gas (hydrogen, oxygen, or the like) is formed (engraved) in the separators 28 and 29.
- the fuel electrode 25, the air electrode 26, and the solid polymer electrolyte membrane 27 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 30 (Membrane Electrode Assembly, MEA).
- MEA Membrane Electrode Assembly
- the membrane / electrode assembly 30 is sandwiched between the separators 28 and 29.
- the solid polymer electrolyte membrane 27, the fuel electrode 25 (carbon nanotube electrodes 10A and 10B or carbon nanohorn electrodes 10A and 10B) and the air electrode 26 (carbon nanotube electrodes 10A and 10B or carbon nanohorn electrodes 10A and 10B) are hot-pressed.
- the fuel cell 24 polymer electrolyte fuel cell
- a plurality of cells 23 overlap in one direction, and the cells 23 are connected in series to form a cell stack (fuel cell stack).
- the solid polymer electrolyte membrane 27 (electrode assembly membrane) has proton conductivity and no electronic conductivity.
- a gas diffusion layer 31 is formed between the fuel electrode 25 and the separator 28, and a gas diffusion layer 32 is formed between the air electrode 26 and the separator 29.
- a gas seal 33 is provided between the fuel electrode 25 and the separator 28 and above and below the gas diffusion layer 31.
- a gas seal 34 is provided between the air electrode 26 and the separator 29 and above and below the gas diffusion layer 32.
- hydrogen fuel
- a fuel electrode 25 carbon nanotube electrodes 10A, 10B or carbon nanohorn electrodes 10A, 10B
- Air oxygen
- H + protons
- electrons by a reaction (catalysis) of H 2 ⁇ 2H + + 2e ⁇ .
- the protons pass through the solid polymer electrolyte membrane 27 and move to the air electrode 26, and the electrons pass through the conductor 35 and move to the air electrode 26.
- Protons generated at the fuel electrode 25 flow through the solid polymer electrolyte membrane 27.
- the protons transferred from the solid polymer electrolyte membrane 27 and the electrons transferred on the conductive wire 35 react with oxygen in the air, and water is generated by the reaction of 4H + + O 2 + 4e ⁇ 2H 2 O.
- At least three transition metals are selected from the transition metals such that the work function of the work functions of the at least three transition metals is close to the work function of the platinum group element, and the selected at least three transition metals are selected.
- the alloy fine particles 19 of an alloy molded product made from are supported on the surface of the carbon nanotube 15 or the carbon nanohorn 16, or the alloy fine particle laminated porous structure 20 is formed on the surface of the carbon nanotube 15 or the carbon nanohorn 16, or the alloy molded product
- Alloy fine particles obtained by finely pulverizing the alloy fine particles are supported on the surface of the carbon nanotube 15 or the carbon nanohorn 16 or the alloy fine particle laminated porous structure 20 is formed on the surface of the carbon nanotube 15 or the carbon nanohorn 16, and the alloy fine particles 19 or the alloy fine particles are formed.
- the lath structure 20 forms the fuel electrode 25 (electrode 10A or electrode 10B) or the air electrode 26 (electrode 10A or electrode 10B), the fuel electrode 25 or the air electrode 26 exhibits excellent catalytic activity (catalysis), Is efficiently decomposed into protons and electrons.
- the voltage (V) between the fuel electrode 25 and the air electrode 26 (between the electrodes 10A and 10B) was measured for 15 minutes after hydrogen gas injection.
- the horizontal axis represents the measurement time (min)
- the vertical axis represents the voltage between the electrodes (V).
- the distance between the fuel electrode 25 and the air electrode 26 is small. Was 1.04 (V) to 1.03 (V).
- FIG. 13 is a view for explaining the electrolysis of the hydrogen gas generator 37 using the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B.
- an example of a hydrogen gas generator 37 using the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B includes an anode 38 (anode) using the electrode 10A or the electrode 10B, and an electrode 10A or 10A.
- a cathode 39 (cathode) using the electrode 10B; a solid polymer electrolyte membrane 40 (electrode assembly membrane) (fluorine-based ion exchange membrane having a sulfonic acid group) interposed between the anode 38 and the cathode 39; A member 41 and a cathode power supply member 42, an anode water storage tank 43 and a cathode water storage tank 44, an anode main electrode 45 and a cathode main electrode 46 are formed.
- the hydrogen gas generator 37 supplies electricity to the anode 38 and the cathode 39 to cause an oxidation reaction at the anode 38 and a reduction reaction at the cathode 39 to chemically decompose water.
- the anode 38, the cathode 39, and the solid polymer electrolyte membrane 40 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 47 (Membrane Electrode Assembly, MEA). 47 is sandwiched between the anode power supply member 41 and the cathode power supply member 42.
- the solid polymer electrolyte membrane 40, the anode 38 (carbon nanotube electrodes 10A, 10B or carbon nanohorn electrodes 10A, 10B) and the cathode 39 (carbon nanotube electrodes 10A, 10B or carbon nanohorn electrodes 10A, 10B) are laminated by hot pressing.
- the anode power supply member 41 is located outside the anode 38 and is in close contact with the anode 38, and supplies a positive current to the anode 38.
- the anode water storage tank 43 is located outside the anode power supply member 41 and is in close contact with the anode power supply member 41.
- the anode main electrode 45 is located outside the anode water storage tank 43 and supplies a positive current to the anode power supply member 41.
- the cathode power supply member 42 is located outside the cathode 39 and is in close contact with the cathode 39, and supplies a negative current to the cathode 39.
- the cathode water storage tank 44 is located outside the cathode power supply member 42 and is in close contact with the cathode power supply member 42.
- the cathode main electrode 46 is located outside the cathode water reservoir 44 and supplies a negative current to the cathode power supply member 42.
- water H 2 O
- water H 2 O
- cathode water storage tank 44 As shown by arrows in FIG. A positive current is supplied, and a negative current is supplied to the cathode main electrode 46 from a power supply.
- the + current supplied to the anode main electrode 45 is supplied from the anode power supply member 41 to the anode 38 (anode), and the-current supplied to the cathode main electrode 46 is supplied from the cathode power supply member 42 to the cathode 39 (cathode). Is done.
- oxygen is generated by an anodic reaction (catalysis) of 2H 2 O ⁇ 4H + + 4e ⁇ + O 2
- cathode 39 carbon nanotube electrodes 10A, 10A, 10B
- hydrogen is generated by a cathode reaction (catalysis) of 4H + + 4e ⁇ ⁇ 2H 2 .
- Protons (hydrogen ions: H + ) move from the anode 38 to the cathode 39 through the solid polymer electrolyte membrane 40.
- Protons generated at the anode 38 flow through the solid polymer electrolyte membrane 40.
- At least three transition metals are selected from the transition metals such that the work function of the work functions of the at least three transition metals is close to the work function of the platinum group element, and the selected at least three transition metals are selected.
- the alloy fine particles 19 of an alloy molded product made from are supported on the surface of the carbon nanotube 15 or the carbon nanohorn 16, or the alloy fine particle laminated porous structure 20 is formed on the surface of the carbon nanotube 15 or the carbon nanohorn 16, or the alloy molded product.
- the alloy fine particles 19 of the alloy fine powder obtained by pulverizing the fine particles are supported on the surface of the carbon nanotubes 15 or the carbon nanohorns 16 or the alloy fine particle laminated porous structure 20 is formed on the surface of the carbon nanotubes 15 or the carbon nanohorns 16.
- the porous structure 20 forms the anode 38 (electrode 10A or electrode 10B) and the cathode 39 (electrode 10A or electrode 10B), the anode 38 and the cathode 39 exhibit excellent catalytic activity (catalytic action), and the hydrogen gas generator 37 , The electrolysis is performed efficiently, and a large amount of hydrogen gas is generated in a short time.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A was fired after compressing a transition metal fine powder mixture in which transition metal fine powders of at least three types of transition metals selected from various transition metals were uniformly mixed and dispersed.
- At least three types of transition metals formed from the 16 aggregates 18 so that the work function of the selected at least three types of transition metals is close to the work function of the platinum group element.
- the transition metal is selected, and the alloy fine particles 19 of the alloy molding are formed on the surface of the carbon nanotube 15 or on the surface thereof. Since the carbon nanohorn 16 is supported on the surface of the carbon nanohorn 16, the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A having the alloy fine particles 19 has substantially the same work function as the electrode containing the platinum group element, and is substantially equivalent to the electrode containing the platinum group element. It can exhibit the same catalytic activity (catalytic action) and can be suitably used as the electrode 10A of the fuel cell 24 or the hydrogen gas generator 37.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A has almost the same catalytic activity as the electrode 10A in which the alloy fine particles 19 are supported on the aggregate 17 of the carbon nanotube 15 or the aggregate 18 of the carbon nanohorn 16 (see FIG. 1). Since the electrode 10A is used in the fuel cell 24, sufficient electricity can be generated in the fuel cell 24, and sufficient electric energy is supplied to the load 36 connected to the fuel cell 24. By using the electrode 10A for the hydrogen gas generator 37, electrolysis can be performed efficiently, and the hydrogen gas generator 37 can generate a large amount of hydrogen gas in a short time.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is made of a transition metal fine powder mixture (alloy molded product) formed from transition metal fine powders of at least three types of transition metals selected from various transition metals, and is an expensive platinum group element. Is not used, and the electrode 10A can be manufactured at low cost.
- 10B can increase the specific surface area of the alloy fine particles 19 by forming the alloy fine particle laminated porous structure 20 on the surface of the carbon nanotubes 15 or the surface of the carbon nanohorn 16, and make full use of the catalytic action of the alloy fine particles 19.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B having the alloy fine particle laminated porous structure 20 has substantially the same work function as the electrode containing the platinum group element, It can exert electrode substantially the same catalytic activity containing gold group elements (catalysis), can be suitably used as an electrode of the fuel cell 24 and the hydrogen gas generator 37.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed of an aggregate 17 of carbon nanotubes 15 or an aggregate 18 of carbon nanohorns 16 to form an alloy fine particle laminated porous structure 20.
- the electrode 10B is substantially the same as an electrode containing a platinum group element. Since the electrode 10B exhibits an activity (catalysis), by using the electrode 10B for the fuel cell 24, sufficient electricity can be generated in the fuel cell 24 and sufficient electric energy can be supplied to the load 36 connected to the fuel cell 24. By using the electrode 10B for the hydrogen gas generator 37, the electrolysis can be performed efficiently, and the hydrogen gas generator 37 can generate a large amount of hydrogen gas in a short time. it can.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed of a transition metal fine powder mixture (alloy molded product) made of transition metal fine powder of at least three types of transition metals selected from various transition metals, and is an expensive platinum group element. Is not used, and the electrode 10B can be manufactured at low cost.
- the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B whose transition metal fine powder mixture (alloy fine powder 19 or alloy fine particle laminated porous structure 20) is mainly composed of Ni (nickel) fine powder have a work function of Ni. And at least two other transition metals excluding Ni fine powder from various transition metals such that the work function of the transition metal and the work function of at least two other transition metals other than Ni approximates the work function of the platinum group element. Since transition metal fine powders of transition metals are selected, the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B having the alloy fine particles 19 or the alloy fine particle laminated porous structure 20 are substantially the same as the electrodes containing a platinum group element. It has the same work function and has almost the same catalytic activity (catalysis) as an electrode containing a platinum group element. It can be volatilized and can be suitably used as an electrode of the fuel cell 24 and the hydrogen gas generator 37.
- the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B whose transition metal fine powder mixture (alloy fine powder 19 or alloy fine particle laminated porous structure 20) is mainly composed of Ni (nickel) fine powder are composed of platinum group elements. Since the electrodes 10A and 10B exhibit substantially the same catalytic activity (catalysis) as the electrodes included therein, by using the electrodes 10A and 10B for the fuel cell 24, sufficient electricity can be generated in the fuel cell 24 and connected to the fuel cell 24. Sufficient electric energy can be supplied to the loaded load 36, and by using the electrodes 10A and 10B for the hydrogen gas generator 37, the electrolysis can be performed efficiently, and a large amount of electricity can be supplied to the hydrogen gas generator 37.
- catalytic activity catalysis
- the carbon nanotube electrodes 10A, 10B or the carbon nanohorn electrodes 10A, 10B are made of at least two other types of transition metal fine powder mixture (alloy molded product) except Ni fine powder and Ni fine powder selected from various transition metals. And no transition metal fine powder of the transition metal, and no expensive platinum group element is used. Thus, the electrodes 10A and 10B can be manufactured at low cost.
- the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B whose transition metal fine powder mixture (alloy fine powder 19 or alloy fine particle laminated porous structure 20) is mainly composed of Fe (iron) fine powder have a work function of Fe. And at least two other transition metals excluding the fine powder of Fe from various transition metals so that the work function of the transition metal and the work function of at least two other transition metals other than Fe approximates the work function of the platinum group element. Since transition metal fine powders of transition metals are selected, the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B having the alloy fine particles 19 or the alloy fine particle laminated porous structure 20 are substantially the same as the electrodes containing a platinum group element. Has the same work function and exhibits almost the same catalytic activity (catalysis) as electrodes containing platinum group elements It is possible, it can be suitably used as an electrode of the fuel cell 24 and the hydrogen gas generator 37.
- the carbon nanotube electrodes 10A, 10B or the carbon nanohorn electrodes 10A, 10B whose transition metal fine powder mixture (alloy fine powder 19 or alloy fine particle laminated porous structure 29) is mainly composed of Fe (iron) fine powder are made of a platinum group element. Since the electrodes 10A and 10B exhibit substantially the same catalytic activity (catalysis) as the electrodes included therein, by using the electrodes 10A and 10B for the fuel cell 24, sufficient electricity can be generated in the fuel cell 24 and connected to the fuel cell 24. Sufficient electric energy can be supplied to the loaded load 36, and by using the electrodes 10A and 10B for the hydrogen gas generator 37, the electrolysis can be performed efficiently, and a large amount of electricity can be supplied to the hydrogen gas generator 37.
- catalytic activity catalysis
- the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B are made of at least two kinds of transition metal fine powder mixtures (alloy molded products) other than Fe fine powder and Fe fine powder selected from various transition metals. And no transition metal fine powder of the transition metal, and no expensive platinum group element is used. Thus, the electrodes 10A and 10B can be manufactured at low cost.
- the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B whose transition metal fine powder mixture (alloy fine powder 19 or alloy fine particle laminated porous structure 20) is mainly composed of Cu (copper) fine powder have a work function of Cu. And at least two other transition metals excluding the fine powder of Cu from various transition metals such that the work function of the transition metal and the work function of at least two other transition metals other than Cu approximates the work function of the platinum group element. Since transition metal fine powders of transition metals are selected, the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B having the alloy fine particles 19 or the alloy fine particle laminated porous structure 20 are substantially the same as the electrodes containing a platinum group element. Has the same work function and exhibits almost the same catalytic activity (catalysis) as electrodes containing platinum group elements It is possible, it can be suitably used as an electrode of the fuel cell 25 and the hydrogen gas generator 37.
- the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B whose transition metal fine powder mixture (alloy fine powder 19 or alloy fine particle laminated porous structure 20) is mainly composed of Cu (copper) fine powder are made of a platinum group element. Since the electrodes 10A and 10B exhibit substantially the same catalytic activity (catalysis) as the electrodes included therein, by using the electrodes 10A and 10B for the fuel cell 24, sufficient electricity can be generated in the fuel cell 24 and connected to the fuel cell 24. Sufficient electric energy can be supplied to the loaded load 36, and by using the electrodes 10A and 10B for the hydrogen gas generator 37, the electrolysis can be performed efficiently, and a large amount of electricity can be supplied to the hydrogen gas generator 37.
- catalytic activity catalysis
- the carbon nanotube electrodes 10A, 10B or the carbon nanohorn electrodes 10A, 10B are made of at least two other types of transition metal fine powder mixture (alloy molded product) except Cu fine powder and Cu fine powder selected from various transition metals. And no transition metal fine powder of the transition metal, and no expensive platinum group element is used. Thus, the electrodes 10A and 10B can be manufactured at low cost.
- FIG. 14 is a diagram illustrating a method of manufacturing the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B.
- the electrodes 10A and 10B are provided with a transition metal selection step S1, a transition metal fine powder mixture preparation step S2, a transition metal fine powder compressed product preparation step S3, an alloy molded product preparation step S4, and an alloy fine particle supporting step S5. It is manufactured by the electrode manufacturing method having the following. Note that an alloy fine powder preparation step S6 may be performed between the alloy molded product preparation step S4 and the alloy fine particle supporting step S5.
- the transition metal 48 is selected from various transition metals 48 so that the composite work function of the work functions of at least three types of transition metals 48 selected from the various transition metals 48 approximates the work function of the platinum group element.
- At least three types of transition metals 48 Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb ( Niobium), Mo (molybdenum), Ag (silver)).
- transition metal fine powder mixture 50 alloy fine particles 19 and the alloy fine particle laminated porous structure 20 mainly containing Ni (nickel), Cu (copper) and ZN (zinc) are used. ) Or Mn (manganese) and Mo (molybdenum).
- transition metal fine powder mixture 50 alloy fine particles 19 and alloy fine particle laminated porous structure 20 containing Fe (iron) as a main component, Ni (nickel) and Cu (copper) are selected, or Ti (titanium) and Ag are used. Select (Silver).
- transition metal fine powder mixture 50 alloy fine particles 19 and alloy fine particle laminated porous structure 20 containing Cu (copper) as a main component
- Fe (iron) and Zn (zinc) are selected, or Fe (iron) and Ag are used.
- Select (Silver) is used.
- a transition metal fine powder mixture 50 is prepared by uniformly mixing and dispersing transition metal fine powders 49 of at least three types of transition metals 48 selected in the transition metal selection step S1.
- the transition metal fine powder mixture preparing step S2 in the transition metal fine powder mixture 50 (alloy fine particles 19 and the alloy fine particle laminated porous structure 20) containing Ni (nickel) as a main component, Ni selected in the transition metal selecting step S1
- Ni selected in the transition metal selecting step S1 Each of Cu (copper) and ZN (zinc) is finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m by a fine pulverizer to produce a Ni fine powder 49, a Cu fine powder 49, and a Zn fine powder 49.
- the Ni fine powder 49, the Cu fine powder 49, and the Zn fine powder 49 are put into a mixer, and the Ni fine powder 49, the Cu fine powder 49, and the Zn fine powder 49 are stirred by the mixer.
- the mixture is mixed to form a transition metal fine powder mixture 50 in which the Ni fine powder 49, the Cu fine powder 49, and the Zn fine powder 49 are uniformly mixed and dispersed.
- each of Ni (nickel), Mn (manganese), and Mo (molybdenum) selected in the transition metal selection step S1 is finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m by a fine pulverizer, and the Ni fine powder 49, Mn , And a Mo fine powder 49 are prepared.
- the Ni fine powder 49, the Mn fine powder 49, and the Mo fine powder 49 are put into a mixer, and the Ni fine powder 49, the Mn fine powder 49, and the Mo fine powder 49 are stirred by the mixer.
- the mixture is mixed to form a transition metal fine powder mixture 50 in which the Ni fine powder 49, the Mn fine powder 49, and the Mo fine powder 49 are uniformly mixed and dispersed.
- transition metal fine powder mixture preparing step S2 in the transition metal fine powder mixture 50 (alloy fine particles 19 or alloy fine particle laminated porous structure 20) containing Fe (iron) as a main component, the Fe, Each of Ni (nickel) and Cu (copper) is finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m by a fine pulverizer to prepare a fine powder 49 of Fe, a fine powder 49 of Ni, and a fine powder 49 of Cu.
- the fine powder 49 of Fe, the fine powder 49 of Ni, and the fine powder 49 of Cu are put into a mixer, and the fine powder 48 of Fe, the fine powder 49 of Ni, and the fine powder 49 of Cu are stirred by the mixer.
- the mixture is mixed to form a transition metal fine powder mixture 50 in which the Fe fine powder 49, the Ni fine powder 49, and the Cu fine powder 49 are uniformly mixed and dispersed.
- each of Fe (iron), Ti (titanium), and Ag (silver) selected in the transition metal selection step S1 is finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m by a fine pulverizer, and the fine powder of Fe 49, Ti Of fine powder 49 and Ag fine powder 49 are prepared.
- the fine powder 49 of Fe, the fine powder 49 of Ti, and the fine powder 49 of Ag are charged into a mixer, and the fine powder 49 of Fe, the fine powder 49 of Ti, and the fine powder 49 of Ag are stirred by the mixer.
- the mixture is mixed to form a transition metal fine powder mixture 50 in which the fine Fe powder 49, the fine Ti powder 49, and the fine Ag powder 49 are uniformly mixed and dispersed.
- the Cu selected in the transition metal selecting step S1 is used.
- Each of Fe (iron) and Zn (zinc) is finely pulverized by a fine pulverizer to a particle size of 10 ⁇ m to 200 ⁇ m to prepare a fine powder 49 of Cu, a fine powder 49 of Fe, and a fine powder 49 of Zn.
- the Cu fine powder 49, the Fe fine powder 49, and the Zn fine powder 49 are put into a mixer, and the Cu fine powder 49, the Fe fine powder 49, and the Zn fine powder 49 are stirred by the mixer.
- the mixture is mixed to form a transition metal fine powder mixture 50 in which the Cu fine powder 49, the Fe fine powder 49, and the Zn fine powder 49 are uniformly mixed and dispersed.
- each of Cu (copper), Fe (iron) and Ag (silver) selected in the transition metal selection step S1 is finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m by a fine pulverizer, and the Cu fine powder 49, Fe Of fine powder 49 and Ag fine powder 49 are prepared.
- the Cu fine powder 49, the Fe fine powder 49, and the Ag fine powder 49 are put into a mixer, and the Cu fine powder 49, the Fe fine powder 49, and the Ag fine powder 49 are stirred by the mixer.
- the mixture is mixed to form a transition metal fine powder mixture 50 in which the Cu fine powder 49, the Fe fine powder 49, and the Ag fine powder 49 are uniformly mixed and dispersed.
- the transition metal fine powder mixture 50 produced in the transition metal fine powder mixture producing step S2 is pressurized at a predetermined pressure to compress the transition metal fine powder mixture 50 into a predetermined area and a predetermined thickness. Of compressed transition metal fine powder 51 is prepared.
- the transition metal fine powder compact creation step S3 the transition metal fine powder mixture 50 is put into a predetermined mold, and the transition metal fine powder compact 51 is produced by press working in which the mold is pressed (pressed) by a press machine.
- the press pressure (pressure) during the press working is in the range of 500 MPa to 800 MPa.
- the pressing pressure (pressure) is less than 500 MPa, the transition metal fine powder mixture 50 cannot be sufficiently compressed, and the transition metal fine powder compressed product 51 having a predetermined area and a predetermined thickness cannot be produced.
- the pressing pressure (pressure) exceeds 800 MPa, the hardness of the alloy molded product 52 produced in the alloy molded product making step S4 becomes unnecessarily high, and the alloy molded product 52 is smoothly evaporated in the alloy fine particle supporting step S5.
- the alloy fine powder 53 having the desired particle size cannot be produced in the alloy fine powder producing step S6.
- the transition metal fine powder compact 51 having a predetermined hardness can be produced by pressurizing (compressing) the transition metal fine powder mixture 50 at a pressure within the above range. Is fired to form an alloy molded product 52 having a predetermined hardness, the alloy molded product 52 can be smoothly evaporated, and the alloy molded product 52 is finely pulverized to produce an alloy fine powder 53 having a predetermined particle size. Can be.
- transition metal fine powder compact creation step S3 in the transition metal fine powder mixture 50 containing Ni (nickel) as a main component, Ni fine powder 49, Cu (copper) fine powder 49, ZN (zinc) fine powder 49 A predetermined amount of the transition metal fine powder mixture 50 obtained by mixing the transition metal fine powder mixture 50 is charged into a mold, and the transition metal fine powder mixture 50 is pressurized by press working to compress the transition metal fine powder mixture 50 and have a predetermined area and a predetermined thickness of the transition metal. The compressed powder 51 is made.
- a predetermined amount of a transition metal fine powder mixture 50 obtained by mixing Ni fine powder 49, Mn (manganese) fine powder 49, and Mo (molybdenum) fine powder 49 is charged into a mold, and the transition metal fine powder mixture is added.
- the transition metal fine-powder mixture 50 is compressed by pressing the transition metal fine-powder mixture 50 to produce a compressed transition metal fine-powder 51 having a predetermined area and a predetermined thickness.
- the transition metal fine powder mixture 50 mainly composed of Fe (iron) is 50 fine particles of Fe, 49 fine particles of Ni (nickel), and 50 fine particles of Cu (copper).
- a predetermined amount of the transition metal fine powder mixture 50 into which the body 49 is mixed is put into a mold, and the transition metal fine powder mixture 50 is pressed by press working to compress the transition metal fine powder mixture 50 to have a predetermined area and a predetermined thickness.
- a transition metal fine powder compact 51 is produced.
- a predetermined amount of a transition metal fine powder mixture 50 obtained by mixing Fe fine powder 48, Ti (titanium) fine powder 49, and Ag (silver) fine powder 49 is charged into a mold, and the transition metal fine powder mixture is added.
- the transition metal fine-powder mixture 50 is compressed by pressing the transition metal fine-powder mixture 50 to produce a compressed transition metal fine-powder 51 having a predetermined area and a predetermined thickness.
- the transition metal fine powder compact creation step S3 in the transition metal fine powder mixture 50 containing Cu (copper) as a main component, the Cu fine powder 49, the Fe (iron) fine powder 49, and the Zn (zinc) fine powder are used.
- a predetermined amount of the transition metal fine powder mixture 50 obtained by mixing the transition metal fine powder mixture 50 is charged into a mold, and the transition metal fine powder mixture 50 is pressed (compressed) by press working to compress the transition metal fine powder mixture 50 into a predetermined area.
- a compressed transition metal fine powder 51 having a predetermined thickness is produced.
- a predetermined amount of a transition metal fine powder mixture 50 obtained by mixing Cu fine powder 49, Fe (iron) fine powder 49, and Ag (silver) fine powder 49 is charged into a mold, and the transition metal fine powder mixture is added.
- the transition metal fine-powder mixture 50 is compressed by pressing the transition metal fine-powder mixture 50 to produce a compressed transition metal fine-powder 51 having a predetermined area and a predetermined thickness.
- the transition metal fine powder compact 51 produced in the transition metal fine powder compact production step S3 is put into a furnace (steam superheating furnace, electric furnace, or the like), and the transition metal fine powder compact 51 is placed. Is fired (sintered) at a predetermined temperature in a furnace to form an alloy molded article 52 having a porous structure in which a large number of fine channels (passage holes) having an opening diameter in a range of 1 ⁇ m to 100 ⁇ m are formed.
- the transition metal fine powder compact 51 is fired for a long time at a temperature at which at least two of the at least three transition metals 48 selected in the transition metal selection step S1 are melted. .
- the firing (sintering) time is 3 hours to 6 hours.
- the fine powder 49 of at least two types of transition metals 48 is melted, and the molten transition metal 48 is melted.
- the fine powder 49 of another transition metal 48 is joined (fixed).
- the transition metal fine powder compact 51 mainly composed of Ni (nickel), Ni fine powder 49, Cu (copper) fine powder 49, and ZN (zinc) fine powder 49 are mixed.
- the compressed transition metal fine powder mixture 50 obtained by compressing the transition metal fine powder mixture 50 is fired in a furnace for a long time to form a porous structure having a large number of fine channels (passage holes) having an opening diameter in the range of 1 ⁇ m to 100 ⁇ m.
- An alloy molding 52 is made.
- the transition metal is formed at a temperature at which the Zn and Cu fine powder 49 is melted (for example, 1100 ° C. to 1200 ° C.).
- the compressed fine powder 51 is fired (sintered), and the Ni fine powder 49 is joined (fixed) by the molten Zn and Cu fine powder 49.
- the transition metal fine powder compact 51 mainly composed of Ni (nickel) has a fine powder 49 of Ni, a fine powder 49 of Mn (manganese), and a fine powder of Mo (molybdenum).
- a transition metal fine powder mixture 51 obtained by compressing a transition metal fine powder mixture 50 mixed with 49 is fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 ⁇ m to 100 ⁇ m.
- An alloy molding 52 having a porous structure is produced.
- the transition metal is heated at a temperature (for example, 1460 ° C to 1500 ° C) at which the Mn and Ni fine powder 49 are melted.
- the compressed fine powder 51 is baked, and the Mo fine powder 49 is joined (fixed) by the molten Mn and Ni fine powder 49.
- the transition metal fine powder compact 51 mainly containing Fe (iron), the fine powder 49 of Fe, the fine powder 49 of Ni (nickel), and the fine powder 49 of Cu (copper) are mixed.
- a porous structure in which a transition metal fine powder compressed material 51 obtained by compressing the mixed transition metal fine powder mixture 50 is fired in a furnace for a long time to form a large number of fine flow passages (passage holes) having an opening diameter in a range of 1 ⁇ m to 100 ⁇ m.
- An alloy molded product 52 is made.
- the transition metal is heated at a temperature at which the Cu and Ni fine powder 49 is melted (for example, 1460 ° C to 1500 ° C).
- the compressed fine powder 51 is baked, and the fine powder 49 of Fe is joined (fixed) by the molten fine powder 49 of Cu and Ni.
- the compressed transition metal fine powder 51 mainly composed of Fe (iron), the fine powder 49 of Fe, the fine powder 49 of Ti (titanium), and the fine powder of Ag (silver) are used.
- a transition metal fine powder mixture 51 obtained by compressing a transition metal fine powder mixture 50 mixed with 49 is fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 ⁇ m to 100 ⁇ m.
- An alloy molding 52 having a porous structure is produced.
- the transition metal is formed at a temperature at which the fine powder 49 of Ag and Fe is melted (for example, 1540 ° C. to 1600 ° C.).
- the compressed fine powder 51 is baked, and the Ti fine powder 49 is joined (fixed) by the molten Ag and Fe fine powder 49.
- the transition metal fine powder compact 51 containing Cu (copper) as a main component includes a Cu fine powder 49, a Fe (iron) fine powder 49, and a Zn (zinc) fine powder 49.
- An alloy molded product 52 is made.
- the transition metal is formed at a temperature at which the Zn and Cu fine powder 49 is melted (for example, 1090 ° C. to 1200 ° C.).
- the compressed fine powder 51 is baked, and the fine powder 49 of Fe is bonded (fixed) by the fine powder 49 of Zn and Cu melted.
- the transition metal fine powder compact 51 containing Cu (copper) as a main component, the Cu fine powder 49, the Fe (iron) fine powder 49, and the Ag (silver) fine powder A transition metal fine powder mixture 51 obtained by compressing a transition metal fine powder mixture 50 mixed with 49 is fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 ⁇ m to 100 ⁇ m.
- An alloy molding 52 having a porous structure is produced.
- the transition metal is formed at a temperature at which the Ag and Cu fine powder 49 are melted (for example, 1090 ° C. to 1200 ° C.).
- the compressed fine powder 51 is baked, and the Fe fine powder 49 is joined (fixed) by the molten Ag and Cu fine powder 49.
- the alloy fine-particle supporting step S5 the alloy molded article 52 produced in the alloy molded article forming step S4 is evaporated by a laser evaporation method, and the alloy fine particles 19 of the alloy molded article 52 are deposited on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16. Carry it.
- the alloy fine particles 19 are carried on the surface of the carbon nanotube 15 in a state of being uniformly dispersed on the surface of the carbon nanotube 15, and are carried on the surface of the carbon nanohorn 16 in a state of being uniformly dispersed on the surface of the carbon nanohorn 16.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is produced.
- the carbon nanotube electrode 10A or the carbon nanohorn electrode 10A is formed into a thickness L1 in the range of 0.03 mm to 0.3 mm.
- carbon nanotubes 15 or carbon nanohorns 16 were formed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 13 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 by a laser evaporation method. Thereafter, the alloy molded product 52 is evaporated by a laser evaporation method, and the alloy fine particles 19 of the alloy molded product 52 are supported on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16, or on both surfaces (front and rear surfaces) of the metal electrode thin plate 13.
- the alloy molded article 52 is evaporated by laser evaporation to form the carbon nanotubes 15.
- Surface or carbon nanohoe 16 the surface of which may be carrying the alloy particles 19 of alloy molding 52.
- the alloy fine particle supporting step S5 the alloy molded product 52 produced in the alloy molded product forming step is evaporated by a laser evaporation method, and the alloy fine particles 19 of the alloy molded product 52 are formed on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16. Is carried, and an alloy fine particle laminated porous structure 20 is formed by the alloy fine particles 19 overlapping outward from the surface of the carbon nanotube 15 or the carbon nanohorn 16.
- the alloy fine particles 19 are supported on the surface of the carbon nanotubes 15 in a state of being uniformly dispersed on the surface of the carbon nanotubes 15 and overlap, and are supported on the surface of the carbon nanohorn 16 in a state of being uniformly dispersed on the surface of the carbon nanohorns 16 and overlap.
- an alloy fine particle laminated porous structure 20 is formed.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed by forming an alloy fine particle laminated porous structure 20 including a large number of alloy fine particles 19 on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed to have a thickness L1 in the range of 0.03 mm to 0.3 mm.
- the alloy fine particle laminated porous structure 20 As a method of forming the alloy fine particle laminated porous structure 20, carbon nanotubes 15 or carbon nanohorns 16 are formed on both surfaces (front and rear surfaces) of the metal electrode thin plate 13 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 by a laser evaporation method ( Thereafter, the alloy molded product 52 is evaporated by a laser evaporation method, and the alloy fine particles 19 of the alloy molded product 52 are supported on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16 to form the alloy fine particle laminated porous structure 20.
- Alloy molded article 52 by the method Evaporated may form a alloy particle laminated porous structure 20 to the surface or surfaces of the carbon nanohorn 16 of carbon nanotubes 15 by supporting alloy particles 19 of alloy molding 52.
- the alloy 52 is finely pulverized to a particle size of 10 ⁇ m to 200 ⁇ m by a fine pulverizer to produce an alloy fine powder 53.
- a transition metal fine powder compressed product 51 obtained by compressing the dispersed transition metal fine powder mixture 50 is fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized by a pulverizer to a particle size of 10 ⁇ m to 200 ⁇ m. It is finely pulverized.
- Another example of the alloy fine powder 53 mainly composed of Ni (nickel) is a transition metal fine powder mixture 50 in which Ni fine powder 48, Mn fine powder 49, and Mo fine powder 49 are uniformly mixed and dispersed.
- the alloy fine powder 53 mainly containing Fe (iron) (an alloy fine powder mainly containing Fe), a fine powder 49 of Fe, a fine powder 49 of Ni, and a fine powder 49 of Cu are uniformly mixed.
- a transition metal fine powder compressed product 51 obtained by compressing the dispersed transition metal fine powder mixture 50 is fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized by a pulverizer to a particle size of 10 ⁇ m to 200 ⁇ m. It is finely pulverized.
- the alloy fine powder 53 containing Fe (iron) as a main component is a transition metal fine powder mixture 50 obtained by uniformly mixing and dispersing a fine powder 49 of Fe, a fine powder 49 of Ti, and a fine powder 49 of Ag.
- This is a finely pulverized product in which an alloy molded product 52 is formed by firing a transition metal fine powder compressed product 51 obtained by compressing the above-mentioned powder, and the alloy molded product 52 is finely pulverized by a pulverizer into a particle size of 10 ⁇ m to 200 ⁇ m.
- an alloy fine powder 53 containing Cu (copper) as a main component an alloy fine powder containing Cu as a main component
- a Cu fine powder 49, a Fe fine powder 49, and a Zn fine powder 49 are uniformly mixed.
- a transition metal fine powder compressed product 51 obtained by compressing the dispersed transition metal fine powder mixture 50 is fired to form an alloy molded product 52, and the alloy molded product 52 is finely pulverized by a pulverizer to a particle size of 10 ⁇ m to 200 ⁇ m. It is finely pulverized.
- the alloy fine powder 53 containing Cu (copper) as a main component is a transition metal fine powder mixture 50 in which Cu fine powder 49, Fe fine powder 49, and Ag fine powder 49 are uniformly mixed and dispersed.
- This is a finely pulverized product in which an alloy molded product 52 is formed by firing a transition metal fine powder compressed product 51 obtained by compressing the above-mentioned powder, and the alloy molded product 52 is finely pulverized by a pulverizer into a particle size of 10 ⁇ m to 200 ⁇ m.
- the alloy fine powder 53 formed in the alloy fine powder forming step S6 is evaporated by a laser evaporation method, and the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16 is formed.
- the alloy fine particles 53 of the alloy fine powder 53 are supported on the substrate.
- the alloy fine particles 19 are carried on the surface of the carbon nanotube 15 in a state of being uniformly dispersed on the surface of the carbon nanotube 15, and are carried on the surface of the carbon nanohorn 16 in a state of being uniformly dispersed on the surface of the carbon nanohorn 16.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is produced.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed into a thickness L1 in the range of 0.03 mm to 0.3 mm.
- carbon nanotubes 15 or carbon nanohorns 16 were formed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 13 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 by a laser evaporation method. Thereafter, the alloy fine powder 53 is evaporated by a laser evaporation method, and the alloy fine powder 19 of the alloy fine powder 53 is carried on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16, or on both surfaces (front and rear surfaces) of the metal electrode thin plate 13.
- the alloy fine powder 53 is evaporated by laser evaporation to form the carbon nanotubes 15.
- Surface or carbon nanohoe 16 the surface of which may be carrying the alloy particles 19 of the alloy fine powder 53.
- the alloy fine powder 53 produced in the alloy fine powder preparation step S6 is evaporated by a laser evaporation method, and the alloy fine particles of the alloy fine powder 53 are formed on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16.
- An alloy fine particle laminated porous structure 20 is formed by the alloy fine particles 19 superposed outward from the surface of the carbon nanotubes 15 or the carbon nanohorns 16 while supporting 19.
- the alloy fine particles 19 are supported on the surface of the carbon nanotubes 15 in a state of being uniformly dispersed on the surface of the carbon nanotubes 15 and overlap, and are supported on the surface of the carbon nanohorn 16 in a state of being uniformly dispersed on the surface of the carbon nanohorns 16 and overlap.
- an alloy fine particle laminated porous structure 20 is formed.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed by forming an alloy fine particle laminated porous structure 20 including a large number of alloy fine particles 19 on the surface of the carbon nanotube 15 or the surface of the carbon nanohorn 16.
- the carbon nanotube electrode 10B or the carbon nanohorn electrode 10B is formed to have a thickness in the range of 0.03 mm to 0.3 mm.
- carbon nanotubes 15 or carbon nanohorns 16 are formed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 13 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 14 by a laser evaporation method.
- the alloy fine powder 53 is evaporated by the laser evaporation method, and the alloy fine particles 19 of the alloy fine powder 53 are supported on the surface of the carbon nanotubes 15 or the surface of the carbon nanohorn 16 to form the alloy fine particle laminated porous structure 20.
- the laser evaporation method is used.
- Alloy fine powder 53 Is allowed, there is a case where the surface or surfaces of the carbon nanohorn 16 of carbon nanotubes 15 by supporting the alloy particles 19 of the alloy fine powder 53 to form the alloy particle laminated porous structure 20.
- the electrode manufacturing method includes at least three of the various transition metals 48 such that the composite work function of the work functions of at least three types of transition metals 48 selected from the various transition metals 48 is close to the work function of the platinum group element.
- An alloy molding 52 is formed by firing the transition metal fine powder compact 51 produced in the transition metal fine powder compact producing process at a predetermined temperature to form an alloy molded product 52. And forming the carbon nanotubes 15 or carbon nanohorns 16, and evaporating the alloy moldings 52 formed in the alloy molding making step to form alloy fine particles of the alloy moldings 52 on the surface of the carbon nanotubes 15 or the surface of the carbon nanohorns 16. Since the carbon nanotube electrodes 10A and 10B or the carbon nanohorn electrodes 10A and 10B can be manufactured by the steps of supporting the alloy fine particles for supporting the metal particles 19, the platinum-less electrodes 10A and 10B that do not use the platinum group element are manufactured at low cost. Platinum that can use the catalyst function sufficiently and reliably and has excellent catalytic activity (catalysis) and can be suitably used for the fuel cell 24 and the hydrogen gas generator 37 Electrodes 10A and 10B can be manufactured at low cost.
- the electrode manufacturing method is such that carbon nanotubes 15 or carbon nanohorns 16 are fixed to both surfaces (front and rear surfaces) of the metal electrode thin plate 13 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 14, and alloy fine particles are attached to the surface of the carbon nanotube 15 or carbon nanohorn 16.
- a carbon nanotube electrode 10A, 10B having a thickness L1 of 0.03 mm to 0.3 mm in which a laminated porous structure 20 in which an alloy fine particle 19 is laminated on the surface of the carbon nanotube 15 or carbon nanohorn 16 is supported.
- the carbon nanohorn electrodes 10A and 10B can be made, the electric resistance of the electrodes 10A and 10B can be reduced, current flows smoothly to the electrodes 10A and 10B, and sufficient electricity can be generated in the fuel cell 24. Possible and fuel cell 24
- the electrodes 10A and 10B capable of supplying sufficient electric energy to the connected load 36 can be manufactured, and the electrolysis can be efficiently performed in the hydrogen gas generator 37.
- the electrodes 10A and 10B capable of generating a large amount of hydrogen gas in a short time can be manufactured at low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inert Electrodes (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Abstract
【課題】白金族元素を利用することなく廉価に作ることができ、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができるカーボンナノチューブ電極提供する。 【解決手段】カーボンナノチューブ電極10Aは、各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体とを含む。遷移金属微粉体混合物では、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択されている。カーボンナノチューブ電極10Aでは、アロイ微粒子がカーボンナノチューブの表面に担持されている。
Description
本発明は、アノード又はカソードとして使用するカーボンナノチューブ電極又はカーボンナノホーン電極に関するとともに、アノード又はカソードとして使用するカーボンナノチューブ電極又はカーボンナノホーン電極を製造する電極製造方法に関する。
燃料電池用膜電極接合体に用いられる触媒電極として、白金を担持させたカーボンナノチューブを用いる燃料電池の製造方法が開示されている(特許文献1参照)。この製造方法は、複数のカーボンナノチューブを基板の表面に対して垂直に成長させた後、カーボンナノチューブに触媒金属塩溶液を滴下して乾燥・焼成還元することにより、複数のカーボンナノチューブに触媒金属(白金触媒)を担持させたカーボンナノチューブ電極を製造する。
前記特許文献1に開示のカーボンナノチューブ電極はカーボンナノチューブに白金を担持させているが、白金族元素は貴金属であり、その生産量に限りがある希少な資源であることから、その使用量を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金以外の金属を利用した白金レス触媒を有する廉価なカーボンナノチューブ電極の開発が求められている。
本発明の目的は、白金族元素を利用することなく、廉価に作ることができ、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができるカーボンナノチューブ電極又はカーボンナノホーン電極及びその電極の電極製造方法を提供することにある。本発明の他の目的は、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、水素ガス発生装置において電気分解を効率よく行うことができ、多量の水素ガスを発生させることができるカーボンナノチューブ電極又はカーボンナノホーン電極及びその電極の電極製造方法を提供することにある。
前記課題を解決するための本発明の第1の前提は、アノード又はカソードとして使用するカーボンナノチューブ電極又はカーボンナノホーン電極である。
前記第1の前提における本発明の電極の特徴は、カーボンナノチューブ電極又はカーボンナノホーン電極が、各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体又はカーボンナノホーンの凝集体とを含み、遷移金属微粉体混合物では、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、カーボンナノチューブ電極又はカーボンナノホーン電極では、アロイ微粒子がカーボンナノチューブの表面又はカーボンナノホーンの表面に担持されていることにある。
本発明の電極の一例として、カーボンナノチューブの表面又はカーボンナノホーンの表面には、カーボンナノチューブ又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造が形成されている。
本発明の電極の他の一例としては、遷移金属微粉体の粒径が10μm~200μmの範囲にあり、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法が0.03mm~0.3mmの範囲にある。
本発明の電極の他の一例としては、遷移金属微粉体混合物がNi(ニッケル)の微粉体を主成分とし、遷移金属微粉体混合物では、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている。
本発明の電極の他の一例としては、遷移金属微粉体混合物の全重量に対するNi(ニッケル)の微粉体の重量比が30%~50%の範囲にあり、Niの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%~50%の範囲にあり、Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%~20%の範囲にある。
本発明の電極の他の一例としては、遷移金属微粉体混合物がFe(鉄)の微粉体を主成分とし、遷移金属微粉体混合物では、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている。
本発明の電極の他の一例としては、遷移金属微粉体混合物の全重量に対するFe(鉄)の微粉体の重量比が30%~50%の範囲にあり、Feの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%~50%の範囲にあり、Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%~20%の範囲にある。
本発明の電極の他の一例としては、遷移金属微粉体混合物がCu(銅)の微粉体を主成分とし、遷移金属微粉体混合物では、Cuの仕事関数と該Cuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている。
本発明の電極の他の一例としては、遷移金属微粉体混合物の全重量に対するCu(銅)の微粉体の重量比が30%~50%の範囲にあり、Cuの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%~50%の範囲にあり、Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%~20%の範囲にある。
本発明の電極の他の一例として、アロイ成形物では、選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が遷移金属微粉体混合物の焼成時に溶融し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体が接合されている。
前記課題を解決するための本発明の第2の前提は、アノード又はカソードとして使用するカーボンナノチューブ電極又はカーボンナノホーン電極を製造する電極製造方法である。
前記第2の前提における本発明の電極製造方法の特徴は、電極製造方法が、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を作る遷移金属微粉体混合物作成工程と、遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を所定圧力で加圧して遷移金属微粉体圧縮物を作る遷移金属微粉体圧縮物作成工程と、遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物を所定温度で焼成してアロイ成形物を作るアロイ成形物作成工程と、カーボンナノチューブ又はカーボンナノホーンを生成し、アロイ成形物作成工程によって作られたアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を担持させるアロイ微粒子担持工程とを有することにある。
本発明の電極製造方法の一例としては、アロイ微粒子担持工程がカーボンナノチューブ又はカーボンナノホーンの生成と同時にアロイ成形物を蒸発させ、アロイ成形物のアロイ微粒子をカーボンナノチューブの表面又はカーボンナノホーンの表面に担持させる。
本発明の電極製造方法の他の一例としては、遷移金属微粉体混合物作成工程が遷移金属選択工程によって選択された少なくとも3種類の遷移金属を10μm~200μmの粒径に微粉砕する。
本発明の電極製造方法の他の一例としては、遷移金属微粉体圧縮物作成工程が遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を500Mpa~800Mpaの圧力で加圧して遷移金属微粉体圧縮物を作る。
本発明の電極製造方法の他の一例としては、アロイ成形物作成工程が遷移金属選択工程によって選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体を溶融させる温度で遷移金属微粉体圧縮物を焼成し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体を接合する。
本発明に係るカーボンナノチューブ電極又はカーボンナノホーン電極によれば、それが各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体又はカーボンナノホーンの凝集体とを含み、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、アロイ成形物のアロイ微粒子がカーボンナノチューブの表面又はカーボンナノホーンの表面に担持されているから、アロイ微粒子を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、遷移金属微粉体混合物(アロイ成形物)が各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体から形成され、高価な白金族元素が利用されていない白金レスであり、電極を廉価に作ることができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、それが白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
カーボンナノチューブ又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造がカーボンナノチューブの表面又はカーボンナノホーンの表面に形成されているカーボンナノチューブ電極又はカーボンナノホーン電極は、カーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子積層ポーラス構造を形成することで、アロイ微粒子の比表面積を大きくすることができ、アロイ微粒子の触媒作用を十分に利用することができるとともに、アロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、アロイ微粒子積層ポーラス構造を形成した電極が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体の粒径が10μm~200μmの範囲にあり、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法が0.03mm~0.3mmの範囲にあるカーボンナノチューブ電極又はカーボンナノホーン電極は、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法を前記範囲にすることで、電極の電気抵抗を小さくすることができ、電極に電流をスムースに流すことができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、電流がスムースに流れるから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体混合物がNi(ニッケル)の微粉体を主成分とし、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているカーボンナノチューブ電極又はカーボンナノホーン電極は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているから、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、遷移金属微粉体混合物(アロイ成形物)がNiの微粉体と各種の遷移金属から選択されたNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体とから形成され、高価な白金族元素が利用されていない白金レスであり、電極を廉価に作ることができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体混合物の全重量に対するNi(ニッケル)の微粉体の重量比が30%~50%の範囲にあり、Niの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%~50%の範囲にあり、Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%~20%の範囲にあるカーボンナノチューブ電極又はカーボンナノホーン電極は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているとともに、Niの微粉体の重量比やNiの微粉体を除く少なくとも1種類の遷移金属の遷移金属微粉体の重量比、Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の重量比を前記範囲にすることで、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体混合物がFe(鉄)の微粉体を主成分とし、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているカーボンナノチューブ電極又はカーボンナノホーン電極は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているから、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、遷移金属微粉体混合物(アロイ成形物)がFeの微粉体と各種の遷移金属から選択されたFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体とから形成され、高価な白金族元素が利用されていない白金レスであり、電極を廉価に作ることができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体混合物の全重量に対するFe(鉄)の微粉体の重量比が30%~50%の範囲にあり、Feの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%~50%の範囲にあり、Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%~20%の範囲にあるカーボンナノチューブ電極又はカーボンナノホーン電極は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているとともに、Feの微粉体の重量比やFeの微粉体を除く少なくとも1種類の遷移金属の遷移金属微粉体の重量比、Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の重量比を前記範囲にすることで、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体混合物がCu(銅)の微粉体を主成分とし、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているカーボンナノチューブ電極又はカーボンナノホーン電極は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているから、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、遷移金属微粉体混合物(アロイ成形物)がCuの微粉体と各種の遷移金属から選択されたCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体とから形成され、高価な白金族元素が利用されていない白金レスであり、電極を廉価に作ることができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
遷移金属微粉体混合物の全重量に対するCu(銅)の微粉体の重量比が30%~50%の範囲にあり、Cuの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%~50%の範囲にあり、Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%~20%の範囲にあるカーボンナノチューブ電極又はカーボンナノホーン電極は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているとともに、Cuの微粉体の重量比やCuの微粉体を除く少なくとも1種類の遷移金属の遷移金属微粉体の重量比、Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の重量比を前記範囲にすることで、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
アロイ成形物において、選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が遷移金属微粉体混合物の焼成時に溶融し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体が接合されているカーボンナノチューブ電極又はカーボンナノホーン電極は、遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が溶融することでアロイ成形物を作ることができるとともに、アロイ成形物のアロイ微粒子を作ることができ、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。カーボンナノチューブ電極又はカーボンナノホーン電極は、アロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
本発明に係る電極製造方法によれば、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を作る遷移金属微粉体混合物作成工程と、遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を所定圧力で加圧して遷移金属微粉体圧縮物を作る遷移金属微粉体圧縮物作成工程と、遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物を所定温度で焼成してアロイ成形物を作るアロイ成形物作成工程と、カーボンナノチューブ又はカーボンナノホーンを生成し、アロイ成形物作成工程によって作られたアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を担持させるアロイ微粒子担持工程との各工程によってカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができるから、白金族元素を利用しない白金レスの電極を廉価に作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して燃料電池や水素ガス発生装置に好適に使用することが可能な白金レスの電極を作ることができる。
アロイ微粒子担持工程がカーボンナノチューブ又はカーボンナノホーンの生成と同時にアロイ成形物を蒸発させ、アロイ成形物のアロイ微粒子をカーボンナノチューブの表面又はカーボンナノホーンの表面に担持させる電極製造方法は、カーボンナノチューブ又はカーボンナノホーンを生成しつつアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を担持させるから、カーボンナノチューブの表面やカーボンナノホーンの表面にアロイ微粒子を均一に分散させた状態で担持させることができ、カーボンナノチューブやカーボンナノホーンの表面にアロイ微粒子を均一に担持させた白金レスの電極を廉価に作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して燃料電池や水素ガス発生装置に好適に使用することが可能な白金レスの電極を作ることができる。
遷移金属微粉体混合物作成工程が遷移金属選択工程によって選択された少なくとも3種類の遷移金属を10μm~200μmの粒径に微粉砕する電極製造方法は、遷移金属を前記範囲の粒径に微粉砕することでアロイ成形物を作ることができるとともに、アロイ成形物のアロイ微粒子を担持させたアロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して燃料電池や水素ガス発生装置に好適に使用することが可能な白金レスの電極を作ることができる。
遷移金属微粉体圧縮物作成工程が遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を500Mpa~800Mpaの圧力で加圧して遷移金属微粉体圧縮物を作る電極製造方法は、遷移金属微粉体混合物を前記範囲の圧力で加圧(圧縮)することで、遷移金属微粉体圧縮物を作ることができ、その遷移金属微粉体圧縮物を焼成してアロイ成形物を作ることができるとともに、アロイ成形物のアロイ微粒子を担持させたアロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して燃料電池や水素ガス発生装置に好適に使用することが可能な白金レスの電極を作ることができる。
アロイ成形物作成工程が遷移金属選択工程によって選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体を溶融させる温度で遷移金属微粉体圧縮物を焼成し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体を接合する電極製造方法は、遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が溶融することでアロイ成形物を作ることができ、アロイ成形物のアロイ微粒子を担持させたアロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができるとともに、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して燃料電池や水素ガス発生装置に好適に使用することが可能な白金レスの電極を作ることができる。
アロイ微粒子担持工程がカーボンナノチューブ電極又はカーボンナノホーン電極を0.03mm~0.3mmの範囲の厚み寸法に成形し、カーボンナノチューブ又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造を形成する電極製造方法は、アロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子積層ポーラス構造を形成することができ、アロイ粉体の比表面積を大きくしたアロイ粉体積層ポーラス構造物を有する白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。電極製造方法は、電極の厚み寸法を前記範囲にすることで、電極の電気抵抗を小さくすることができ、電流をスムースに流すことが可能な白金レスの電極を作ることができる。
一例として示すカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bの斜視図である図1等の添付の図面を参照し、本発明に係るカーボンナノチューブ電極又はカーボンナノホーン電極の詳細を説明すると、以下のとおりである。なお、図2は、一例として示すカーボンナノチューブ電極10A又はカーボンナノホーン電極10Aの部分拡大正面図であり、図3は、アロイ微粒子19を担持した一例として示すカーボンナノチューブ15の概念図である。図4は、アロイ微粒子19を担持した一例として示すカーボンナノホーン16の概念図である。図1では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。
カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aは、アノード(陽極)又はカソード(陰極)として使用され、燃料電池24の電極10A(触媒)(図10参照)や水素ガス発生装置37の電極10A(触媒)(図13参照)として利用される。カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aは、前面11及び後面12を有するとともに、所定面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。なお、カーボンナノチューブ電極10A又はカーボンナノホーン電極10A(カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bを含む)の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。
カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aは、アロイ成形物52(合金成形物)のアロイ微粒子19(合金微粒子)と、所定面積の金属電極薄板13又は所定面積のカーボン電極薄板14と、金属電極薄板13又はカーボン電極薄板14と、所定面積のカーボンナノチューブ15の凝集体17(凝集板)又は所定面積のカーボンナノホーン16の凝集体18(凝集板)とから形成されている。アロイ成形物52(合金成形物)(図14参照)は、粉状に加工(微粉砕)された各種の遷移金属48から選択された少なくとも3種類の遷移金属48の遷移金属微粉体49を均一に混合・分散した遷移金属微粉体混合物50(図14参照)を圧縮した後に焼成(焼結)することから作られている。
なお、アロイ成形物52(合金成形物)を微粉砕して粒径が10μm~200μmのアロイ微粉体53(合金微粉体)(図14参照)とし、カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aがアロイ微粉体53のアロイ微粒子19(合金微粒子)と、所定面積の金属電極薄板13又は所定面積のカーボン電極薄板14と、所定面積のカーボンナノチューブ15の凝集体17(凝集板)又は所定面積のカーボンナノホーン16の凝集体18(凝集板)とから形成される場合がある。
遷移金属48としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属48の遷移金属微粉体49には、粉状に加工(微粉砕)されたTi(チタン)微粉体、粉状に加工(微粉砕)されたCr(クロム)微粉体、粉状に加工(微粉砕)されたMn(マンガン)微粉体、粉状に加工(微粉砕)されたFe(鉄)微粉体、粉状に加工(微粉砕)されたCo(コバルト)微粉体、粉状に加工(微粉砕)されたNi(ニッケル)微粉体、粉状に加工(微粉砕)されたCu(銅)微粉体、粉状に加工(微粉砕)されたZn(亜鉛)微粉体、粉状に加工(微粉砕)されたNb(ニオブ)微粉体、粉状に加工(微粉砕)されたMo(モリブデン)微粉体、粉状に加工されたAg(銀)微粉体が使用される。
Tiの微粉体(粉状に加工(微粉砕)されたTi)やCrの微粉体(粉状に加工(微粉砕)されたCr)、Mnの微粉体(粉状に加工(微粉砕)されたMn)、Feの微粉体(粉状に加工(微粉砕)されたFe)、Coの微粉体(粉状に加工(微粉砕)されたCo)、Niの微粉体(粉状に加工(微粉砕)されたNi)、Cuの微粉体(粉状に加工(微粉砕)されたCu)、Znの微粉体(粉状に加工(微粉砕)されたZn)、Nbの微粉体(粉状に加工(微粉砕)されたNb)、Moの微粉体(粉状に加工(微粉砕)されたMo)、Agの微粉体(粉状に加工(微粉砕)されたAg)は、それらの粒径が10μm~200μmの範囲にある。
遷移金属微粉体混合物50(アロイ成形物52)では、選択された少なくとも3種類の遷移金属48の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属48の中から少なくとも3種類の遷移金属48が選択されている。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Cuの仕事関数は、5.10(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。なお、白金の仕事関数は、5.65(eV)である。
遷移金属微粉体混合物50の一例としては、粉状に加工(微粉砕)されたNi(ニッケル)の微粉体を主成分とし、Niの微粉体とNiを除く粉状に加工(微粉砕)されたその他の少なくとも2種類の遷移金属48(粉状のTi(チタン)、粉状のCr(クロム)、粉状のMn(マンガン)、粉状のFe(鉄)、粉状のCo(コバルト)、粉状のCu(銅)、粉状のZn(亜鉛)、粉状のNb(ニオブ)、粉状のMo(モリブデン)、粉状のAg(銀)のうちの少なくとも2種類)の遷移金属微粉体49とを均一に混合・分散した遷移金属微粉体混合物50である。
主成分となるNi(ニッケル)の微粉体とNiを除く他の少なくとも2種類の遷移金属48の遷移金属微粉体49とを混合した遷移金属微粉体混合物50は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属48の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属48の中からNiの微粉体を除く他の少なくとも2種類の遷移金属48の遷移金属微粉体49が選択されている。
Niの微粉体を主成分としたアロイ成形物52では、選択された遷移金属48のうちの少なくとも2種類の遷移金属48の遷移金属微粉体49が遷移金属微粉体混合物50の焼成時に溶融し、溶融した遷移金属48の遷移金属微粉体49をバインダーとしてそれら遷移金属48の遷移金属微粉体49が接合されている。なお、Niを主成分としたアロイ成形物52を微粉砕して作られたアロイ微粉体53は、Niの微粉体を主成分とした遷移金属微粉体混合物50を圧縮した後に焼成することから作られたアロイ成形物53を微粉砕した粒径が10μm~200μmの微粉砕物である。
Ni(ニッケル)の微粉体を主成分とした遷移金属微粉体混合物50では、遷移金属微粉体混合物50の全重量に対するNiの微粉体の重量比が30%~50%の範囲にあり、Niの微粉体を除く1種類の遷移金属48の遷移金属微粉体49(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの少なくとも1種類)の遷移金属微粉体混合物50の全重量に対する重量比が20%~50%の範囲にあり、Niの微粉体を除く他の少なくとも1種類の遷移金属48の遷移金属微粉体49(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの他の少なくとも1種類)の遷移金属微粉体混合物50の全重量に対する重量比が3%~20%の範囲にある。
Ni(ニッケル)を主成分としたアロイ成形物52の具体例としては、Niの微粉体、Cuの微粉体、ZNの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成したアロイ成形物52である。また、Niを主成分としたアロイ微粉体52(Niを主成分とした合金微粉体)の具体例としては、Niの微粉体、Cuの微粉体、ZNの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
このアロイ成形物52(アロイ微粉体)は、遷移金属微粉体混合物50の全重量に対するNiの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するCuの微粉体の重量比が42%、遷移金属微粉体混合物50の全重量に対するZnの微粉体の重量比が10%である。Niの融点が1455℃、Cuの融点が1084.5℃、Znの融点が419.85℃であるから、Znの微粉体及びCuの微粉体が溶融し、溶融したZn及びCuの微粉体がバインダーとなってNiの微粉体を接合している。
Ni(ニッケル)を主成分としたアロイ成形物の他の具体例としては、Niの微粉体、Mnの微粉体、Moの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成したアロイ成形物52である。また、Niを主成分としたアロイ微粉体52(Niを主成分とした合金微粉体)の他の具体例としては、Niの微粉体、Mnの微粉体、Moの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
このアロイ成形物52(アロイ微粉体)は、遷移金属微粉体混合物50の全重量に対するNiの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するMnの微粉体の重量比が7%、遷移金属微粉体混合物50の全重量に対するMoの微粉体の重量比が45%である。Niの融点が1455℃、Mnの融点が1246℃、Moの融点が2623℃であるから、Mnの微粉体及びNiの微粉体が溶融し、溶融したMn及びNiの微粉体がバインダーとなってMoの微粉体を接合している。
遷移金属微粉体混合物50の他の一例としては、粉状に加工(微粉砕)されたFe(鉄)の微粉体を主成分とし、Feの微粉体とFeを除く粉状に加工(微粉砕)されたその他の少なくとも2種類の遷移金属48(粉状のTi(チタン)、粉状のCr(クロム)、粉状のMn(マンガン)、粉状のCo(コバルト)、粉状のNi(ニッケル)、粉状のCu(銅)、粉状のZn(亜鉛)、粉状のNb(ニオブ)、粉状のMo(モリブデン)、粉状のAg(銀)のうちの少なくとも2種類)の遷移金属微粉体49とを均一に混合・分散した遷移金属微粉体混合物50である。
主成分となるFe(鉄)の微粉体とFeを除く他の少なくとも2種類の遷移金属48の遷移金属微粉体49とを混合した遷移金属微粉体混合物50は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属48の中からFeの微粉体を除く他の少なくとも2種類の遷移金属48の遷移金属微粉体49が選択されている。
Feの微粉体を主成分としたアロイ成形物52では、選択された遷移金属48のうちの少なくとも2種類の遷移金属48の遷移金属微粉体49が遷移金属微粉体混合物49の焼成時に溶融し、溶融した遷移金属48の遷移金属微粉体49をバインダーとしてそれら遷移金属48の遷移金属微粉体49が接合されている。なお、Feを主成分としたアロイ成形物52を微粉砕して作られたアロイ微粉体53は、Feの微粉体を主成分とした遷移金属微粉体混合物50を圧縮した後に焼成することから作られたアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
Fe(鉄)の微粉体を主成分とした遷移金属微粉体混合物50では、遷移金属微粉体混合物50の全重量に対するFeの微粉体の重量比が30%~50%の範囲にあり、Feの微粉体を除く1種類の遷移金属48の遷移金属微粉体49(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの少なくとも1種類)の遷移金属微粉体混合物50の全重量に対する重量比が20%~50%の範囲にあり、Feの微粉体を除く他の少なくとも1種類の遷移金属48の遷移金属微粉体49(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの他の少なくとも1種類)の遷移金属微粉体混合物50の全重量に対する重量比が3%~20%の範囲にある。
Fe(鉄)を主成分としたアロイ成形物52の具体例としては、Feの微粉体、Niの微粉体、Cuの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成したアロイ成形物52である。また、Fe(鉄)を主成分としたアロイ微粉体52(Feを主成分とした合金微粉体)の具体例としては、Feの微粉体、Niの微粉体、Cuの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
このアロイ成形物52(アロイ微粉体)は、遷移金属微粉体混合物50の全重量に対するFeの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するNiの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するCuの微粉体の重量比が4%である。Feの融点が1536℃、Niの融点が1455℃、Cuの融点が1084.5℃であるから、Cuの微粉体及びNiの微粉体が溶融し、溶融したCu及びNiの微粉体がバインダーとなってFeの微粉体を接合している。
Fe(鉄)を主成分としたアロイ成形物52の他の具体例としては、Feの微粉体、Tiの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成したアロイ成形物52である。また、Feを主成分としたアロイ微粉体53(Feを主成分とした合金微粉体)の他の具体例としては、Feの微粉体、Tiの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
このアロイ成形物52(アロイ微粉体)は、遷移金属微粉体混合物50の全重量に対するFeの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するTiの微粉体の重量比が46%、遷移金属微粉体混合物50の全重量に対するAgの微粉体の重量比が6%である。Feの融点が1536℃、Tiの融点が1666℃、Agの融点が961.93℃であるから、Agの微粉体及びFeの微粉体が溶融し、溶融したAg及びFeの微粉体がバインダーとなってTiの微粉体を接合している。
遷移金属微粉体混合物50の他の一例としては、粉状に加工(微粉砕)されたCu(銅)の微粉体を主成分とし、Cuの微粉体とCuを除く粉状に加工(微粉砕)されたその他の少なくとも2種類の遷移金属48(粉状のTi(チタン)、粉状のCr(クロム)、粉状のMn(マンガン)、粉状のFe(鉄)、粉状のCo(コバルト)、粉状のNi(ニッケル)、粉状のZn(亜鉛)、粉状のNb(ニオブ)、粉状のMo(モリブデン)、粉状のAg(銀)のうちの少なくとも2種類)の遷移金属微粉体49とを均一に混合・分散した遷移金属微粉体混合物50である。
主成分となるCu(銅)の微粉体とCuを除く他の少なくとも2種類の遷移金属48の遷移金属微粉体49とを混合した遷移金属微粉体混合物50は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属48の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属48の中からCuの微粉体を除く他の少なくとも2種類の遷移金属48の遷移金属微粉体49が選択されている。
Cuの微粉体を主成分としたアロイ成形物52では、選択された遷移金属48のうちの少なくとも2種類の遷移金属48の遷移金属微粉体49が遷移金属微粉体混合物50の焼成時に溶融し、溶融した遷移金属48の遷移金属微粉体49をバインダーとしてそれら遷移金属48の遷移金属微粉体49が接合されている。なお、Cuを主成分としたアロイ成形物52を微粉砕して作られたアロイ微粉体53は、Cuの微粉体を主成分とした遷移金属微粉体混合物50を圧縮した後に焼成することから作られたアロイ成形物53を微粉砕した粒径が10μm~200μmの微粉砕物である。
Cu(銅)の微粉体を主成分とした遷移金属微粉体混合物50では、遷移金属微粉体混合物50の全重量に対するCuの微粉体の重量比が30%~50%の範囲にあり、Cuの微粉体を除く1種類の遷移金属48の遷移金属微粉体49(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの少なくとも1種類)の遷移金属微粉体混合物50の全重量に対する重量比が20%~50%の範囲にあり、Cuの微粉体を除く他の少なくとも1種類の遷移金属48の遷移金属微粉体49(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの他の少なくとも1種類)の遷移金属微粉体混合物50の全重量に対する重量比が3%~20%の範囲にある。
Cu(銅)を主成分としたアロイ成形物52の具体例としては、Cuの微粉体、Feの微粉体、Znの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成したアロイ成形物52である。また、Cu(銅)を主成分としたアロイ微粉体53(Cuを主成分とした合金微粉体)の具体例としては、Cuの微粉体、Feの微粉体、Znの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
このアロイ成形物52(アロイ微粉体53)は、遷移金属微粉体混合物50の全重量に対するCuの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するFeの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するZnの微粉体の重量比が4%である。Cuの融点が1084.5℃、Feの融点が1536℃、Znの融点が419.58℃であるから、Znの微粉体及びCuの微粉体が溶融し、溶融したZn及びCuの微粉体がバインダーとなってFeの微粉体を接合している。
Cu(銅)を主成分としたアロイ成形物52の他の具体例としては、Cuの微粉体、Feの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成したアロイ成形物52である。また、Cuを主成分としたアロイ微粉体53(Cuを主成分とした合金微粉体)の他の具体例としては、Cuの微粉体、Feの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕した粒径が10μm~200μmの微粉砕物である。
このアロイ成形物52(アロイ微粉体53)は、遷移金属微粉体混合物50の全重量に対するCuの微粉体の重量比が48%、遷移金属微粉体混合物50の全重量に対するFeの微粉体の重量比が46%、遷移金属微粉体混合物50の全重量に対するAgの微粉体の重量比が6%である。Cuの融点が1084.5℃、Feの融点が1536℃、Agの融点が961.93℃であるから、Agの微粉体及びCuの微粉体が溶融し、溶融したAg及びCuの微粉体がバインダーとなってFeの微粉体を接合している。
金属電極薄板13は、前面及び後面を有するとともに、所定面積及び0.02~0.2mmの厚み寸法を有する。金属電極薄板13は、導電性の金属(銀や銅、鉄、又は、導電性の合金)を薄板状に成形したものであり、その平面形状が四角形に成形されている。金属電極薄板13には、気体や液体が通流する微細な多数の流路(微細貫通孔)が形成されている。なお、金属電極薄板13の平面形状に特に制限はなく、四角形の他に、円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。
カーボン電極薄板14は、前面及び後面を有するとともに、所定面積及び0.02~0.2mmの厚み寸法を有し、その平面形状が四角形に成形されている。カーボン電極薄板14には、気体や液体が通流する微細な多数の流路(微細貫通孔)が形成されている。なお、カーボン電極板14の平面形状に特に制限はなく、四角形の他に、円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。
カーボン電極薄板14の一例としては、数μm~数10μmのカーボングラファイト(黒鉛)粉末と導電性バインダー(導電性結合材)とを冷間静水圧プレスによって成形した後、約3000℃で黒鉛化したシート状の電極材を使用する。カーボン電極薄板14の他の一例としては、数μm~数10μmのカーボングラファイト(黒鉛)粉末と導電性バインダー(導電性結合材)とを押出型から押し出し成形した後、約3000℃で黒鉛化したシート状の電極材を使用する。カーボン電極薄板14としては、ガラス状カーボンを使用することもできる。
カーボンナノチューブ15の凝集体17は、微細な多数の流路(微細貫通孔)が形成された金属電極薄板13の両面(前後面)に固着(成長)し、又は、微細な多数の流路(微細貫通孔)が形成されたカーボン電極薄板14の両面(前後面)に固着(成長)している。カーボンナノチューブ15の表面には、図3に示すように、アロイ成形物のアロイ微粒子19(アロイ成形物を蒸発させたアロイ微粒子19)又はアロイ成形物を微粉砕したアロイ微粉体のアロイ微粒子19(アロイ微粉体を蒸発させたアロイ微粒子19)が満遍なく均一に分散した状態で担持されている。アロイ微粒子19を担持したカーボンナノチューブ15には、気体や液体が通流する多数の微細な開口が形成されている。
カーボンナノホーン16の凝集体18は、微細な多数の流路(微細貫通孔)が形成された金属電極薄板13の両面(前後面)に固着(成長)し、又は、微細な多数の流路(微細貫通孔)が形成されたカーボン電極薄板14の両面(前後面)に固着(成長)している。カーボンナノホーン16の表面には、図4に示すように、アロイ成形物のアロイ微粒子19(アロイ成形物を蒸発させたアロイ微粒子19)又はアロイ成形物を微粉砕したアロイ微粉体のアロイ微粒子19(アロイ微粉体を蒸発させたアロイ微粒子19)が満遍なく均一に分散した状態で担持されている。アロイ微粒子19を担持したカーボンナノホーン16には、気体や液体が通流する多数の微細な開口が形成されている。
カーボンナノチューブ電極10A(カーボンナノチューブ15の凝集体17)又はカーボンナノホーン電極10A(カーボンナノホーン16の凝集体18)は、その厚み寸法L1が0.03mm~0.3mmの範囲、好ましくは、0.05mm~0.1mmの範囲にある。カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aの厚み寸法L1が0.03mm未満では、その強度が低下し、衝撃が加えられたときに電極10Aが容易に破損又は損壊し、その形状を維持することができない場合がある。カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aの厚み寸法L1が0.3mmを超過すると、電極10Aの電気抵抗が大きくなり、電極10Aに電流がスムースに流れず、電極10Aが燃料電池24に使用されたときに燃料電池24において十分な電気を発電することができず、燃料電池24に接続された負荷に十分な電気エネルギーを供給することができない。また、電極10Aが水素ガス発生装置37に使用されたときに電気分解を効率よく行うことができず、水素ガス発生装置37において短時間に多量の水素ガスを発生させることができない。
カーボンナノチューブ電極10A(カーボンナノチューブ15の凝集体17)又はカーボンナノホーン電極10A(カーボンナノホーン16の凝集体18)は、その厚み寸法L1が0.03mm~0.3mmの範囲、好ましくは、0.05mm~0.1mmの範囲にあるから、電極10Aが高い強度を有してその形状を維持することができ、電極10Aに衝撃が加えられたときの電極10Aの破損や損壊を防ぐことができる。さらに、厚み寸法L1を前記範囲にすることで、カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aの電気抵抗を小さくすることができ、電極10Aに電流がスムースに流れ、電極10Aが燃料電池24に使用されたときに燃料電池24において十分な電気を発電することができ、燃料電池24に接続された負荷36に十分な電気エネルギーを供給することができる。また、電極10Aが水素ガス発生装置37に使用されたときに電気分解を効率よく行うことができ、水素ガス発生装置37において短時間に多量の水素ガスを発生させることができる。
図5は、他の一例として示すカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bの部分拡大正面図であり、図6は、アロイ微粒子19を担持した他の一例として示すカーボンナノチューブ15の概念図である。図7は、アロイ微粒子19を担持した他の一例として示すカーボンナノホーン16の概念図である。
図5に示すカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが図2の電極10Aと異なるところは、カーボンナノチューブ15の表面から外側へ向かって重なり合うアロイ微粒子19によってアロイ微粒子積層ポーラス構造20がカーボンナノチューブ15の表面に形成されている点、カーボンナノホーン16の表面から外側へ向かって重なり合うアロイ微粒子19によってアロイ微粒子積層ポーラス構造20がカーボンナノホーン16の表面に形成されている点にあり、その他の構成は図2のカーボンナノチューブ電極10A又はカーボンナノホーン電極10Aのそれらと同一であるから、図2と同一の符号を付すとともに、図2の電極10Aの説明を援用することで、この電極10Bのその他の構成の詳細な説明は省略する。
カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bは、図2の電極10Aと同様に、アノード(陽極)又はカソード(陰極)として使用され、燃料電池24の電極10B(触媒)(図10参照)や水素ガス発生装置37の電極10B(触媒)(図13参照)として利用される。カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bは、前面11及び後面12を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。
カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bは、アロイ成形物52(合金成形物)のアロイ微粒子19(合金微粒子)と、所定面積の金属電極薄板13又は所定面積のカーボン電極薄板14と、所定面積のカーボンナノチューブ15の凝集体17(凝集板)又は所定面積のカーボンナノホーン16の凝集体18(凝集板)とから形成されている。なお、カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bがアロイ成形物52を微粉砕した粒径が10μm~200μmのアロイ微粉体53(合金微粉体)のアロイ微粒子19(合金微粒子)と、所定面積の金属電極薄板13又は所定面積のカーボン電極薄板14と、所定面積のカーボンナノチューブ15の凝集体17(凝集板)又は所定面積のカーボンナノホーン16の凝集体18(凝集板)とから形成される場合がある。
カーボンナノチューブ15の凝集体17は、厚み寸法が0.02~0.2mmであって微細な多数の流路(微細孔)が形成された金属電極薄板13の両面(前後面)に固着し、又は、厚み寸法が0.02~0.2mmであって微細な多数の流路(微細孔)が形成されたカーボン電極薄板14の両面(前後面)に固着している。カーボンナノチューブ15の表面には、図6に示すように、アロイ成形物52のアロイ微粒子19(アロイ成形物52を蒸発させたアロイ微粒子19)又はアロイ成形物52を微粉砕したアロイ微粉体53のアロイ微粒子19(アロイ微粉体53を蒸発させたアロイ微粒子19)が担持され、カーボンナノチューブ15の表面から外側へ向かって重なり合うそれらアロイ微粒子19によってアロイ微粒子積層ポーラス構造20が形成されている。
カーボンナノホーン16の凝集体18は、厚み寸法が0.02~0.2mmであって微細な多数の流路(微細孔)が形成された金属電極薄板13の両面(前後面)に固着し、又は、厚み寸法が0.02~0.2mmであって微細な多数の流路(微細孔)が形成されたカーボン電極薄板14の両面(前後面)に固着している。カーボンナノホーン16の表面には、図7に示すように、アロイ成形物52のアロイ微粒子19(アロイ成形物52を蒸発させたアロイ微粒子19)又はアロイ成形物52を微粉砕したアロイ微粉体53のアロイ微粒子19(アロイ微粉体53を蒸発させたアロイ微粒子19)が担持され、カーボンナノホーン16の表面から外側へ向かって重なり合うそれらアロイ微粒子19によってアロイ微粒子積層ポーラス構造20が形成されている。
アロイ微粉体53(合金微粉体)は、アロイ成形物52(合金成形物)を微粉砕することから作られている。アロイ成形物52は、粉状に加工(微粉砕)された各種の遷移金属48から選択された少なくとも3種類の遷移金属微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した後に焼成(焼結)することから作られている。遷移金属48や遷移金属微粉体混合物50、アロイ成形物52、アロイ微粉体53は、図2の電極10Aのそれらと同一である。遷移金属微粉体49の粒径やアロイ微粉体53の粒径、電極10Bの厚み寸法L1は、図2の電極10Aのそれらと同一である。
アロイ微粒子積層ポーラス構造20には、径が異なる多数の微細な流路21(通路孔)が形成されている。それら流路21(通路孔)には、気体(水素ガスや酸素ガス)または液体(水)が通流する。それら流路21(通路孔)は、カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bの前面11の側に開口する複数の通流口22と電極10Bの後面12の側に開口する複数の通流口22とを有し、カーボンナノチューブ15又はカーボンナノホーン16に向かってアロイ微粒子積層ポーラス構造20を貫通している。それら流路21は、アロイ微粒子積層ポーラス構造20の様々な方向(厚み方向や縦横方向)へ不規則に曲折しながら延びている。それら流路21は、アロイ微粒子積層ポーラス構造20の内部において部分的につながり、一方の流路21と他方の流路21とが互いに連通している。それら流路21(通路孔)の開口面積(開口径)は、アロイ微粒子積層ポーラス構造20の内部において一様ではなく、不規則に変化している。
アロイ微粒子積層ポーラス構造20は、その空隙率が15%~30%の範囲にあり、その相対密度が70%~85%の範囲にある。アロイ微粒子積層ポーラス構造20の空隙率が15%未満であって相対密度が85%を超過すると、アロイ微粒子積層ポーラス構造20に多数の微細な流路21(通路孔)が形成されず、アロイ微粒子積層ポーラス構造20の比表面積を大きくすることができない。アロイ微粒子積層ポーラス構造20の空隙率が30%を超過し、相対密度が70%未満では、流路21(通路孔)の開口面積(開口径)が必要以上に大きくなり、アロイ微粒子積層ポーラス構造20の強度が低下し、衝撃が加えられたときにアロイ微粒子積層ポーラス構造20が容易に破損又は損壊し、その形態を維持することができない場合がある。
アロイ微粒子積層ポーラス構造20は、その空隙率及び相対密度が前記範囲にあるから、アロイ微粒子積層ポーラス構造20が開口面積(開口径)の異なる多数の微細な流路21(通路孔)を有し、アロイ微粒子積層ポーラス構造20の比表面積を大きくすることができ、それら流路21(通路孔)を気体や液体が通流しつつ気体や液体をアロイ微粒子積層ポーラス構造20の接触面(アロイ微粒子19(合金微粒子)の表面)に広く接触させることができる。
図8は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを使用したセル23の一例を示す分解斜視図であり、図9は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを使用したセル23の側面図である。図10は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを使用した燃料電池(固体高分子形燃料電池)の発電を説明する図であり、図11は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bの起電圧試験の結果を示す図である。図12は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10BのI-V特性試験の結果を示す図である。
カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを使用したセル23の一例としては、図8に示すように、電極10A,10Bを使用した燃料極25(アノード)と、電極10A,10Bを使用した空気極26(カソード)と、燃料極25及び空気極26の間に介在する固体高分子電解質膜27(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極25の厚み方向外側に位置するセパレータ28(バイポーラプレート)と、空気極26の厚み方向外側に位置するセパレータ29(バイポーラプレート)とから形成されている。それらセパレータ28,29には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。
セル23では、図9に示すように、燃料極25や空気極26、固体高分子電解質膜27が厚み方向へ重なり合って一体化し、膜/電極接合体30(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体30をそれらセパレータ28,29が挟み込んでいる。固体高分子電解質膜27と燃料極25(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)及び空気極26(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)とは、ホットプレスによって積層され、固体高分子電解質膜と27カーボンナノホーン15の凝集体17(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)又はカーボンナノホーン16の凝集体18(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)とが隙間なく重なり合い、カーボンナノホーン15の凝集体17(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)又はカーボンナノホーン16の凝集体18(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)とが隙間なく密着している。燃料電池24(固体高分子形燃料電池)では、複数のセル23(単セル)が一方向へ重なり合い、それらセル23が直列につながれてセルスタック(燃料電池スタック)を形成する。
固体高分子電解質膜27(電極接合体膜)は、プロトン導電性があり、電子導電性がない。燃料極25とセパレータ28との間には、ガス拡散層31が形成され、空気極26とセパレータ29との間には、ガス拡散層32が形成されている。燃料極25とセパレータ28との間であってガス拡散層31の上部及び下部には、ガスシール33が設置されている。空気極26とセパレータ29との間であってガス拡散層32の上部及び下部には、ガスシール34が設置されている。
燃料電池24(固体高分子形燃料電池)では、図10に示すように、燃料極25(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)に水素(燃料)が供給され、空気極26(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)に空気(酸素)が供給される。燃料極25では、水素がH2→2H++2e-の反応(触媒作用)によってプロトン(水素イオン、H+)と電子とに分解される。その後、プロトンが固体高分子電解質膜27内を通って空気極26に移動し、電子が導線35内を通って空気極26に移動する。固体高分子電解質膜27には、燃料極25で生成されたプロトンが通流する。空気極26では、固体高分子電解質膜27から移動したプロトンと導線35を移動した電子とが空気中の酸素と反応し、4H++O2+4e→2H2Oの反応によって水が生成される。
少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属の中から少なくとも3種類の遷移金属が選択され、選択された少なくとも3種類の遷移金属から作られたアロイ成形物のアロイ微粒子19がカーボンナノチューブ15又はカーボンナノホーン16の表面に担持され又はアロイ微粒子積層ポーラス構造20がカーボンナノチューブ15又はカーボンナノホーン16の表面に形成され、又は、アロイ成形物を微粉砕したアロイ微粉体のアロイ微粒子がカーボンナノチューブ15又はカーボンナノホーン16の表面に担持され又はアロイ微粒子積層ポーラス構造20がカーボンナノチューブ15又はカーボンナノホーン16の表面に形成され、アロイ微粒子19又はアロイ微粒子積層ポーラス構造20が燃料極25(電極10A又は電極10B)や空気極26(電極10A又は電極10B)を構成するから、燃料極25や空気極26が優れた触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。
起電圧試験では、水素ガスを注入してから15分の間、燃料極25と空気極26との間(電極10Aの間や電極10Bの間)の電圧(V)を測定した。図11の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極間の電圧(V)を表す。白金族元素を利用した(担持させた)電極(白金電極)を使用した固体高分子形燃料電池では、起電圧試験の結果を示す図11から分かるように、燃料極と空気極との間の電圧が1.079(V)前後であった。それに対し、燃料極25(白金レスの電極10A,10B)及び空気極26(白金レスの電極10A,10B)を使用した固体高分子形燃料電池24では、燃料極25と空気極26との間の電圧(起電力)が1.04(V)~1.03(V)であった。
I-V特性試験では、燃料極25と空気極26との間(電極10Aの間や電極10Bの間)に負荷36を接続し、電圧と電流との関係を測定した。図12のI-V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極25(白金レスの電極10A,10B)及び空気極26(白金レスの電極10A,10B)を使用した固体高分子形燃料電池24では、I-V特性試験の結果を示す図12から分かるように、白金族元素を利用した(担持させた)電極(白金電極)を使用した固体高分子形燃料電池の電圧降下率と大差のない結果が得られた。図11の起電圧試験の結果や図12のI-V特性試験の結果に示すように、白金族元素を利用していない白金レスの燃料極25及び空気極26が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、白金を利用した電極と略同様の酸素還元機能(触媒作用)を有することが確認された。
図13は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを使用した水素ガス発生装置37の電気分解を説明する図である。カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを使用した水素ガス発生装置37の一例は、図13に示すように、電極10A又は電極10Bを使用した陽極38(アノード)と、電極10A又は電極10Bを使用した陰極39(カソード)と、陽極38及び陰極39の間に介在する固体高分子電解質膜40(電極接合体膜)(スルホン酸基を有するフッ素 系イオン交換膜)と、陽極給電部材41及び陰極給電部材42と、陽極用貯水槽43及び陰極用貯水槽44と、陽極主電極45及び陰極主電極46とから形成されている。水素ガス発生装置37は、陽極38及び陰極39に電気を通電し、陽極38で酸化反応を起こすとともに陰極39で還元反応を起こすことで水を化学分解する。
水素ガス発生装置37では、陽極38や陰極39、固体高分子電解質膜40が厚み方向へ重なり合って一体化し、膜/電極接合体47 (Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体47を陽極給電部材41と陰極給電部材42とが挟み込んでいる。固体高分子電解質膜40と陽極38(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)及び陰極39(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)とは、ホットプレスによって積層され、固体高分子電解質膜40とカーボンナノチューブ15の凝集体17(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)又はカーボンナノホーン16の凝集体18(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)とが隙間なく重なり合い、カーボンナノチューブ15の凝集体17(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)又はカーボンナノホーン16の凝集体18(アロイ微粒子19又はアロイ微粒子積層ポーラス構造20)とが隙間なく密着している。
陽極給電部材41は、陽極38の外側に位置して陽極38に密着し、陽極38に+の電流を給電する。陽極用貯水槽43は、陽極給電部材41の外側に位置して陽極給電部材41に密着している。陽極主電極45は、陽極用貯水槽43の外側に位置して陽極給電部材41に+の電流を給電する。陰極給電部材42は、陰極39の外側に位置して陰極39に密着し、陰極39に-の電流を給電する。陰極用貯水槽44は、陰極給電部材42の外側に位置して陰極給電部材42に密着している。陰極主電極46は、陰極用貯水槽44の外側に位置して陰極給電部材42に-の電流を給電する。
水素ガス発生装置37における水の電気分解では、図13に矢印に示すように、陽極用貯水槽43及び陰極用貯水槽44に水(H2O)が給水され、陽極主電極45に電源から+の電流が給電されるとともに、陰極主電極46に電源から-の電流が給電される。陽極主電極45に給電された+の電流が陽極給電部材41から陽極38(アノード)に給電され、陰極主電極46に給電された-の電流が陰極給電部材42から陰極39(カソード)に給電される。
陽極38(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)では、2H2O→4H++4e-+O2の陽極反応(触媒作用)によって酸素が生成され、陰極39(カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10B)では、4H++4e-→2H2の陰極反応(触媒作用)によって水素が生成される。プロトン(水素イオン:H+)は、固体高分子電解質膜40内を通って陽極38から陰極39に移動する。固体高分子電解質膜40には、陽極38で生成されたプロトンが通流する。
少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属の中から少なくとも3種類の遷移金属が選択され、選択された少なくとも3種類の遷移金属から作られたアロイ成形物のアロイ微粒子19がカーボンナノチューブ15又はカーボンナノホーン16の表面に担持され又はアロイ微粒子積層ポーラス構造20がカーボンナノチューブ15又はカーボンナノホーン16の表面に形成され、又は、アロイ成形物を微粉砕したアロイ微粉体のアロイ微粒子19がカーボンナノチューブ15又はカーボンナノホーン16の表面に担持され又はアロイ微粒子積層ポーラス構造20がカーボンナノチューブ15又はカーボンナノホーン16の表面に形成され、アロイ微粒子19又はアロイ微粒子積層ポーラス構造20が陽極38(電極10A又は電極10B)や陰極39(電極10A又は電極10B)を構成するから、陽極38や陰極39が優れた触媒活性(触媒作用)を示し、水素ガス発生装置37において効率よく電気分解が行われ、短時間に多量の水素ガスが発生する。
カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aは、それが各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物(又はアロイ成形物を微粉砕したアロイ微粉体)のアロイ微粒子19と、金属電極薄板13又はカーボン電極薄板14の両面(前後面)に固着したカーボンナノチューブ15の凝集体17又はカーボンナノホーン16の凝集体18とから形成され、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、アロイ成形物のアロイ微粒子19がカーボンナノチューブ15の表面又はカーボンナノホーン16の表面に担持されているから、アロイ微粒子19を有するカーボンナノチューブ電極10A又はカーボンナノホーン電極10Aが白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池24や水素ガス発生装置37の電極10Aとして好適に使用することができる。
カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aは、カーボンナノチューブ15の凝集体17又はカーボンナノホーン16の凝集体18にアロイ微粒子19が担持された電極10Aが白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極10Aを燃料電池24に使用することで、燃料電池24において十分な電気を発電することができ、燃料電池24に接続された負荷36に十分な電気エネルギーを供給することができるとともに、電極10Aを水素ガス発生装置37に使用することで、電気分解を効率よく行うことができ、水素ガス発生装置37において短時間に多量の水素ガスを発生させることができる。カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aは、遷移金属微粉体混合物(アロイ成形物)が各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体から形成され、高価な白金族元素が利用されていない白金レスであり、電極10Aを廉価に作ることができる。
カーボンナノチューブ15又はカーボンナノホーン16の表面から外側へ向かって重なり合うアロイ微粒子19によってアロイ微粒子積層ポーラス構造20がカーボンナノチューブ15の表面又はカーボンナノホーン16の表面に形成されているカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bは、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粒子積層ポーラス構造20を形成することで、アロイ微粒子19の比表面積を大きくすることができ、アロイ微粒子19の触媒作用を十分に利用することができるとともに、アロイ微粒子積層ポーラス構造20を有するカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池24や水素ガス発生装置37の電極として好適に使用することができる。
カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bは、カーボンナノチューブ15の凝集体17又はカーボンナノホーン16の凝集体18にアロイ微粒子積層ポーラス構造20を形成した電極10Bが白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極10Bを燃料電池24に使用することで、燃料電池24において十分な電気を発電することができ、燃料電池24に接続された負荷36に十分な電気エネルギーを供給することができるとともに、電極10Bを水素ガス発生装置37に使用することで、電気分解を効率よく行うことができ、水素ガス発生装置37において短時間に多量の水素ガスを発生させることができる。カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bは、遷移金属微粉体混合物(アロイ成形物)が各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体から形成され、高価な白金族元素が利用されていない白金レスであり、電極10Bを廉価に作ることができる。
遷移金属微粉体混合物(アロイ微粉体19やアロイ微粒子積層ポーラス構造20)がNi(ニッケル)の微粉体を主成分としたカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているから、アロイ微粒子19又はアロイ微粒子積層ポーラス構造20を有するカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bが白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池24や水素ガス発生装置37の電極として好適に使用することができる。
遷移金属微粉体混合物(アロイ微粉体19やアロイ微粒子積層ポーラス構造20)がNi(ニッケル)の微粉体を主成分としたカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極10A,10Bを燃料電池24に使用することで、燃料電池24において十分な電気を発電することができ、燃料電池24に接続された負荷36に十分な電気エネルギーを供給することができるとともに、電極10A,10Bを水素ガス発生装置37に使用することで、電気分解を効率よく行うことができ、水素ガス発生装置37において多量の水素ガスを発生させることができる。カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、遷移金属微粉体混合物(アロイ成形物)がNiの微粉体と各種の遷移金属から選択されたNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体とから形成され、高価な白金族元素が利用されていない白金レスであり、電極10A,10Bを廉価に作ることができる。
遷移金属微粉体混合物(アロイ微粉体19やアロイ微粒子積層ポーラス構造20)がFe(鉄)の微粉体を主成分としたカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているから、アロイ微粒子19又はアロイ微粒子積層ポーラス構造20を有するカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bが白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池24や水素ガス発生装置37の電極として好適に使用することができる。
遷移金属微粉体混合物(アロイ微粉体19やアロイ微粒子積層ポーラス構造29)がFe(鉄)の微粉体を主成分としたカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極10A,10Bを燃料電池24に使用することで、燃料電池24において十分な電気を発電することができ、燃料電池24に接続された負荷36に十分な電気エネルギーを供給することができるとともに、電極10A,10Bを水素ガス発生装置37に使用することで、電気分解を効率よく行うことができ、水素ガス発生装置37において多量の水素ガスを発生させることができる。カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、遷移金属微粉体混合物(アロイ成形物)がFeの微粉体と各種の遷移金属から選択されたFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体とから形成され、高価な白金族元素が利用されていない白金レスであり、電極10A,10Bを廉価に作ることができる。
遷移金属微粉体混合物(アロイ微粉体19やアロイ微粒子積層ポーラス構造20)がCu(銅)の微粉体を主成分としたカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されているから、アロイ微粒子19又はアロイ微粒子積層ポーラス構造20を有するカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bが白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池25や水素ガス発生装置37の電極として好適に使用することができる。
遷移金属微粉体混合物(アロイ微粉体19やアロイ微粒子積層ポーラス構造20)がCu(銅)の微粉体を主成分としたカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、電極10A,10Bを燃料電池24に使用することで、燃料電池24において十分な電気を発電することができ、燃料電池24に接続された負荷36に十分な電気エネルギーを供給することができるとともに、電極10A,10Bを水素ガス発生装置37に使用することで、電気分解を効率よく行うことができ、水素ガス発生装置37において多量の水素ガスを発生させることができる。カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bは、遷移金属微粉体混合物(アロイ成形物)がCuの微粉体と各種の遷移金属から選択されたCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体とから形成され、高価な白金族元素が利用されていない白金レスであり、電極10A,10Bを廉価に作ることができる。
図14は、カーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bの製造方法を説明する図である。電極10A,10Bは、図14に示すように、遷移金属選択工程S1、遷移金属微粉体混合物作成工程S2、遷移金属微粉体圧縮物作成工程S3、アロイ成形物作成工程S4、アロイ微粒子担持工程S5を有する電極製造方法によって製造される。なお、アロイ成形物作成工程S4とアロイ微粒子担持工程S5との間にアロイ微粉体作成工程S6が行われる場合がある。
遷移金属選択工程S1では、各種の遷移金属48から選択する少なくとも3種類の遷移金属48の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属48の中から少なくとも3種類の遷移金属48(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。
遷移金属選択工程S1において、既述のように、Ni(ニッケル)を主成分とした遷移金属微粉体混合物50(アロイ微粒子19やアロイ微粒子積層ポーラス構造20)では、Cu(銅)及びZN(亜鉛)を選択し、又は、Mn(マンガン)及びMo(モリブデン)を選択する。Fe(鉄)を主成分とした遷移金属微粉体混合物50(アロイ微粒子19やアロイ微粒子積層ポーラス構造20)では、Ni(ニッケル)及びCu(銅)を選択し、又は、Ti(チタン)及びAg(銀)を選択する。Cu(銅)を主成分とした遷移金属微粉体混合物50(アロイ微粒子19やアロイ微粒子積層ポーラス構造20)では、Fe(鉄)及びZn(亜鉛)を選択し、又は、Fe(鉄)及びAg(銀)を選択する。
遷移金属微粉体混合物作成工程S2では、遷移金属選択工程S1によって選択された少なくとも3種類の遷移金属48の遷移金属微粉体49を均一に混合・分散した遷移金属微粉体混合物50を作る。遷移金属微粉体混合物作成工程S2において、Ni(ニッケル)を主成分とした遷移金属微粉体混合物50(アロイ微粒子19やアロイ微粒子積層ポーラス構造20)では、遷移金属選択工程S1によって選択されたNi、Cu(銅)、ZN(亜鉛)のそれぞれを微粉砕機によって10μm~200μmの粒径に微粉砕してNiの微粉体49、Cuの微粉体49、Znの微粉体49を作成する。次に、Niの微粉体49やCuの微粉体49、Znの微粉体49を混合機に投入して混合機によってNiの微粉体49、Cuの微粉体49、Znの微粉体49を攪拌・混合し、Niの微粉体49、Cuの微粉体49、Znの微粉体49が均一に混合・分散した遷移金属微粉体混合物50を作る。
又は、遷移金属選択工程S1によって選択されたNi(ニッケル)、Mn(マンガン)、Mo(モリブデン)のそれぞれを微粉砕機によって10μm~200μmの粒径に微粉砕してNiの微粉体49、Mnの微粉体49、Moの微粉体49を作成する。次に、Niの微粉体49やMnの微粉体49、Moの微粉体49を混合機に投入して混合機によってNiの微粉体49、Mnの微粉体49、Moの微粉体49を攪拌・混合し、Niの微粉体49、Mnの微粉体49、Moの微粉体49が均一に混合・分散した遷移金属微粉体混合物50を作る。
遷移金属微粉体混合物作成工程S2において、Fe(鉄)を主成分とした遷移金属微粉体混合物50(アロイ微粒子19やアロイ微粒子積層ポーラス構造20)では、遷移金属選択工程S1によって選択されたFe、Ni(ニッケル)、Cu(銅)のそれぞれを微粉砕機によって10μm~200μmの粒径に微粉砕してFeの微粉体49、Niの微粉体49、Cuの微粉体49を作成する。次に、Feの微粉体49やNiの微粉体49、Cuの微粉体49を混合機に投入して混合機によってFeの微粉体48、Niの微粉体49、Cuの微粉体49を攪拌・混合し、Feの微粉体49、Niの微粉体49、Cuの微粉体49が均一に混合・分散した遷移金属微粉体混合物50を作る。
又は、遷移金属選択工程S1によって選択されたFe(鉄)、Ti(チタン)、Ag(銀)のそれぞれを微粉砕機によって10μm~200μmの粒径に微粉砕してFeの微粉体49、Tiの微粉体49、Agの微粉体49を作成する。次に、Feの微粉体49やTiの微粉体49、Agの微粉体49を混合機に投入して混合機によってFeの微粉体49、Tiの微粉体49、Agの微粉体49を攪拌・混合し、Feの微粉体49、Tiの微粉体49、Agの微粉体49が均一に混合・分散した遷移金属微粉体混合物50を作る。
遷移金属微粉体混合物作成工程S2において、Cu(銅)を主成分とした遷移金属微粉体混合物50(アロイ微粒子19やアロイ微粒子積層ポーラス構造20)では、遷移金属選択工程S1によって選択されたCu、Fe(鉄)、Zn(亜鉛)のそれぞれを微粉砕機によって10μm~200μmの粒径に微粉砕してCuの微粉体49、Feの微粉体49、Znの微粉体49を作成する。次に、Cuの微粉体49やFeの微粉体49、Znの微粉体49を混合機に投入して混合機によってCuの微粉体49、Feの微粉体49、Znの微粉体49を攪拌・混合し、Cuの微粉体49、Feの微粉体49、Znの微粉体49が均一に混合・分散した遷移金属微粉体混合物50を作る。
又は、遷移金属選択工程S1によって選択されたCu(銅)、Fe(鉄)、Ag(銀)のそれぞれを微粉砕機によって10μm~200μmの粒径に微粉砕してCuの微粉体49、Feの微粉体49、Agの微粉体49を作成する。次に、Cuの微粉体49やFeの微粉体49、Agの微粉体49を混合機に投入して混合機によってCuの微粉体49、Feの微粉体49、Agの微粉体49を攪拌・混合し、Cuの微粉体49、Feの微粉体49、Agの微粉体49が均一に混合・分散した遷移金属微粉体混合物50を作る。
遷移金属微粉体圧縮物作成工程S3では、遷移金属微粉体混合物作成工程S2によって作られた遷移金属微粉体混合物50を所定圧力で加圧し、遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。遷移金属微粉体圧縮物作成工程S3では、遷移金属微粉体混合物50を所定の金型に入れ、金型をプレス機によって加圧(プレス)するプレス加工によって遷移金属微粉体圧縮物51を作る。プレス加工時におけるプレス圧(圧力)は、500Mpa~800Mpaの範囲にある。
プレス圧(圧力)が500Mpa未満では、遷移金属微粉体混合物50を十分に圧縮することができず、所定面積及び所定厚みの遷移金属微粉体圧縮物51を作ることができない。プレス圧(圧力)が800Mpaを超過すると、アロイ成形物作成工程S4によって作られるアロイ成形物52の硬度が必要以上に高くなり、アロイ微粒子担持工程S5においてアロイ成形物52をスムースに蒸発させることができず、アロイ微粉体作成工程S6において所期する粒径のアロイ微粉体53を作ることができない。電極製造方法は、遷移金属微粉体混合物50を前記範囲の圧力で加圧(圧縮)することで、所定硬度の遷移金属微粉体圧縮物51を作ることができ、その遷移金属微粉体圧縮物51を焼成して所定硬度のアロイ成形物52を作ることができ、アロイ成形物52をスムースに蒸発させることができるとともに、アロイ成形物52を微粉砕した所定粒径のアロイ微粉体53を作ることができる。
遷移金属微粉体圧縮物作成工程S3において、Ni(ニッケル)を主成分とした遷移金属微粉体混合物50では、Niの微粉体49、Cu(銅)の微粉体49、ZN(亜鉛)微粉体49を混合した遷移金属微粉体混合物50の所定量を金型に投入し、その遷移金属微粉体混合物50をプレス加工によって加圧して遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。又は、Niの微粉体49、Mn(マンガン)の微粉体49、Mo(モリブデン)の微粉体49を混合した遷移金属微粉体混合物50の所定量を金型に投入し、その遷移金属微粉体混合物50をプレス加工によって加圧して遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。
遷移金属微粉体圧縮物作成工程S3において、Fe(鉄)を主成分とした遷移金属微粉体混合物で50は、Feの微粉体49、Ni(ニッケル)の微粉体49、Cu(銅)の微粉体49を混合した遷移金属微粉体混合物50の所定量を金型に投入し、その遷移金属微粉体混合物50をプレス加工によって加圧して遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。又は、Feの微粉体48、Ti(チタン)の微粉体49、Ag(銀)の微粉体49を混合した遷移金属微粉体混合物50の所定量を金型に投入し、その遷移金属微粉体混合物50をプレス加工によって加圧して遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。
遷移金属微粉体圧縮物作成工程S3において、Cu(銅)を主成分とした遷移金属微粉体混合物50では、Cuの微粉体49、Fe(鉄)の微粉体49、Zn(亜鉛)の微粉体49を混合した遷移金属微粉体混合物50の所定量を金型に投入し、その遷移金属微粉体混合物50をプレス加工によって加圧(圧縮)して遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。又は、Cuの微粉体49、Fe(鉄)の微粉体49、Ag(銀)の微粉体49を混合した遷移金属微粉体混合物50の所定量を金型に投入し、その遷移金属微粉体混合物50をプレス加工によって加圧して遷移金属微粉体混合物50を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物51を作る。
アロイ成形物作成工程S4では、遷移金属微粉体圧縮物作成工程S3によって作られた遷移金属微粉体圧縮物51を炉(蒸気過熱炉や電気炉等)に投入し、遷移金属微粉体圧縮物51を炉において所定温度で焼成(焼結)し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。アロイ成形物作成工程S4では、遷移金属選択工程S1によって選択された少なくとも3種類の遷移金属48うちの少なくとも2種類の遷移金属48を溶融させる温度で遷移金属微粉体圧縮物51を長時間焼成する。焼成(焼結)時間は、3時間~6時間である。アロイ成形物作成工程S4では、所定面積及び所定厚みに圧縮された遷移金属微粉体圧縮物51の焼成時において、少なくとも2種類の遷移金属48の微粉体49が溶融し、溶融した遷移金属48の微粉体49をバインダーとして他の遷移金属48の微粉体49を接合(固着)する。
アロイ成形物作成工程S4において、Ni(ニッケル)を主成分とした遷移金属微粉体圧縮物51では、Niの微粉体49、Cu(銅)の微粉体49、ZN(亜鉛)微粉体49を混合した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を炉において長時間焼成し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。Niの微粉体49、Cuの微粉体49、Znの微粉体49から形成されたアロイ成形物52では、Zn及びCuの微粉体49を溶融させる温度(例えば、1100℃~1200℃)で遷移金属微粉体圧縮物51を焼成(焼結)し、溶融したZn及びCuの微粉体49によってNiの微粉体49が接合(固着)される。
また、アロイ成形物作成工程S4において、Ni(ニッケル)を主成分とした遷移金属微粉体圧縮物51では、Niの微粉体49、Mn(マンガン)の微粉体49、Mo(モリブデン)の微粉体49を混合した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を炉において長時間焼成し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。Niの微粉体49、Mnの微粉体49、Moの微粉体49から形成されたアロイ成形物52では、Mn及びNiの微粉体49を溶融させる温度(例えば、1460℃~1500℃)で遷移金属微粉体圧縮物51を焼成し、溶融したMn及びNiの微粉体49によってMoの微粉体49が接合(固着)される。
アロイ成形物作成工程S4において、Fe(鉄)を主成分とした遷移金属微粉体圧縮物51では、Feの微粉体49、Ni(ニッケル)の微粉体49、Cu(銅)の微粉体49を混合した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を炉において長時間焼成し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。Feの微粉体49、Niの微粉体49、Cuの微粉体49から形成されたアロイ成形物52では、Cu及びNiの微粉体49を溶融させる温度(例えば、1460℃~1500℃)で遷移金属微粉体圧縮物51を焼成し、溶融したCu及びNiの微粉体49によってFeの微粉体49が接合(固着)される。
また、アロイ成形物作成工程S4において、Fe(鉄)を主成分とした遷移金属微粉体圧縮物51では、Feの微粉体49、Ti(チタン)の微粉体49、Ag(銀)の微粉体49を混合した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を炉において長時間焼成し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。Feの微粉体49、Tiの微粉体49、Agの微粉体49から形成されたアロイ成形物52では、Ag及びFeの微粉体49を溶融させる温度(例えば、1540℃~1600℃)で遷移金属微粉体圧縮物51を焼成し、溶融したAg及びFeの微粉体49によってTiの微粉体49が接合(固着)される。
アロイ成形物作成工程S4において、Cu(銅)を主成分とした遷移金属微粉体圧縮物51では、Cuの微粉体49、Fe(鉄)の微粉体49、Zn(亜鉛)の微粉体49を混合した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を炉において長時間焼成し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。Cuの微粉体49、Feの微粉体49、Znの微粉体49から形成されたアロイ成形物52では、Zn及びCuの微粉体49を溶融させる温度(例えば、1090℃~1200℃)で遷移金属微粉体圧縮物51を焼成し、溶融したZn及びCuの微粉体49によってFeの微粉体49が接合(固着)される。
また、アロイ成形物作成工程S4において、Cu(銅)を主成分とした遷移金属微粉体圧縮物51では、Cuの微粉体49、Fe(鉄)の微粉体49、Ag(銀)の微粉体49を混合した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を炉において長時間焼成し、開口径が1μm~100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物52を作る。Cuの微粉体49、Feの微粉体49、Agの微粉体49から形成されたアロイ成形物52では、Ag及びCuの微粉体49を溶融させる温度(例えば、1090℃~1200℃)で遷移金属微粉体圧縮物51を焼成し、溶融したAg及びCuの微粉体49によってFeの微粉体49が接合(固着)される。
アロイ微粒子担持工程S5では、アロイ成形物作成工程S4によって作られたアロイ成形物52をレーザー蒸発法によって蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させる。アロイ微粒子19は、カーボンナノチューブ15の表面に均一に分散した状態でカーボンナノチューブ15の表面に担持され、カーボンナノホーン16の表面に均一に分散した状態でカーボンナノホーン16の表面に担持される。カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粒子19を担持させることでカーボンナノチューブ電極10A又はカーボンナノホーン電極10Aが作られる。アロイ微粒子担持工程S5では、カーボンナノチューブ電極10A又はカーボンナノホーン電極10Aが0.03mm~0.3mmの範囲の厚み寸法L1に成形される。
アロイ微粒子19の担持方法としては、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成した(成長させた)後、レーザー蒸発法によってアロイ成形物52を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させる場合、又は、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ成形物52を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させる場合がある。
また、アロイ微粒子担持工程S5では、アロイ成形物作成工程によって作られたアロイ成形物52をレーザー蒸発法によって蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させつつ、カーボンナノチューブ15又はカーボンナノホーン16の表面から外側へ向かって重なり合うアロイ微粒子19によってアロイ微粒子積層ポーラス構造20を形成する。アロイ微粒子19は、カーボンナノチューブ15の表面に均一に分散した状態でカーボンナノチューブ15の表面に担持されて重なり合い、カーボンナノホーン16の表面に均一に分散した状態でカーボンナノホーン16の表面に担持されて重なり合ってアロイ微粒子積層ポーラス構造20を形成する。カーボンナノチューブ15の表面又はカーボンナノホーン16の表面に多数のアロイ微粒子19からなるアロイ微粒子積層ポーラス構造20を形成することでカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが作られる。アロイ微粒子積層ポーラス構造20を形成するアロイ微粒子担持工程S5では、カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが0.03mm~0.3mmの範囲の厚み寸法L1に成形される。
アロイ微粒子積層ポーラス構造20を形成する方法としては、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成した(成長させた)後、レーザー蒸発法によってアロイ成形物52を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させてアロイ微粒子積層ポーラス構造20を形成する場合、又は、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ成形物52を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させてアロイ微粒子積層ポーラス構造20を形成する場合がある。
なお、アロイ成形物作成工程S4とアロイ微粒子担持工程S5との間にアロイ微粉体作成工程S6が行われる場合、アロイ微粉体作成工程S6では、アロイ成形物作成工程S4によって作られたアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕してアロイ微粉体53を作る。Ni(ニッケル)を主成分としたアロイ微粉体52(Niを主成分とした合金微粉体)の一例としては、Niの微粉体49、Cuの微粉体49、ZNの微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕した微粉砕物である。Ni(ニッケル)を主成分としたアロイ微粉体53の他の一例としては、Niの微粉体48、Mnの微粉体49、Moの微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕した微粉砕物である。
Fe(鉄)を主成分としたアロイ微粉体53(Feを主成分とした合金微粉体)の一例としては、Feの微粉体49、Niの微粉体49、Cuの微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕した微粉砕物である。Fe(鉄)を主成分としたアロイ微粉体53の他の一例としては、Feの微粉体49、Tiの微粉体49、Agの微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕した微粉砕物である。
Cu(銅)を主成分としたアロイ微粉体53(Cuを主成分とした合金微粉体)の一例としては、Cuの微粉体49、Feの微粉体49、Znの微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕した微粉砕物である。Cu(銅)を主成分としたアロイ微粉体53の他の一例としては、Cuの微粉体49、Feの微粉体49、Agの微粉体49を均一に混合・分散した遷移金属微粉体混合物50を圧縮した遷移金属微粉体圧縮物51を焼成してアロイ成形物52を作り、そのアロイ成形物52を微粉砕機によって10μm~200μmの粒径に微粉砕した微粉砕物である。
アロイ微粉体作成工程S6の後に行われるアロイ微粒子担持工程S5では、アロイ微粉体作成工程S6によって作られたアロイ微粉体53をレーザー蒸発法によって蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粉体53のアロイ微粒子19を担持させる。アロイ微粒子19は、カーボンナノチューブ15の表面に均一に分散した状態でカーボンナノチューブ15の表面に担持され、カーボンナノホーン16の表面に均一に分散した状態でカーボンナノホーン16の表面に担持される。カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粒子19を担持させることでカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが作られる。アロイ微粒子担持工程S5では、カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが0.03mm~0.3mmの範囲の厚み寸法L1に成形される。
アロイ微粒子19の担持方法としては、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成した(成長させた)後、レーザー蒸発法によってアロイ微粉体53を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粉体53のアロイ微粒子19を担持させる場合、又は、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ微粉体53を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粉体53のアロイ微粒子19を担持させる場合がある。
また、アロイ微粒子担持工程S5では、アロイ微粉体作成工程S6によって作られたアロイ微粉体53をレーザー蒸発法によって蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粉体53のアロイ微粒子19を担持させつつ、カーボンナノチューブ15又はカーボンナノホーン16の表面から外側へ向かって重なり合うアロイ微粒子19によってアロイ微粒子積層ポーラス構造20を形成する。アロイ微粒子19は、カーボンナノチューブ15の表面に均一に分散した状態でカーボンナノチューブ15の表面に担持されて重なり合い、カーボンナノホーン16の表面に均一に分散した状態でカーボンナノホーン16の表面に担持されて重なり合ってアロイ微粒子積層ポーラス構造20を形成する。カーボンナノチューブ15の表面又はカーボンナノホーン16の表面に多数のアロイ微粒子19からなるアロイ微粒子積層ポーラス構造20を形成することでカーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが作られる。アロイ微粒子積層ポーラス構造20を形成するアロイ微粒子担持工程S5では、カーボンナノチューブ電極10B又はカーボンナノホーン電極10Bが0.03mm~0.3mmの範囲の厚み寸法に成形される。
アロイ微粒子積層ポーラス構造を形成する方法としては、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成した(成長させた)後、レーザー蒸発法によってアロイ微粉体53を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粉体53のアロイ微粒子19を担持させてアロイ微粒子積層ポーラス構造20を形成する場合、又は、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ15又はカーボンナノホーン16を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ微粉体53を蒸発させ、カーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ微粉体53のアロイ微粒子19を担持させてアロイ微粒子積層ポーラス構造20を形成する場合がある。
電極製造方法は、各種の遷移金属48から選択する少なくとも3種類の遷移金属48の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属48の中から少なくとも3種類の遷移金属48を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも3種類の遷移金属48の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物50を作る遷移金属微粉体混合物作成工程と、遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物50を所定圧力で加圧して遷移金属微粉体圧縮物51を作る遷移金属微粉体圧縮物作成工程と、遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物51を所定温度で焼成してアロイ成形物52を作るアロイ成形物作成工程と、カーボンナノチューブ15又はカーボンナノホーン16を生成し、アロイ成形物作成工程によって作られたアロイ成形物52を蒸発させてカーボンナノチューブ15の表面又はカーボンナノホーン16の表面にアロイ成形物52のアロイ微粒子19を担持させるアロイ微粒子担持工程との各工程によってカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを作ることができるから、白金族元素を利用しない白金レスの電極10A,10Bを廉価に作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して燃料電池24や水素ガス発生装置37に好適に使用することが可能な白金レスの電極10A,10Bを廉価に作ることができる。
電極製造方法は、金属電極薄板13の両面(前後面)又はカーボン電極薄板14の両面(前後面)にカーボンナノチューブ15又はカーボンナノホーン16が固着され、カーボンナノチューブ15又はカーボンナノホーン16の表面にアロイ微粒子19が担持され、又は、カーボンナノチューブ15又はカーボンナノホーン16の表面にアロイ微粒子19を積層した積層ポーラス構造20が形成された厚み寸法L1が0.03mm~0.3mmのカーボンナノチューブ電極10A,10B又はカーボンナノホーン電極10A,10Bを作ることができるから、電極10A,10Bの電気抵抗を低くすることができ、電極10A,10Bに電流がスムースに流れ、燃料電池24において十分な電気を発電することが可能であって燃料電池24に接続された負荷36に十分な電気エネルギーを供給することが可能な電極10A,10Bを作ることができるとともに、水素ガス発生装置37において電気分解を効率よく行うことができ、水素ガス発生装置37において短時間に多量の水素ガスを発生させることが可能な電極10A,10Bを廉価に作ることができる。
10A カーボンナノチューブ電極又はカーボンナノホーン電極
10B カーボンナノチューブ電極又はカーボンナノホーン電極
11 前面
12 後面
13 金属電極薄板
14 カーボン電極薄板
15 カーボンナノチューブ
16 カーボンナノホーン
17 凝集体(凝集板)
18 凝集体(凝集板)
19 アロイ微粒子
20 アロイ微粒子積層ポーラス構造
21 流路
22 通流口
23 セル
24 燃料電池(固体高分子形燃料電池)
25 燃料極
26 空気極
27 固体高分子電解質膜(電極接合体膜)
28 セパレータ(バイポーラプレート)
29 セパレータ(バイポーラプレート)
30 膜/電極接合体
31 ガス拡散層
32 ガス拡散層
33 ガスシール
34 ガスシール
35 導線
36 負荷
37 水素ガス発生装置
38 陽極
39 陰極
40 固体高分子電解質膜(電極接合体膜)
41 陽極給電部材
42 陰極給電部材
43 陽極用貯水槽
44 陰極用貯水槽
45 陽極主電極
46 陰極主電極
47 膜/電極接合体
48 遷移金属
49 遷移金属微粉体
50 遷移金属微粉体混合物
51 遷移金属微粉体圧縮物
52 アロイ成形物(合金成形物)
53 アロイ微粉体(合金微粉体)
10B カーボンナノチューブ電極又はカーボンナノホーン電極
11 前面
12 後面
13 金属電極薄板
14 カーボン電極薄板
15 カーボンナノチューブ
16 カーボンナノホーン
17 凝集体(凝集板)
18 凝集体(凝集板)
19 アロイ微粒子
20 アロイ微粒子積層ポーラス構造
21 流路
22 通流口
23 セル
24 燃料電池(固体高分子形燃料電池)
25 燃料極
26 空気極
27 固体高分子電解質膜(電極接合体膜)
28 セパレータ(バイポーラプレート)
29 セパレータ(バイポーラプレート)
30 膜/電極接合体
31 ガス拡散層
32 ガス拡散層
33 ガスシール
34 ガスシール
35 導線
36 負荷
37 水素ガス発生装置
38 陽極
39 陰極
40 固体高分子電解質膜(電極接合体膜)
41 陽極給電部材
42 陰極給電部材
43 陽極用貯水槽
44 陰極用貯水槽
45 陽極主電極
46 陰極主電極
47 膜/電極接合体
48 遷移金属
49 遷移金属微粉体
50 遷移金属微粉体混合物
51 遷移金属微粉体圧縮物
52 アロイ成形物(合金成形物)
53 アロイ微粉体(合金微粉体)
Claims (16)
- アノード又はカソードとして使用するカーボンナノチューブ電極又はカーボンナノホーン電極において、
前記カーボンナノチューブ電極又は前記カーボンナノホーン電極が、各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体又はカーボンナノホーンの凝集体とを含み、前記遷移金属微粉体混合物では、前記選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極では、前記アロイ微粒子がカーボンナノチューブの表面又はカーボンナノホーンの表面に担持されていることを特徴とするカーボンナノチューブ電極又はカーボンナノホーン電極。 - 前記カーボンナノチューブの表面又は前記カーボンナノホーンの表面には、該カーボンナノチューブ又は該カーボンナノホーンの表面から外側へ向かって重なり合う前記アロイ微粒子によってアロイ微粒子積層ポーラス構造が形成されている請求項1に記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体の粒径が、10μm~200μmの範囲にあり、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極の厚み寸法が、0.03mm~0.3mmの範囲にある請求項1又は請求項2に記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体混合物が、Ni(ニッケル)の微粉体を主成分とし、前記遷移金属微粉体混合物では、前記Niの仕事関数と該Niを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から前記Niの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている請求項1ないし請求項3いずれかに記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体混合物の全重量に対する前記Ni(ニッケル)の微粉体の重量比が、30%~50%の範囲にあり、前記Niの微粉体を除く1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、20%~50%の範囲にあり、前記Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、3%~20%の範囲にある請求項4に記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体混合物が、Fe(鉄)の微粉体を主成分とし、前記遷移金属微粉体混合物では、前記Feの仕事関数と該Feを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から前記Feの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている請求項1ないし請求項3いずれかに記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体混合物の全重量に対する前記Fe(鉄)の微粉体の重量比が、30%~50%の範囲にあり、前記Feの微粉体を除く1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、20%~50%の範囲にあり、前記Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、3%~20%の範囲にある請求項6に記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体混合物が、Cu(銅)の微粉体を主成分とし、前記遷移金属微粉体混合物では、前記Cuの仕事関数と該Cuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から前記Cuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている請求項1ないし請求項3いずれかに記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記遷移金属微粉体混合物の全重量に対する前記Cu(銅)の微粉体の重量比が、30%~50%の範囲にあり、前記Cuの微粉体を除く1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、20%~50%の範囲にあり、前記Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、3%~20%の範囲にある請求項8に記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- 前記アロイ成形物では、前記選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が遷移金属微粉体混合物の焼成時に溶融し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体が接合されている請求項1ないし請求項9いずれかに記載のカーボンナノチューブ電極又はカーボンナノホーン電極。
- アノード又はカソードとして使用するカーボンナノチューブ電極又はカーボンナノホーン電極を製造する電極製造方法において、
前記電極製造方法が、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、前記遷移金属選択工程によって選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を作る遷移金属微粉体混合物作成工程と、前記遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を所定圧力で加圧して遷移金属微粉体圧縮物を作る遷移金属微粉体圧縮物作成工程と、前記遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物を所定温度で焼成してアロイ成形物を作るアロイ成形物作成工程と、カーボンナノチューブ又はカーボンナノホーンを生成し、前記アロイ成形物作成工程によって作られたアロイ成形物を蒸発させて前記カーボンナノチューブの表面又は前記カーボンナノホーンの表面に該アロイ成形物のアロイ微粒子を担持させるアロイ微粒子担持工程とを有することを特徴とする電極製造方法。 - 前記アロイ微粒子担持工程が、前記カーボンナノチューブ又は前記カーボンナノホーンの生成と同時にアロイ成形物を蒸発させ、前記アロイ成形物のアロイ微粒子を該カーボンナノチューブの表面又は該カーボンナノホーンの表面に担持させる請求項11に記載の電極製造方法。
- 前記遷移金属微粉体混合物作成工程が、前記遷移金属選択工程によって選択された少なくとも3種類の遷移金属を10μm~200μmの粒径に微粉砕する請求項11又は請求項12に記載の電極製造方法。
- 前記遷移金属微粉体圧縮物作成工程が、前記遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を500Mpa~800Mpaの圧力で加圧して前記遷移金属微粉体圧縮物を作る請求項11ないし請求項13いずれかに記載の電極製造方法。
- 前記アロイ成形物作成工程が、前記遷移金属選択工程によって選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体を溶融させる温度で前記遷移金属微粉体圧縮物を焼成し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体を接合する請求項11ないし請求項14いずれかに記載の電極製造方法。
- 前記アロイ微粒子担持工程が、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極を0.03mm~0.3mmの範囲の厚み寸法に成形し、前記カーボンナノチューブ又は前記カーボンナノホーンの表面から外側へ向かって重なり合う前記アロイ微粒子によってアロイ微粒子積層ポーラス構造を形成する請求項11ないし請求項15いずれかに記載の電極製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018143076A JP7193111B2 (ja) | 2018-07-31 | 2018-07-31 | カーボンナノチューブ電極又はカーボンナノホーン電極及び電極製造方法 |
JP2018-143076 | 2018-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020027194A1 true WO2020027194A1 (ja) | 2020-02-06 |
Family
ID=69232528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/030004 WO2020027194A1 (ja) | 2018-07-31 | 2019-07-31 | カーボンナノチューブ電極又はカーボンナノホーン電極及び電極製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7193111B2 (ja) |
WO (1) | WO2020027194A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005075725A (ja) * | 2003-09-01 | 2005-03-24 | Samsung Sdi Co Ltd | カーボンナノチューブ構造体及びその製造方法とそれを応用した電界放出素子及び表示装置 |
JP2006156387A (ja) * | 2004-11-26 | 2006-06-15 | Samsung Sdi Co Ltd | 燃料電池用電極、これを備えた燃料電池、及び燃料電池用電極の製造方法 |
JP2006184141A (ja) * | 2004-12-28 | 2006-07-13 | National Institute Of Advanced Industrial & Technology | 走査型磁気力顕微鏡用探針およびその製造方法並びにカーボンナノチューブ用強磁性合金成膜方法 |
JP2007026746A (ja) * | 2005-07-13 | 2007-02-01 | Gunma Univ | 燃料電池用電極触媒の製造方法及びその方法で製造された電極触媒並びにその電極触媒を用いた燃料電池 |
WO2014020650A1 (ja) * | 2012-08-02 | 2014-02-06 | トヨタ自動車株式会社 | 燃料電池用電極並びに燃料電池用電極、膜電極接合体及び燃料電池の製造方法 |
JP2017098004A (ja) * | 2015-11-20 | 2017-06-01 | 株式会社健明 | 燃料電池用電極材料、およびその製造方法 |
JP2017170404A (ja) * | 2016-03-25 | 2017-09-28 | 日産自動車株式会社 | 触媒粒子の製造方法および電極触媒の製造方法 |
-
2018
- 2018-07-31 JP JP2018143076A patent/JP7193111B2/ja active Active
-
2019
- 2019-07-31 WO PCT/JP2019/030004 patent/WO2020027194A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005075725A (ja) * | 2003-09-01 | 2005-03-24 | Samsung Sdi Co Ltd | カーボンナノチューブ構造体及びその製造方法とそれを応用した電界放出素子及び表示装置 |
JP2006156387A (ja) * | 2004-11-26 | 2006-06-15 | Samsung Sdi Co Ltd | 燃料電池用電極、これを備えた燃料電池、及び燃料電池用電極の製造方法 |
JP2006184141A (ja) * | 2004-12-28 | 2006-07-13 | National Institute Of Advanced Industrial & Technology | 走査型磁気力顕微鏡用探針およびその製造方法並びにカーボンナノチューブ用強磁性合金成膜方法 |
JP2007026746A (ja) * | 2005-07-13 | 2007-02-01 | Gunma Univ | 燃料電池用電極触媒の製造方法及びその方法で製造された電極触媒並びにその電極触媒を用いた燃料電池 |
WO2014020650A1 (ja) * | 2012-08-02 | 2014-02-06 | トヨタ自動車株式会社 | 燃料電池用電極並びに燃料電池用電極、膜電極接合体及び燃料電池の製造方法 |
JP2017098004A (ja) * | 2015-11-20 | 2017-06-01 | 株式会社健明 | 燃料電池用電極材料、およびその製造方法 |
JP2017170404A (ja) * | 2016-03-25 | 2017-09-28 | 日産自動車株式会社 | 触媒粒子の製造方法および電極触媒の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020021576A (ja) | 2020-02-06 |
JP7193111B2 (ja) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Nanoporous metal by dealloying for electrochemical energy conversion and storage | |
Yi et al. | Non-noble iron group (Fe, Co, Ni)-based oxide electrocatalysts for aqueous zinc–air batteries: recent progress, challenges, and perspectives | |
WO2017086250A1 (ja) | 燃料電池用電極材料、およびその製造方法 | |
JP5833786B1 (ja) | 燃料電池用電極材料、その製造方法および燃料電池 | |
WO2019244840A1 (ja) | 電極 | |
JP7281157B2 (ja) | 固体高分子形燃料電池及び電極製造方法 | |
WO2020080530A1 (ja) | 電極及び電極製造方法 | |
JP7199080B2 (ja) | 電気分解装置及び電極製造方法 | |
JP7281158B2 (ja) | 固体高分子形燃料電池及び電極製造方法 | |
WO2020017623A1 (ja) | 電極及び電極製造方法 | |
WO2020027194A1 (ja) | カーボンナノチューブ電極又はカーボンナノホーン電極及び電極製造方法 | |
JP7171024B2 (ja) | 固体高分子形燃料電池の燃料極及び空気極の製造方法 | |
JP2020004527A (ja) | 固体高分子形燃料電池および電極製造方法 | |
JP7171027B2 (ja) | 固体高分子形燃料電池の燃料極及び空気極の製造方法 | |
JP2020064786A (ja) | 固体高分子形燃料電池 | |
JP7171030B2 (ja) | 電気分解装置の陽極及び陰極の製造方法 | |
WO2020045643A1 (ja) | 電極 | |
CN106058291B (zh) | 一种用于固体氧化物燃料电池的连接体材料及其制备方法 | |
JP2020019980A (ja) | 電気分解装置及び電極製造方法 | |
WO2020059783A1 (ja) | 電極 | |
JP7235284B2 (ja) | 固体高分子形燃料電池 | |
KR101338047B1 (ko) | 용융탄산염 연료전지용 공기극 및 이의 제조 방법 | |
JP7179314B2 (ja) | 電気分解装置の陽極及び陰極の製造方法 | |
JP2020002397A (ja) | 電気分解装置および電極製造方法 | |
JP2020087812A (ja) | 電極及び電極製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19844374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19844374 Country of ref document: EP Kind code of ref document: A1 |